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Abstract. We describe the evolution of the quantity of parasites in a population
of cells which divide in continuous-time. The quantity of parasites in a cell follows
a Feller diffusion, which is splitted randomly between the two daughter cells when a
division occurs. The cell division rate may depend on the quantity of parasites inside
the cell and we are interested in the cases of constant or monotone division rate. We
first determine the asymptotic behavior of the quantity of parasites in a cell line,
which follows a Feller diffusion with multiplicative jumps. We then consider the
evolution of infection in the cell population and give criteria to determine whether
the proportion of infected cells goes to zero (recovery) or if a positive proportion of
cells becomes largely infected (proliferation of parasites inside the cells).

1. Introduction and main results

We consider a continuous time model for dividing cells infected by parasites. We
assume that parasites proliferate in the cells and that their lifelengths are much
less than the one of the cell. Informally, the quantity of parasites (Xt : t ≥ 0) in
a cell evolves as a Feller diffusion (see Feller, 1971). The cells divide in continuous
time at a rate r(x) which may depend on the quantity of parasites x that they
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contain. When a cell divides, a random fraction Θ of the parasites goes in the first
daughter cell and a fraction (1 − Θ) in the second one. More generally, instead of
parasite infection, one could be interested in some biological content which grows
in the cells and is shared randomly when the cells divide (for example proteins,
nutriments, energy or extrachromosomal rDNA circles in yeast as in Sinclair and
Guarent, 1997).

Let us give some details about the biological motivations. For the sharing of
parasites, we are inspired by experiments conducted in Tamara’s Laboratory where
bacteria E-Coli have been infected with bacteriophage lysogens. Stewart et al.
(2005) show that a very infected cell often gives birth to one very infected and
one lowly infected daughter cells. Thus we are interested in taking into account
unequal sharing and we do not make restrictive assumptions about Θ. The model
studied here is a continuous version of the multilevel model for plasmids considered
by Kimmel (1997). In the latter model, the cells divide in continuous time at a
constant rate and the number of plasmids is a discrete quantity which is fixed at
the birth of the cell: the plasmids reproduce ’only when the cells divide’. Moreover
the sharing is symmetric. We refer to Athreya and Kang (1998); Benjamini and
Peres (1994) for general discrete time models with independent and identically
distributed values for the offspring, and to Guyon (2007); Delmas and Marsalle
(2010); Bercu et al. (2009) for asymmetric models motivated by cellular aging.
In Bansaye (2008), a discrete time model where the sharing of the parasites may
be asymmetric is considered, with close motivations. Here both the quantity of
parasites and the time are continuous.

In addition to unequal repartition of parasites in the two daughter cells, we are
also interested in letting the division rate of the cell r(x) depend on the quantity
x of parasites in the cell. On the one hand the cell’s division rate may decrease
when the quantity of parasites increases since the cell’s stamina is affected. For
instance, in Bonds (2006); Hurd (2001); O’Keefe and Antonovics (2002) examples
where host fecundity is reduced by the presence of pathogens are presented. On
the other hand, increasing rates may be found in order to fight against the parasite
proliferation. This case is also relevant when there is a symbiosis between the host
and its parasites. In this direction, we refer to Bull et al. (1991); Bull and Mo-
lineux (1992). Increasing functions r(x) are also natural if we replace parasites by
nutriments or more generally ’energy for the cell division’. Finally, we also consider
the case where the division rate does not depend on the quantity of parasites (r
constant) since some parasites do not affect the evolution of their host. Moreover
it is mathematically natural to consider this simpler case first, which will be useful
for non constant cases.

We study a Markov process on a Galton Watson tree. Bansaye et al. (2011) give
asymptotic results for such processes when r is constant, but require an ergodicity
assumption, which is not fulfilled here. Mathematical approaches for the case of
non constant division rates r(x) have been considered by Hardy and Harris (2009)
for continuous time branching diffusions, when the offspring appear at the position
of their mother. Their method, which relies on Girsanov transformations, does
not hold when nonlocal branching is considered. We also refer to Engländer and
Kyprianou (2004); Engländer (2007).
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As we will observe, even when the division rate is constant, our model behaves
differently from the discrete time model with ’constant division’ of Bansaye (2008)
and the recovery criteria are different.

We refer to Dawson (1993); Dawson et al. (2002) for the nonlocal branching
superprocess counterpart. In the framework of cell divisions, Evans and Steinsaltz
(2007) consider a superprocess approach for cell damages, which corresponds to the
high density limit of small and short living cells. Notice however that asymmetry
and nonlocal branching are lost in the continuous limit. Moreover, in view of
statistical applications (see e.g. Guyon, 2007; Delmas and Marsalle, 2010), our
purpose is to stick to a discrete genealogical cell tree. In the experiments, the
number of cells cannot always be considered as large.

Let us now give a qualitative description of our model, which is rigorously defined
in the next section. The quantity of parasites (Xt : t ≥ 0) follows a Feller diffusion
(see e.g. Lamperti, 1967; Bingham, 1976, Revuz and Yor, 1999, Chapter IX and
Ikeda and Watanabe, 1989, Chapter IV)

dXt =gXtdt +
√

2σ2XtdBt (1.1)

started at x0 > 0. In this work, we study the super-critical case (g > 0) with positive
variance (σ > 0). Then the parasites survive with probability 1 − exp(−gx0/σ2) ∈
(0, 1) and upon survival their quantity goes to infinity. This model corresponds
to the high density limit of a birth and death process for parasites with short
lives, which is detailed in Section 2.2. The population of cells remains discrete and
each cell divides in continuous time with a rate r(x) which will be here monotone,
measurable and bounded on compact intervals to avoid degenerated situations. Let
us denote by Vt the set of living cells at time t, by Nt = #Vt the cell population
size at time t and by X i

t the quantity of parasites in the cell i ∈ Vt at time t. Thus:
∑

i∈Vt

X i
t = Xt.

When a cell containing a quantity x of parasites divides, the quantity of parasites
received by inheritance by the two daughter cells are respectively Θx and (1 −
Θ)x. We assume here that Θ is a random variable (r.v.) in [0, 1] such that P(Θ =
0) = P(Θ = 1) = 0 since otherwise the limit theorems are degenerated: the infection
in a random cell line and the proportion of infected cells go to zero. We denote by
K(dθ) the distribution of Θ. This model can been seen as a random fragmentation
where the mass of the fragment follows a Feller diffusion. A fragment with mass
x splits with rate r(x) into two fragments of respective masses Θx and (1 − Θ)x.
Similarities with the splitting intervals of Brennan and Durrett (1986, 1987) are to
be noticed, where a fragment of size x splits at rate r(x) = xα (α > 0) ; the latter
would amount to considering constant quantity of parasites within cells.

We aim at determining how the infection evolves in the cell population. We
stress that our results do not depend on the initial quantity of parasites x0 > 0.

First, in Section 3, we determine the asymptotic behavior of the quantity of
parasites in a cell line (Yt : t ≥ 0). This amounts to following the infection in a
cell until it divides and then choose at random one of the two daughter cells. This
process is a Feller diffusion X with multiplicative jumps Θ occurring at rate r(.)
and we prove the following extinction criterion.

Proposition 1.1. (i) In the case where r(.) = r is constant,
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⋆ If g ≤ E(log(1/Θ))r, then almost surely (a.s.) there exists t ≥ 0 such that
Yt = 0.

⋆ Otherwise P(limt→+∞ Yt = +∞) > 0.

(ii) In the case where r is an increasing function,

⋆ If there exists x0 such that g ≤ E(log(1/Θ))r(x0), then a.s. there exists
t > 0 such that Yt = 0.

⋆ If g > E(log(1/Θ)) supx∈R+
r(x), then P(limt→+∞ Yt = ∞) > 0.

(iii) In the case where r is a decreasing function,

⋆ If g ≤ E(log(1/Θ)) infx∈R+
r(x), then a.s. there exists t > 0 such that

Yt = 0.
⋆ Otherwise, P(limt→+∞ Yt = ∞) > 0.

We say that the organism recovers when the proportion of infected cells goes to
zero as time goes to infinity. But contrarily to the discrete case Bansaye (2008);
Guyon (2007), the extinction criteria stated above do not provide directly recovery
criteria for the organism. When the division rate is constant, we prove in Section 4
the following criterion for a.s. recovery:

Theorem 1.2. We assume here that r(x) = r for every x ≥ 0.
(i) If g ≤ 2E(log(1/Θ))r, then the organism recovers a.s. in the sense that:

lim
t→+∞

#{i ∈ Vt : X i
t = 0}

Nt
= 1 a.s. (1.2)

(ii) If g > 2E(log(1/Θ))r then the parasites proliferate exponentially inside the cells
as soon as the parasites do not become extinct in the sense that

{
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ eκt}

Nt
> 0
}

= {∀t ≥ 0, Xt > 0} a.s. (1.3)

for every 0 < κ < g − 2E(log(1/Θ))r.

Thus, when the division rate is constant, either the organism recovers a.s. or a
positive proportion of cells becomes arbitrarily largely infected as soon as the total
parasite population survives. Let us make two observations about this recovery
criterion. First, thanks to unequal sharing of parasites (i.e. E(log(1/Θ)) ≫ 1), the
organism may recover a.s. even when the parasite growth rate is large (g ≫ 1) and
the cells’ division rate is low (r ≪ 1). Second, we can remark the factor 2 in this
criterion, which is inherited from a bias phenomenon that is typical to continuous
time branching processes and stated in Bansaye et al. (2011); Chauvin et al. (1991);
Hardy and Harris (2009). Heuristically, a typical cell at a large time has divided at
rate 2r along its ancestral lineage. This allows the following surprising situation:
the organism may recover a.s. although the quantity of parasites in a cell line goes
to infinity with positive probability.

The situation is very different if x 7→ r(x) varies. In this case, the genealogical
tree of the cell population depends on the quantity of parasites evolving in the cells
and we are no more in the frame of Markov processes indexed by Galton-Watson
trees as in Bansaye et al. (2011).

If the division rate decreases when the quantity of parasites increases, then the
situation is quite intuitive since the cells which become too infected will keep getting
more and more infected whereas their proportion in the cell population tends to 0.
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Using the infection in a cell line (Yt : t ≥ 0), we give a sufficient condition for a.s.
recovery (see Section 5.3).

The case of an increasing division rate is more interesting and difficult: increase
in the cell division rate may prevent the parasites from proliferating in the cells.
There is no longer either recovery or proliferation of parasites and an intermediate
regime appears (see the first example in Section 5.2). This leads us to introduce
moderate infection, which roughly speaking means that the quantity of parasites
in a positive fraction of the cells alive at time t remains positive and bounded.
The criterion for this a.s. moderated infection is conjectured in Section 5.2.2 and
illustrated with simulations in Section 6.

The paper is organized as follows. In Section 2, we give more formal definitions
based on measure-valued processes and state the convergence of the discrete model
to the continuous model. In Section 3, we give the asymptotic behavior of Feller
diffusions with multiplicative jumps in the cases of constant or monotone division
rates. This provides the asymptotic behavior of the infection in a cell line. We
derive in Section 4 the recovery criterion for constant division rate rates r, while
non-constant cases are handled in Section 5.

2. Preliminaries

2.1. Measure-valued description of the infected cell population. To describe the tree
of the cell population and label its nodes, we use the Ulam-Harris-Neveu notation
(e.g. Dawson, 1993; Le Gall, 2005). We introduce the set of labels :

I = {∅} ∪
+∞⋃

m=1

{0, 1}m. (2.1)

For all i1 = i11 · · · i
1
m1

and i2 = i21 · · · i
2
m2

∈ I, we define their concatenation i1i2 by

the label i11 · · · i
1
m1

i21 · · · i
2
m2

. The mother cell is labeled by ∅ and when the cell of
label i divides, the two daughters are labeled by i0 and i1.

Let Vt ⊂ I be the set of cells alive at time t and Nt = #Vt be its size. For
i ∈ Vt, we denote by X i

t ∈ R+ the quantity of parasites in the cell i at time t. The
population of cells at time t may be represented by the random point measure on
I × R+, Z̄t(du, dx) =

∑
i∈Vt

δ(i,Xi
t)

(du, dx). We define by

Zt(dx) =
∑

i∈Vt

δXi
t
(dx), (2.2)

the marginal measure of Z̄t(du, dx) on the state space R+.
The space of finite measures on R+, MF (R+), is embedded with the topology

of weak convergence. For a measure µ ∈ MF (R+) and a positive function f , we
use the notation 〈µ, f〉 =

∫
R+

f dµ.

The evolution of (2.2) can be modelled by a stochastic differential equation (SDE)
that is now introduced. This defines a solution in the space D(R+,MF (R+)) of
càdlàg measure-valued processes, embedded with the Skorokhod topology (see e.g.
Joffe and Métivier, 1986). We follow in this the inspiration of Fournier and Méléard
(2004); Bansaye et al. (2011).

Let (Bi, i ∈ I) be a family of independent Brownian motions (BMs) and let
Q(ds, dv, di, dθ) be a Poisson point measure (PPM) on R+ × R+ × I × [0, 1] of
intensity q(ds, dv, di, dθ) = ds dv n(di)K(dθ) independent from the BMs. We have
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denoted by n(di) the counting measure on I while ds and dv are Lebesgue measures
on R+. We denote by (Ft : t ≥ 0) the canonical filtration associated with the BMs

and the PPM. Then, for every (t, x) 7→ f(t, x) ∈ C1,2
b (R+ × R+, R) (bounded of

class C1 in t and C2 in x with bounded derivatives),

〈Zt, f〉 =f(0, x0) +

∫ t

0

∫

R+

(
∂sf(s, x) + gx∂xf(s, x) + σ2x∂2

xxf(s, x)
)
Zs(dx) ds

+Mf
t +

∫ t

0

∫

R+×I×[0,1]

1li∈Vs
−

, v≤r(Xi
s
−

)

(
f(s, θX i

s−
)

+ f(s, (1 − θ)X i
s−

) − f(s, X i
s−

)
)
Q(ds, dv, di, dθ), (2.3)

where x0 is the quantity of parasite in the ancestor cell ∅ at t = 0 and

Mf
t =

∫ t

0

∑

i∈Vs

√
2σ2X i

s∂xf(s, X i
s)dBi

s (2.4)

is a continuous square integrable martingale with quadratic variation:

〈Mf〉t =

∫ t

0

∫

R+

2σ2x(∂xf(s, x))2 Zs(dx) ds. (2.5)

The second and third terms in the right hand side (r.h.s.) of (2.3) correspond to
the variation of parasites in the cells: we recognize the infinitesimal generator of the
Feller diffusion (1.1). The last term is related to cell divisions and random sharing
of parasites, obtained from the PPM.

Proposition 2.1. For given initial condition x0, PPM Q and BMs (Bi, i ∈ I),
there exists a unique strong solution to (2.3)-(2.5).

Proof : Note that as expected, the total quantity of parasites Xt =
∫

R+
xZt(dx)

follows the Feller diffusion (1.1) with drift g and variance σ2. We recall that:

∀t ∈ R+, E(Xt) = x0e
gt < +∞. (2.6)

For existence and uniqueness, we use (2.6) and refer to similar computation in
Champagnat and Méléard (2007) and Tran (2006) Chapter 2 Section 2.2.

Notice that for f ∈ C1,2
b (R2

+, R), the process Mf is a real square integrable
martingale since for all t ∈ R+:

2σ2‖∂xf‖2
∞E

( ∫ t

0

∫

R+

xZs(dx)ds
)

< +∞.

This ends the proof. �

2.2. From the microscopic discrete model to the continuous model. The continuous
model defined above can be obtained as the limit of a discrete microscopic model,
where each cell hosts a discrete parasite population. The initial cell contains [nx0]
parasites, where n ∈ N∗ = {1, 2, . . .} is a parameter that will tend to infinity and
where [x] denotes the integer part of x. The parasites are reweighted by 1/n so
that the biomass in a cell remains of constant order. They reproduce asexually and
die with the individual rates:

bn = nσ2 + b, dn = nσ2 + d (2.7)
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where b, d > 0 are such that b− d = g > 0. The cell population is described by the
point measure

Zn
t (dx) =

∑

i∈Vt

δXn,i
t

(dx)

where Xn,i
t is the number of parasites renormalized by n in the cell i at time t.

Let Q1 and Q2 be two PPMs on R+ × E1 := R+ × I × R+ × R+ and R+ ×
E2 := R+ × I × R+ with intensity measures ds n(di) dv and ds n(di) dv K(dθ). We
associate Q1 to the cell divisions while Q2 corresponds to the births and deaths of
the parasites.

Zn
t = δ(∅,[nx0]/n) (2.8)

+

∫ t

0

∫

E1

Q1(ds, di, dv, dθ)1li∈Vs
−

1lv≤r(Xn,i
s
−

)

(
δ(i0,[θnXn,i

s
−

]/n)

+ δ(i1,Xn,i
s
−

−[θnXn,i
s
−

]/n) − δ(i,Xn,i
s
−

)

)

+

∫ t

0

∫

E2

Q2(ds, di, dv)1li∈Vs
−

[(
δ(i,Xn,i

s
−

+1/n) − δ(i,Xn,i
s
−

)

)
1lv≤bnXn,i

s
−

+
(
δ(i,Xn,i

s
−

−1/n) − δ(i,Xn,i
s
−

)

)
1lbnXn,i

s
−

<v≤(bn+dn)Xn,i
s
−

]
.

Other discrete models would lead to this continuous model. For example, parasites
may have several offspring and could be shared according to a random binomial
distribution: we could draw θ in the distribution K(dθ) and then send each parasite
in the first daughter cell with the probability θ, or else, keep it for the second
daughter cell (see Kimmel, 1997; Bansaye, 2008).

The parasite population is a continuous time birth and death process of constant
rates bn and dn. Hence for every n ∈ N∗, there is existence and strong uniqueness
of the solution of (2.8) for a given initial condition Zn

0 and PPMs Q1 and Q2.

Proposition 2.2. Assume that there exists an integer p > 0 and a positive r̄ > 0
such that for all x ∈ R+, 0 ≤ r(x) ≤ r̄(1 + xp). Then, the sequence (Zn : n ∈ N∗)
defined in (2.8) converges in distribution in D(R+,MF (R+)) as n → +∞ to the
process Z defined in (2.3)-(2.5).

The proof is deferred to Appendix (Section 7). The additional regularities on the
division rate r are required to control the difference between the microscopic process
(2.8) and its approximation (2.3)-(2.5).

3. Feller diffusion with multiplicative jumps

We are interested in the evolution of the quantity of parasites in a cell line. This
means that at each division, we only keep one cell and consider the quantity of
parasites inside. This process (Yt : t ≥ 0) follows a Feller diffusion with multiplica-
tive jumps of independent sizes distributed as the r.v. Θ and which occur at rate
r(x) when the process is equal to x. Without loss of generality, we decide to follow
the quantity of parasites in the ’first branch’ of the tree, which is constituted by
individuals labeled only with 0s. More precisely, letting

i = {∅} ∪
⋃

m∈N∗

{0}m,
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this process (Yt : t ≥ 0) is defined by:

Yt = X
i0(t)
t , where i0(t) ∈ i ∩ Vt.

Using (2.3), it satisfies

Yt = x0 +

∫ t

0

gYsds +

∫ t

0

√
2σ2Ysdβs

−

∫ t

0

∫

R+×[0,1]

1lv≤r(Ys
−

)

(
1 − θ

)
Ys−

ρ(ds, dv, dθ) (3.1)

where

dβt =
∑

i∈Vt

1li(i)dBi
t and ρ(ds, dv, dθ) = 1li∩Vs

−

(i)Q(ds, dv, di, dθ)

are respectively a BM and a PPM on E := R+ × R+ × [0, 1] with intensity

ds dv K(dθ). In the sequel, we denote by (Fβ
t : t ≥ 0) and (Fρ

t : t ≥ 0) the
canonical filtrations associated with the BM β and the PPM ρ respectively.

Apart from the biological motivations considered here, one can notice that such
Markov processes with multiplicative jumps have various applications (see for in-
stance the TCP in Dumas et al., 2002; Guillemin et al., 2004; Jacobson, 1988).

3.1. Extinction criterion when r is constant. We first study the asymptotic behav-
ior of the process Y when the jump rate is constant.

Proposition 3.1. We assume that r(.) = r is constant.
(i) If g ≤ E(log(1/Θ))r, then P(∃t > 0 : Yt = 0) = 1.

Moreover if g < E(log(1/Θ))r,

∃α > 0, ∀x0 ≥ 0, ∃c > 0, ∀t ≥ 0, Px0
(Yt > 0) ≤ ce−αt. (3.2)

(ii) If g > E(log(1/Θ))r, then P(∀t ≥ 0 : Yt > 0) > 0.
Furthermore, for every 0 ≤ κ < g − E(log(1/Θ))r,

{ lim
t→+∞

e−κtYt = ∞} = {∀t, Yt > 0} a.s. (3.3)

To guess this extinction criterion one can observe that without division the par-
asite population follows a Feller diffusion with E(Xt) = x0 exp(gt). With the mul-
tiplicative jumps corresponding to the cell divisions, we obtain:

Yt ≈ x0e
gt

Nt∏

j=1

Θj ≈ x0 exp
(
gt + Nt × E(log(Θ))

)
(t → +∞)

where Nt is a Poisson r.v. of parameter rt and where the Θj’s are i.i.d. r.v. with
distribution K(dθ) and independent of Nt.

More rigorously, to prove the proposition above, we compute the Laplace trans-
form of the jump-diffusion process (3.1). Let us introduce the following rescaled
process corrected with its drift and jumps:

Ȳt = Yte
Kt ,

with

Kt = −gt −

∫ t

0

∫

R+×[0,1]

1lv≤r log(θ)ρ(ds, dv, dθ) = −gt −
Nt∑

j=1

log(Θj). (3.4)



Branching Feller diffusion for parasite infection 103

Lemma 3.2. The process (Ȳt : t ≥ 0) is a continuous local martingale and

∀t, λ, x0 ≥ 0, Ex0

(
exp(−λȲt)

)
=E

(
exp

(
−

λx0

σ2λ
∫ t

0 eKsds + 1

))
. (3.5)

Proof : Since for every t ∈ R+, 0 ≤ Yt ≤ Xt and thanks to (2.6), all the stochastic
integrals that we write are well defined as local martingales. Using Itô’s formula
with jumps (e.g. Ikeda and Watanabe, 1989, Th.5.1 on p.67) :

Ȳt =x0 +

∫ t

0

eKs

[
gYsds +

√
2σ2Ysdβs

]
−

∫ t

0

gYse
Ksds

+

∫ t

0

∫

R+×[0,1]

(
Yse

Ks − Ys−
eKs

−

)
1lv≤rρ(ds, dv, dθ)

=x0 +

∫ t

0

eKs

√
2σ2Ysdβs +

∫ t

0

∫

R+×[0,1]

Ȳs−

(
θe− log(θ) − 1

)
1lv≤rρ(ds, dv, dθ)

=x0 +

∫ t

0

eKs

√
2σ2Ysdβs.

Then (Ȳt : t ≥ 0) is a continuous local martingale which satisfies:

Ȳt = x0 +

∫ t

0

eKs/2
√

2σ2Ȳsdβs. (3.6)

Let us now work conditionally on Fρ
∞. Using Itô’s formula for a function u(t, y)

which is differentiable by parts with respect to t and infinitely differentiable with
respect to y, we get

u(t, Ȳt) = u(0, x0)+

∫ t

0

[
∂u

∂s
(s, Ȳs) +

∂2u

∂y2
(s, Ȳs)σ

2Ȳse
Ks

]
ds

+

∫ t

0

∂u

∂y
(s, Ȳs)e

Ks/2
√

2σ2Ȳsdβs.

Following Ikeda and Watanabe (1989, (8.10) on p.236), we choose u(t, y) so that
the finite variation part equals zero. More precisely, for t0 ≥ 0 and 0 ≤ t ≤ t0,

u(t, y) := exp

(
−

λy

σ2λ
∫ t0

t eKsds + 1

)
, (3.7)

so that

u(t, Ȳt) = u(0, x0) −

∫ t

0

λ
√

2σ2Ȳs

σ2λ
∫ t0

s
eKudu + 1

exp

(
Ks

2
−

λȲs

σ2λ
∫ t

s
eKudu + 1

)
dβs.

The process (u(t, Ȳt) : 0 ≤ t ≤ t0) is a local martingale bounded by 1 and thus a
real martingale. We deduce that

Ex0

(
u(t0, Ȳt0) | F

ρ
∞

)
= Ex0

(
u(0, Ȳ0) | F

ρ
∞

)
,

which gives

Ex0

(
exp(−λȲt0) | F

ρ
∞

)
= exp

(
−

λx0

σ2λ
∫ t0
0 eKsds + 1

)
. (3.8)

This provides (3.5) by taking the expectation. �



104 Vincent Bansaye and Viet Chi Tran

We can now prove Proposition 3.1 in the case of a constant division rate.

Proof of Proposition 3.1: The map t 7→
∫ t

0
exp(Ks)ds is a.s. increasing. Thus

Z∞ :=

∫ +∞

0

exp(Ks)ds ∈ R+ ∪ {+∞}

is well defined. Using dominated convergence, the r.h.s. of (3.5) converges to

Ex0
(exp(−λx0/(σ2λZ∞ + 1)).

Using Lemma 3.2, the process (Ȳt : t ≥ 0) converges in distribution as t → +∞ to
Ȳ∞ whose distribution is specified by

Ex0
(e−λȲ∞) = Ex0

(
exp

(
−

λx0

σ2λZ∞ + 1

))
. (3.9)

Recalling from (3.6) that (Ȳt : t ≥ 0) is a positive local martingale, we obtain by
Jensen’s inequality that (exp(−Ȳt) : t ≥ 0) is a positive sub-martingale bounded
by 1. From this, we deduce that the convergence towards Ȳ∞, which is possibly
infinite, also holds a.s.

Letting λ → +∞, we get by bounded convergence:

Px0
(Ȳ∞ = 0) = lim

λ→+∞
Ex0

(
exp

(
−

λx0

σ2λZ∞ + 1

))
= Ex0

(
e−x0/(σ2Z∞)

)
. (3.10)

¿From Bertoin (1996, Corollary 2 p.190), we know that the Lévy process (Kt : t ≥
0) defined in (3.4) tends to +∞ (resp. −∞, resp. it oscillates) when E(K1) =
E(log(1/Θ))r − g is positive (resp. negative, resp. zero). There are three cases.

If g > E(log(1/Θ))r, we choose κ > 0 such that g − κ > E(log(1/Θ))r. Then

(Kt + κt : t ≥ 0) is a Lévy process such that E(K1 + κ) < 0, implying that

lim
t→+∞

Kt + κt = −∞ a.s. (3.11)

We define B := supt≥0{Kt + κt} < ∞ a.s. so that Kt ≤ −κt + B a.s. This ensures
that Z∞ < ∞ a.s. and using (3.10), we get:

P(Ȳ∞ = 0) < 1. (3.12)

As Yt = Ȳt exp(−Kt) and limt→+∞ exp(−Kt) = +∞, we have:

P (∀t > 0 : Yt > 0) ≥ P

(
lim

t→+∞
Yt = +∞

)
≥ P

(
lim

t→+∞
Ȳt > 0

)
> 0.

Furthermore, for every 0 ≤ κ < g − E(log(1/Θ))r,

P

(
lim

t→+∞
e−κtYt = +∞ | Fρ

∞

)
≥ P

(
lim

t→+∞
Ȳt > 0 | Fρ

∞

)
> 0 a.s.

by using (3.8) and (3.11) as in (3.12). We can now prove that {limt→+∞ e−κtYt =
+∞} = {limt→+∞ Yt = +∞} a.s. Let N > 0. Conditionally on the event
{Yt → +∞}, the stopping time TN = inf{t ≥ 0 : Yt ≥ N} is finite for every N .
Since P1 (limt→+∞ e−κtYt = +∞ | Fρ

∞) > 0 a.s., and since the process (Yt : t ≥ 0)
satisfies the branching property conditionally on Fρ

∞, this ensures that a.s.

PN

(
lim

t→+∞
e−κtYt < +∞ | Fρ

∞

)
≤ P1

(
lim

t→+∞
e−κtYt < +∞ | Fρ

∞

)N

→ 0
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as N → +∞. Thus conditionally on Fρ
∞ and {Yt → +∞}, e−κtYt → +∞ a.s.

Finally the fact that {limt→+∞ Yt = +∞} = {∀t ≥ 0, Yt > 0} a.s. is a classical
consequence of the Markov property using that 0 is an absorbing state.

If g = E(log(1/Θ))r, the Lévy process (Kt : t ≥ 0) oscillates a.s.:

lim sup
t→+∞

Kt = +∞, lim inf
t→+∞

Kt = −∞. (3.13)

Let T0 = 0 and let us define for every k ≥ 1 the stopping time Tk := inf{t ≥
Tk−1 + 1 : Kt ≥ k} which is finite a.s. This ensures that a.s.

Z∞ ≥

∫ Tk+1

Tk

eKtdt ≥ ek

∫ Tk+1

Tk

eKt−KTk dt

≥ek exp
(

inf
t∈[Tk,Tk+1]

{Kt − KTk
}
)
, (3.14)

since the integration interval is of length 1. As (inft∈[Tk,Tk+1]{Kt − KTk
} : k ≥ 1)

are identically distributed finite r.v., we have

lim sup
k∈N∗

ek exp
(

inf
t∈[Tk,Tk+1]

{Kt − KTk
}
)

= +∞ a.s.

Since the l.h.s. of (3.14) does not depend on k, letting k → +∞ ensures that
Z∞ = +∞ a.s. and (3.10) gives:

Ȳ∞ = 0 a.s. (3.15)

Our purpose is now to prove that (Yt : t ≥ 0) reaches 0 in finite time a.s. Let us
define the following stopping times, which are finite from (3.13) and (3.15):

τ1 := inf{t ≥ 0 : Yt ≤ 1}, τi+1 := inf{t ≥ τi + 1 : Yt ≤ 1} (i ≥ 1). (3.16)

Introducing a := infx∈[0,1]{Px(Y1 = 0)} > 0 we have:

P(Yτj
> 0) = P(Yτ1

> 0)

j∏

i=2

P(Yτi
> 0 | Yτi−1

> 0)

≤ P(Yτ1
> 0)

j∏

i=2

P(Yτi−1+1 > 0 | Yτi−1
> 0)

≤ P(Yτ1
> 0)(1 − a)j−1, (3.17)

which tends to 0 as j → +∞ and gives the desired result: P(∃n ∈ N : Yτn
= 0) = 1.

Finally if g < E(log(1/Θ))r, we choose κ > 0 so that g + κ < E(log(1/Θ))r.

Then Kt − κt → +∞ a.s. Proceeding as in the case g > E(log(1/Θ))r with B :=
inft∈R+

{Kt − κt} > −∞ a.s., we obtain Kt ≥ κt + B a.s. This implies that

Z∞ = +∞ a.s. Using (3.10), we get Ȳ∞ = 0 a.s. Moreover exp(−Kt) → 0 as
t → +∞ a.s., so

lim
t→+∞

Yt = lim
t→+∞

Ȳte
−Kt = 0 a.s. (3.18)

Using again the stopping times (3.16), we get that Yt reaches 0 in finite time a.s.
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Let us now prove (3.2). Formula (3.5) yields :

Px0
(Ȳt = 0) = lim

λ→+∞
E

(
exp

(
−

λx0

σ2λ
∫ t

0
eKsds + 1

))

=E

(
exp

(
−

x0

σ2
∫ t

0
eKsds

))
.

As the process (Kt : t ≥ 0) has no negative jumps and drift −g, we have

inf
u∈[t−1,t]

Ku ≥ Kt−1 − g a.s.

for every t ≥ 1 and
∫ t

0

eKsds ≥

∫ t

t−1

eKsds ≥ eKt−1−g a.s.

Moreover for all x ≥ 0 and α ∈ [0, 1], 1− e−x ≤ min(1, x) ≤ min(1, xα) ≤ xα. This
gives for every t ≥ 0,

Px0
(Ȳt > 0) ≤ E

(
1 − exp

(
−x0σ

−2e−Kt−1+g
))

≤
(
x0σ

−2eg
)α

E
(
e−αKt−1

)

=
(
x0σ

−2eg
)α

e−(t−1)φ(α),

using the Lévy-Khintchine formula where φ is the Laplace exponent of (Kt : t ≥ 0)
(see Bertoin, 1996):

φ(α) := −gα + rE(1 − e−α log(1/Θ)) (α ≥ 0).

Adding that φ(0) = 0 and φ′(0) = rE(log(1/Θ)) − g > 0, there exists α ∈ (0, 1]
such that φ(α) > 0 and:

Px0
(Yt > 0) = Px0

(Ȳt > 0) ≤
[(

x0σ
−2eg

)α
eφ(α)

]
e−tφ(α),

which completes the proof. �

3.2. Extinction criteria with monotone division rate. We give here the extinction
criteria of the process (Yt : t ≥ 0) describing the quantity of parasites in a cell line
when the jump rate r is monotone. For the proof, we use coupling arguments to
compare this process with the case of constant division rate.

We begin with the case where r is an increasing function which means that the
more parasites the cells contain, the faster they divide. This case is relevant when
the cell division rate is increased to get rid of the parasites or when there is a
symbiosis between parasites and cells. The asymptotic behavior of Y depends on
the maximum division rate

r∗ := sup
x∈R+

r(x). (3.19)

Proposition 3.3. We assume that r is an increasing function.
(i) If there exists x1 ≥ 0 such that g ≤ E(log(1/Θ))r(x1), then

P

(
∃ t > 0, Yt = 0

)
= 1.

(ii) If g > E(log(1/Θ))r∗, then P(∀t ≥ 0 : Yt > 0) > 0. Furthermore, for every
0 ≤ κ < g − E(log(1/Θ))r∗, we have a.s.

{ lim
t→+∞

e−κtYt = ∞} = {∀t ≥ 0 : Yt > 0}.
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Let us note that the case g > E(log(1/Θ))r(x) for every x ≥ 0 and g =
E(log(1/Θ))r∗ remains open. The expected result is a.s. extinction but this may
depend on the speed of convergence of r(x) to r∗ as x → +∞.

Proof : Heuristically, if g ≤ E(log(1/Θ))r(x1), as soon as Y ≥ x1, the division rate
is larger than r(x1) and Proposition 3.1 ensures that the process is pushed back to
x1. Eventually, it reaches zero.

We give the proof of (i) using a coupling argument. Let us define Ỹ as:

Ỹt = Y1+

∫ t

0

gỸsds +

∫ t+1

1

√
2σ2Ỹs−1dβ

−

∫ t+1

1

∫

R+×[0,1]

1lv≤r(x1)(1 − θ)Ỹs−−1ρ(ds, dv, dθ)

with initial condition Y1, with the same BM β and PPM ρ as Y shifted from 1,

and with the constant division rate r̃(x) = r(x1). Ỹ is a Feller diffusion with
multiplicative jumps given by Θ and constant division rate r(x1). Proposition 3.1
ensures that it dies in finite time a.s.

Moreover, denoting by

τ1 := inf{t ≥ 1 : Yt ≤ x1} ∈ [0, +∞],

the definition of Ỹ ensures that for 0 ≤ t ≤ τ1, Y1+t ≤ Ỹt a.s. since Ỹ undergoes

fewer jumps than Y1+. a.s. As Ỹ becomes extinct in finite time, τ1 < +∞ a.s.
Similarly, the following stopping times are finite a.s.:

τ0 := 0, τi+1 := inf{t ≥ τi + 1 : Yt ≤ x1}, i ∈ N (3.20)

Proceeding as in (3.17) provides P(∃i ∈ N : Yτi
= 0) = 1, which ends the proof of

(i).

We now prove (ii) and we assume that g > E(log(1/Θ))r∗. We define (Ỹt : t ≥ 0)
with the same BM and PPM as (Yt : t ≥ 0) except that the indicator in (3.1) is re-
placed by 1lv≤r∗ . The definition of r∗ and this pathwise construction ensure that for

every t ≥ 0, Yt ≥ Ỹt a.s. Moreover Ỹ is a Feller diffusion with multiplicative jumps

with constant rate r∗ and Proposition 3.1 (ii) states that Ỹ grows geometrically with
positive probability. Thus the same holds for Y . Combining the Markov property
with Proposition 3.1 (ii) ensures that {limt→+∞ exp(−κt)Yt} = {∀t ≥ 0 : Yt > 0}

a.s. since we have the analogous result for the coupling process Ỹ . �

We now consider the case where the more parasites there are, the less the cells
divide. This is natural if the parasites make the cells ill or use their nutriments.
The asymptotic behavior now depends on

r∗ = inf
x≥0

r(x). (3.21)

Proposition 3.4. We assume that r is a decreasing function.

(i) If g ≤ E(log(1/Θ))r∗, then P

(
∃t > 0, Yt = 0

)
= 1.

(ii) Else, P(∀t > 0, Yt > 0) > 0 and for all 0 < κ < g − E(log(1/Θ))r∗,

{ lim
t→+∞

e−κtYt = ∞} = {∀t > 0 : Yt > 0} a.s.
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Proof : Let us define the process (Ỹt : t ≥ 0) with the same BM and PPM as
(Yt : t ≥ 0) but we replace the indicator in (3.1) by 1lv≤r∗

. Then, for every t ≥ 0,

Ỹt ≥ Yt a.s. and Ỹ is a Feller diffusion with multiplicative jumps Θ and constant

jump rate r∗. If g ≤ E(log(1/Θ))r∗, Proposition 3.1 ensures that Ỹ becomes extinct
a.s., which entails (i).

For (ii), let us consider x1 such that g > E(log(1/Θ))r(x1). We define the process

(Ỹt : t ≥ 0) with the same BM and PPM as (Yt : t ≥ 0) but we replace the indicator
in (3.1) by 1lv≤r(x1), so that it divides with the constant rate r(x1). As long as

Yt ≥ x1, Yt undergoes fewer divisions than Ỹt and Yt ≥ Ỹt a.s. Using the Markov
property and Proposition 3.1, we get

P( lim
t→+∞

Yt = ∞) ≥P(Y1 ≥ x1 + 1)Px1+1( lim
t→+∞

Yt = ∞)

≥P(Y1 ≥ x1 + 1)Px1+1( lim
t→+∞

Ỹt = ∞; ∀t ≥ 0, Ỹt ≥ x1) > 0,

which gives the first part of (ii). The second part comes from the Markov property
and this coupling argument as for the two previous propositions. �

4. Recovery criterion for constant division rate

In this section, we want to determine how the infection evolves in the cell pop-
ulation. More precisely, we are interested in the asymptotic proportions of cells
which contain a given quantity of parasites.

The questions we focus on do not need spatial structure on the cell population
so without loss of generality, because offspring are exchangeable, we assume by now
that Θ is symmetric in distribution with respect 1/2:

Θ
d
= 1 − Θ.

In the case of a constant division rate r, (Nt : t ≥ 0) is a Yule processes and
E(Nt) = ert. For the recovery criterion of the organism, we are interested in the
asymptotic behavior of

µt = Zt(dx)/Nt. (4.1)

But, as usual for branching Markov process Bansaye et al. (2011); Evans and Stein-
saltz (2007), it is more convenient to consider the following renormalization :

γt(dx) := Zt(dx)/E(Nt) = e−rtZt(dx).

Actually, we just need here the expectation of this quantity, whose evolution is
given by the following result

Lemma 4.1. The family of probability measures (E(γt) : t ≥ 0) is the unique

solution of the following equation in (νt : t ≥ 0) for (f : (t, x) 7→ ft(x)) ∈ C1,2
b (R+×

R+, R) and t ∈ R+:

〈νt, ft〉 = f0(x0) + 2r

∫ t

0

∫

R+

∫ 1

0

[fs(θx) − fs(x)] K(dθ) νs(dx) ds

+

∫ t

0

∫

R

(
∂sfs(x) + gx∂xfs(x) + σ2x∂2

xxfs(x)
)
νs(dx) ds. (4.2)
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This result can be derived directly from the measure-valued equation (2.3) and
we give the proof below. We can then interpret E(γt) as the marginal of an auxiliary
process (ξt : t ≥ 0). For all f ∈ C2

b (R+, R) and t ∈ R+,

〈E(γt), f〉 = e−rt
E
(∑

i∈Vt

f(X i
t)
)

= E(f(ξt)), (4.3)

where (ξt : t ≥ 0) is a Feller diffusion which jumps with rate 2r from x to Θx. More
precisely, it is defined for t ≥ 0 by

ξt = x0+

∫ t

0

gξsds +

∫ t

0

√
2σ2ξsdWs

+

∫ t

0

∫

R×[0,1]

1lv≤2r[f(θξs−
) − f(ξs−

)]N(ds, dv, dθ) (4.4)

where N(ds, dv, dθ) is a PPM of intensity ds dv dθ and W , a standard BM indepen-
dent from N .

This result is generalized for Markov processes indexed by Galton-Watson trees
in Bansaye et al. (2011), with a different approach which leads to pathwise repre-
sentations. The auxiliary process jumps with rate 2r whereas the cell divides with
rate r. This bias phenomenon is classical and has been obtained in Chauvin et al.
(1991); Hardy and Harris (2009) with different approaches. It corresponds to the
fact that the faster the cells divide, the more descendants they have at time t. That
is why the ancestral lineages from typical individuals at time t have an accelerated
rate of division 2r.

Using dominated convergence in the l.h.s. and r.h.s. of (4.3), we show that
(4.3) also holds for f(x) = 1lx>0. By Proposition 3.1, we can now determine the
evolution of parasites in the cell population and prove the recovery criterion, when
the division rate is constant.

Theorem 4.2. (i) If g ≤ 2rE(log(1/Θ)), then the organism recovers a.s.:

lim
t→+∞

#{i ∈ Vt : X i
t = 0}

Nt
= 1, a.s.

(ii) If g > 2rE(log(1/Θ)) then the parasites proliferate in the cells as soon as the
parasites do not become extinct in the sense that

{
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ eκt}

Nt
> 0
}

= {∀t > 0 : Xt > 0} a.s. (4.5)

for every 0 ≤ κ < g−2rE(log(1/Θ)). The probability of these events is 1−e−gx0/σ2

.

The factor 2 in the criterion comes from the auxiliary process and ’increases
recovery’ in the sense that the quantity of parasites in a cell line Y may go to
infinity with positive probability whereas the organism recovers a.s.

Note that there is a zero-one law: either the cells recover or parasites proliferate
inside a positive proportion of cells. This dichotomy may fail when r will be an
increasing function of the quantity of parasites (Section 3.2).
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Proof of Lemma 4.1: Let t ∈ R+ and (f : (s, x) 7→ fs(x)) ∈ C1,2
b (R+ × R+, R).

Using (2.3) with (s, x) 7→ fs(x)e−rs entails:

〈γt, ft〉 = f0(x0)+

∫ t

0

∫

R

(
gx∂xfs(x) + σ2x∂2

xxfs(x)

− rfs(x) + ∂sfs(x)
)
e−rsZs(dx) ds

+

∫ t

0

∫

I×R×[0,1]

1li∈Vs
−

1lv≤r

[
fs(θX

i
s−) + fs((1 − θ)X i

s−)

− fs(X
i
s−)
]
e−rsQ(ds, dv, di, dθ) + M̃f

t

where M̃f
t is a continuous square integrable martingale started at 0. Taking the

expectation and using the symmetry of K(dθ):

〈E(γt), ft〉 =f0(x0) +

∫ t

0

∫

R

(
gx ∂xfs(x) + σ2x∂2

xxfs(x) + ∂sfs(x)
)

E(γs)(dx) ds

+

∫ t

0

∫

R+

∫ 1

0

2r [fs(θx) − fs(x)] K(dθ) E(γs)(dx) ds. (4.6)

Let us prove that there is a unique solution to (4.2). Let (ν1
t : t ≥ 0) and

(ν2
t : t ≥ 0) be two solutions. Recall (e.g. Rachev, 1991) that the total variation

distance between ν1
t and ν2

t is

‖ν1
t − ν2

t ‖TV = sup
φ∈Cb(R+,R)
‖φ‖∞≤1

|〈ν1
t , φ〉 − 〈ν2

t , φ〉|. (4.7)

Let t ∈ R+ and ϕ ∈ C2
b (R+, R) with ‖ϕ‖∞ ≤ 1. We denote by (Ps : s ≥ 0) the

semi-group associated with the Feller diffusion (1.1) started at x ∈ R+: Psϕ(x) =
Ex(ϕ(Xs)). Notice that ‖Pt−sϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1. If we use (4.6) with fs(x) =
Pt−sϕ(x), the second term equals 0 and

∣∣〈ν1
t − ν2

t , ϕ〉
∣∣ =

∣∣∣∣∣2r

∫ t

0

∫

R+

∫ 1

0

(
Pt−sϕ(θx) − Pt−sϕ(x)

)
K(dθ)(ν1

s − ν2
s )(dx) ds

∣∣∣∣∣

≤4r

∫ t

0

‖ν1
s − ν2

s‖TV ds. (4.8)

Since C2
b (R+, R) is dense in Cb(R+, R) for the bounded pointwise topology, taking

the supremum in the l.h.s. implies that: ‖ν1
t − ν2

t ‖TV ≤ 4r
∫ t

0 ‖ν1
s − ν2

s‖TV ds.

Gronwall’s lemma implies that ‖ν1
t − ν2

t ‖TV = 0. �

For the proof of the theorem, the following lemma will be used to obtain the
almost sure convergence from the convergence in probability:

Lemma 4.3. Let V be a denumerable subset of I and (Nt(i) : t ≥ 0) be i.i.d.
processes distributed as the Yule process (Nt : t ≥ 0) for i ∈ V . Then there exists a
nonnegative nonincreasing function G on R+ such that G(y) → 0 as y → +∞ and
such that for all finite subsets I, J of V and x ≥ 0:

P

(
sup
t≥0

∑
i∈J Nt(i)∑
i∈I Nt(i)

≥ x
)
≤ G

(#I

#J
x
)
. (4.9)
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Proof : We introduce for every i ∈ V ,

M(i) := sup
t≥0

Nt(i)e
−rt and m(i) = inf

t≥0
Nt(i)e

−rt.

As (Nt : t ≥ 0) is a Yule process, (M(i) : i ∈ V ) and (m(i) : i ∈ V ) are both finite
positive i.i.d. r.v.’s with finite expectation. Moreover

∑
i∈J Nt(i)∑
i∈I Nt(i)

≤

∑
i∈J M(i)∑
i∈I m(i)

≤
#J

#I

∑
i∈J M(i)

#J

#I∑
i∈I m(i)

,

and the result follows by defining for y ≥ 0

G(y) = sup
{

P

(∑
i∈J M(i)

#J

#I∑
i∈I m(i)

≥ y
)

: I, J ⊂ V ; #I, #J < ∞
}

.

Indeed, the distribution of
∑

i∈J M(i)

#J

#I∑
i∈I m(i)

depends only on #I and #J . This fact and the convergence in probability implied
by the law of large numbers when #I and #J tend to +∞, provide the uniform
tightness of these variables (e.g. Ethier and Kurtz, 1986, Section 3.2 p.103) so that
G(y) → 0 as y → +∞. �

Proof of Theorem 4.2: Let us start with the proof of (i). We denote by V ∗
t = {i ∈

Vt : X i
t > 0} the set of infected cells and by N∗

t = #V ∗
t its cardinality. As noticed

previously, we can apply (4.3) with f(x) = 1lx>0 and

E

(
N∗

t

E(Nt)

)
= E

(
〈γt, 1lx>0〉

)
= P(ξt > 0), (4.10)

where (ξt : t ≥ 0) is defined in (4.4). By Proposition 3.1, under the assumption
of (i), (ξt : t ≥ 0) dies in finite time a.s. Thus 〈γt, 1lx>0〉 converges in L1 and
hence in probability to 0. As E(Nt)/Nt tends in probability to 1/W where W is an
exponential r.v. of mean 1 (e.g. Athreya and Ney, 1972, Chap.III Sect.4), then

lim
t→+∞

N∗
t

Nt
=

0

W
= 0 in probability. (4.11)

It remains to show that the convergence holds a.s. Denoting by Vt,s(i) the set of
cells alive at time t + s and whose ancestor at time t is the cell i ∈ Vt, we have

N∗
t+s

Nt+s
≤

∑
i∈V ∗

t
#Vt,s(i)∑

i∈Vt
#Vt,s(i)

,

where (Vt,s(i) : s ≥ 0) are i.i.d. for i ∈ Vt. Since Nt → +∞ and N∗
t /Nt → 0 when

t → +∞, we get by Lemma 4.3 that

lim
t→+∞

sup
s≥0

∑
i∈V ∗

t
#Vt,s(i)∑

i∈Vt
#Vt,s(i)

= 0 in probability.

This ensures that sups≥0 N∗
t+s/Nt+s tends to 0 in probability and we get the a.s.

convergence of N∗
t /Nt using the following standard argument

{∃ǫ > 0, ∀t ≥ 0, ∃s ≥ 0, N∗
t+s/Nt+s ≥ 2ǫ} ⊂

⋃

ǫ>0

⋂

t≥0

{sup
s≥0

N∗
t+s/Nt+s ≥ 2ǫ} a.s.

where the probability of the right hand side event is equal to 0. This ends the proof.
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Let us now prove (ii). If there exists κ ∈ [0, g − 2rE(log(1/Θ))) such that:

P
(
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

Nt
> 0
)

= 0, (4.12)

then limt→+∞ #{i ∈ Vt : X i
t ≥ exp(κt)}/Nt = 0 in probability. Since Nt/E(Nt)

converges in probability to an exponential r.v. W of parameter 1, then

lim
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

E(Nt)
= 0 in probability. (4.13)

Moreover
#{i ∈ Vt : X i

t ≥ exp(κt)}

E(Nt)
≤

Nt

E(Nt)
,

which is bounded in L2. Then 〈γt, 1lx≥exp(κt)〉 = #{i ∈ Vt : X i
t ≥ exp(κt)}/E(Nt)

is uniformly integrable and the convergence in probability of (4.13) implies the L1

convergence. Thus,

lim
t→+∞

P(ξt ≥ exp(κt)) = lim
t→+∞

E
(
〈γt, 1lx≥exp(κt)〉

)
= 0,

which is in contradiction with Proposition 3.1 (ii). Then (4.12) does not hold and
for every κ ∈ [0, g − 2rE(log(1/Θ))),

P
(
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

Nt
> 0
)

> 0. (4.14)

Note that P(∀t > 0, Xt > 0) > 0 and by a 0-1 law argument, we prove now that

{
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

Nt
> 0
}

= {∀t > 0, Xt > 0} a.s. (4.15)

In that view, let us define

V 1
t = {i ∈ Vt : X i

t ≥ 1}

the set of cells at time t whose quantity of parasites is more than 1. Let us note
that g > 2E(log(1/Θ))r ≥ r so the exponential growth of parasites is larger than
the exponential growth of the number of cells. Then conditionally on the survival
of parasites {∀t > 0, Xt > 0}, the number of cells whose quantity of parasites is
more than 1 cannot remain bounded:

P(lim sup
t→+∞

#V 1
t = +∞) = 1. (4.16)

Indeed if lim supt→+∞ #V 1
t < +∞ and Xt grows exponentially with rate g, then

for every I > 0, we can find some cell CI which contains more than I parasites.
Moreover, denoting by NI(t) the number of cells at time t which are issued from
the same given original cell with I parasites and whose quantity of parasites at time
t is more than 1, we have

lim
I→+∞

sup
t>0

NI(t) = +∞.

This gives (4.16). Then, for n ∈ N∗, the stopping time

Tn := inf{t > 0 : #V 1
t ≥ n}
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is finite a.s. Denoting by Vt(j) the set of cells alive at time t when the root of the
tree is taken in j, we have

#{i ∈ VTn+t : X i
Tn+t ≥ exp(κt)}

NTn+t
≥
∑

j∈VTn

#Vt(j)

NTn+t

#{i ∈ Vt(j) : X i
t ≥ exp(κt)}

#Vt(j)

Then letting t → +∞ in this inequality and noting that #VTn
≥ n gives

P
(
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

Nt
= 0 | ∀t ≥ 0, Xt > 0

)

≤ P1

(
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

Nt
= 0
)n

Letting n → +∞ and recalling (4.14), we obtain that

P
(
lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ exp(κt)}

Nt
= 0 | ∀t ≥ 0, Xt > 0) = 0.

This ensures that (4.15) holds. �

5. Evolution of the infection with variable division rate

We now turn to the case of a variable division rate r(x), meaning that the cell
division depends on its infection. We are still interested in the proportions of cells
with a given number of parasites. The consideration of Zt(dx)/E(Nt) as in the
previous section is not useful any longer and does not give simplification. Thus, we
first give an SDE for the evolution of (µt : t ≥ 0) defined in (4.1). Using this SDE
and the asymptotic behavior of the quantity of parasites in a cell line, we provide
some asymptotic results and a conjecture for the case where r is monotone.

5.1. Evolution of the proportions Zt(dx)/Nt. We begin with writing down an SDE
for the evolution equation for µt when t ≥ 0.

Proposition 5.1. For every f ∈ C2
b (R+, R),

〈µt, f〉 =f(x0) +

∫ t

0

∫

R+

(
gxf ′(x) + xσ2f ′′(x)

)
µs(dx) ds + M1,f

t + M2,f
t

+

∫ t

0

∫

R+

2r(x)
Ns

Ns + 1

[∫ 1

0

f(θx)K(dθ) − f(x)

]
µs(dx) ds

+

∫ t

0

〈µs, r〉Ns

Ns + 1

∫

R+

[∫

R+

f(y)K̂s(µs, dy) − f(x)

]
µs(dx) ds, (5.1)

where K̂s(µs, dy) is the probability measure characterized by:

∀f ∈ Cb(R+, R+),

∫

R+

f(y)K̂s(µs, dy) =

∫

R+

r(y)

〈µs, r〉
f(y)µs(dy),
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and where M1,f
t and M2,f

t are two martingales with quadratic variation:

〈M1,f〉t =

∫ t

0

1

Ns
〈µs(dx), 2σ2xf ′2(x)〉ds

〈M2,f〉t =

∫ t

0

Ns

(Ns + 1)2

∫

R+

r(x)

∫ 1

0

(f(θx) + f((1 − θ)x) − f(x)

− 〈µs, f〉)
2K(dθ)µs(dx) ds. (5.2)

Proof : The number Nt of cells alive at time t, solves:

Nt =1 +

∫ t

0

∫

R+×I×[0,1]

1li∈Vs
−

1lv≤r(Xi
s
−

)Q(ds, dv, di, dθ). (5.3)

¿From (2.3) and (5.3), we obtain by Itô’s formula for processes with jumps (e.g.
Ikeda and Watanabe, 1989) that for every f ∈ C2

b (R+, R),

〈Zt, f〉

Nt
= f(x0) +

∫ t

0

∫

R+

(
xf ′(x)g + xσ2f ′′(x)

) Zs(dx)

Ns
ds + M1,f

t + Jf
t ,

where

M1,f
t =

∫ t

0

∑

i∈Vs

√
2σ2X i

sf
′(X i

s)

Ns
dBi

s

is a continuous square integrable martingale with quadratic variation:

〈M1,f 〉t =

∫ t

0

∫

R+

2σ2xf ′(x)2
Zs(dx)

N2
s

ds =

∫ t

0

∫

R+

2σ2xf ′(x)2

Ns
µs(dx) ds,

and Jf
t is the jump part:

Jf
t =

∫ t

0

∫

R+×I×[0,1]

1li∈Vs
−

1lv≤r(Xi
s
−

)

(
〈Zs−, f〉 + f(θx) + f((1 − θ)x) − f(x)

Ns− + 1

−
〈Zs−, f〉

Ns−

)
Q(ds, dv, di, dθ).

Let us denote by Jf
t = V f

t + M2,f
t the semi-martingale decomposition of Jf

t . We

aim at rewriting Jf
t to let the infinitesimal generator of a Markov process appear.

The previsible finite variation part V f
t of Jf

t rewrites as:

V f
t =

∫ t

0

∫

R+

r(x)

[
〈Zs, f〉

Ns + 1
+ 2

∫ 1

0 f(θx)K(dθ)

Ns + 1
−

f(x)

Ns + 1
−

〈Zs, f〉

Ns

]
Zs(dx) ds

(5.4)
by using the symmetry of K(dθ). As

〈Zs, f〉

Ns + 1
−

〈Zs, f〉

Ns
= −

〈Zs, f〉

Ns(Ns + 1)
= −

〈µs, f〉

Ns + 1
,

we obtain:

V f
t =

∫ t

0

∫

R+

r(x)
Ns

Ns + 1

[
2

∫ 1

0

f(θx)K(dθ) − f(x) − 〈µs, f〉

]
µs(dx) ds

=

∫ t

0

∫

R+

2r(x)
Ns

Ns + 1

[∫ 1

0

f(θx)K(dθ) − f(x)

]
µs(dx) ds + A, (5.5)



Branching Feller diffusion for parasite infection 115

where the last term of (5.5) rewrites

A =

∫ t

0

∫

R+

r(x)
Ns

Ns + 1

(
f(x) − 〈µs, f〉

)
µs(dx) ds

=

∫ t

0

Ns

Ns + 1

∫

R+

∫

R+

r(x)
(
f(x) − f(y)

)
µs(dy)µs(dx) ds

=

∫ t

0

Ns

Ns + 1

∫

R+

〈µs, r〉

(∫

R+

r(x)

〈µs, r〉
f(x)µs(dx) − f(y)

)
µs(dy),

by using the Fubini theorem and the fact that µs is a probability measure. The
bracket of the martingale part is:

〈M2,f 〉t =

∫ t

0

∫

R+

r(x)

∫ 1

0

(〈Zs, f〉 + f(θx) + f((1 − θ)x) − f(x)

Ns + 1

−
〈Zs, f〉

Ns

)2

K(dθ)Zs(dx)ds

=

∫ t

0

∫

R+

r(x)Ns

(Ns + 1)2

∫ 1

0

(f(θx) + f((1 − θ)x) − f(x) − 〈µs, f〉)
2
K(dθ)µs(dx)ds.

This achieves the proof. �

A probabilistic interpretation of the Markov generator in (5.1) is in progress and
described further after (5.6).

5.2. Moderate infection for increasing division rates. We assume here that r(x) is
an increasing function of the quantity of parasites. This means that the more the
cell is infected, the faster it divides. Lowly infected cells divide slower and may even
stop dividing if r(0) = 0. That’s why a new regime appears here, between recovery
and proliferation of the parasites, where a positive fraction of cells is infected but
the quantity of parasites inside remains bounded. We then say that the infection is
moderated. First, we provide two examples where the infection is indeed moderated:
the organism does not recover but the parasites do not proliferate in the cells. Then,
we conjecture a criterion so that the proportion of cells infected by more than A
parasites tends to zero as A → +∞, and illustrate it with simulations in Section 6.
Actually ’moderate infection’ could be defined in several ways and we also consider
the average quantity of parasites per cell.

5.2.1. Two simple examples. We introduce two simple examples, which exhibit new
behavior. First, we consider the case where

Θ = 1/2 a.s., r(x) = 0 if x < 2 and r(x) = ∞ if x ≥ 2.

As soon as the quantity of parasites in a cell reaches 2, the cell divides and the
quantity of parasites in each daughter cell is equal to one. The parasites do not
proliferate in the cells since the quantity of parasites in each cell is less than 2.

We now fix the growth rate of parasites g such that the probability that the Feller
diffusion (Xt : t ≥ 0) reaches 0 before it reaches 2 is strictly less than 1/2. Then
the number of infected cells follows a supercritical branching process and grows
exponentially with positive probability. Conditionally on this event, the proportion
of infected cells does not tend to zero since the non-infected cells do not divide.
Thus the organism does not recover.



116 Vincent Bansaye and Viet Chi Tran

This shows that we can have both non recovery and non proliferation of parasites
in the cells: this corresponds to the ’moderate infection’ defined in Section 5.2.2.

Second, we focus on the linear division rate:

r(x) = αx (x ≥ 0),

for some constant α > 0. Then a new cell appears at rate
∑

i∈Vt
r(X i

t ) = αXt

where we recall that Xt, the total quantity of parasites at time t, follows a Feller
diffusion with drift g > 0. As a consequence, as soon as the parasites do not
become extinct, they grow exponentially and the number of cells grows with the
same exponential rate. Thus the number of cells and the quantity of parasites grow
similarly, which corresponds to non explosion of the average number of parasites
per cell (see Section 5.2.3).

5.2.2. Proportion of cells moderately infected. Using an approximation of the evo-
lution of the proportion of cells based on Prop. 5.1, we can conjecture the following
criterion for ’moderate infection’. We are interested in the case where the propor-
tion of cells infected by more than A parasites vanishes (uniformly in time) as A
tends to infinity. This means that the quantity of parasites in a cell chosen uni-
formly at time t does not explode as t → +∞. The criterion still depends on the
maximum division rate

r∗ = sup{r(x) : x ≥ 0}

and on the sharing of parasites given by the random fraction Θ. It gives an analogue
of the recovery criterion for constant division rate given in the previous section.
Again the bias phenomenon favors lineages with a large number of divisions, which
explains the factor 2 in the criterion. Roughly speaking, if there exists a level of
infection x0 beyond which the cells divide fast enough, then the parasites cannot
proliferate in a positive proportion of the cells and the infection is moderated. This
level comes from the constant rate case: g ≤ 2r(x0)E(log(1/Θ)). Simulations are
provided as an illustration in the Section 6.

Conjecture 5.2. We assume that r increases.
(i) If g < 2r∗E(log(1/Θ)), then we have the following almost sure convergence:

lim
A→+∞

lim
t→+∞

#{i ∈ Vt : X i
t ≥ A}

Nt
= 0.

(ii) If g > 2r∗E(log(1/Θ)), then for every A > 0,

{lim sup
t→+∞

#{i ∈ Vt : X i
t ≥ A}

Nt
> 0} = {∀t > 0, Xt > 0} a.s.

Let us here give some details on the approximation which leads to this conjecture.
First, let us prove that on the set {limt→+∞ Xt = +∞} we have limt→+∞ Nt =

+∞ a.s. Let A > 0, B = {limt→+∞ Xt = +∞ ; supt≥0 Nt < A} and x1 ≥ 0
such that r(x1) > 0. As long as it is infected by more than x1 parasites, a cell
produces offspring with rate at least r(x1). Thus, on the set B, since one of the cell
necessarily contains more than x1 parasites, the number of cells is stochastically
lower bounded by a Poisson process of rate r(x1). So P(B) = 0, which ends the
proof.

When limt→+∞ Nt = +∞, the bracket of the martingale part of (5.1) converges
to zero and the random fraction Nt/(1+Nt) converges to 1. Thus we neglect them
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and consider the following deterministic approximation. For every f :
(
(t, x) 7→

ft(x)
)
∈ C1,2

b (R+ × R+, R),

〈µ̃t, ft〉 =f0(x0) +

∫ t

0

∫

R+

(
∂sf(s, x) + gx∂xf(s, x) + xσ∂2

xxf(s, x)
)
µ̃s(dx) ds

+

∫ t

0

∫

R+

2r(x)

[∫ 1

0

fs(θx)K(dθ) − fs(x)

]
µ̃s(dx) ds

+

∫ t

0

〈µ̃s, r〉

∫

R+

[∫

R+

fs(y)K̂(µ̃s, dy) − fs(x)

]
µ̃s(dx) ds. (5.6)

It describes the law of the following non-linear jump diffusion process (ζt : t ≥ 0)
which is our auxiliary process in this case. The process (ζt : t ≥ 0) is a Feller
diffusion with the following additional multiplicative jumps. At time t, conditionally
on ζt = x, the process jumps to Θx with rate 2r(x), and with rate E(r(ζt)) to a
state St defined by

P(St ∈ dx) =
r(x)P(ζt ∈ dx)

E(r(ζt))
.

We can neglect the resampling term given by the jump St and we get a Feller
diffusion with multiplicative jump occurring at rate 2r(.) as studied in Section 3.2.
The extinction criterion of Proposition 3.3 for this process gives the conjecture for
the criterion for moderate infection.

5.2.3. Average number of parasites per cell. We now state some sufficient conditions
under which the behavior of the average number of parasites per cell is known.

Proposition 5.3. We assume that r increases.
(i) If r is convex then:

sup
t≥0

E
(
Xt/Nt

)
< ∞.

(ii) If g > r∗, where r∗ has been defined in (3.19), then:

lim
t→+∞

E
(
Xt/Nt

)
= +∞.

One can note that in the first case r∗ = +∞.

Proof : First, notice that Xt/Nt = 〈µt, x〉. Applying (5.1) to f(x) = x and using
that K is symmetric gives:

〈µt, x〉 =〈µ0, x〉 +

∫ t

0

[
g〈µs, x〉 −

Ns

Ns + 1
〈µs, r〉〈µs, x〉

]
ds + M1,f

t + M2,f
t . (5.7)

Using Jensen’s inequality and the fact that r(.) and x 7→ xr(x) are convex:

E(〈µs, r〉〈µs, x〉) ≥E(r(〈µs, x〉)〈µs, x〉) ≥ r
(
E(〈µs, x〉)

)
E(〈µs, x〉).

Thus, as Ns/(1 + Ns) ≥ 1/2:

E
(
〈µt, x〉

)
≤〈µ0, x〉 +

∫ t

0

(
g −

1

2
r
(
E(〈µs, x〉)

))
E(〈µs, x〉) ds.

Since t 7→ E
(
〈µt, x〉

)
is upper bounded by the solution of the differential equation

y′ = (g − r(y)/2)y started at 〈µ0, x〉 which is bounded since there exists x0 > 0
such that ∀y > x0, g − r(y)/2 < 0.
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Under the assumptions of (ii), since (Ns/(Ns + 1))〈µs, r〉〈µs, x〉 ≤ r∗〈µs, x〉, we
obtain from (5.7):

E
(
〈µt, x〉

)
≥ 〈µ0, x〉 +

∫ t

0

(g − r∗)E
(
〈µs, x〉

)
ds, (5.8)

which gives the result since g − r∗ > 0. �

5.3. Some results for decreasing division rate. When the division rate decreases,
very infected cells tend to become more infected whereas lowly infected infected
tend to divide more and get rid of their parasites. We provide in Proposition 5.4
the following criterion: as soon as a healthy cell appears, the organism recovers,
else, parasites proliferate in every cell.

We are not interested here in constant division rate and we assume that r is
decreasing and that:

∃x1 > 0, r(x1) < r(0). (5.9)

This means that non infected cells divide faster than other infected cells.

Proposition 5.4. Conditionally on the event {∃t > 0, ∃ i ∈ Vt : X i
t = 0}, the

organism recovers a.s.

lim
t→+∞

#{i ∈ Vt : X i
t = 0}

Nt
= 1 a.s.

Conditionally on the event {∀t ≥ 0, ∀ i ∈ Vt : X i
t > 0}, for every A ≥ 0,

#{i : X i
t ≤ A}

t→+∞
−→ 0 a.s.

Proof : First, if there exists t0 > 0 and i0 ∈ I such that X i0
t0 = 0, then N0

t = #{i ∈
Vt : X i

t = 0} grows exponentially with rate r(0) after time t0 in the sense that

0 < lim inf
t→+∞

e−r(0)tN0
t ≤ lim sup

t→+∞
e−r(0)tN0

t < +∞.

Let us recall the notation N∗
t = #{i ∈ Vt : X i

t > 0} that we used in previous proofs.
We now prove that the number N∗

t of infected cells grows geometrically with a rate
that under (5.9) is at most:

r = sup
0≤λ≤t≤1

{r(x1)λ + (t − λ)r(0) + ln(pt−λ)} < r(0),

where pt = Px1
(Xt > 0) < 1 for t > 0 is the survival probability of a Feller diffusion

(without jump) at time t starting from x1. Indeed, the set of infected cells at time
t can be partitioned into subfamilies according to the first time λ at which one of
their ancestors’ infection is less than x1.

In lineages where the infection remains more than x1, the division rate is upper
bounded by r(x1). Let us consider a family of cells for which λ ≤ t. Before this
time the number of infected cells in this family grows at most with rate r(x1). After
this time, the parasite population issued from this cell becomes extinct at time t
with probability at least 1−pt−λ since it starts with at most x1 parasites at time λ.
Moreover, after time λ, conditionally on the survival of the parasites, the number
of infected cells grows at most with rate r(0).

Hence, for all x0 > 0 and t ∈ [0, 1],

Ex0
(N∗

t ) ≤ x0E
λ
(
er(x1)λpt−λer(0)(t−λ)

)
≤ er, (5.10)
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where Eλ denotes the expectation with respect to the r.v. λ. This ensures that
N∗

t /Nt goes to 0 in L1 and then in probability. Following the proof in the case of
constant division rate gives the a.s. convergence.

Second, since for every A ≥ 0,

inf
0≤x0≤A

Px0
(∃0 ≤ t ≤ 1, Xt = 0) > 0,

we can follow (3.17) and conditionally on the event

{lim sup
t→+∞

#{i : X i
t ≤ A} ≥ 1},

there exists t ≥ 0 and i ∈ I such that X i
t = 0 a.s. This ends the proof. �

The following question arises: when does a non-infected cell appear ? We pro-
vide a sufficient conditions so that it happens a.s., which gives a condition for a.s.
recovery depending on r∗ defined in (3.21).

Corollary 5.5. If g ≤ r∗E(log(1/ min(Θ, 1−Θ))), then the organism recovers a.s.

Proof : We consider the quantity Y of parasites in the following particular cell line:
at each division, we choose the less infected daughter cell. If the mother cell is
infected by x parasites, then the cell divides with rate r(x) and the quantity of par-
asites in each daughter cell is respectively Θx and (1−Θ)x, so that the less infected
one has min(Θ, 1−Θ)x parasites. Thus the process Y follows a Feller diffusion with
multiplicative jumps by min(Θ, 1−Θ) with rate r(.). By Proposition 3.4, this pro-
cess becomes extinct a.s. under the assumption g ≤ r∗E(log(1/ min(Θ, 1 − Θ))).
Thus there exist t > 0 and i ∈ I such that X i

t = 0 and the previous Proposition
ensures that the organism recovers a.s. �

6. Simulations

In this section, we illustrate on simulations the criteria that are exposed in this
work. For this, we fix σ, K(dθ) and r(x) and let the growth rate g of the parasites
vary. For each values of this growth rate, we perform simulations and compute a
relevant quantity (for instance the probability of extinction of the parasites).
Example 1: Let us first consider the case of a constant division rate r. We simulate

the process (ξt, t ∈ R+) that provides in this case an approximation for a lineage
chosen uniformly. We consider a random fraction Θ, uniformly distributed on [0, 1].
Then:

E(log(1/Θ)) =

∫ 1

0

log(1/x)dx = −

∫ 1

0

log(x)dx = −[x log(x) − x]10 = 1.

In this case, Theorem 4.2 yields that if g < 2r the organism recovers a.s. Otherwise,
parasites proliferate exponentially with positive probability. We see indeed on the
simulations of Figure 6 that recovery happens with probability 1 when g < 2r and
when g > 2r, the mean quantity of parasites grows exponentially.
Example 2: Now, let us illustrate the Conjecture 5.2 that has been made for the

case of a variable increasing division rate r(x). We consider the distribution of the
proportion of cells infected by more than A parasites, #{i ∈ Vt : X i

t ≥ A}/Nt, for
constant and variable division rates. The real branching diffusions are simulated.
Again, we have fixed σ, K(dθ) and r(x) and let g vary.
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Figure 6.1. Case of a constant division rate: r = 3, σ = 2.
At each division, the random fraction Θ is drawn uniformly in
[0, 1]. We simulate for each value of g = b − d varying between
0.1 and 10 (abscissa), N = 100 independent simulations of (ξt :
t ∈ [0, 10 000]). Their values at T = 10 000 provide Monte-Carlo
approximations (a) of the extinction probability and (b) of the
mean quantity of parasites on a log-scale.
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Figure 6.2. Median (Thick plain line), mean (continuous line)
and quantiles (2.5%, 25%, 75%, 97.5%, dotted and dashed) of the
distribution of the proportion of cells infected by more than A = 10
parasites. The bound for the division rate is r∗ = 2 and K(dθ) =
δ1/2(dθ). We have simulated the cells up to time T = 700, 000.
We let g = b − d vary between 1 and 3.7. For each value of g,
we simulate 50 branching Feller diffusions and compute for each
simulation the proportion #{i ∈ Vt : X i

t ≥ A}/Nt. This provides
an approximation of the distribution of this r.v. for the growth
rate g. (a) r = r∗ = 2. (b) r(x) = r∗(1 − exp(−x/10)). (c)
r(x) = r∗1l[5,+∞)(x).

We represent in Figure 6.2 (a) the case of a constant division rate. In the
simulations of Figures 6.2 (b) and (c), the rate is variable. In these cases, when the
infection is low, so is the division rate. The infection hence lasts with a probability
that is higher than in the case of Figure 6.2 (a).

We can see different behavior depending on whether g is smaller or larger than
2r∗E(log(1/Θ)), particularly when considering the evolution of the 97% quantile.

Although the use of the auxiliary process (ζt : t ≥ 0) (Section 5.2.2) for prov-
ing Conjecture 5.2 has not been fully established yet, the role of the threshold
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Figure 6.3. Case of a non constant division rate: r(x) =
31l(2,+∞)(x), σ = 2. At each division, the random fraction Θ is
drawn uniformly in [0, 1]. We simulate for each value of g = b − d
varying between 0.1 and 10 (abscissa), N = 1000 interacting
particles whose empirical distribution approximates the law of
(ζt, t ∈ [0, 10 000]). Their values at time T = 10 000 provide (a)
extinction probability, (b) mean quantity of parasites on a log-
scale.

2r∗E(log(1/Θ)) can be seen on simulations of ζ (Figure 6.3 (a)). Depending on the
two regions, we see two regimes for the extinction probability.

7. Appendix: Proof of Proposition 2.2

Proof : We follow Fournier and Méléard (2004) and break the proof into several
steps. Recall that Zn is the microscopic process described in Section 2.2 and that
we are under the assumptions of Prop. 2.2. In the sequel, the constants C may
change from line to line.
Preliminaries: We recall moment estimates that will be useful. Recall that Zn

is started with one cell containing [nx0]/n parasites and that we assumed that
r(x) ≤ r̄(1 + xp). For all T ∈ R+, using computation similar to Fournier and
Méléard (2004) and stochastic calculus, we prove that for q ∈ N∗:

sup
n∈N∗

sup
t∈[0,T ]

E(〈Zn
s , 1 + xq〉) < +∞ then sup

n∈N∗

E( sup
t∈[0,T ]

〈Zn
s , 1 + xp〉) < +∞, (7.1)

by using Doob’s inequality and the first part of (7.1) with q = 2p − 1. We have:

〈Zn
t , f〉 = 〈Zn

0 , f〉

+

∫ t

0

∫

R+

∫

[0,1]

r(x)
[
f(θx) + f((1 − θ)x) − f(x)

]
K(dθ)Zn

s (dx)ds

+

∫ t

0

∫

R+

Zn
s (dx)

[ (
f
(
x +

1

n

)
− f(x)

)
(nσ2 + b)nx

+

(
f
(
x −

1

n

)
− f(x)

)
(nσ2 + d)nx

]
ds + M1,n,f

t + M2,n,f
t , (7.2)
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where M1,f and M2,f are two square integrable martingales starting from 0 and
with brackets:

〈M2,n,f 〉t =

∫ t

0

∫

R+

[(
f
(
x +

1

n

)
− f(x)

)2

(nσ2 + b)nx

+

(
f
(
x −

1

n

)
− f(x)

)2

(nσ2 + d)nx

]
Zn

s (dx) ds

〈M1,n,f 〉t =

∫ t

0

∫

R+

∫

[0,1]

r(x) [f(θx) + f((1 − θ)x) − f(x)]
2
K(dθ)Zn

s (dx) ds,

〈M1,n,f , M2,n,f〉t = 0.

We shall prove that (Zn : n ∈ N∗) is tight in D(R+,MF (R+)), where MF (R+) is
embedded with the topology of weak convergence by using a criterion due to Ethier
and Kurtz (1986). We will then consider the uniqueness of the limiting values of
(Zn : n ∈ N∗) by identifying them as solutions of a certain martingale problem.
Step 1: Tightness of (Zn : n ∈ N∗) Let us establish tightness on D([0, T ],MF (R+)).

For this we apply Ethier and Kurtz (1986, Theorem 9.1 p 142). We begin to
prove that this sequence is tight in D([0, T ],MF (R+)) with the vague topology
on MF (R+). For this, we remark that the set of functions f ∈ C2

b (R+, R) is a
dense subset of Cb(R+, R) in the topology of uniform convergence on compact sets
and prove that for such functions f , the sequences (〈Zn, f〉 : n ∈ N∗) are tight in
D(R+, R). Then, we prove that the following compact containment condition holds:
∀T > 0, ∀η > 0, ∃Kη,T compact subset of MF (R+),

inf
n∈N∗

P (Zn
t ∈ Kη,T , for t ∈ [0, T ]) ≥ 1 − η. (7.3)

Let f ∈ C2
b (R+, R). Using the Taylor-Young formula, there exists un

1 (x) and un
2 (x)

in [0, 1] such that:

lim
n→+∞

(
f

(
x +

1

n

)
− f(x)

)
(nσ2 + b)nx +

(
f

(
x −

1

n

)
− f(x)

)
(nσ2 + d)nx

= lim
n→+∞

(b − d)xf ′(x) +
σ2x

2

(
f ′′

(
x +

un
1 (x)

n

)
+ f ′′

(
x −

un
2 (x)

n

))

+
x

2n

(
b f ′′

(
x +

un
1 (x)

n

)
+ d f ′′

(
x −

un
2 (x)

n

))

= (b − d)xf ′(x) + σ2xf ′′(x). (7.4)

Under the assumptions of Prop. 2.2, the previsible finite variation part V n,f
t =

〈Zn
t , f〉 − 〈Zn

0 , f〉 − M1,n,f
t − M2,n,f

t of 〈Zn, f〉 satisfies:

|V n,f
t | ≤3‖f‖∞r̄T sup

s∈[0,T ]

〈Zn
s , 1 + xp〉

+

(
‖f ′‖∞(b − d) + σ2‖f ′′‖∞ +

b + d

2n
‖f ′′‖∞

)
T sup

s∈[0,T ]

〈Zn
s , x〉. (7.5)

By (7.1),

sup
n∈N∗

E

(
sup

t∈[0,T ]

|V n,f |

)
< +∞. (7.6)
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Using that

(
f

(
x +

1

n

)
− f(x)

)2

(nσ2 + b)nx +

(
f

(
x −

1

n

)
− f(x)

)2

(nσ2 + d)nx

= 2σ2xf
′2(x) +

C(n, b, d, σ, f)x

n
,

where C(n, b, d, σ, f) = O(1) when n → +∞, we obtain in the same manner that:

sup
n∈N∗

E

(
sup

t∈[0,T ]

|〈M1,n,f〉t + 〈M2,n,f 〉t|

)
< C sup

n∈N∗

E

(
sup

t∈[0,T ]

〈Zn
t , 1 + xp〉

)
< +∞,

(7.7)
by (7.1). Let δ > 0 and let ((Sn, Tn) : n ∈ N∗) be a sequence of couples of stopping
times such that Sn ≤ Tn ≤ T and Tn ≤ Sn + δ. Proceeding as for (7.5), we show:

E

(
|V n,f

Tn
− V n,f

Sn
|
)
≤C(b, d, σ, r̄, f) sup

n∈N∗

E

(
sup

t∈[0,T ]

〈Zn
t , 1 + xp〉

)
δ. (7.8)

By (7.1), the upper bound can be as small as we wish with a proper choice for δ.
Similarly:

E
(
|〈M1,n,f 〉Tn

− 〈M1,n,f〉Sn
+ 〈M2,n,f〉Tn

− 〈M2,n,f 〉Sn
|
)

≤ C(b, d, σ, r̄, f, T )δ sup
n∈N∗

E

(
sup

t∈[0,T ]

〈Zn
t , 1 + xp〉

)
≤ C′(b, d, σ, r̄, f, T )δ. (7.9)

(7.6)-(7.9) together with Aldous-Rebolledo and Roelly’s criteria (Joffe and Métivier,
1986; Roelly-Coppoletta, 1986) ensure that the sequence (Zn)n∈N is tight in D(R+,
MF (R+)) where MF (R+) is embedded with the vague convergence topology.

Let us now prove the compact containment condition (7.3) to obtain the tightness
in D(R+,MF (R+)) with the weak convergence topology on MF (R+). Recall that
the sets M≤N0

([0, a0]) of measures with mass bounded by N0 and support included
in [0, a0] are compact (see Kallenberg, 1983, Sect. 15). Notice that:

{Zn
t /∈ M≤N0

([0, a0]), t ∈ [0, T ]}

⊂ {∃t ∈ [0, T ], Nn
t > N0} ∪ {∃t ∈ [0, T ], Xn

t > a0}

where Nn
t is the number of cells and where Xn

t is the total quantity of parasites at
time t. Hence:

P
(
∃t ∈ [0, T ], Zn

t /∈ M≤N0
([0, a0])

)

≤ P
(
∃t ∈ [0, T ], Nn

t > N0

)
+ P

(
∃t ∈ [0, T ], Xn

t > a0

)

≤
1

N0
E

(
sup

t∈[0,T ]

Nn
t

)
+

1

a0
E

(
sup

t∈[0,T ]

Xn
t

)
. (7.10)

Thanks to (7.1) for fixed T , we obtain (7.3) by choosing N0 and a0 sufficiently large.
This concludes the proof of the tightness of (Zn : n ∈ N∗) in D([0, T ],MF (R+)).
Step 2: Identification of the limit Let us consider an adherence value Z of the se-
quence (Zn : n ∈ N∗), and let us denote again by (Zn : n ∈ N∗) the subsequence
that converges towards Z in law in D([0, T ],MF (R+)). Let f ∈ C3

b (R+, R). For
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k ∈ N∗, let 0 ≤ t1 < · · · tk < s < t ≤ T and ϕ1, · · · , ϕk ∈ Cb(MF (R+), R). For
z ∈ D([0, T ],MF (R+)), we define:

Ψ(z) = ϕ1(zs1
) · · ·ϕk(zsk

)
[
〈zt, f〉 − 〈zs, f〉

−

∫ t

s

∫

R+

∫

[0,1]

(
r(x)

(
f(θx) + f((1 − θ)x) − f(x)

)

+ xf ′(x)(b − d) + σ2xf ′′(x)
)
K(dθ)zu(dx) du

]
. (7.11)

Then |E (Ψ(Z))| ≤ A + B + C where:

A = |E (Ψ(Z)) − E (Ψ(Zn))|

B =
∣∣∣E (Ψ(Zn)) − E

(
ϕ1(Z

n
s1

) · · ·ϕk(Zn
sk

)
[
M1,n,f

t − M1,n,f
s + M2,n,f

t − M2,n,f
s

])∣∣∣

C =
∣∣∣E
(
ϕ1(Z

n
s1

) · · ·ϕk(Zn
sk

)
[
M1,n,f

t − M1,n,f
s + M2,n,f

t − M2,n,f
s

])∣∣∣ .

The map z ∈ D([0, T ],MF (R+)) 7→ Ψ(z) is continuous as soon as (t1, · · · tk, s, t)
does not intersect a denumerable set of points of [0, T ] where Z is not continuous
(e.g. Billingsley, 1968 Theorem 15.1 p.124). The convergence in distribution of
Zn to Z, together with (7.1), implies that A converges to 0 when k → +∞. Since
M1,n,f and M2,n,f are martingales, C = 0. From (7.4),

B ≤

∣∣∣∣∣E
(∫ t

0

∫

R+

{
σ2

2
x

[
f ′′

(
x +

un
1 (x)

n

)
+ f ′′

(
x −

un
2 (x)

n

)
− 2f ′′(x)

]

+
x

2n

(
bf ′′

(
x +

un
1 (x)

n

)
+ df ′′

(
x −

un
2 (x)

n

))}
Zn

s (dx)ds

)∣∣∣∣

Since f is of class C3, the integrand is upper bounded by Cx/n. Using (7.1),
B ≤ C′/n. This proves that E(Ψ(Z)) = 0 and hence the square bracket in (7.11) is
a martingale. The computation of its bracket is standard and obtained by taking
the limit in 〈Zn

t , f〉2 − 〈Zn
0 , f〉2 on the one hand, and by using Itô’s formula with

(2.5) on the other hand.
Step 3: Conclusion In the Step 2, we have identified the adherence values of the
sequence of processes (Zn : n ∈ N∗) as the solutions Z of the martingale problem
associated with the following generator A. Following Dawson (1993), Section 6.1,
we choose for the domain D(A) the set of functions of the form Ff (Z) = F (〈Z, f〉)
with F ∈ C2

b (R, R), f ∈ C2
b (R+, R) and where Z ∈ MF (R+). Let:

AFf (Z) = F ′(〈Z, f〉)

∫

R+

[
(b − d)xf ′(x) + σ2xf ′′(x)

]
Z(dx) (7.12)

+ F ′′(〈Z, f〉)

∫

R+

σ2xf
′2(x)Z(dx)

+

∫

R+

∫

[0,1]

r(x)
[
F
(
〈Z, f〉 + f(θx) + f((1 − θ)x) − f(x)

)
− Ff (Z)

]
K(dθ)Z(dx).

The generator A is linear. Since it is the infinitesimal generator of the process
(2.3)-(2.5), A is closed by Ethier and Kurtz (1986, Corollary 1.6 p.10). This implies
that the resolvent set of A contains (0, +∞). By Proposition 3.5 p.178 of the same
reference, since for any initial condition Z0 ∈ MF (R+), (2.3)-(2.5) defines a solution
of the martingale problem, the generator A is dissipative. These last facts imply,
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by Corollary 4.4 p.187 of Ethier and Kurtz that two processes of D(R+,MF (R+))
satisfying the martingale problem associated with A have the same distribution. �
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J. Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge (1996). ISBN 0-521-56243-0. MR1406564.

P. Billingsley. Convergence of probability measures. John Wiley & Sons Inc., New
York (1968). MR0233396.

N. H. Bingham. Continuous branching processes and spectral positivity. Stochastic
Processes Appl. 4 (3), 217–242 (1976). MR0410961.

M.H. Bonds. Host life-history strategy explains pathogen-induced sterility. Sto-
chastic Processes Appl. 168 (3), 281–293 (2006).

M. D. Brennan and R. Durrett. Splitting intervals. Ann. Probab. 14 (3), 1024–1036
(1986). MR841602.

M.D. Brennan and R. Durrett. Splitting intervals. II. Limit laws for lengths. Probab.
Theory Related Fields 75 (1), 109–127 (1987). MR879556.

J.J. Bull and I.J. Molineux. Molecular genetics of adaptation in an experimental
model of cooperation. Evolution 46 (4), 882–895 (1992). .

J.J. Bull, I.J. Molineux and W.R. Rice. Selection of benevolence in a host-parasite
system. Evolution 45 (4), 875–882 (1991).
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