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Université de Rennes 1,
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Abstract. We consider a generalization of the weighted random ball model defined
by

M(y) =

∫

Rd×R+×R

mh

(
y − x

r

)
N(dx, dr, dm)

where N is a random Poisson measure on R
d × R

+ × R with a product heavy
tailed intensity measure and h : R

d → R is a fading function. This functional
can serve as a basic model for transmission with fading effect. The convergence
of the finite-dimensional distributions of related generalized random fields under
various scalings is known in the particular case when h is the indicator function
of the unit ball in R

d, see Breton and Dombry (2009) and references therein. In
the present paper, tightness and functional convergence are investigated. Using
suitable moment estimates, we prove functional convergences for some parametric
classes of configurations under the so-called large ball scaling and intermediate ball
scaling. Convergence in the space of distributions is also discussed.
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1. Introduction

We consider weighted random balls in R
d generated by a Poisson randommeasure

Nλ on R
d × R

+ × R with intensity

nλ(dx, dr, dm) = λdxF (dr)G(dm)

where λ ∈ R
+ and F , G are probability measures on R

+ and R respectively. For
each 3-tuple (x, r,m), x represents the center of the Euclidean ball B(x, r) and r
its radius, m stands for the weight of the ball. The parameter λ is interpreted as
the intensity of the balls in R

d. Such models are used for instance to represent a
spatial communication network, see Kaj (2006), Yang and Petropulu (2003). In this
case, x represents a station transmitting a signal, r the range of emission and m
the intensity of the signal, see Breton and Dombry (2009) and references therein.
Following this interpretation, the signal m transmitted by x is received in some
y ∈ R

d if and only if y ∈ B(x, r), and the overall signal received from the stations
at y is given by

∫

Rd×R+×R

m1B(x,r)(y)Nλ(dx, dr, dm) =

∫

Rd×R+×R

m1B(0,1)((y − x)/r)Nλ(dx, dr, dm).

(1.1)

The mathematical study of such a quantity has some history and we refer in partic-
ular to Kaj and Taqqu (2008) (when d = 1), Kaj et al. (2007), Biermé et al. (2010)
(when G = δ1, i.e. the weight are not considered) and Breton and Dombry (2009).
From a modeling point of view, it is natural to consider that the signal transmitted
by x and received in y fades when y gets away from the station x. In order to take
into account this phenomenon, we introduce a fading function h replacing 1B(0,1)

in (1.1), more precisely the faded signal received at y from x is mh((y−x)/r) and,
assuming moreover that no interference occurs between the stations, the quantity
of signal received at y is now given by

M(y) =

∫

Rd×R+×R

mh((y − x)/r)Nλ(dx, dr, dm). (1.2)

From a physical point of view, it is natural to assume that h(y) is a radially non-
increasing function with h(0) = 1, 0 ≤ h(y) ≤ 1 and lim‖y‖→+∞ h(y) = 0. The

function h is said to be radially non-increasing if for all y ∈ R
d, the function

r 7→ h(ry) is non-increasing on [0,+∞). However, from a mathematical point of
view, more general assumptions will be enough, see assumption (A3) below.

In the sequel, we are more generally interested in the contribution

M(µ) =

∫

Rd

M(y)µ(dy)

of the model in a configuration of points y represented by a measure µ. For instance,
the configuration reduced to the point y is represented by µ = δy and in this case
M(δy) = M(y). It is natural to consider finite positive measures µ on R

d but
our study supports signed measures µ with finite total variation. In the sequel, we
shall note M the set of such measures and we recall that, equipped with the total
variation norm ‖µ‖M = |µ|(Rd), M is a Banach space. Actually in order to make
our study easier, and in contrast with Breton and Dombry (2009) and Biermé et al.
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(2010), we shall consider signed measures µ with density, i.e. µ(dy) = φ(y)dy for
some φ ∈ L1(Rd). Setting τx,rh(y) = h((y − x)/r) and µ[f ] =

∫
Rd f(y)µ(dy) for

f ∈ L1(Rd, µ), the Fubini theorem allows to rewrite

M(µ) =

∫

Rd×R+×R

mµ[τx,rh]Nλ(dx, dr, dm). (1.3)

Note that the stochastic integral in (1.3) is well defined and the change in the order
of integrals is justified when

∫

Rd×R+×R

|mµ[τx,rh]| nλ(dx, dr, dm)

≤ λ|µ|(Rd)

(∫

Rd

|h(x)|dx

)(∫

R+

rdF (dr)

)(∫

R

|m|G(dm)

)
< +∞. (1.4)

We will always suppose that all three integrals in (1.4) above are finite (precise
assumptions on F , G and h are given in the set of conditions (A) below). Further-
more, in this case, the expected value of M(µ) is given by

E[M(µ)] = λµ(Rd)

(∫

Rd

h(y)dy

)(∫

R+

rdF (dr)

)(∫

R

mG(dm)

)
.

In order to investigate the macroscopic behavior of the generalized random field
(M(µ))µ∈M, we apply a scaling x 7→ ρx, with ρ < 1. The scaling contracts the
space R

d and is interpreted as zoom-out in the model. Note that when ρ > 1,
the scaling becomes a dilation of Rd and is interpreted as zoom-in. In contrast to
Biermé et al. (2010) and Breton and Dombry (2009) but like in Kaj et al. (2007),
we focus in this article only on zoom-out (see below for further comments on the
relation between this contribution and several related papers). In order to derive
non-trivial asymptotics, the intensity λ of the Poisson measure is adapted to the
scaling procedure by allowing λ := λ(ρ) to depend on the zooming factor ρ. Note
that the natural intensity λ(ρ) corresponding to the scaling x 7→ ρx is λ(ρ) = ρ−dλ.
After the scaling, the generalized field becomes

Mρ(µ) =

∫

Rd×R+×R

mµ[τx,rh]Nρ,λ(ρ)(dx, dr, dm) (1.5)

where Nρ,λ(ρ) is the Poisson random measure with intensity

nρ,λ(ρ)(dx, dr, dm) = λ(ρ)dxFρ(dr)G(dm)

and Fρ is the image measure of F under r 7→ ρr. We are finally led to investigate, for
a proper normalization n(ρ), the fluctuations of the rescaled and centered random
field

M̃ρ(µ) = n(ρ)−1(Mρ(µ)− E[Mρ(µ)]).

In order to derive non-trivial asymptotics for the model (1.5), the distributions F
and G driving the behavior of the radius r and of the weights m, and the shape
function h must satisfy some conditions, denoted by conditions (A), that we state
now precisely:

• The probability G is assumed to belong to the normal domain of attraction
of the α-stable distribution Sα(σ, b, τ) with α ∈ (1, 2], i.e. if X1, . . . , Xn are
i.i.d. with distribution G, n−1/α(X1 + · · ·+Xn) ⇒ Sα(σ, b, τ). According
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to Feller (1966, XVII.5), this is equivalent to the following estimate on the
characteristic function ϕG of G:

ϕG(θ) = 1 + iθτ − σα|θ|α(1 + ibε(θ) tan(πα/2)) + o(|θ|α) as θ → 0. (A1)

In the case α ∈ (1, 2), a typical choice for G is a heavy-tailed distribution
while for α = 2, G may be any distribution with finite variance. Observe
that since α > 1, G has a finite moment of order 1.

• The probability F is assumed to have a regularly varying tail satisfying

F̄ (r) :=

∫ +∞

r

F (du) ∼r→+∞ Cβr
−β for some d < β < αd. (A2)

Here and in the sequel, f(r) ∼r→+∞ g(r) indicates that

lim
r→+∞

f(r)/g(r) = 1.

Observe that, under (A2), the expectation of the volume of the random
balls

∫
R+ rdF (dr) is finite (see Lemma A.3 below) and the bound (1.4)

indeed holds true.
• The shape function h is assumed to be continuous almost everywhere and
such that

h∗(x) := sup{|h(rx)| : r ≥ 1} ∈ L1(Rd) ∩ Lα(Rd). (A3)

Note that this implies that h ∈ L1(Rd)∩Lα(Rd) and that if h is radially non-
increasing, then h∗ = h. Indeed, h∗ is the smallest radially non-increasing
function dominating h.

The convergences of the finite-dimensional distributions (fdd) of M̃ρ were (essen-
tially) already derived in Breton and Dombry (2009) under three different regimes
depending on the behavior of λ(ρ)ρβ (the so-called large, small and intermediate
ball regimes). In this note, we actually focus on the corresponding functional con-

vergence for the generalized random fields
(
M̃ρ(µ)

)
µ∈M

. Since there is no natural

functional space in which the random function µ ∈ M 7→ M̃ρ(µ) belongs (at least
heuristically), we choose to consider a special parametric sub-family (µt)t∈Rp of

M and to investigate the tightness of the random fields
(
M̃ρ(µt)

)
t∈Rp

. Our main

contribution is to prove tightness in the space of continuous functions C(Rp) of such
random fields under suitable conditions on the family (µt)t∈Rp . As a by-product, we

also obtain weak convergence of the random fields M̃ρ in the space of distributions.

Let us conclude this introduction with some comments on the relations between
this article and related papers. In Breton and Dombry (2009), fdd convergences are

obtained for (M̃ρ(µ))µ when µ belongs to some special subspace Mα,β on which
∫

Rd

|µ(B(x, r))|αdx ≤ C(rp ∧ rq) for some p < β < q (1.6)

(roughly speaking the condition requires a control of the measures µ(B(x, r)) of
both large and small balls, uniform in the centers of the balls). Moreover, it deals
simultaneously with the macroscopic behavior (i.e. ρ → 0 and F has a power law
behavior in +∞ of order β > d) and microscopic behavior (i.e. ρ → +∞ and F
has a power law behavior in 0 of order β < d). In comparison, in this paper we deal
only with the macroscopic behavior (i.e. ρ → 0 and β > d) and for special measures
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µ(dy) = φ(y)dy ∈ M with density φ ∈ L1(Rd) ∩ Lα(Rd). But, F is not any more
assumed to have a density and we only assume the tail condition (A2). Moreover a
shape function h is considered in the model (1.2) to take into account the fading of
the signal in the communication network. But our main contribution in this setting
is to derive tightness to obtain functional counterparts of the fdd convergences. In
the particular case of the dimension d = 1, the model is related to the infinite
Poisson model in Mikosch et al. (2002) and to the continuous flow reward in Kaj
and Taqqu (2008). In both papers, the authors deal with the asymptotic behaviour

of the random process corresponding in our setting to (M̃ρ(1[0,t](y)dy))t≥0 and the
issue of tightness is addressed in both papers.

The rest of the article is organized as follows: the main results are stated in
Section 2 and proved in Section 3. Technical results are postponed in the Appendix.

2. Main results

First, we recall the finite-dimensional convergence for the generalized random

field M̃ρ = n(ρ)−1(Mρ(µ) − E[Mρ(µ)]). Actually, we state a slight modification of
the main results in Breton and Dombry (2009) replacing 1B(0,1) therein by a shape

function h satisfying (A3). We shall abusively write µ ∈ L1(Rd) ∩Lα(Rd), instead

of µ(dy) = φ(y)dy with φ ∈ L1(Rd) ∩ Lα(Rd). The symbol
fdd
=⇒ stands for the fdd

convergences and the symbol
X
=⇒ is also used throughout to indicate a functional

convergence in the functional space X (for instance, in Theorem 2.4, X = C(Rd),
the space of continuous function of Rd).

Proposition 2.1. Suppose conditions (A) hold.

(1) (Large ball regime) If λ(ρ)ρβ → +∞, then, setting n(ρ) = (λ(ρ)ρβ)1/α, we
have as ρ → 0:

M̃ρ(µ)
fdd
=⇒ Zα(µ), µ ∈ L1(Rd) ∩ Lα(Rd)

where Zα is the stable field

Zα(µ) =

∫

Rd×R+

µ[τx,rh]Mα(dr, dx)

with respect to the α-stable measure Mα with control measure
σαCβr

−1−βdrdx and constant skewness function b, where σ and b are re-
lated to G by (A1).

(2) (Intermediate ball regime) If λ(ρ)ρβ → a for some a ∈ (0,+∞), then,
setting n(ρ) = 1, we have as ρ → 0:

M̃ρ(µ)
fdd
=⇒ Ja(µ), µ ∈ L1(Rd) ∩ Lα(Rd)

where Ja is the compensated Poisson integral

Ja(µ) =

∫

Rd×R×R+

mµ[τx,rh]Ñβ,a(dx, dr, dm)

with respect to the compensated Poisson random measure Ñβ,a with inten-
sity aCβr

−β−1dxdrG(dm).



182 Jean-Christophe Breton and Clément Dombry

In the sequel, the finite-dimensional results are strengthened into functional con-
vergence for a parametric sub-family of measures µt(dy) = φt(y)dy, t ∈ R

p, in

L1(Rd)∩Lα(Rd), so that the generalized random field M̃ρ induces a p-dimensional

random field (M̃ρ(µt))t∈Rp . To that aim, we investigate the tightness in C(Rp) of
this induced p-dimensional random field. The proof relies on a Censov criterion
and on moment estimates for increments presented in Section 3.2. Actually in our
setting, the relevant increments are generalized increments on blocks defined as fol-
lows. Let s, t ∈ R

p be such that si ≤ ti, 1 ≤ i ≤ p, and consider the corresponding
block [s, t] =

∏p
i=1[si, ti]. The dimension of [s, t] is given by the number of indices

i such that si < ti. Let say that a p-tuple a = (a1, . . . , ap) is adapted to [s, t]
whenever ai = 0 when si = ti, 1 ≤ i ≤ p. The generalized increment of a random
field X = (Xt)t∈Rp on a block [s, t] in R

p is defined (up to a factor ±1) by

X([s, t]) :=
∑

ǫ

(−1)p−
∑p

i=1 ǫiX(s1 + ǫ1(t1 − s1), · · · , sp + ǫp(tp − sp)) (2.1)

where the sum above runs over ǫ ∈ {0, 1}p adapted to [s, t]. Similarly for measure
µt with density φt, we define the increment on a block [s, t] of φt by

φ[s,t] :=
∑

ǫ

(−1)p−
∑p

i=1 ǫiφs1+ǫ1(t1−s1),...,sp+ǫp(tp−sp) (2.2)

where again the sum runs over ǫ ∈ {0, 1}p adapted to [s, t]. Such generalized
increments are easy to handle in our context and Example 2.3 below confirms, for
uniform-type measures, that such increments make sense in our setting. In order
to control such increments, we introduce our main condition on the densities φt of
µt: we say that the family of densities (φt)t∈Rp satisfies property (Pγ) for γ ≥ 1 if
for all T > 0, there exists some constant CT > 0 such that for any [s, t] ⊂ [−T, T ]p,

‖φ[s,t]‖
γ
γ ≤ CT

∏

i:si<ti

|ti − si|. (Pγ)

Here, ‖φ‖γ stands for the Lγ(Rp)-norm of φ. The following examples justify that
condition (Pγ) is natural.

Example 2.2. Let (µt)t∈Rp be the family of (signed) uniform measures on the blocks

[0, t] =
∏d

i=1[0, ti], more precisely, φt = sign(t1) · · · sign(tp)1[0,t]. Then, we verify
that for any non-degenerated block [s, t] ⊂ R

p, φ[s,t] = 1[s,t] almost everywhere so
that

‖φ[s,t]‖
γ
γ =

∏

1≤i≤p

|ti − si|.

In the case of a degenerated block [s, t] ⊂ [−T, T ]p, we have

‖φ[s,t]‖
γ
γ =

∏

i:si=ti

|si|
∏

i:si<ti

|ti − si| ≤ CT

∏

i:si<ti

|ti − si|

with CT = max(1, T )p. Hence (Pγ) holds true for all γ ≥ 1. Such uniform-type
measures are used to analyze cumulative workload in one-dimensional model, see
Mikosch et al. (2002), Kaj and Taqqu (2008).

Example 2.3. Let (µt)t∈Rp be a family of measures with densities φt such that for
all I ⊂ {1, . . . , p} and all T > 0,

∥∥∥ sup
t∈[−T,T ]p

∂Iφt(y)
∥∥∥
γ
< +∞ (2.3)
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where ∂I is the differential operator defined for I = {i1, . . . , ik} by
∂I = ∂k/∂ti1 · · ·∂tik . The following condition (P ′

γ) (that implies condition (Pγ))
is satisfied: for any T > 0, there exists some constant CT > 0 such that for any
[s, t] ⊂ [−T, T ]p,

‖φ[s,t]‖
γ
γ ≤ CT

∏

i:si<ti

|ti − si|
γ . (P

′

γ)

This fact is justified in Section 3.3.

We now state our results for the functional convergences in the large ball and
intermediate ball regime. Recall that the limits Zα and J below are defined in

Proposition 2.1 and the notation
C(Rp)
===⇒ stands for the weak convergence in C(Rp).

Theorem 2.4. Suppose conditions (A) hold. Let µt(dy) = φt(y)dy, t ∈ R
p, be a

parametric family of measures in L1(Rd) ∩ Lα(Rd) satisfying conditions (P1) and
(Pα).

(1) (Large ball regime) If λ(ρ)ρβ → +∞, then, setting n(ρ) = (λ(ρ)ρβ)1/α, we
have as ρ → 0:

M̃ρ(µt)
C(Rp)
===⇒ Zα(µt), t ∈ R

p.

(2) (Intermediate ball regime) If λ(ρ)ρβ → a > 0, then, setting n(ρ) = 1, we
have as ρ → 0:

M̃ρ(µt)
C(Rp)
===⇒ Ja(µt), t ∈ R

p.

As a by-product of the moment estimates used to prove tightness, we obtain
Hölder-regularity properties in the case α = 2. This is the content of the following
result.

Proposition 2.5. Suppose conditions (A) hold with α = 2.

(1) If G has a finite variance and the family of measures µt(dy) = φt(y)dy
satisfies (P1) and (P2), then the Gaussian limit process (Z2(µt))t∈Rp of

Theorem 2.4 is γ-Hölder for all γ < 3d−β
2d .

(2) If there is k ≥ 2p such that h ∈ Lk(Rd), G has finite moment of order k, and
the family of measures µt(dy) = φt(y)dy satisfies (P1) and (Pk), then the

limit process (Ja(µt))t∈Rp of Theorem 2.4 is γ-Hölder for all γ < 3d−β
2d − p

k .

Observe that in dimension d = 1, we recover at the limit the fractional Brownian
motion obtained at the limit in Kaj and Taqqu (2008) with the Hölder-regularity
γ < (3− β)/2 ∈ (12 , 1).

Finally, we consider functional convergence in the space of distributions. Let D(Rd)
be the space of smooth compactly supported functions, and D′(Rd) be its dual, i.e.

the space of distributions. We show that, for all ρ > 0, M̃(ρ) can be seen as a
random distribution and state functional convergence in D′(Rd).

Theorem 2.6. Suppose conditions (A) hold.

(1) For each ρ > 0, Mρ induces a random distribution, i.e. the linear form

Mρ :

{
D(Rd) → R

φ 7→ Mρ(φ(y)dy)

is almost surely continuous.
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(2) (Large ball regime) If λ(ρ)ρβ → +∞, then, setting n(ρ) = (λ(ρ)ρβ)1/α in

M̃ρ(µ), we have as ρ → 0:

M̃ρ(µ)
D′(Rp)
===⇒ Zα(µ), µ ∈ D(Rd).

(3) (Intermediate ball regime) If λ(ρ)ρβ → a > 0, then, setting n(ρ) = 1 in

M̃ρ(µ), we have as ρ → 0:

M̃ρ(µ)
D′(Rp)
===⇒ Ja(µ), µ ∈ D(Rd).

Remark 2.7. The result is still true if D(Rd) is replaced by Ck
K(Rd) the space of

compactly supported functions of class Ck on R
d and D′(Rd) is replaced by the dual

of Ck
K(Rd), k ∈ N \ {0}.

3. Proofs

The proof of Theorem 2.4, as usual for functional convergences, consists of two
arguments: fdd convergences and tightness. The first one is given in Proposition
2.1 which is a slight modification of Theorems 2.4 and 2.11 in Breton and Dombry
(2009) whose changes are discussed in Section 3.1. The proof of tightness is given
in Section 3.3 and it relies on moment estimates previously obtained in Section 3.2.
Hölder regularity also relies on moments and cumulants estimates and Proposition
2.5 is proved in Section 3.4. Section 3.5 is devoted to the proof of functional
convergence in the space of distributions D′(Rd).

Recall that throughout the paper, we assume that conditions (A) hold, and in
particular we consider d < β < αd. All the asymptotics are considered as ρ → 0.

3.1. fdd convergences. The results of Breton and Dombry (2009) do not apply di-
rectly since the model investigated therein is not exactly the same, see the discussion
in page 180. However, verbatim changes in the proofs, with the following easy adap-
tations, shows that their results still apply in the present context and thus justify
Proposition 2.1:

First a careful reading of the proofs in Breton and Dombry (2009) shows that
the existence of the density f of F is used only in Lemma 3.2 therein. But this
lemma can be replaced by Lemmas 2 and 3 in Kaj et al. (2007) deriving the same
result but under the weaker assumption (A2). Observe in particular that F̄ρ(1) =
F̄ (1/ρ) ∼ Cβρ

β and that the continuity requirement in Lemmas 2 and 3 in Kaj
et al. (2007) is ensured in our setting by condition (A3) and Lemma A.2 below.

Second, the bound (1.6) can be replaced by the condition below, justified in
Lemma A.1 in the Appendix with γ := α therein: for h ∈ L1(Rd) ∩ Lα(Rd) and
µ(dy) = φ(y)dy with φ ∈ L1(Rd) ∩ Lα(Rd), we have

∫

Rd

|µ[τx,rh]|
αdx ≤ C(rd ∧ rαd).

3.2. Moment estimates. As we will see, our results on tightness and Hölder regu-

larity strongly rely on moment estimates for the rescaled random field M̃ρ. Since
the following properties of the moment are also interesting in their own right, they
are stated in the following proposition.

Proposition 3.1. Suppose conditions (A) hold.
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(1) Let 0 < γ < α. There exists some constant C := C(F,G, h, α, β, γ, d), not
depending on ρ and φ, such that for all µ(dy) = φ(y)dy ∈ L1(Rd)∩Lα(Rd)
and all ρ > 0, we have

E

[∣∣∣M̃ρ(µ)
∣∣∣
γ]

≤ C

[
λ(ρ)ρβ

n(ρ)α

]γ/α
‖φ‖

γ(β−d)
(α−1)d
α ‖φ‖

γ(αd−β)
(α−1)d

1 . (3.1)

(2) Suppose that α = 2 and G has a finite moment of order k ∈ N \ {0, 1}, h ∈
L1(Rd)∩Lk(Rd). There exists some constant C := C(F,G, h, α, β, k, d), not
depending on ρ and φ, such that for all µ(dy) = φ(y)dy ∈ L1(Rd)∩Lk(Rd)
and all ρ > 0,

∣∣∣ck
(
M̃ρ(µ)

)∣∣∣ ≤ C
λ(ρ)ρβ

n(ρ)k
‖φ‖

k(β−d)
(k−1)d

k ‖φ‖
k(kd−β)
(k−1)d

1 , (3.2)

where ck
(
M̃ρ(µ)

)
is the cumulant of order k of M̃ρ(µ).

As a by-product of these moment estimates and the finite-dimensional conver-
gence (Proposition 2.1), we obtain the following result stating the convergence of
moments:

Corollary 3.2. Suppose conditions (A) hold and µ(dy) = φ(y)dy with
φ ∈ L1(Rd) ∩ Lα(Rd). Let 0 < γ < α.

(1) If λ(ρ)ρβ → +∞, then, setting n(ρ) = (λ(ρ)ρβ)1/α in Mρ(µ), we have as
ρ → 0:

E

[∣∣∣M̃ρ(µ)
∣∣∣
γ]

→ E [|Zα(µ)|
γ ] .

(2) If λ(ρ)ρβ → a, then, setting n(ρ) = 1 in Mρ(µ), we have as ρ → 0:

E

[∣∣∣M̃ρ(µ)
∣∣∣
γ]

→ E [|Ja(µ)|
γ
] .

In the case α = 2, if furthermore G has a finite moment of order n ≥ 2 and h, φ ∈
L1(Rd) ∩ Ln(Rd), then the above convergence of moments holds for all 0 ≤ γ ≤ n.

Proof of Proposition 3.1.

First point: The estimate for E

[∣∣∣M̃ρ(µ)
∣∣∣
γ]

relies on the following expression of

the fractional moment (see von Bahr and Esseen, 1965, Gaigalas, 2006 or Kaj and
Taqqu, 2008, Eq. (60)): if X is a random variable with characteristic function
ϕX(t) = E[exp(itX)], then we have, for 1 < γ < 2,

E[|X |γ ] = A(γ)

∫ +∞

0

(1− |ϕX(θ)|2)θ−1−γdθ (3.3)

where

A(γ) =

(∫ +∞

0

(1− cos(x))x−1−γdx

)−1

< +∞.

Since M̃ρ(µ) is a Poisson integral, its characteristic function is given by (see Lemma
A.5)

ϕ
M̃ρ(µ)

(θ) = exp

(∫

Rd×R+

ΨG

(
n(ρ)−1θµ[τx,rh]

)
λ(ρ)dxFρ(dr)

)
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with ΨG(u) =
∫
R
(eium − 1− ium)G(dm). Hence,

1− |ϕ
M̃ρ(µ)

(θ)|2

= 1− exp

(∫

Rd×R+

2Re
(
ΨG

(
n(ρ)−1θµ[τx,rh]

))
λ(ρ)dxFρ(dr)

)

≤ 1− exp

(
−2

∫

Rd×R+

∣∣ΨG

(
n(ρ)−1θµ[τx,rh]

)∣∣λ(ρ)dxFρ(dr)

)

≤ 1− exp

(
−2C(G)n(ρ)−αλ(ρ)|θ|α

∫

Rd×R+

|µ[τx,rh]|
α dxFρ(dr)

)
. (3.4)

Using Lemma A.4 in the Appendix with γ := α > β/d, we have
∫

Rd×R+

|µ[τx,rh]|
αdxFρ(dr) ≤ ρβC̃(φ) (3.5)

where C̃(φ) is given by

C̃(φ) = C(F )
(α− 1)βd

(αd − β)(β − d)
(‖φ‖α‖h‖1)

α(β−d)
(α−1)d (‖φ‖1‖h‖α)

(αd−β)α
(α−1)d

and C(F ) is a constant depending only on F . Plugging the bounds (3.4) and (3.5)
in (3.3), we obtain

E

[∣∣∣M̃ρ(µ)
∣∣∣
γ]

≤ A(γ)

∫ +∞

0

(
1− exp

(
−2C(G)n(ρ)−αλ(ρ)ρβ |θ|αC̃(φ)

))
θ−1−γdθ

= A(γ)A(α, γ)

(
λ(ρ)ρβ

n(ρ)α

)γ/α

(2C(G)C̃(φ))γ/α (3.6)

with a straightforward change of variables in (3.6) and

A(α, γ) =

∫ +∞

0

(1− exp (−θα)) θ−1−γdθ < +∞.

This gives the result (3.1) with the constant

C(F,G, h, α, β, γ, d)

= A(γ)A(α, γ)

(
2C(G)C(F )

(α− 1)βd

(αd − β)(β − d)
‖h‖

α(β−d)
(α−1)d

1 ‖h‖
(αd−β)α
(α−1)d

α

)γ/α

.

The case 1 < γ < α is proved. The case 0 < γ ≤ 1 comes from the previous
case applied to any γ′ ∈ (1, α) combined with the Jensen inequality which implies

E[|X |γ ] ≤ E[|X |γ
′

]γ/γ
′

.

Second point: We use the general form of the cumulant of a Poisson integral as
recalled in Lemma A.5. Using Lemma A.4 with γ := k ≥ 2 > β/d, we have:

ck(M̃ρ(µ))

=
λ(ρ)

n(ρ)
k

(∫

R

mkG(dm)

)(∫

Rd×R+

[µ[τx,rh]]
kdxFρ(dr)

)

≤
λ(ρ)ρβ

n(ρ)k
C(F )

(k − 1)βd

(kd − β)(β − d)
(‖φ‖k‖h‖1)

k(β−d)
(k−1)d (‖φ‖1‖h‖k)

(kd−β)k
(k−1)d

(∫

R

mkG(dm)

)
.
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This gives the bound (3.2) with the constant

C(F,G, h, α, β, k, d)

= C(F )
(k − 1)βd

(kd − β)(β − d)
‖h‖

k(β−d)
(k−1)d

1 ‖h‖
(kd−β)k
(k−1)d

k

(∫

R

mkG(dm)

)
.

�

Proof of Corollary 3.2.

We use the following basic result: if Xn weakly converges to X as n → +∞ and

E

[
|Xn|

γ′

]
is bounded, then the convergence of moments E [|Xn|

γ ] → E [|X |γ ] holds

for any 0 < γ < γ′ (in this case, the family |Xn|
γ is indeed bounded in Lγ′/γ and

hence equi-integrable). As a consequence of this result, the finite-dimensional con-
vergence stated in Proposition 2.1 and the moment estimates obtained in Proposi-
tion 3.1 yield the convergence of moments for 0 < γ < α and 0 < γ < n respectively.
The case γ = n should be proved separately but we omit the details. �

3.3. Tightness. This section is devoted to the second step in the proof of Theorem
2.4, i.e. tightness. More precisely, we show that:

Proposition 3.3. Under the assumptions of Theorem 2.4, the family of random

fields (M̃ρ(µt))t∈Rp , ρ ≤ 1, is tight in C(Rp).

The proof of Proposition 3.3 relies on a suitable control of the moment of the

generalized increments of M̃ρ(µt) with the following Censov criterion for which we
refer to Deshayes and Picard (1984, p. 16) or to Bickel and Wichura (1971).

Proposition 3.4. Let (Xn)n∈N be a sequence of random fields on R
p such that:

(1) The family of random variable (Xn(0))n∈N is tight;
(2) For all T > 0, there are constants γ > 0, δ > 1 and CT > 0 such that, for

all [s, t] ⊂ [−T, T ]p and n ∈ N,

E [|Xn([s, t])|
γ ] ≤ CT

∏

i:si 6=ti

|ti − si|
δ.

Remark 3.5. Proposition 3.4 is a weaker version of the original criterion given
in Deshayes and Picard (1984) that we have adapted to our setting. Note that∏

i:si 6=ti
|ti− si| is the k-dimensional Lebesgue measure of [s, t], where k is the true

dimension of the block [s, t]. In Deshayes and Picard (1984), the Lebesgue measure
is replaced by general Radon measure with diffuse marginals. Originally, the crite-
rion is expressed in terms of bounds on the tails P(|Xn([s, t])| > x) instead of the
moments E [|Xn([s, t])|

γ ]. Moreover, it is explained in Deshayes and Picard (1984)
that when k-dimensional faces are involved, it is enough to check the condition on
blocks [s, t] such that si = ti = 0 for the degenerated dimensions. For the sake of
clearness, we do not insist on such general conditions.

Proof of Proposition 3.3.

We apply Proposition 3.4 to the family Xρ(t) = M̃ρ(µt), ρ ≤ 1. To that aim,
observe first that the tightness of Xρ(0) is a consequence of the one-dimensional
convergence stated in Proposition 2.1. Furthermore, using the definitions (2.1) and

(2.2) together with the linearity of the generalized random field M̃ρ, we see easily
that

Xρ([s, t]) = M̃ρ(µ[s,t]) with µ[s,t](dy) = φ[s,t](y)dy.
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Proposition 3.1−1) gives the following moment estimate for 0 < γ < α:

E [|Xρ([s, t])|
γ ] = E

[
|M̃ρ(µ[s,t])|

γ
]

≤ C

[
λ(ρ)ρβ

n(ρ)α

]γ/α
‖φ[s,t]‖

γ(β−d)
(α−1)d
α ‖φ[s,t]‖

γ(αd−β)
(α−1)d

1 . (3.7)

Using (P1) and (Pα) for φ[s,t], we obtain:

E [|Xρ([s, t])|
γ ] ≤ C

[
λ(ρ)ρβ

n(ρ)α

]γ/α( ∏

i:si<ti

|ti − si|

) γ(β−d)
α(α−1)d

+ γ(αd−β)
(α−1)d

≤ C

[
λ(ρ)ρβ

n(ρ)α

]γ/α( ∏

i:si<ti

|ti − si|

) γ
α
(1+α−β/d)

. (3.8)

Now, observe that the sequence λ(ρ)ρβ/n(ρ)α is bounded since, under the two
asymptotics investigated, λ(ρ)ρβ/n(ρ)α converges to some finite constant as ρ → 0.
Furthermore since d < β < αd and 1 + α− β/d > 1, the exponent γ

α (1 + α− β/d)
is (strictly) larger than 1 for γ close enough to α. This proves the second condition
in Proposition 3.4. Proposition 3.3 and thus Theorem 2.4 easily follow. �

We finish this section with the proof of Example 2.3 where the differentiability
condition (2.3) is stated to be sufficient for (P ′

γ).

Proof for Example 2.3. Let s ≤ t. We first assume that, for all 1 ≤ i ≤ p,
−T ≤ si < ti ≤ T . We have

φ[s,t](y) =

∫

[s,t]

∂{1,...,p}φu(y)du.

Using Hölder inequality, we have:
∣∣∣∣∣

∫

[s,t]

∂{1,...,p}φu(y)du

∣∣∣∣∣

γ

≤ |[s, t]|γ−1

∫

[s,t]

∣∣∂{1,...,p}φu(y)
∣∣γ du

≤ |[s, t]|γ sup
t∈[−T,T ]p

|∂{1,...,p}φu(y)|
γ

so that

‖φ[s,t]‖
γ
γ ≤

∥∥∥ sup
t∈[−T,T ]p

∂{1,...,p}φt(y)
∥∥∥
γ

γ

p∏

i=1

|ti − si|
γ .

In general, if s ≤ t, let I be the set of indices such that si < ti. We show similarly
that

‖φ[s,t]‖
γ
γ ≤

∥∥∥ sup
t∈[−T,T ]p

∂Iφt(y)
∥∥∥
γ

γ

∏

i∈I

|ti − si|
γ .

�

3.4. Hölder-regularity when α = 2. In this section, we prove Proposition 2.5 where
Hölder-regularity is stated for the limit Z2(µt) (resp. Ja(µt)) when G has finite
variance (resp. finite moments of any order). In particular, we set α = 2 and we
assume β ∈ (d, 2d). Hölder-regularity is proven using again moment estimates for
increments. However since we have not found in the literature Hölder-regularity
result relying on generalized increments in dimension p ≥ 1, we use standard incre-
ments Z2(µt)−Z2(µs) (resp. Ja(µt)−Ja(µs)) that will be controlled thanks to the
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following elementary observation: suppose the family (φt)t∈Rp satisfies condition
(Pγ), then for all T > 0, for all [s, t] ⊂ [−T, T ]p,

‖φs − φt‖
γ
γ ≤ CT p

γ‖s− t‖γ∞. (3.9)

To see this, rewrite a standard increment as a sum of d block increments along axis.
More precisely, for s, t ∈ R

p, define ui ∈ R
p by ui

j = tj for j ≤ i and ui
j = sj for

j > i so that, for each 0 ≤ i ≤ p − 1, ui and ui+1 only differ from at most one
coordinate. For γ > 1, we have

‖φs − φt‖
γ
γ ≤ pγ−1

p∑

i=1

∥∥φ[ui−1,ui]

∥∥γ
γ

so that condition (Pγ) implies

‖φs − φt‖
γ
γ ≤ CT p

γ−1

p∑

i=1

|ti − si| ≤ CT p
γ ‖s− t‖∞.

Remark 3.6. The method consisting in controlling the moment of standard incre-
ments by generalized increments in (3.9) cannot be used in Section 3.3. Indeed,

similar bounds as in (3.7) but for standard increments M̃ρ(µt)− M̃ρ(µs) combined
with (3.9) would yield

E[|M̃ρ(µt)− M̃ρ(µs)|
γ ] ≤ CCT p

γ

[
λ(ρ)ρβ

n(ρ)α

]γ/α
‖s− t‖

γ
α
(1+α−β/d)

∞ .

instead of (3.8) which is far from a bound in ‖s − t‖δ with δ > p required in
the criterion for tightness relying on standard increments (see Kunita, 1990, Th.
1.4.1). The trick works when α = 2 because in this case, the limit is Gaussian
and we can artificially increase the exponent in the bound thanks to the relation
between moments and variance, see (3.10).

Proof of Proposition 2.5.

First point: We assume that G has a finite variance, h ∈ L1(Rd) ∩ L2(Rd) and
(Pγ) holds for γ = 1, 2. Using Lemma A.1, we have, for µ(dy) = φ(y)dy,

Var(Z2(µ)) =

∫

Rd

|µ[τx,rh]|
2 σαC2

r1+β
drdx

≤

∫

Rd

(rd‖φ‖21‖h‖
2
2 ∧ r2d‖φ‖22‖h‖

2
1)σ

αC2r
−1−βdr

= σαC2

(
‖φ‖22‖h‖

2
1

2d− β

(
‖φ‖21‖h‖

2
2

‖φ‖22‖h‖
2
1

)2−β/d

+
‖φ‖21‖h‖

2
2

β − d

(
‖φ‖21‖h‖

2
2

‖φ‖22‖h‖
2
1

)1−β/d
)

=
σαC2d

(2d− β)(β − d)

(
‖φ‖

β/d−1
2 ‖h‖

β/d−1
1 ‖φ‖

2−β/d
1 ‖h‖

2−β/d
2

)2

≤ C‖φ‖
2(β/d−1)
2 ‖φ‖

2(2−β/d)
1

for some finite constant C. Next, the properties (P1) and (P2) together with (3.9)
entail that for all s, t ∈ R

p:

Var(Z2(µs − µt)) ≤ C‖s− t‖3−β/d
∞ .
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We derive easily the moment of order 2n of the Gaussian random variable Z2(µs −
µt),

E[Z2(µs − µt)
2n] =

(2n− 1)!

(n− 1)!2n−1
Var(Z2(µs − µt))

n (3.10)

≤ C
(2n− 1)!

(n− 1)!2n−1
‖s− t‖(3−β/d)n

∞ .

Using a standard regularity criterion for random fields (see e.g. Kunita, 1990, Th.
1.4.1), Z2(µt) has, almost surely, Hölder-continuous path for all index strictly less

than 3d−β−pd/n
2d . Letting n go to +∞, we obtain that Z2(µt) is, almost surely,

Hölder-continuous for all index strictly less than 3d−β
2d .

Second point: With µ = µs − µt, Proposition 3.1 entails

∣∣∣ck(M̃ρ(µs − µt))
∣∣∣ ≤ C

λ(ρ)ρβ

n(ρ)k
‖φs − φt‖

k(β−d)
(k−1)d

k ‖φs − φt‖
k(kd−β)
(k−1)d

1 , (3.11)

Now observe that in the intermediate regime, λ(ρ)ρβ/n(ρ)k remains bounded since
it converges to a as ρ → 0. Furthermore, using properties (P1) and (Pk) together
with (3.9) in (3.11), we deduce

∣∣∣ck(M̃ρ(µs − µt))
∣∣∣ ≤ C‖s− t‖1+k−β/d

∞ .

Next, recall that the moments of a random variable X are expressed in terms
of its cumulants by the so-called complete Bell polynomials, i.e. E[Xk] =
Bk(c1(X), . . . , ck(X)) with

Bk(c1, . . . , ck) =
∑

i1+2i2···+kik=k

Kn(i1, . . . , in)c
i1
1 . . . cikk

where i1, . . . , ik are non-negative integers and Kk(i1, . . . , ik) are coefficients whose
explicit (involved) form is not required in our argument. Since we have

c1(M̃ρ(µs − µt))
i1 . . . ck(M̃ρ(µs − µt))

ik = 0

when i1 6= 0, we can assume, without loss of generality, that i1 = 0. For all s, t ∈ R
d

such that ‖s− t‖∞ ≤ 1, we have

c2(M̃ρ(µs − µt))
i2 . . . ck(M̃ρ(µs − µt))

ik ≤ C‖s− t‖
∑n

l=2(l+1−β/d)il
∞

≤ C‖s− t‖k+(1−β/d)(k/2)
∞

where we use
∑k

l=2 lil = k and
∑k

l=2 il ≤ k/2 together with ‖s − t‖∞ ≤ 1. We
deduce

E

[(
M̃ρ(µs − µt)

)k]
≤ C‖s− t‖(3−β/d)k/2

∞

and using Corollary 3.2,

E

[
(Ja(µs − µt))

k
]
≤ C‖s− t‖(3−β/d)k/2

∞ .

From the standard regularity criterion for random fields (see e.g. Kunita, 1990, Th.
1.4.1), Ja(µt) has, almost surely, Hölder-continuous path for all index strictly less
than (3 − β/d)/2− p/k. �
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3.5. Convergence in distributions space. The results on convergence in distribu-
tions space are based on Lemma 3.7 below relating the generalized random field(
M̃ρ(µ)

)
µ∈D

and the parametric random field
(
M̂ρ(t)

)
t∈Rd

defined by

M̂ρ(t) =

∫ t1

0

· · ·

∫ td

0

M̃ρ(δy)dy

= M̃ρ(µt), t ∈ R
d

where µt(dy) = sign(t1) · · · sign(td)1[0,t](y)dy is the parametric family of signed
uniform measures given in Example 2.2. Recall that this family satisfies the prop-
erty (Pγ) for all γ ≥ 1 so that Theorem 2.4 indeed holds. We also define the
continuous random fields on R

d which are the possible limits in C(Rd) under, re-
spectively, the large ball regime and the intermediate ball regime:

Ẑα(t) = Zα(µt), Ĵa(t) = Ja(µt), t ∈ R
d.

Lemma 3.7. For all φ ∈ D(Rd),

M̃ρ(φ(y)dy) = (−1)d
∫

Rd

M̂ρ(y)
∂dφ

∂y1 · · · ∂yd
(y)dy.

Proof : This follows from successive integration by parts:

M̃ρ(φ(y)dy)

=

∫

Rd

M̃ρ(δy)φ(y)dy

= (−1)d
∫

Rd

(∫ y1

0

· · ·

∫ yd

0

M̃ρ(u1, . . . , ud) du1 · · · dud

)(
∂dφ

∂y1 · · · ∂yd
(y)

)
dy

= (−1)d
∫

Rd

M̂ρ(y)
∂dφ

∂y1 · · · ∂yd
(y)dy.

�

We prove now Theorem 2.6. The proof relies on Lemma 3.7 and on Theorem

2.4 stating that M̂ρ converge in C(Rd) to Ẑα (resp. Ĵa) in the large ball (resp.
intermediate ball) regime.

Proof of Theorem 2.6.

First point: The random field M̃ρ is a bounded linear operator on D(Rd). Indeed,
for φ ∈ D(Rd) whose support is included in [−T, T ]d, Lemma 3.7 entails:

∣∣∣M̃ρ(φ(y)dy)
∣∣∣ ≤ (2T )d

(
sup

[−T,T ]d
|M̂ρ|

)(
sup

[−T,T ]d

∂dφ

∂y1 · · · ∂yd

)
.

This proves the continuity of the linear application on D(Rd) and hence that M̃ρ

can be seen as a random distribution.
Second and third point: Let I : C(Rd) → D′(Rd) be the canonical injection
given by

I(f) : φ 7→

∫

Rd

f(y)φ(y)dy, f ∈ C(Rd),



192 Jean-Christophe Breton and Clément Dombry

and define the differential operator D : D′(Rd) → D′(Rd) by

D(s) : φ 7→ (−1)ds

(
∂dφ

∂y1 · · · ∂yd

)
, s ∈ D′(Rd).

With these notations, Lemma 3.7 states that M̃ρ = (D ◦ I)(M̂ρ). Since, the oper-

ators D and I are continuous, and M̂ρ converges in C(Rd) as ρ → 0 to Ẑα (resp.

Ĵa) in the large ball regime (resp. in the intermediate ball regime), the continuous

mapping theorem implies that M̃ρ weakly converges in D′(Rd) to (D◦I)(Ẑα) (resp.

to (D ◦ I)(Ĵα)). Finally, since weak convergence in D′(Rd) implies fdd convergence

on D(Rd), we have (D ◦ I)(Ẑα)
fdd
= Zα and (D ◦ I)(Ĵa)

fdd
= Ja. This shows that Zα

and Ja have modifications that are continuous on D(Rd). �

Appendix A. Technical results

Lemma A.1. Let γ ≥ 1 and µ(dy) = φ(y)dy with φ ∈ L1(Rd) ∩ Lγ(Rd) and
h ∈ L1(Rd) ∩ Lγ(Rd). Then

∫

Rd

|µ[τx,rh]|
γdx ≤ (rd‖φ‖γ1‖h‖

γ
γ) ∧ (rγd‖φ‖γγ‖h‖

γ
1). (A.1)

Proof : Since h ∈ Lγ(Rd) and µ(dy) = φ(y)dy with φ ∈ L1(Rd), the Hölder in-
equality entails:

∫

Rd

|µ[τx,rh]|
γdx =

∫

Rd

∣∣∣∣
∫

Rd

h

(
y − x

r

)
φ(y)dy

∣∣∣∣
γ

dx

≤ ‖φ‖γ−1
1

∫

Rd×Rd

∣∣∣∣h
(
y − x

r

)∣∣∣∣
γ

|φ(y)|dydx

= rd‖φ‖γ−1
1

∫

Rd×Rd

|h(y)|γ |φ(ry + x)|dydx

= rd‖φ‖γ1‖h‖
γ
γ . (A.2)

On the other hand, still using Hölder inequality but with φ ∈ Lγ(Rd) and h ∈
L1(Rd), we have:
∫

Rd

|µ[τx,rh]|
γdx = rγd

∫

Rd

∣∣∣∣
∫

Rd

h(y)φ(ry + x)dy

∣∣∣∣
γ

dx

≤ rγd
∫

Rd

(∫

Rd

|h(y)|dy

)γ−1 ∫

Rd

|φ(ry + x)|γ |h(y)|dydx

≤ rγd‖φ‖γγ‖h‖
γ
1 . (A.3)

The bounds (A.2) and (A.3) together entail (A.1). �

The following result proves the continuity required to apply Lemmas 2 and 3 instead
of Lemma 6 in Kaj et al. (2007) in the modification in Section 3.1.

Lemma A.2. Suppose that the fading function h satisfies (A3). For µ(dy) ∈
L1(Rd)∩Lα(Rd), the application r 7→

∫
Rd ΨG (µ[τx,rh]) dx is continuous on (0,+∞).

The same holds true for
∫
Rd Ψα (µ[τx,rh]) dx with

Ψα(θ) = −σα|θ|α(1 + ibε(θ) tan(πα/2))
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and σ, b given in (A1).

Proof : Observe first that, for rn → r0 > 0, n → ∞, we have:

lim
n→∞

µ[τx,rnh] = µ[τx,r0h] dx-a.e. (A.4)

This is a standard application of Lebesgue’s convergence theorem. Indeed, since h
is almost-everywhere continuous, we have τx,rnh(y) → τx,r0h(y), n → +∞. From
the definition of h∗, the convergence is bounded for all n ≥ 1:

|τx,rnh(y)φ(y)| ≤ τx,Rh
∗(y)|φ(y)|, x, y ∈ R

d

with R = sup{rn;n ≥ 1} and the bound is dx-integrable since Lemma A.1 applied
to h∗ ∈ L1(Rd) ∩ Lα(Rd) rewrites

∫

Rd

∣∣∣∣
∫

Rd

τx,Rh
∗(y)|φ(y)|dy

∣∣∣∣
α

dx < +∞.

A second application of Lebesgue’s convergence theorem yields

lim
n→+∞

∫

Rd

ΨG(µ(τx,rnh))dx =

∫

Rd

ΨG(µ(τx,rnh))dx.

The convergence (A.4) together with the continuity of ΨG imply indeed the point-
wise convergence

lim
n→+∞

ΨG(µ(τx,rnh)) = ΨG(µ(τx,r0h)) dx-a.e.

The convergence is bounded by C|µ(τx,Rh
∗)|α since ΨG(u) ≤ C|u|α, which is in-

tegrable by Lemma A.1 applied to h∗ ∈ L1(Rd) ∩ Lα(Rd). A similar proof holds
for

lim
n→∞

∫

Rd

Ψα(µ(τx,rnh))dx =

∫

Rd

Ψα(µ(τx,rnh))dx.

�

The following result estimates the truncated moments of F . In particular, the
condition β > d ensures that F has a finite moment of order d.

Lemma A.3. For δ > 0, when u → +∞, we have:

∫ u

0

rδF (dr) ∼





Cst if δ < β
βCβ lnu if δ = β
β

δ−βCβu
δ−β if δ > β

(A.5)

and for 0 < δ < β, when u → +∞, we have:

∫ +∞

u

rδF (dr) ∼
β

β − δ
Cβu

δ−β . (A.6)

Moreover when δ > β, we have the global bound
∫ u

0

rδF (dr) ≤ Cuδ−β . (A.7)
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Proof : Let R be a random variable with distribution F . We have
∫ u

0

rδF (dr) = E
[
Rδ1R≤u

]
=

∫

Ω

∫

R+

1{R≤u}1{t≤Rδ}dtdP

=

∫

R+

P(t1/δ ≤ R ≤ u)dt =

∫ uδ

0

P(t1/δ ≤ R ≤ u)dt

= δ

∫ u

0

P(s ≤ R ≤ u)sδ−1ds

= δ

∫ u

0

P(R ≥ s)sδ−1ds− δ

∫ u

0

P(R > u)sδ−1ds. (A.8)

But using condition (A2), we have:

∫ u

0

P(R ≥ s)sδ−1ds ∼





Cst if δ < β
Cβ lnu if δ = β
Cβ

δ−βu
δ−β if δ > β

and δ
∫ u

0 P(R > u)sδ−1ds ∼ Cβu
δ−β from which (A.5) easily derives. Next,

∫ +∞

u

rδF (dr) = E[Rδ1R≥u] =

∫

Ω

∫

R+

1{R≥u}1{t≤Rδ}dtdP

=

∫

R+

P(R ≥ max(t1/δ, u))dt = δ

∫

R+

P(R ≥ max(s, u))sδ−1ds

= δ

∫ u

0

P(R ≥ u)sδ−1ds+ δ

∫ +∞

u

P(R ≥ s)sδ−1ds

∼ Cβu
δ−β +

δ

β − δ
Cβu

δ−β =
β

β − δ
Cβu

δ−β

which is (A.6). Finally, since P(R ≥ s) ≤ 1, (A.8) entails
∫ u

0 rδF (dr) = O(uδ) so
that together with (A.5), it is easy to derive (A.7). �

Lemma A.4. Let γ > β/d and µ(dy) = φ(y)dy with φ ∈ L1(Rd) ∩ Lγ(Rd) and
h ∈ L1(Rd) ∩ Lγ(Rd). Then, for any ρ > 0,

∫

Rd×R+

|µ[τx,rh]|
γdxFρ(dr)

≤ Mρβ
(γ − 1)βd

(γd− β)(β − d)
(‖φ‖γ‖h‖1)

γ(β−d)
(γ−1)d (‖φ‖1‖h‖γ)

(γd−β)γ
(γ−1)d ,

where M is a constant depending only on F .

Proof : Using Lemma A.1, we have:
∫

Rd×R+

|µ[τx,rh]|
γdxFρ(dr)

≤

∫

R+

(rd‖φ‖γ1‖h‖
γ
γ) ∧ (rγd‖φ‖γγ‖h‖

γ
1) Fρ(dr)

=

∫

R+

(ρdrd‖φ‖γ1‖h‖
γ
γ) ∧ (ργdrγd‖φ‖γγ‖h‖

γ
1) F (dr)

= ‖φ‖γγ‖h‖
γ
1ρ

γd

∫ c/ρ

0

rγdF (dr) + ‖φ‖γ1‖h‖
γ
γρ

d

∫ +∞

c/ρ

rd F (dr)
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with c = ((‖φ‖1‖h‖γ)/(‖φ‖γ‖h‖1))
γ

(γ−1)d . Finally using the bound on the truncated
moments of F in Lemma A.3 with δ := γd > β in (A.5) and δ := d in (A.6), we
derive ∫

Rd×R+

|µ[τx,rh]|
γdxFρ(dr)

≤ Mρβ
[

β

γd− β
‖φ‖γγ‖h‖

γ
1c

γd−β +
β

β − d
‖φ‖γ1‖h‖

γ
γc

d−β

]

where M ∈ (0,+∞) depends only on F . The result is obtained, after cancellation,
by replacing c by its definition. �

The next result collects explicit formulas for the characteristic function and the

cumulants of the rescaled and centered random variable M̃ρ(µ). It is based on
standard results for Poisson integrals, see Kallenberg (2002).

Lemma A.5. (1) The characteristic function of M̃ρ(µ) writes:

ϕ
M̃ρ(µ)

(θ) = exp

(∫

Rd×R+×R

ΨG

(
n(ρ)−1θµ[τx,rh]

)
λ(ρ)dxFρ(dr)

)

where ΨG(u) =
∫
R
(eium − 1− ium)G(dm).

(2) Suppose G has a finite moment of order k ≥ 1, µ(dy) = φ(y)dy with

φ ∈ L1(Rd) ∩ Lk(Rd) and h ∈ L1(Rd) ∩ Lk(Rd). Then M̃ρ(µ) has a finite
moment of order k and its k first cumulants are given by:

c1(M̃ρ(µ)) = 0,

cl(M̃ρ(µ)) =
λ(ρ)

n(ρ)
l

(∫

R

ml G(dm)

)(∫

Rd×R+

(µ[τx,rh])
ldx Fρ(dr)

)
, 2 ≤ l ≤ k.

Note that the finiteness of
∫
Rd×R+ |µ[τx,rh]|

l dxFρ(dr) comes from Lemma A.1

when µ ∈ L1(Rd) ∩ Lk(Rd) and h ∈ L1(Rd) ∩ Lk(Rd).
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