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Abstract. We consider a random walk on R
d in a polynomially mixing random

environment that is refreshed at each time step. We use a martingale approach to
give a necessary and sufficient condition for the almost-sure functional central limit
theorem to hold.

1. Introduction and main result

Random Walk in Random Environment (RWRE) is by now a standard model of
motion in disordered media. Put simply, a RWRE is a Markov chain on a particular
space where the transition probabilities are chosen through a random experiment.
In other words, we first randomly choose all the transition probabilities to get a
random environment and then we have a random walk governed by this random
environment. For the case when the walk happens on the integer lattice, Bolthausen
and Sznitman (2002b) and Zeitouni (2004) give an excellent overview. Of course,
one can use R

d in place of Z
d. One then must account for some mixing in the

environment. In this paper, we consider the special case where the environment is
“refreshed” each time step, and thus the underlying space will in fact be Z×R

d ⊂
R

d+1 where Z represents time and R
d represents space. (R is the set of real numbers,

Z the integers, Z+ the nonnegative integers, and N the positive integers.) Let us
now describe our model in more detail.
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The environment space is Ω =
(
M1(R

d)
)Z×R

d

where M1(R
d) is the space

of probability measures on R
d. An environment ω in Ω is of the form ω =(

ωn,x

)
n∈Z,x∈Rd , where n ∈ Z denotes the discrete temporal coordinate and x ∈ R

d

the continuous spatial coordinate. ωn,x is a probability measure on R
d and repre-

sents the jump probability, at time n, from point x to a new location in R
d. Denote

by ωn,· =
(
ωn,x

)
x∈Rd , the component of ω on the time coordinate (or level) n.

Given an environment ω ∈ Ω, a time m ∈ Z, and a location y ∈ R
d the probability

measure Pω
m,y defines a Markov chain (Zn)n≥0 on Z × R

d as follows

Pω
m,y

{
Z0 = (m, y)

}
= 1 and

Pω
m,y

{
Zn+1 ∈ {m + n + 1} × A

∣∣ Zn = (m + n, x)
}

= ωm+n,x(A − x).

(Zn)n≥0 is called a random walk in environment ω and Pω
m,y is called the quenched

measure. We will be interested in random walks which start at time 0. In this
case Zn = (n, Xn) and we can just look at the evolution of Xn. For simplicity
of notation we will abbreviate Pω

x for Pω
0,x. We equip M1(R

d) with the topology
of weak convergence and the corresponding Borel σ-algebra. Then equip Ω with
the product σ-algebra S. We are given a probability measure P on (Ω, S) which
is stationary and ergodic under the shifts T m,yω = (ωm+n,y+x)n∈Z,x∈Rd . Px =∫

Pω
x P(dω) is then called the joint measure and its marginal on the sequence space(

Z × R
d
)Z+

is called the averaged measure and is still denoted by Px. Denote the
expectations corresponding to P, Pω

x , Px, etc, by E, Eω
x , Ex, etc. Let Sn be the

σ-algebra generated by ωn,· and let S
+
n be the σ-algebra generated by (ωm,·)m≥n.

C will denote a chameleon constant which might change value from term to term.
Before we state our assumptions let us note that the case of RWRE on Z

d

is recovered from our model by letting ω0,0 be supported on Z
d and then setting

ωn,x = ωn,[U+x], where [y] means we take the integral part of each of the coordinates
of y and U is a random variable independent of ω and uniformly distributed on the
cube [0, 1)d.

We are now ready to state the assumptions on the environment measure P.

Assumption A1. Time components
(
ωn,·

)
n∈Z

are i.i.d. under P.

Assumption A1 means Xn is a random walk on R
d in a random environment that

gets refreshed at each time step. With A1 assumed, the law of Xn under P0 becomes
that of a classical random walk on R

d with jump probability p(A) = P0{X1 ∈ A}.
Thus, for example, the law of large numbers (LLN) holds if, and only if, one has
E0[|X1|] < ∞. The limiting velocity then equals

v = E0[X1] = E

[ ∫
xω0,0(dx)

]
. (1.1)

We are interested in the central limit theorem (CLT), hence the next assumption.

Assumption A2. The one step jump has a finite second moment:

E0[|X1|2] = E

[ ∫
|x|2 ω0,0(dx)

]
< ∞. (1.2)

For ε > 0 define the process

Bε(t) =
√

ε(X[t/ε] − [t/ε]v) for t ≥ 0. (1.3)
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Donsker’s invariance principle says that the law of Bε under P0 converges weakly,
as ε → 0, to the law of a Brownian motion with covariance matrix

D = E0[(X1 − v)(X1 − v)T ] = E

[ ∫
(x − v)(x − v)T ω0,0(dx)

]
. (1.4)

Here, AT is the transpose of the matrix A and a vector a ∈ R
d is thought of as a

matrix with one column and d rows. (A Brownian motion with covariance matrix D
has the same law as ΓW with D = ΓΓT and W a standard d-dimensional Brownian
motion.)

We are interested in the situation where the invariance principle also holds for the
laws of Bε under Pω

0 for P-a.e. ω. This is called the quenched invariance principle.
To motivate our next assumption we consider an example. Denote the local drift
by

D(ω) = Eω
0 [X1] =

∫
xω0,0(dx). (1.5)

Observe that D(ω) only depends on ω0,0.

Example 1.1. Let P be such that (ωn,0)n∈Z is a stationary ergodic sequence (valued
in M1(R

d)) and for each n ∈ Z and x ∈ R
d ωn,x = ωn,0. Then, Eω

0 [Xk+1 −
Xk |Xk] = D(T k,Xkω) = D(T k,0ω). Thus, Eω

0 [Xk+1 − Xk] = D(T k,0ω) and Xn −
Eω

0 [Xn] is a Pω
0 -martingale relative to the filtration σ{X1, ·, Xn}. It is easy to

check that the conditions for the martingale invariance principle are satisfied; see
for example Theorem 3 of Rassoul-Agha and Seppäläinen (2005). The conclusion
is that for P-a.e. ω the law of

B̃ε(t) =
√

ε(X[t/ε] − Eω
0 [X[t/ε]]), t ≥ 0, (1.6)

under Pω
0 converges weakly to a Brownian motion with a covariance matrix that

is independent of ω. On the other hand, if (ωn,0)n∈Z is mixing enough (in partic-

ular, when A1 holds), then Eω
0 [Xn] − nv =

∑n−1
k=0 (D(T k,0ω) − v) satisfies its own

invariance principle. Thus, the laws of (Xn − nv)/
√

n under Pω
0 are not tight.

The above example shows that in order for the quenched invariance principle for
Bε to hold one needs to assume some spatial mixing on the environment.

Assumption A3. There exists p > 26 and a constant C > 0 such that for all
measurable A, B ⊂ M1(R

d), we have
∣∣∣P{ω0,0 ∈ A, ω0,x ∈ B} − P{ω0,0 ∈ A}P{ω0,x ∈ B}

∣∣∣

≤ C

|x|p P{ω0,0 ∈ A}P{ω0,x ∈ B}.
(1.7)

Remark 1.2. The bound p > 26 is established from the bounds in Proposition 3.1
below. It is not optimal and can be improved by more work with the same ideas.

By a standard approximation argument it follows from A3 that if f and h are
two nonnegative functions in L2(P) that are σ{ω0,0}-measurable, then

∣∣E[f(ω)h(T 0,xω)] − E[f ]E[h]
∣∣ ≤ C

|x|p E[f ]E[h]. (1.8)

Our last assumption concerns the regularity of the environment. Let δz denote
the pointmass at z.
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Assumption A4. P satisfies the following:

P{∃z : ω0,0 = δz} < 1. (1.9)

Say A4 fails to hold. Let

A = {µ ∈ M1(R
d) : ∃z = z(µ) ∈ R

d such that µ = δz}.
If αn,x denotes the marginal of P on σ(ωn,x), then αn,x(A) = 1 for any fixed n ∈ Z

and x ∈ R. By independence of ω1,· and S0 and the disintegration lemma we have

P
{
∃(z1, z2) : ω0,0 = δz1 , ω1,z1 = z2

}
=

∫
1IA(µ)α1,z(µ)(A)α0,0(dµ)

= α0,0(A) = 1.

This implies that given the environment ω, the walk (Xn)n≥0 is nonrandom under
Pω

0 . In this case, there are no fluctuations in the quenched walk and the invariance
principle fails to hold unless ω0,0 is also nonrandom under P, in which case the
invariance principle is degenerate with a vanishing covariance matrix.

Remark 1.3. It is noteworthy that when A4 fails to hold the situation, even though
degenerate, is similar to the one in Example 1.1. Indeed, Xn − Eω

0 [Xn] = 0 and

thus a degenerate quenched invariance principle holds for B̃ε ≡ 0. Moreover,
Eω

0 [Xn] − nv = Xn − nv and thus an invariance principle holds for the processes
{√ε(Eω

0 [X[t/ε]] − [t/ε]v) : t ≥ 0}.
We can now formulate the main theorem of this paper.

Theorem 1.4. Assume the environment measure P is shift invariant and satisfies

the independence assumption A1 and the mixing assumption A3. Then a quenched

invariance principle holds if and only if the moment assumption A2 and the regular-

ity assumption A4 are satisfied. That is, for P-a.e. ω the distribution of Bε induced

by Pω
0 converges weakly to the distribution of a Brownian motion with covariance

matrix D given by (1.4). Moreover, n−1/2 maxk≤n |Eω
0 [Xk] − kv| converges to 0

P-a.s. and the same invariance principle holds for the distribution of B̃ε induced by

Pω
0 .

There are three major approaches that have been used to prove quenched central
limit theorems for RWRE, two of which were directly used to deal with the special
case of the above theorem where ω0,0 is P-almost-surely supported on Z

d and {ωn,x :
n ∈ Z, x ∈ Z

d} is an i.i.d. sequence; the so-called random walk in space-time product

random environment.
One approach is via Fourier-analytic methods; see Boldrighini et al. (2004).

This approach requires exponential moment controls on the step of the random
walk, uniformly in the environment ω; i.e. that supω Eω

0 [eλ|X1|] < ∞ for some
λ > 0. Recently, the above authors showed that their method can handle spatial
mixing in the environment and proved a weaker version of Theorem 1.4. Namely,
Boldrighini et al. (2009) assume exponential spatial mixing (rather than polynomial,
as in assumption A3), that transitions ωn,x have a density relative to the Lebesgue
measure on R

d and, most restrictive, the assumption that transition measures ωn,x

are small random perturbations of a nonrandom jump measure p(y) dy.
On the other hand, Rassoul-Agha and Seppäläinen (2005) consider the

Markov chain (T n,Xnω) of the environment as seen by the particle and use general
Markov chains arguments (introduced by Kipnis and Varadhan, 1986 for reversible
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Markov chains then generalized by Maxwell and Woodroofe, 2000, Rassoul-Agha
and Seppäläinen, 2008, and Derriennic and Lin, 2003) to prove Theorem 1.4 for
random walk in space-time product random environment. One advantage of this
approach is that it can be made to work in more general RWRE settings; see
Rassoul-Agha and Seppäläinen (2006, 2007, 2009). The main step in this approach
is a subdiffusive bound on the variance of the quenched mean (see Theorem 1.5).
The goal of the present paper is to show that this approach is quite natural and
works even when (mild) spatial mixing is present in the environment, still giving a
necessary and sufficient condition for the quenched invariance principle to hold. It
is noteworthy that Dolgopyat and Liverani (2009) use a similar method to prove
a quenched invariance principle in the case when ωn,· forms a Gibbsian Markov
chain, generalizing the independence assumption A1 but strengthening the mixing
assumption A3.

The third approach, used by Berger and Zeitouni (2008), is based on a concen-
tration inequality (Lemma 4.1 of Bolthausen and Sznitman, 2002a) that shows that
the quenched process is not “too far” from the averaged one and then appeals to
the averaged central limit theorem. Even though this has not been applied directly
to the space-time case, there is no reason why it would not succeed in providing an
alternate proof of Theorem 1.4. Incidentally, to prove the concentration inequality
one needs the same variance bound as in the aforementioned martingale approach.

We end this introduction with the main tool in the proof of the quenched invari-
ance principle. For a f ∈ L1(Ω, P) define

Πf(ω) =

∫
f
(
T 1,xω

)
ω0,0(dx).

The operator Π − I defines the generator of the Markov chain of the environment
as seen from the particle. This is the process on Ω with transitions

π̃(ω, A) = Pω
0 {T 1,X1ω ∈ A}.

Theorem 1.5. Let P∞ ∈ M1(Ω) be stationary ergodic for the Markov chain

with generator Π − I. Let E∞ denote the corresponding expectation. Assume∫
Eω

0 [|X1|2] P∞(dω) < ∞. Assume there exists an η ∈ (0, 1) such that

E∞[|Eω
0 [Xn] − E∞[Eω

0 [Xn]]|2] = O(nη). (1.10)

Then, n−1/2 maxk≤n |Eω
0 [Xk] − kv| converges to 0 P∞-a.s. and for P∞-a.e. ω both

the law of Bε and that of B̃ε under Pω
0 converge weakly to (the same) Brownian

motion with a nonrandom covariance matrix.

Proof : When ω0,0 is supported on Z
d this theorem is a special case of Theorem 2

of Rassoul-Agha and Seppäläinen (2005). However, the proof goes through word
for word when Z

d is replaced by R
d. The main idea is to first observe that Mn =

Xn−
∑n−1

k=0 D(T k,Xkω) is a martingale. Next, one uses the Markov chain arguments

alluded to on page 46 to decompose
∑n−1

k=0 D(T k,Xkω) = M̄n +Rn with M̄n another
martingale and, due to (1.10), Rn = o(

√
n), Pω

0 -almost surely for P∞-almost every
ω. This is where the hard work is. The result then follows from the invariance
principle for stationary ergodic martingales. �

In Section 2 we construct a probability measure P∞ which is invariant and ergodic
for the environment Markov chain. We also compare P∞ to P. In Section 3 we check
condition (1.10) and prove Theorem 1.4.
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2. Construction of the invariant measure

Let us start with some notation. Denote the quenched law of Xn by πω,n
x (A) =

Pω
x {Xn ∈ A}. This is a probability measure on R

d. Also let πn
x (A) = Px{Xn ∈

A} =
∫

πω,n
x (A)P(dω). Pn will denote the probability measure on Ω defined as

Pn(S) = P0{T n,Xnω ∈ S} =

∫∫
1I{T n,yω ∈ S} πω,n

0 (dy)P(dω).

This is the law of the environment as seen from Xn. Note that for any bounded
function f(ω),

∫
f(ω) Pn(dω) =

∫∫
f
(
T n,yω

)
πω,n

0 (dy)P(dω).

The rest of the section is devoted to the proof of the following theorem.

Theorem 2.1. Let P be shift invariant and satisfy the independence assumption

A1. Then, there exists a probability measure P∞ on (Ω, S) such that P∞
∣∣
S

+
−n

=

Pn

∣∣
S

+
−n

for any n ≥ 0. Moreover, P∞ is invariant and ergodic for the Markov chain

with transition operator Π.

Proof : We first show that measures Pn form a consistent family.

Lemma 2.2. For n ≥ m ≥ 0 we have Pn

∣∣
S

+
−m

= Pm

∣∣
S

+
−m

.

Proof : Fix an A ∈ S
+
−m. Use the Markov property to write

Pn(A) =

∫∫
1I{T n,xω ∈ A} πω,n

0 (dx)P(dω)

=

∫∫∫
1I{T m,xT n−m,0ω ∈ A} πω,n−m

0 (dy)πT n−m,0ω,m
y (dx)P(dω).

By shift invariance and the independence assumption A1

Pn(A) =

∫∫∫
1I{T m,xω ∈ A} πT−(n−m),0ω,n−m

0 (dy)πω,m
y (dx)P(dω)

=

∫ [ ∫∫
1I{T m,xω ∈ A} πω,m

y (dx)P(dω)
]
πn−m

0 (dy).

Using shift invariance again
∫∫

1I{T m,xω ∈ A} πω,m
y (dx)P(dω)

=

∫∫
1I{T m,xω ∈ A} πT 0,yω,m

0 (−y + dx)P(dω)

=

∫∫
1I{T m,x−yω ∈ A} πω,m

0 (−y + dx)P(dω)

=

∫∫
1I{T m,zω ∈ A} πω,m

0 (dz)P(dω) = Pm(A).

We have thus shown that for A ∈ S
+
−m we have Pn(A) = Pm(A). �

Kolmogorov’s consistency theorem now gives the existence of a probability mea-
sure P∞ such that P∞

∣∣
S

+
−n

= Pn

∣∣
S

+
−n

for all n ≥ 0.
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Recall the transition operator Π of the Markov chain of the environment as seen
from the point of view of the particle (T n,Xnω). We now prove that P∞ is invariant
and ergodic for this Markov chain.

Lemma 2.3. Probability measure P∞ is invariant under Π.

Proof : Let f be a bounded S
+
−k-measurable function. Then Πf is also bounded

and S
+
−k+1-measurable. Now write

∫
Πf(ω) Pn(dω) =

∫∫
f(T 1,xT n,yω)πT n,yω,1

0 (dx)πω,n
0 (dy)P(dω).

Make the change of variables (x, y) to (z, y) where z = x + y and note that

πT n,yω,1
0 (B) = Pω

n,y{X1 ∈ y + B}, then use the Markov property to conclude that
∫

Πf(ω) Pn(dω) =

∫∫
f(T n+1,zω)πω,n+1

0 (dz)P(dω)

=

∫
f(ω) Pn+1(dω).

Taking n ≥ k shows that
∫

Πf dP∞ =
∫

f dP∞. �

Lemma 2.4. The invariant measure P∞ is ergodic for the Markov chain with

generator Π − I.

Proof : The proof is identical to that of Lemma 1 of Rassoul-Agha and Seppäläinen
(2005) and is omitted. Roughly, the idea is that since moves of the Markov chain
consist of shifts, absorbing sets are shift-invariant and thus of trivial P-measure.
The claim then follows from approximating with local sets and using equality of
the restrictions of P and P∞ onto S

+
−n. �

The proof of Theorem 2.1 is complete. �

3. Bound on the variance of the quenched mean

We now have a probability measure P∞ on (Ω, S) that is invariant under Π
and ergodic for the Markov chain on Ω with generator Π − I. The next important
step is to verify that it satisfies (1.10) of Theorem 1.5, i.e. that the variance of the
quenched mean Eω

0 [Xn] is subdiffusive.

Proposition 3.1. Assume P is shift invariant and satisfies A1 through A4. Then,

P∞ from Theorem 2.1 satisfies (1.10) with η ≤ 1/2 + 13/p, where p is the exponent

in Assumption A3.

Proof : Since P∞
∣∣
S

+
0

= P0

∣∣
S

+
0

= P
∣∣
S

+
0

and the quantity inside the E∞ expectation

in (1.10) is measurable with respect to S
+
0 , (1.10) can be rewritten as

E

[∣∣Eω
0 [Xn] − nv

∣∣2
]

= O(nη). (3.1)

Define g(ω) = Eω
0 [X1] − v. Note that E[g] = 0. A simple computation gives

E

[∣∣Eω
0 [Xn] − nv

∣∣2
]

=

n−1∑

k,ℓ=0

∫∫∫
g(T k,xω) · g(T ℓ,yω)πω,k

0 (dx)πω,ℓ
0 (dy)P(dω) (3.2)
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By the moment assumption A2, the fact that g is S0-measurable, and the Π-
invariance of P∞, we have

∫∫
|g(T k,xω)|2 πω,k

0 (dx)P(dω) =

∫∫
|g(T k,xω)|2 πω,k

0 (dx)P∞(dω)

= E∞[|g|2] = E[|g|2] < ∞.

Using the inequality |a · b| ≤ 2(|a|2 + |b|2) we see that
∫∫∫ ∣∣∣g(T k,xω) · g(T ℓ,yω)

∣∣∣πω,k
0 (dx)πω,ℓ

0 (dy)P(dω) < ∞.

Consider a term in the sum in (3.2) with k < ℓ. Since
∫

g(T k,xω)πω,k
0 (dx)

and πω,ℓ
0 are measurable with respect to σ{ωm,· : m ≤ ℓ − 1} and g(T ℓ,yω) is

Sℓ-measurable, we have by Fubini’s theorem
∫∫∫

g(T k,xω) · g(T ℓ,yω)πω,k
0 (dx)πω,ℓ

0 (dy)P(dω)

=

∫ [ ∫
g(T ℓ,yω)P(dω)

]
·
[ ∫∫

g(T k,xω̃)πω̃,k
0 (dx)πω̃,ℓ

0 (dy)P(dω̃)
]

= 0.

This shows that terms in (3.2) with k 6= ℓ vanish. Thus,

E

[∣∣Eω
0 [Xn] − nv

∣∣2
]

=

n−1∑

k=0

∫∫∫
g(T k,xω) · g(T k,yω)πω,k

0 (dx)πω,k
0 (dy)P(dω).

For two independent random walks Xk and X̃k in the same random environment
ω, define

πω,k
x,y (A, B) = Pω

x {Xk ∈ A}Pω
y {X̃k ∈ B}

and

πk
x,y(A, B) = E

[
Pω

x {Xk ∈ A}Pω
y {X̃k ∈ B}

]
.

Since πω,k
0 is σ{ωm,· : m ≤ k − 1}-measurable and g(T k,xω) and g(T k,yω) are

Sk-measurable, another application of Fubini’s theorem shows that

E

[∣∣Eω
0 [Xn] − nv

∣∣2
]

=

n−1∑

k=0

∫∫
φ(y − x)πk

0,0(dx, dy), (3.3)

where φ(x) = E
[
g(ω) · g(T 0,xω)

]
.

Consider now the Markov chain Yk with transition probabilities given by

P{Y1 ∈ A |Y0 = x} =

∫∫
1I{z − y ∈ A} π1

0,x(dy, dz).

We will use Px to denote the law of this Markov chain, when started at Y0 = x. Ex

will denote the corresponding expectation. Due to the independence assumption

A1, the law of X̃k − Xk, induced by
∫

Pω
0 ⊗ Pω

x P(dω), is the same as that of Yk,
given Y0 = x. So (3.3) now becomes

E
[
|Eω

0 [Xn] − nv|2
]

=

n−1∑

k=0

E0

[
φ(Yk)

]
. (3.4)

To bound the right-hand side of (3.4) we start with a bound on the function φ.
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Lemma 3.2. Let P be shift invariant and satisfy the moment assumption A2 and

the mixing assumption A3. Then, there exists a constant C > 0 so that |φ(x)| ≤
C

|x|p , where p is as in (1.7).

Proof : Write g = g+ − g− where g+ and g− are the positive and negative parts of
g, coordinate by coordinate. Then

|φ(x)| =
∣∣∣E

[
g+(ω) · g+(T 0,xω) − g−(ω) · g+(T 0,xω)

− g+(ω) · g−(T 0,xω) + g−(ω) · g−(T 0,xω)
]∣∣∣.

(3.5)

From (1.8) we have
(
1 − C

|x|p
)
|E[g+]|2 ≤ E

[
g+(ω) · g+(T 0,xω)

]
≤

(
1 + C

|x|p
)
|E[g+]|2

and
(
1 − C

|x|p
)
E[g+] · E[g−] ≤ E

[
g−(ω) · g+(T 0,xω)

]
≤

(
1 + C

|x|p
)
E[g+] · E[g−].

Observing that E[g+] = E[g−] and subtracting the above two expressions we have
∣∣∣E

[
g+(ω)g+(T 0,xω) − g−(ω)g+(T 0,xω)

]∣∣∣ ≤ C

|x|p .

A similar bound can be obtained for the last two terms in (3.5). �

Now return to (3.4). For simplicity of notation define the measure

νk
0 (A) = P0{Yk ∈ A}.

Fix ε > 0 so that pε ≤ 1, where p is the exponent from (1.7). We get

n−1∑

k=0

E0

[
φ(Yk)

]
=

n−1∑

k=0

∫

|y|>nε

φ(y) νk
0 (dy) +

n−1∑

k=0

∫

|y|≤nε

φ(y) νk
0 (dy).

By Lemma 3.2 the first term is bounded by

n−1∑

k=0

∫

|y|>nε

|φ(y)| νk
0 (dy) ≤

n−1∑

k=0

∫

|y|≥nε

C
|y|p νk

0 (dy) ≤ Cn1−pε.

Since |φ(y)| ≤ E[|g|2], (3.1) would follow if we show

n−1∑

k=0

P0{Yk ∈ [−nε, nε]d} ≤ Cnη′

(3.6)

for some η′ < 1. To this end, we will need to compare the Markov chain Yk to a
random walk Ȳk whose transition probabilities are given by

P{Ȳ1 ∈ A | Ȳ0 = x} =

∫∫
1I{z − y ∈ A} π1

0(dy)π1
x(dz)

=

∫∫
1I{z̃ − y ∈ A − x} π1

0(dy)π1
0(dz̃)

= P{Ȳ1 ∈ A − x | Ȳ0 = 0}.

(Recall the definition of π1
0 introduced in Section 2.) While Yk = X̃k − Xk where

X and X̃ are independent walks in the same environment, Ȳk = X̂k −Xk where X

and X̂ are independent walks in independent environments. We will use P̄y and Ēy

for the law and expectation of the Ȳ walk starting at y. We will also denote by Pω
x,y
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the joint law of two independent random walks X and X̃ in the same environment

ω starting at X0 = x and X̃0 = y.
To prove (3.6) we will adapt the strategy in Appendix A of Rassoul-Agha and

Seppäläinen (2009) to our situation. We first show that the Markov chain expected
exit time from boxes grows at most exponentially in the diameter of the box. Then,
using a multiscale recursion argument, we improve this to a polynomial bound. The
upshot is that the Markov chain does not spend a lot of time in [−n, n]d. On the
other hand, outside this box the chain is close to the symmetric random walk which
has long excursions.

We start with a few crucial observations about the Markov chains Y and Ȳ ,
which we put in a lemma. Let aj denote the j-th coordinate of a vector a. Let ⌈s⌉
denote the smallest integer larger than s.

Lemma 3.3. The following statements hold.

(a) Y1 and Ȳ1 have a finite second moment and are symmetric about 0.

(b) If P0{Y j
1 6= 0} > 0, then there exist M > 0, L > 0, and δ > 0 such that we

have

Px

{
Y j

1 − xj ≥ L/(⌈M
xj ⌉ ∨ 1)

}
≥ δ2/4(⌈M

xj ⌉ ∨ 1)2 if xj > 0. (3.7)

(c) If P0{Y j
1 6= 0} > 0, then there exists a κ ∈ (0, M) such that

Px

{
|Y j

1 | > κ
}

> κ if |xj | ≤ κ. (3.8)

(d) Let Ur = inf{n ≥ 0 : Yn /∈ [−r, r]d} be the exit time from the centered

cube of side length 2r for the Markov chain Y . Then there is a constant

0 < K < ∞ such that

sup
x∈[−r,r]d

Ex[Ur] ≤ Kr for all r ≥ 0. (3.9)

Proof : The second moments are finite because of (1.2). Exchanging the roles of

X and X̃ (respectively, X and X̂), it is clear that both Y1 and Ȳ1 are symmetric
about 0. We next prove (b).

Use mixing (1.7) and translation invariance in the second line below to write for
all a and L > 0

Px{Y j
1 − xj ≥ L} ≥ E

[
Pω

0 {Xj
1 ≤ a}Pω

x {Xj
1 ≥ a + xj + L}

]

≥ P0{Xj
1 ≤ a}P0{Xj

1 ≥ a + L} − C
|x|p .

Since Xj
1 is not deterministic one can choose a and L > 0 so that the first term in

the second line above is a positive number 2δ ≤ 1. Let M be such that the second
term is less than δ when xj ≥ M . The upshot is that (3.7) holds for xj ≥ M :

Px{Y j
1 − xj ≥ L} ≥ δ ≥ δ2

4 . (3.10)

Assume there exists an x such that 0 < xj < M and

Px

{
Y j

1 − xj ≥ L
n

}
< δ2

4n2 ,

where n = ⌈M/xj⌉ ≥ 1. Then, by Chebyshev’s inequality

P

[
ω : Pω

0,x

{
Y j

1 − xj ≥ L
n

}
≥ δ

2n

]
<

δ

2n
.
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By shift invariance we have

P

[
ω : Pω

ix,(i+1)x

{
Y j

1 − xj ≥ L
n

}
≥ δ

2n for some i ∈ [0, n)
]

<
δ

2
. (3.11)

Now observe that

Pω
0,nx

{
Y j

1 − nxj ≥ L
}
≤

n−1∑

i=0

Pω
ix,(i+1)x

{
Y j

1 − xj ≥ L
n

}
.

To see this consider independent variables X
(i)
1 with law Pω

ix and note that

X
(n)
1 − X

(0)
1 − nx =

n−1∑

i=0

(X
(i+1)
1 − X

(i)
1 − x).

Picking up from (3.11) and letting y = nx we have

P

[
ω : Pω

0,y

{
Y j

1 − yj ≥ L
}
≥ δ

2

]
<

δ

2

which in turn implies

Py

{
Y j

1 − yj ≥ L
}

< δ
2 + δ

2 .

Since yj ≥ M , this contradicts (3.10). Part (b) is proved. Next, we prove (c).
Assume (3.8) is false. Then, for each n ≥ 1 there exists xn such that |xj

n| ≤ 1/2n

and Pxn{|Y j
1 | > 4−n} ≤ 4−n. Since P0{Y j

1 6= 0} > 0, there exist numbers a < b
and α > 0 such that the set

A =
{
ω : Pω

0 {Xj
1 ≤ a} ≥ α and Pω

0 {Xj
1 ≥ b} ≥ α

}

has positive P-measure. Consider now the sets

Dn =
{
ω : Pω

0,xn
{|Y j

1 | > 4−n} > 2−n
}
.

By Chebyshev’s inequality P(Dn) ≤ 2−n and by Borel-Cantelli’s lemma Dn occur
finitely often, P-almost surely. But for ω ∈ Dc

n ∩ A we have

2−n ≥ Pω
0,xn

{|Xj
1 − X̃j

1 | > 4−n}
≥ Pω

0 {Xj
1 ≤ a}Pω

xn
{X̃j

1 > a + 4−n}
≥ αPω

xn
{X̃j > a + 4−n}.

The same holds for Pω
xn
{X̃j

1 ≥ b−4−n}. This implies that, with positive probability,

both Pω
xn
{X̃j

1 ≤ a + 4−n} and Pω
xn
{X̃j

1 ≥ b− 4−n} converge to 1 as n → ∞. This is
a contradiction, since the two add up to less than one for n large. (3.8) is proved
and it still holds if one takes a smaller κ > 0 to ensure κ < M . (c) is proved.

To prove (d) observe that by assumption A4 there exists a j such that P0{Y j
1 6=

0} > 0. By (b) and (c) the probability that the Y Markov chain exits the cube
[−r, r]d in fewer than 1+2rM/(Lκ) steps is at least κ[(δ2κ2)/(16M2)]2rM/(Lκ). The
exit time Ur is thus stochastically dominated by 1 + 2rM/(Lκ) times a geometric
random variable with mean [16M2/(δ2κ2)]2rM/(Lκ)/κ. �

Let Br = [−r, r]d.
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Proposition 3.4. Let r0 = r
3
p . There exist constants 0 < α1, A1 < ∞ such that

for large enough r

inf
y∈Br\Br0

Py

{
without entering Br0 chain Y exits Br by time A1r

3
}
≥ α1

r
.

Proof : Let us call E the event inside the braces in the statement above and recall
that Ur is the exit time of the Markov chain Y from the box Br. We have

Py(E) =
∑

1≤k≤A1r3

Py(E, Ur = k)

=
∑

1≤k≤A1r3

∫
Pω

0,y

{
r0 < |Xi − X̃i| ≤ r for i < k and |Xk − X̃k| > r

}
P(dω).

The right-hand side of the above expression equals

∑

1≤k≤A1r3

∫
· · ·

∫
1I{|xk − x̃k| > r}πT k−1,0ω,1

xk−1
(dxk)πT k−1,0ω,1

x̃k−1
(dx̃k) · · ·

· · ·
[ k−1∏

i=1

1I{r0 < |xi − x̃i| ≤ r}πT i−1,0ω,1
xi−1

(dxi)π
T i−1,0ω,1
x̃i−1

(dx̃i)
]
P(dω)

Here, we have taken x0 = 0 and x̃0 = y ∈ Br \ Br0 . Note that πT i−1,0ω,1
xi−1

(dxi) is

a measure which depends only on the part of the environment {ωi−1,·}. Because
the different environment levels ωi,· are independent under P and since we have the
spatial mixing condition (1.7), we have

Py(E) ≥
(
1 − C

rp
0

)A1r3

P̄y(E).

By our assumption on r0 we have that Py(E) ≥ CP̄y(E). So now we just need to
bound P̄y(E) from below. By assumption A4 the Ȳ walk is nondegenerate along
some direction. Let the j-th coordinate Ȳ j be nondegenerate. Let ζ denote the
time Ȳ j exits (r0, r]. Also denote by P̄ j

yj the law of the random walk Ȳ j starting

at yj . Then

P̄y(Ec) ≤ P̄ j
yj{Ȳ j

ζ ≤ r0} + P̄ j
yj{ζ > A1r

3}. (3.12)

Time ζ is bounded above by the exit time U j
r from interval [−r, r]. It follows

from Theorem 1 of Pruitt (1981) that Ēj
yj [ζ] ≤ Cr2. Thus the second term on the

right-hand side of (3.12) is bounded by C/(A1r).
Observe next that since Ȳ j is symmetric, starting at 0 it has a chance of 1/2

to exit (−1, 1) into [1,∞). Say it exits at point z1 ≥ 1. Then, it has a chance of
1/2 to exit (−1, 2z1 + 1) into [2z1,∞). Repeating this scenario, the walk can exit
(−1, r] into (r,∞) in at most log(r + 1)/ log 2 steps. This shows that if ξ(r) is the
exit time of the walk Ȳ j from (−1, r], then

P̄0{Ȳξ(r) > r} ≥ 1
r+1 .

Using a coupling argument one sees that P̄yj{Ȳ j
ζ > r} increases with yj . Hence,

for r0 + 1 ≤ yj ≤ r we have

P̄yj

{
Ȳ j

ζ > r
}
≥ P̄r0+1

{
Ȳ j

ζ > r
}

= P̄0

{
Ȳ j

ξ(r−r0−1) > r − r0 − 1
}
≥ 1

r−r0
≥ 1

r .
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For r0 < yj < r0 + 1 use the Markov property and the fact that there is a positive
probability δ > 0 that the Ȳ j walk makes a jump of at least ν > 0 to the right to
obtain

P̄ j
yj{Ȳ j

ζ > r}
≥ P̄ j

yj

{
Ȳ j reaches [r0 + 1, r] in fewer than 1

ν steps
}

inf
y∈[r0+1,r]

P̄ j
y {Ȳ j

ζ > r}

≥ δ1/ν

r .

Thus, the first term on the right-hand side of (3.12) is bounded by 1 − C
r . The

proposition is proved if we choose A1 large enough. �

The following consequences follow immediately.

Corollary 3.5. Fix a constant c1 > 1 and consider positive integers r0 and r that

satisfy

log log r ≤ r0 ≤ c1 log log r < r.

Then for large enough r

inf
x∈Br\Br0

Px

{
without entering Br0 chain Y exits Br by time r4

}
≥ r−3.

Proof : The idea is to apply the previous proposition recursively to go from scale
log log r to scale r. The proof of Corollary A.1 of Rassoul-Agha and Seppäläinen
(2009) goes through word for word with the choice γ = p

3 . �

Lemma 3.6. Let Ur = inf{n ≥ 0 : Yn /∈ Br} be the first exit time from Br =
[−r, r]d for the Markov chain Y . Then there exists a finite positive constant C such

that

sup
x∈Br

Ex[Ur] ≤ Cr13 for all r > 0.

Proof : The proof of Lemma A.4 of Rassoul-Agha and Seppäläinen (2009) works in
our setting as well since it only uses the above corollary, the fact that the exit times
satisfy (3.9), and general Markov chain facts. �

We now complete the proof of (3.6). Let B = Br with r = nε. Let 0 = V in
0 <

V out
1 < V in

1 < V out
2 < V in

2 < · · · be the successive entrance times V in
i into B and

exit times V out
i from B for the Markov chain Y . Write

n−1∑

k=0

P0{Yk ∈ [−nε, nε]d} ≤
n∑

i=0

E0

[
(V out

i+1 − V in
i )1I{V in

i ≤ n}
]

≤ sup
|y|≤nε

Ey[Unε ] · E0

[ n∑

i=0

1I{V in
i ≤ n}

]

≤ Cn13ε E0

[ n∑

i=0

1I
{ i∑

j=1

(V in
j − V out

j ) ≤ n
}]

. (3.13)

Lemma 3.7. There exists a positive constant C such that the following holds:

excursion lengths {V in
j − V out

j : 1 ≤ j ≤ n} stochastically dominate i.i.d. random

variables {ηj} such that 1 ≤ ηj ≤ npε, almost surely, and P{ηj ≥ a} ≥ Ca−1/2 for

1 ≤ a ≤ npε.
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Proof : Let V denote the first entrance time into B. We will show that Py{V ≥ a}
is bounded below uniformly over y /∈ B. As in Proposition 3.4, let us assume that
the Ȳ walk is nondegenerate along direction j. Assume yj > r, the other case being
similar by symmetry. Let wr = inf{n ≥ 1 : Ȳ j

n ≤ r}. Then

P̄y{V ≥ a} ≥ P̄ j
yj{wr ≥ a}

and it follows from Theorem 1a of Feller (1971, page 415) that P̄ j
yj{wr ≥ a} ≥ C√

a
.

By arguments similar to Proposition 3.4 (look at X and X̃ paths up to time a), we
get that for y /∈ B,

Py{V ≥ a} ≥
(
1 − C

npε

)a
P̄y{V ≥ a}

≥
(
1 − C

npε

)a C√
a
≥ C√

a

for 1 ≤ a ≤ npε and some constant C > 0. This implies the stochastic domination.
Assuming that 1 ≤ ηj ≤ npε only weakens the conclusion. �

Let Kn = inf{k :
∑k

j=1 ηj > n} be the number of renewals up to time n.

Wald’s inequality gives E[Kn]E[η1] ≤ n + npε ≤ 2n, while the tail of η1 gives
E[η1] ≥ Cnpε/2. Consequently, E[Kn] ≤ Cn1−pε/2. Picking up from (3.13) we have

n−1∑

k=0

P0{Yk ∈ [−nε, nε]d} ≤ Cn13ε E
[ n∑

i=0

1I
{ i∑

j=1

ηj ≤ n
}]

≤ Cn13εE[Kn] ≤ Cn1+13ε−pε/2.

This proves (3.6) and the proof of Proposition 3.1 is then complete, with η =
max(1 − pε, 1 − (p/2 − 13)ε) ≤ 1/2 + 13/p < 1. �

Proof of Theorem 1.4: Since the measure P∞ we constructed satisfies the assump-
tions of Theorem 1.5, the conclusion of Theorem 1.5 holds. But we already know
that P

∣∣
S

+
0

= P∞
∣∣
S

+
0

and since the walk always remains in the region {(n, x) : n ≥
0}, the conclusion of Theorem 2 holds with P∞ replaced by P. Finally, since the
diffusion matrix is nonrandom, the averaged invariance principle holds with the
same matrix and thus this matrix is no other than D. �
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