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Abstract. We study the asymptotic behaviour of the probability that a weighted
sum of centered i.i.d. random variables Xk does not exceed a constant barrier.
For regular random walks, the results follow easily from classical fluctuation theory,
while this theory does not carry over to weighted random walks, where essentially
nothing seems to be known.
First we discuss the case of a polynomial weight function and determine the rate of
decay of the above probability for Gaussian Xk. This rate is shown to be universal
over a larger class of distributions that obey suitable moment conditions.
Finally we discuss the case of an exponential weight function. The mentioned
universality does not hold in this setup anymore so that the rate of decay has to
be determined separately for different distributions of the Xk. We present some
results in the Gaussian framework.

1. Introduction

1.1. Statement of the problem. In this article we study the asymptotic behaviour
of

P

[

sup
0≤t≤T

Zt ≤ 1

]

, or P

[

sup
n=1,...,N

Zn ≤ 0

]

, (1.1)

as T, N → ∞ for a certain class of stochastic processes Z = (Zt)t≥0 to be specified
below. The probability above is often called survival probability up to time T (also
persistence probability). The problem of determining the asymptotic behaviour of
(1.1) is sometimes also called one-sided exit problem since the survival probability
can also be expressed using first hitting times. Typically, it cannot be computed
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explicitly. For most processes considered here, it decays polynomially with time
(ignoring possible terms of lower order) , i.e.

P

[

sup
0≤t≤T

Zt ≤ 1

]

= T−θ+o(1), T → ∞,

where θ is called the survival exponent.
Apart from pure theoretical interest in this classical problem, research on survival
probabilities of integrated processes was motivated by the investigation of the invis-
cid Burgers equation, see e.g. Sinăı (1992); Bertoin (1998); Molchan and Khokhlov
(2004). Further motivations are pursuit problems and a relation to questions about
random polynomials; we refer to Li and Shao (2004) for a recent overview of ap-
plications. We mention that the problem of determining the survival exponent
is relevant in various physical models such as reaction diffusion systems, granular
media and Lotka-Volterra models for population dynamics, see the survey of Ma-
jumdar (1999) with a collection of examples.
Although (1.1) is a classical problem, it has not been studied very intensively so far
except for a few Gaussian processes and the case of processes having independent
and stationary increments such as random walks and Lévy processes. The latter
results are part of classical fluctuation theory. In the present article we drop the
assumption of stationary increments and study deterministically weighted sums of
i.i.d. random variables. For such processes, there is virtually no theory available so
far.
Our approach focusses on the analysis of the case of Gaussian increments first.
Then universality results are shown by transferring the statement from Gaussian
to more generally distributed increments.
The article is organized as follows. In Section 1.2, we introduce the class of pro-
cesses in detail and summarize the main results. Some related work on survival
probabilities is reviewed in Section 1.3. We discuss the exit problem for Gaussian
weighted random walks in Section 2. Here, the cases of a polynomially, a subexpo-
nentially, and an exponentially increasing weight function are considered in separate
subsections. In Section 3, the results of the Gaussian case for a polynomial weight
function are extended to a broader class of weighted random walks whose incre-
ments obey certain moment conditions.
Finally, let us introduce some notation: If f, g : R → R are two functions, we write
f - g if lim supx→∞ f(x)/g(x) < ∞ and f � g if f - g and g - f . Moreover,
f ∼ g if f(x)/g(x) → 1 as x → ∞.

1.2. Main results. We investigate the behaviour of survival probabilites of processes
Z = (Zn)n≥1 defined by

Zn :=

n
∑

k=1

σ(k)Xk, n ≥ 1, (1.2)

where X1, X2, . . . are i.i.d. random variables such that E [X1] = 0 and σ : [0,∞) →
(0,∞) is a measurable function. We call Z a weighted random walk with weight
function σ.
Despite the obvious resemblance, the methods for computing the survival probabil-
ity of (unweighted) random walks (σ(n) ≡ 1) do not carry over since they strongly
rely upon the stationarity of increments that allows for an explicit computation of
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the generating function of the first hitting time of the set (0,∞).
Note that if the Xk have a standard normal distribution, then the processes (Zn)n≥1

and (Bκ(n))n≥1 have the same law where κ(n) := σ(1)2 + · · · + σ(n)2 and B is a
standard Brownian motion. Therefore, the computation for the weighted Gaussian
random walk reduces to the case of Brownian motion evaluated at discrete time
points. In this setup, we prove the following theorem.

Theorem 1.1. Let κ : [0,∞) → (0,∞) be a measurable function such that κ(N) �
N q for some q > 0. If there is some δ < q such that κ(N + 1) − κ(N) - N δ, then

P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

= N−q/2+o(1), N → ∞.

The lower order term No(1) can be specified more precisely (Theorem 2.2). In
particular, we have under the assumptions of Theorem 1.1 that, as N → ∞,

P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

= P

[

sup
t∈[1,κ(N)]

Bt ≤ 0

]

No(1) = N−q/2+o(1). (1.3)

In the Gaussian framework, the weight function σ(n) = np corresponds to κ(n) =
∑n

k=1 σ(k)2 � n2p+1 as remarked above. This implies that the survival exponent
for the weighted Gaussian random walk Z is equal to θ = p + 1/2.
In fact, we show that this survival exponent is universal over a much larger class of
weighted random walks in case the Xk are not necessarily Gaussian:

Theorem 1.2. Let (Xk)k≥1 be a sequence of i.i.d. random variables with E [X1] =

0, E
[

X2
1

]

> 0, and E
[

ea|X1|
]

< ∞ for some a > 0. If σ is increasing and
σ(N) � Np, then for the weighted random walk Z defined in (1.2), we have

P

[

sup
n=1,...,N

Zn ≤ 0

]

= N−(p+1/2)+o(1), N → ∞.

The proof of the lower bound for the survival probability in Theorem 1.2 under
weaker assumptions (Theorem 3.2) is based on the Skorokhod embedding. The
upper bound (Theorem 3.3) is established using a coupling of Komlós et al. (1976).
In either case, the problem is reduced to finding the survival exponent for Gaussian
increments, i.e. to the case treated in Theorem 1.1.

As noted in (1.3), Theorem 1.1 shows that it does not matter for the asymptotic
behaviour of the survival exponent whether one samples the Brownian motion at
the discrete points (κ(n))n≥1 or over the corresponding interval if κ increases poly-
nomially. This result can be generalized to functions of the type κ(n) = exp(nα),
n ≥ 1, at least for α < 1/4 (Theorem 2.4). This fact turns out to be wrong how-
ever for the case α = 1 in general. Namely, if we consider an exponential function
κ(n) = exp(βn) for n ≥ 1 and some β > 0, it follows from Slepian’s inequality in
the Gaussian case that

lim
N→∞

− 1

N
log P

[

sup
n=1,...,N

B
(

eβn
)

≤ 0

]

=: λβ

exits for every β > 0, and that β 7→ λβ is increasing. However, one has

λβ < β/2 = lim
N→∞

− 1

N
log P

[

sup
t∈[0,N ]

B
(

eβt
)

≤ 0

]
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at least for β > 2 log 2 showing that the rates of decay in the discrete and continuous
time framework do not coincide in contrast to (1.3). Additionally, the rate of decay
of the survival probability for an exponentially weighted random walk now depends
on the distribution of the Xk even under exponential moment conditions, that is,
a universality result similar to the polynomial case found in Theorem 1.2 does not
hold.
In the Gaussian case, we state upper and lower bounds on the rate of decay in
Theorem 2.7 and characterize λβ as an eigenvalue of a certain integral operator in
Proposition 2.12. Unfortunately, an explicit computation of λβ does not seem to
be possible easily.

1.3. Related work. Let us briefly summarize some important known results on sur-
vival probabilities. For Brownian motion, the survival exponent is easily seen to be
θ = 1/2 by the reflection principle. The probability that a Brownian motion does
not hit a moving boundary has also been studied in various cases. In this article,
we will use some results of this type of Uchiyama (1980).
As mentioned in the introduction, for processes with independent and stationary
increments, the problem can be solved using classical fluctuation theory. In par-
ticular, it has been shown that θ = 1/2 for any random walk S with centered
increments and finite variance (see e.g. Feller, 1971, Chapter XII, XIII and XVIII).
In fact, the generating function of the first hitting time of the set (0,∞) can be
computed explicitly in terms of the probabilities P [Sn > 0] (Theorem XII.7.1 of
Feller, 1971). Similar results can be deduced for Lévy processes, see e.g. Doney
(2007) (p. 33) and Bertoin (1996).
Apart from these facts, little is known outside the Gaussian framework. It has been
shown that the survival exponent of integrated Brownian motion is θ = 1/4 (McK-
ean, Jr., 1963; Goldman, 1971; Isozaki and Watanabe, 1994). In fact, this is true
for a much larger class of integrated Lévy processes and random walks, see Sinăı
(1992); Aurzada and Dereich (2011+); Vysotsky (2010); Dembo and Gao (2011).
For results on integrated stable Lévy processes, we refer to Simon (2007).
Slepian (1962) studied survival probabilities for stationary Gaussian processes and
obtained some general upper and lower bounds for their survival exponent. An
important inequality (Slepian’s inequality) is established that will be a very im-
portant tool throughout this work. It is also applied frequently in the work of Li
and Shao (2004), where universal upper and lower bounds for certain classes of
Gaussian processes are derived. We further mention the works Molchan (1999a)
and Molchan (1999b), where the survival exponent for fractional Brownian motion
(FBM) is computed.

2. The Gaussian case

Let (Xn)n≥1 denote a sequence of independent standard normal random variables
and let B = (Bt)t≥0 denote a standard Brownian motion. For a measurable function
σ : [0,∞) → (0,∞), let Z be the corresponding weighted random walk defined in
(1.2). Note that

(Zn)n≥1
d
= (Bκ(n))n≥1, κ(n) :=

n
∑

k=1

σ(k)2. (2.1)
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The problem therefore amounts to determining the asymptotics of

P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

. (2.2)

Intuitively speaking, if Bκ(1) ≤ 0, . . . , Bκ(N) ≤ 0, then typically Bκ(N−1) and Bκ(N)

are quite far away from the point 0 if N is large. One therefore expects that also
Bt ≤ 0 for t ∈ [κ(N − 1), κ(N)] unless the difference κ(N) − κ(N − 1) is so large
that the Brownian motion has enough time to cross the x-axis with sufficiently high
probability in the meantime. So if κ(N)−κ(N−1) does not grow too fast, one would
expect that the probability in (2.2) behaves asymptotically just as in the case where
the supremum is taken continuously over the corresponding interval (modulo terms
of lower order). In the proof of Theorem 2.2 and 2.4, this idea will be made explicit
in a slightly different way: we will require that the Brownian motion stays below
a moving boundary on the intervals [κ(N − 1), κ(N)] where the moving boundary
increases sufficiently slowly compared to κ(N) in order to leave the survival ex-
ponent unchanged. We therefore split our results as follows: In Section 2.1, we
consider polynomial functions κ(N) = N q for q > 0 (so κ(N)− κ(N − 1) � N q−1).
In Section 2.2, we discuss the subexponential case κ(N) = exp(Nα) for 0 < α < 1
(here κ(N)−κ(N − 1) � κ(N)Nα−1) before finally turning to the exponential case
κ(N) = exp(βN) for β > 0 (now κ(N) − κ(N − 1) � κ(N)) in Section 2.3.

Remark 2.1. In the statement of Theorem 2.2 and 2.4, the value 0 of the barrier
can be replaced by any c ∈ R without changing the result. Indeed, let κ : [0,∞) →
(0,∞) be such that κ(N) → ∞ as N → ∞ and let a = inf {κ(n) : n ∈ N} > 0.
Note that for c, d ∈ R, it holds that

P

[

sup
n=1,...,N

Bκ(n) ≤ c

]

≥ P

[

Ba/2 ≤ c − d, sup
n=1,...,N

Bκ(n) − Ba/2 ≤ d

]

= P
[

Ba/2 ≤ c − d
]

P

[

sup
n=1,...,N

Bκ(n)−a/2 ≤ d

]

.

Now κ̃(n) := κ(n) − a/2 > 0 satisfies the same growth conditions as κ stated in all
theorems. Hence, it suffices to prove Theorem 2.2 and 2.4 for the barrier 1.

2.1. Polynomial case. The first result is a slightly more precise version of Theo-
rem 1.1.

Theorem 2.2. Let κ : [0,∞) → (0,∞) be a measurable function such that for some
q > 0 and δ < q

κ(N) � N q and κ(N) − κ(N − 1) - N δ, N → ∞. (2.3)

Then for any γ ∈ (δ/2, q/2)

N−q/2 - P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

- N−q/2(log N)q/(4γ−2δ), N → ∞.

Proof : By assumption, there are constants c1, c2 > 0 such that c1n
q ≤ κ(n) ≤

c2n
q for n large enough. The constant c2 may be chosen so large that the second
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inequality holds for all n ≥ 1. The lower bound is then easily established by
comparison to the continuous time case if the barrier 0 is replaced by 1:

P

[

sup
n=1,...,N

Bκ(n) ≤ 1

]

≥ P

[

sup
t∈[0,c2Nq ]

Bt ≤ 1

]

� N−q/2.

This also implies the same asymptotic order of the lower bound for any other
barrier, see Remark 2.1.
For the proof of the upper bound, we will assume without loss of generality that κ is
nondecreasing. Otherwise, consider the continuous nondecreasing function κ̃ with
κ̃(n) = max {κ(l) : l = 0, . . . , n} for n ∈ N and κ̃ linear on [n, n + 1] for all n ∈ N.
Then κ̃(N) � N q as N → ∞. Moreover, κ̃(N) − κ̃(N − 1) = 0 if κ(N) ≤ κ̃(N − 1)
and for κ(N) > κ̃(N − 1), we have

κ̃(N) − κ̃(N − 1) = κ(N) − κ̃(N − 1) ≤ κ(N) − κ(N − 1).

Thus, κ̃ satisfies the same growth conditions as κ. Clearly, for all N ,

P

[

sup
n=1,...,N

Bκ(n) ≤ 1

]

≤ P

[

sup
n=1,...,N

Bκ̃(n) ≤ 1

]

,

so it suffices to prove the assertion of the theorem for a nondecreasing function κ.

Choose any γ such that δ/2 < γ < q/2 and set g(N) = d(K · log N)
1

2γ−δ e for some
K (which has to be chosen large enough later on). Next, note that

N
⋂

n=g(N)

{

Bκ(n) ≤ 1
}

⊆
N−1
⋂

n=g(N)

{

sup
t∈[κ(n),κ(n+1)]

Bt ≤ nγ + 1

}

∪
N−1
⋃

n=g(N)

{

sup
t∈[κ(n),κ(n+1)]

Bt − Bκ(n) > nγ

}

=: GN ∪ HN .

Clearly, it holds that

P

[

sup
n=1,...,N

Bκ(n) ≤ 1

]

≤ P

[

sup
n=g(N),...,N

Bκ(n) ≤ 1

]

≤ P [GN ] + P [HN ] .

Next, note that κ(n) ≤ t implies that n ≤ (t/c1)1/q for n sufficiently large. Using
also that κ(·) is nondecreasing, we obtain that

P [GN ] ≤ P





N−1
⋂

n=g(N)

{

sup
t∈[κ(n),κ(n+1)]

Bt − (t/c1)γ/q ≤ 1

}





= P

[

sup
t∈[κ(g(N)),κ(N)]

Bt − (t/c1)γ/q ≤ 1

]

=: p1(N).

Moreover, using the stationarity of increments and the scaling property of Brownian
motion, we obtain the following estimates:

P [HN ] ≤
N−1
∑

n=g(N)

P

[

sup
t∈[0,κ(n+1)−κ(n)]

Bt > nγ

]

=

N−1
∑

n=g(N)

P

[

sup
t∈[0,1]

Bt >
nγ

√

κ(n + 1) − κ(n)

]

=: p2(N).
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Let us first show that the second term p2 decays faster than N−q/2 as N → ∞.
To this end, let c denote a constant such that κ(n + 1) − κ(n) ≤ c nδ for all n
sufficiently large. In particular, for N large enough,

p2(N) ≤ N max
n=g(N),...,N

P

[

sup
t∈[0,1]

Bt > c−1/2nγ−δ/2

]

= N P

[

sup
t∈[0,1]

Bt > c−1/2g(N)γ−δ/2

]

,

since γ was chosen such that γ − δ/2 > 0. Next, recalling that

P

[

sup
t∈[0,1]

Bt > u

]

= P [|B1| > u] =

√

2

π

∫ ∞

u

e−x2/2 dx ≤ e−u2/2, u ≥ 0, (2.4)

we may finally conclude that

p2(N) ≤ N exp

(

−g(N)2γ−δ

2c

)

≤ N1− K
2 c .

By choosing K large enough, the assertion that p2 decreases faster than N−q/2 is
verified.
It remains to show that p1(N) - N−q/2 (log N)q/(4γ−2δ). Let

F (t) :=

{

c
−γ/q
1 tγ/q, t ≥ c1,

1, t < c1.

Clearly we have for N large enough that

p1(N) = P

[

sup
t∈[κ(g(N)),κ(N)]

Bt − c
−γ/q
1 tγ/q ≤ 1

]

= P

[

sup
t∈[κ(g(N)),κ(N)]

Bt − F (t) ≤ 1

]

.

Since E [BsBt] ≥ 0 for all s, t ≥ 0, Slepian’s inequality (cf. Theorem 3 of Slepian,
1962) implies that

P

[

sup
t∈[κ(g(N)),κ(N)]

Bt − F (t) ≤ 1

]

≤
P
[

supt∈[0,κ(N)] Bt − F (t) ≤ 1
]

P
[

supt∈[0,κ(g(N))] Bt − F (t) ≤ 1
] .

One has to determine the probability that a Brownian motion does not hit the
moving boundary 1 + F (·). Now

P [Bt ≤ c tα + 1, ∀t ∈ [0, T ]] � P

[

sup
0≤t≤T

Bt ≤ 1

]

� T−1/2, T → ∞

if α < 1/2 and c > 0 by Theorem 5.1 of Uchiyama (1980), i.e. adding a drift of
order tα (α < 1/2) to a Brownian motion does not change the rate T−1/2. Since
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γ/q < 1/2, this implies for the boundary 1 + F (·) that

P
[

supt∈[0,κ(N)] Bt − F (t) ≤ 1
]

P
[

supt∈[0,κ(g(N))] Bt − F (t) ≤ 1
] �

P
[

supt∈[0,κ(N)] Bt ≤ 1
]

P
[

supt∈[0,κ(g(N))] Bt ≤ 1
]

� κ(g(N))1/2 κ(N)−1/2 � (log N)q/(4γ−2δ) N−q/2.

�

Remark 2.3. The assertion of the proposition above becomes false if we remove the
condition κ(N + 1) − κ(N) - N δ for some δ < q. Indeed, let q > 0 and for n ∈ N,
set κ(n) = exp(qk) if ek ≤ n < ek+1 for k ∈ N. Then κ(N) � N q as N → ∞.
Moreover, κ(N + 1) − κ(N) = 0 if there is k ∈ N such that N, N + 1 ∈ [ek, ek+1)
and

κ(N + 1) − κ(N) = exp(q(k + 1)) − exp(qk) = κ(N)(eq − 1)

for k ∈ N such that ek ≤ N < ek+1 ≤ N + 1. In particular, κ(N + 1)−κ(N) - N q.
Next, note that

P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

= P
[

B(eqk) ≤ 0, k ∈ N, ek ≤ N
]

= P





blog Nc
⋂

k=1

{

B(eqk) ≤ 0
}



 ≥
blog Nc
∏

k=1

P
[

B(eqk) ≤ 0
]

≥ (1/2)log N = N− log 2.

The first inequality holds by Slepian’s inequality (see also (2.9)). Hence, N−q/2

cannot be an upper bound for the survival probability if q > 2 log 2.

2.2. Subexponential case. Here we consider functions κ(·) that grow faster than any
polynomial but more slowly than any exponential function, i.e.

lim
N→∞

N q

κ(N)
= 0, q > 0, lim

N→∞

κ(N)

eβN
= 0, β > 0.

For simplicity, we restrict our attention to the natural choice κ(n) � exp(ν nα) for
ν > 0, α ∈ (0, 1). Under certain additional assumptions the proof of Theorem 2.2
can be adapted to yield the following result:

Theorem 2.4. Let κ : [0,∞) → (0,∞) be a measurable function such that

κ(N) � exp(ν Nα), κ(N + 1) − κ(N) - κ(N) N−γ , N → ∞,

where α, ν > 0 and γ > 3α. Then

lim
N→∞

N−α log P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

= −ν/2.

More precisely, for Λ := α/(γ − 2α) < 1, one has

exp
(

−ν

2
Nα
)

- P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

- exp
(

−ν

2
Nα
)

· exp
(

NΛα+o(1)
)

.

Proof : For simplicity of notation, we again use the barrier 1 instead of 0. The
result then follows in view of Remark 2.1. By assumption, there are constants
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N0, c1, c2 > 0 such that c1 exp(ν nα) ≤ κ(n) ≤ c2 exp(ν nα) for all n ≥ N0. So for
all N ≥ N0, we have

P

[

sup
n=1,...,N

Bκ(n) ≤ 1

]

≥ P

[

sup
t∈[0,c2 exp(ν nα)]

Bt ≤ 1

]

� exp
(

−ν

2
Nα
)

, N → ∞.

For the proof of the upper bound, we assume w.l.o.g. that κ is nondecreasing (see
the proof of Theorem 2.2). The assumption γ > 3α allows us to find a constant ρ
with α < ρ < γ/2 and δ := α/(γ − 2ρ) < 1. Set

f(t) := exp
(ν

2
tα
)

t−ρ, g(t) := dtδe, t > 0.

As in the proof of Theorem 2.2, it holds that

P

[

sup
n=1,...,N

Bκ(n) ≤ 1

]

≤ P

[

sup
n=g(N),...,N

Bκ(n) ≤ 1

]

≤ P [GN ] + P [HN ] ,

where

GN :=

N−1
⋂

n=g(N)

{

sup
t∈[κ(n),κ(n+1)]

Bt ≤ f(n) + 1

}

,

HN :=

N−1
⋃

n=g(N)

{

sup
t∈[κ(n),κ(n+1)]

Bt − Bκ(n) > f(n)

}

.

Note that t ≥ κ(n) implies that n ≤ (log(t/c1)/ν)1/α =: h(t) if n ≥ N0. Keeping in
mind that f(·) is ultimately increasing, we obtain the following estimates for large
N and some constant c3 > 0:

P [GN ] ≤ P





N−1
⋂

n=g(N)

{

sup
t∈[κ(n),κ(n+1)]

Bt − f (h(t)) ≤ 1

}





= P

[

sup
t∈[κ(g(N)),κ(N)]

Bt − c3

√
t

(log t)ρ/α
≤ 1

]

=: p1(N).

Next, using the stationarity and the scaling property of Brownian motion, we have
that

P [HN ] ≤
N−1
∑

n=g(N)

P

[

sup
t∈[0,1]

Bt >
f(n)

√

κ(n + 1) − κ(n)

]

=: p2(N).

We first show that the term p2 is of lower order than exp(−Nα). To this end, since
κ(N + 1)−κ(N) ≤ c4κ(N)N−γ ≤ c5 exp(νNα) N−γ for all N sufficiently large and
some constants c4, c5 > 0, we get

p2(N) ≤ N max
n=g(N),...,N

P

[

sup
t∈[0,1]

Bt > c
−1/2
5 nγ/2−ρ

]

= N P

[

sup
t∈[0,1]

Bt > c
−1/2
5 g(N)γ/2−ρ

]

,

since γ/2 − ρ > 0 by the choice of ρ. Recalling (2.4), we obtain

p2(N) ≤ N exp

(

− 1

2c5
g(N)γ−2ρ

)

- N exp

(

− 1

2c5
N δ(γ−2ρ)

)

, N → ∞.
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Now δ(γ − 2ρ) > α by the choice of δ, so this term is o(exp(−Nα)).
It remains to show that

p1(N) - exp
(

−ν

2
Nα
)

· exp
(ν

2
N δα

)

, N → ∞.

Set

F (t) :=

{

c3

√
t

(log t)ρ/α , t ≥ d1,

d2, t < d1.

where d1, d2 are chosen in such a way that F is nondecreasing and continuous. By
Slepian’s inequality, one has for N sufficiently large

p1(N) = P

[

sup
t∈[κ(g(N)),κ(N)]

Bt − F (t) ≤ 1

]

≤
P
[

supt∈[0,κ(N)] Bt − F (t) ≤ 1
]

P
[

supt∈[0,κ(g(N))] Bt − F (t) ≤ 1
] .

Theorem 5.1 of Uchiyama (1980) ensures that the drift F (·) does not change the
rate of the survival probability since for some d3 > 0, we have

∫ ∞

1

F (t)t−3/2 dt = d3 +

∫ ∞

d1

1

t(log t)ρ/α
< ∞

because ρ > α, and therefore,

P
[

supt∈[0,κ(N)] Bt − F (t) ≤ 1
]

P
[

supt∈[0,κ(g(N))] Bt − F (t) ≤ 1
] �

P
[

supt∈[0,κ(N)] Bt ≤ 1
]

P
[

supt∈[0,κ(g(N))] Bt ≤ 1
]

� κ(g(N))1/2 κ(N)−1/2 � exp
(

−ν

2
Nα
)

· exp
(ν

2
N δα

)

, N → ∞.

Finally δ = α/(γ − 2α) + o(1) = Λ + o(1) as ρ ↓ α. �

Corollary 2.5. If κ(n) = exp(ν nα) for some ν > 0 and α ∈ (0, 1/4), then

lim
N→∞

N−α log P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

= −ν/2.

Proof : Note that

κ(N + 1) − κ(N) = κ(N)(eν((N+1)α−Nα) − 1) ∼ νκ(N)((N + 1)α − Nα)

= νκ(N)Nα−1 (1 + 1/N)α − 1

1/N
∼ αν κ(N)Nα−1

Hence, we can apply Theorem 2.4 with γ = 1−α if γ > 3α, i.e. for α ∈ (0, 1/4). �

Remark 2.6. The case α ≥ 1/4 remains unsolved. In view of the heuristics presented
below (2.2), it would be interesting to know whether

lim inf
N→∞

log P
[

supn=1,...,N Bκ(n) ≤ 1
]

Nα
> −ν/2 = lim

N→∞

log P
[

supt∈[1,N ] Bκ(t) ≤ 1
]

Nα

for some α ∈ [1/4, 1). At least for α = 1, the rate of decay of the continuous time
and discrete time survival probability is different in general as we prove in the next
subsection, cf. (2.8).
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2.3. Exponential case. In this section, we consider the asymptotic behaviour of

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

where β > 0. It will be helpful to rewrite the process as a discrete Ornstein-
Uhlenbeck process. Indeed, observe that

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

= P

[

sup
n=0,...,N

e−βn/2B(eβn) ≤ 0

]

= P

[

sup
n=0,...,N

Uβn ≤ 0

]

where (Ut)t≥0 is the Ornstein-Uhlenbeck process, i.e. a centered stationary Gaussian
process with covariance function

ρ(t, s) = E [UtUs] = e−|t−s|/2.

To our knowlegde, the survival probability of the discrete Ornstein-Uhlenbeck pro-
cess has not been computed in the literature. For the continuous time case, it is
has been shown that

P

[

sup
t∈[0,T ]

Ut ≤ 0

]

=
1

π
arcsin(e−T/2), (2.5)

see e.g. Slepian (1962). In fact, this relation can be established by direct computa-
tion using an intergral formula (see Eq. 6.285.1 of Gradshteyn and Ryzhik, 2000).
It is important to remark that the survival exponent of the Ornstein-Uhlenbeck
process does depend on the value of the barrier, i.e. for c > 0

P

[

sup
t∈[0,T ]

Ut ≤ c

]

� exp(−θ(c) T ), T → ∞,

for some decreasing function θ : [0,∞) → (0, 1/2]. We refer to Beekman (1975);
Sato (1977) for more details and related results. In the sequel, we work with the
barrier c = 0 although the techniques presented are applicable for c 6= 0 as well.
If p(n) = P [U0 ≤ 0, Uβ ≤ 0 . . . , Uβn ≤ 0], Slepian’s inequality and the stationarity
of U imply that p(n + m) ≥ p(n) p(m). By the usual subadditivity argument this
implies the existence of λβ ∈ (0,∞] such that

lim
N→∞

− 1

N
log P

[

sup
n=0,...,N

Uβn ≤ 0

]

= λβ . (2.6)

Slepian’s inequality further implies that β 7→ λβ is nondecreasing. Unfortunately,
we are not able to obtain an explicit expression for λβ . However, we provide several
estimates which are summarized in

Theorem 2.7. For all β > 0, we have that

λβ ≥
{

log(2) − c(β), β > β0,

(log(2) − c(βm))/m, β ∈ (0, β0], m = dβ0/βe,
(2.7)

where

c(x) :=
e−x/2

1 − e−x/2
, x > 0, β0 := 2 log(1 + 1/ log 2) ≈ 1.786.

Moreover,

λβ ≤
{

β/2, β ∈ (0, β1],

log(2) − log
(

1 + 2
π arcsin

(

e−β/2
))

, β ∈ [β1,∞),
(2.8)
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where β1 ≈ 0.472 is the unique solution on (0,∞) to the equation

β

2
= log(2) − log

(

1 +
2

π
arcsin

(

e−β/2
)

)

.

Remark 2.8. For β > β0, the above theorem implies that

2

π
e−β/2 ∼ log

(

1 +
2

π
arcsin

(

e−β/2
)

)

≤ log(2) − λβ ≤ c(β) ∼ e−β/2, β → ∞,

i.e. λβ ↓ log 2 exponentially fast as β ↑ ∞.
However, it remains an open question whether λβ is stricly less than β/2 also for
β < β1 (this would imply that the rate in the discrete time and continuous time
framework does not coincide for any β) and whether λβ ∼ β/2 as β ↓ 0.

2.3.1. Upper bounds for the survival probability. Here we prove the first part of the
inequality (2.7).

Lemma 2.9. Let β > β0 = 2 log(1 + 1/ log 2). Then for all N

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

≤ 1

2
exp (− (log 2 − c(β)) N) .

where c(β) ∈ (0, log 2) is defined in Theorem 2.7.

Proof : First, note that c(·) is decreasing with c(β0) = log 2. Since
{

B(eβn) ≤ 0
}

=
{Uβn ≤ 0}, we have by Corollary 2.3 of Li and Shao (2002)

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

≤
N+1
∏

n=1

P
[

Uβ(n−1) ≤ 0
]

exp





∑

1≤i<j≤N+1

e−β|i−j|/2





= 2−(N+1) exp





∑

1≤i<j≤N+1

e−β|i−j|/2



 .

One computes

∑

1≤i<j≤N+1

e−β|i−j|/2 =

N
∑

i=1

N+1
∑

j=i+1

e−β(j−i)/2 =

N
∑

i=1

N+1−i
∑

j=1

e−βj/2

= c(β)

N
∑

i=1

(1 − e−β(N+1−i)/2) ≤ c(β) N.

�

Next, we prove the second part of (2.7). For small β, we rescale the exponent of
the weight function in order to apply Lemma 2.9.

Lemma 2.10. Let 0 < β < β0 and set m = mβ = dβ0/βe. Then

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

≤ exp

(

− log 2 − c(βm)

m
N − c(βm)

)

, N > m.
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Proof : Clearly, for N > m,

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

≤ P

[

B1 ≤ 0, sup
n=m,...,N

B(eβn) ≤ 0

]

= P

[

B1 ≤ 0, sup
n∈{1,(m+1)/m,...,(N−1)/m,N/m}

B(emβn) ≤ 0

]

≤ P

[

sup
n∈{0,1,2,...,bN/mc}

B(emβn) ≤ 0

]

≤ e−(log 2−c(βm))bN/mc/2

by Lemma 2.9 since βm > β0. Using that bN/mc ≥ N/m − 1, the assertion
follows. �

2.3.2. Lower bounds for the survival probability. We now prove (2.8). In view of
(2.5), a comparison to the continuous time framework yields

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

≥ P

[

sup
0≤t≤N

Uβt ≤ 0

]

∼ π−1 e−βN/2, N → ∞.

Obviously, for any sequence 0 = t0 < t1 < · · · < tN , we have

P

[

sup
n=1,...,N

B(tn) ≤ 0

]

≥ P

[

B(t1) ≤ 0, sup
n=2,...,N

B(tn) − B(tn−1) ≤ 0

]

= 2−N ,

(2.9)
by independence and symmetry of the increments.
For the exponential case, simple lower bounds are therefore

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

% exp(−(β
2 ∧ log 2) · N), N → ∞.

In particular, this shows that λβ ≤ β/2 as stated in (2.8). The fact that the
probability P [Bt ≤ 0, Bs ≤ 0] admits an explicit formula in terms of s and t can
be used to establish a new lower bound that improves the trivial bound log 2 and
completes the proof of (2.8):

Lemma 2.11.

P

[

sup
n=0,...,N

B(eβn) ≤ 0

]

≥ 1

2

(

1

2
+

1

π
arcsin

(

e−β/2
)

)N

.

Proof : Let An :=
{

supk=0,...,n B(eβk) ≤ 0
}

. Then

P [AN ] = P
[

B(eβN ) ≤ 0|AN−1

]

P [AN−1] = P [X0 ≤ 0]

N
∏

n=1

P
[

B(eβn) ≤ 0|An−1

]

≥ 1

2

N
∏

n=1

P
[

B(eβn) ≤ 0|B(eβ(n−1)) ≤ 0
]

,

where the inequality follows from Lemma 5 of Bramson (1978). Next, recall that

P [Bs ≤ 0, Bt ≤ 0] =
1

4
+

1

2π
arctan

(√

s

t − s

)

, s < t,
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see e.g. Exercise 8.5.1 in Grimmett and Stirzaker (2001). In particular,

P
[

B(eβn) ≤ 0|B(eβ(n−1)) ≤ 0
]

=
1

2
+

1

π
arctan

(

1
√

exp(β) − 1

)

, n ≥ 1,

independent of n. Now use that arctan(x) = arcsin(x/
√

x2 + 1). �

2.3.3. A related Fredholm integral equation. If (Yn)n≥0 is a sequence of independent
standard normal random variables, set

X0 = Y0, Xn = e−β/2Xn−1 + (1 − e−β)1/2Yn, n ≥ 1.

One can check that (Xn)n≥0 and (U(βn))n≥0 are equal in distribution. The above
recursion equation is a special case of an autogregressive model of order 1 (AR(1)-
model) that can also be used to define a discrete version of the Ornstein-Uhlenbeck
process if the Yn are not necessarily Gaussian, see e.g. Larralde (2004). Larralde
explicitly computes the generating function of the first hitting time of the set (0,∞)
if the Yn have a two-sided exponential distribution. Conditions ensuring that ex-
ponential moments of the first hitting time of the set [x,∞) (x ≥ 0) exist for an
AR(1) process can be found in Novikov and Kordzakhia (2008).
We only discuss the case of standard normal random variables Yn. Recall from the
beginning of Section 2.3 that (Xn)n≥0 is a stationary Markov chain with transition
density

p(x, y) :=
1√
2πσ

exp

(

− (y − ρx)2

2σ2

)

, x, y ∈ R,

where ρ = e−β/2 and σ =
√

1 − e−β. Set An := {X0 ≤ 0, . . . , Xn ≤ 0} and let πn

be the law of Xn given An, i.e.

πn((−∞, u]) := P [Xn ≤ u|An] , u ≤ 0.

Proposition 2.12. It holds that

lim
N→∞

− 1

N
log P

[

sup
n=0,...,N

Xn ≤ 0

]

= λβ

where

P [Xn ≤ 0|An−1] ↗ exp(−λβ), n → ∞.

Moreover, the sequence (πn)n≥0 converges weakly to a probability measure π on
(−∞, 0] which is absolutely continuous w.r.t. the Lebesgue measure on (−∞, 0].
Denote its density by ϕ. Then ϕ satisfies the following Fredholm integral equation
of second kind:

exp(−λβ) ϕ(u) =

∫ 0

−∞
p(y, u) ϕ(y) dy, u ≤ 0.

Proof : Let Fn(u) := P [Xn ≤ u|An−1], u ≤ 0. Note that for u ≤ 0

πn((−∞, u]) =
P [Xn ≤ u, An−1]

P [An]
=

P [Xn ≤ u|An−1]

P [Xn ≤ 0|An−1]
=

Fn(u)

Fn(0)
. (2.10)
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Moreover, for u ≤ 0, we have

Fn(u) = P [Xn ≤ u|An−1] =

∫ 0

−∞
P [Xn ≤ u|Xn−1 = y] P [Xn−1 ∈ dy|An−1]

=

∫ 0

−∞

∫ u

−∞
p(y, z) dz πn−1(dy).

Assume for a moment that Fn(u) converges to F (u) for all u ≤ 0 and that (πn)n≥1

converges weakly to some probability measure π. Then the last equation and (2.10)
imply that

π((−∞, u]) =
F (u)

F (0)
=

1

F (0)

∫ 0

−∞

∫ u

−∞
p(y, z) dz π(dy), u ≤ 0.

Applying Fubini’s theorem, the previous equation reads

F (0) π((−∞, u]) =

∫ u

−∞

∫ 0

−∞
p(y, z) π(dy) dz, u ≤ 0. (2.11)

One can then conclude that π is absolutely continuous w.r.t. to the Lebesgue mea-
sure. Denote its density by ϕ. Differentiating (2.11) w.r.t. to u, we conclude that

F (0) ϕ(u) =

∫ 0

−∞
p(y, u) ϕ(y) dy for all u < 0. (2.12)

In order to prove convergence of Fn(u) for u ≤ 0, it suffices to show that Fn(u) is
non-decreasing in n. Indeed,

Fn+1(u) = P [Xn+1 ≤ u|X0 ≤ 0, . . . , Xn ≤ 0]

≥ P [Xn+1 ≤ u|X1 ≤ 0, . . . , Xn ≤ 0] = Fn(u).

The inequality follows from Lemma 5 of Bramson (1978), the last equality is due
to the stationarity of X . Using (2.10), it is not hard to show that the sequence
(πn)n≥0 converges weakly to some probability measure π. Next, since

Fn(0) = F (0) (1 + g(n)), n ≥ 0,

where g(n) → 0 as n → ∞, we get

P

[

sup
n=0,...,N

Xn ≤ 0

]

= P [XN ≤ 0|AN−1] P [AN−1]

= P [X0 ≤ 0]
N
∏

n=1

P [Xn ≤ 0|An−1]

=
1

2
F (0)N exp

(

N
∑

n=1

log(1 + g(n))

)

= F (0)N eo(N).

One concludes (recall (2.6)) that

lim
N→∞

− 1

N
log P

[

sup
n=0,...,N

Xn ≤ 0

]

= − log F (0) = λβ .

�
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Remark 2.13. Proposition 2.12 shows that exp(−λβ) is an eigenvalue corresponding
to a positive eigenfunction ϕ of the positive bounded linear operator

T : L1((−∞, 0]) → L1((−∞, 0]), (Tf)(z) :=

∫ 0

−∞
p(y, z)f(y) dy, z ≤ 0.

One might suspect that exp(−λβ) is the largest spectral value of T , i.e. exp(−λβ) =
r(T ) where r(T ) denotes the spectral radius of T . For instance, such a result holds
for positive matrices (by Perron-Frobenius type results, see e.g. Corollary I.2.3 in
Schaefer, 1974). However, in our case, it can be shown that r(T ) = 1 > exp(−λβ).
Also one can verify that r(T ) is not an eigenvalue of T . If T were compact this
could not occur, see e.g. Theorem V.6.6 in Schaefer (1974). It remains unclear if
exp(−λβ) ≥ |µ| for every other eigenvalue µ of T . Results of this type are known
(see e.g. Theorem 11.4 in Krasnosel′skij et al., 1989), but not applicable in our case.

3. Universality results

3.1. Polynomial weight functions. Let X1, X2, . . . be a sequence of i.i.d. random
variables such that E [X1] = 0 and E

[

X2
1

]

= 1 and σ : [0,∞) → (0,∞) some mea-
surable function. Let Z denote the corresponding weighted random walk defined in
(1.2). For a sequence (Xn)n≥1 of standard normal random variables, the problem
has already been solved for σ(n) = np. Indeed, the survival exponent is equal to
p + 1/2 in view of (2.1) and Theorem 2.2 applied to the function κ(·) defined by
κ(n) = σ(1)2 + · · · + σ(n)2 and

κ(N) � N2p+1, κ(N + 1) − κ(N) = σ(N + 1)2 � N2p, N → ∞.

It is a natural question to ask whether the same results holds for any sequence of
random variables that obey a suitable moment condition. This is the subject of
Theorem 3.2 and Theorem 3.3.

Remark 3.1. Theorem 3.2 and Theorem 3.3 also hold if the barrier 0 is replaced by
any c ∈ R. The proof of Theorem 3.3 can be easily modified to cover this case. We
briefly indicate below how to adapt the proof of the lower bound. The proofs will
be then carried out again for the barrier 1 instead of 0.
Let c ∈ R. Take any x > 0 such that P [X1 ≤ −x] > 0. Choose N0 such that
−x(σ(1)+ · · ·+σ(N0)) ≤ c−1. On A0 := {X1 ≤ −x, . . . , XN0

≤ −x}, it holds that
ZN0

≤ c − 1 by construction. Then, for N > N0,

P

[

sup
n=1,...,N

Zn ≤ c

]

≥ P

[

A0, sup
n=N0+1,...,N

Zn − ZN0
≤ 1

]

= P [A0] P

[

sup
n=1,...,N−N0

n
∑

k=1

σ(k + N0)Xk ≤ 1

]

.

Hence, it suffices to prove a lower bound for the survival probability of the weighted
random walk Z̃ with σ̃(k) := σ(k + N0) (k ≥ 1) and the barrier 1 since σ̃(N) �
σ(N) � Np.

3.1.1. Lower bound via Skorokhod embedding. Here we prove the lower bound of
Theorem 1.2 under slightly weaker assumptions.
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Theorem 3.2. Let (Xn)n≥1 be a sequence of i.i.d. centered random variables such
that E

[

X2
1

]

= 1. Denote by Z = (Zn)n≥1 the corresponding weighted random walk

defined in (1.2). Let σ(N) � Np for some p > 0. Assume that E [|X1|α] < ∞ for
some α > max{4p + 2, 4}. Then

P

[

sup
n=1,...,N

Zn ≤ 0

]

% N−(p+1/2), N → ∞.

Proof : Step 1: Since the Xi are independent centered random variables, Z is a
martingale, and one can use a Skorokhod embedding: there exists a Brownian
motion B and an increasing sequence of stopping times (τ(n))n∈N such that (Zn)n∈N

and (Bτ(n))n∈N have the same finite dimensional distributions. Moreover,

E [τ(N)] = E
[

B2
τ(N)

]

= E
[

Z2
N

]

=

N
∑

k=1

σ(k)2 =: κ(N),

see e.g. Proposition 11.1 in the survey on the Skorokhod problem of Ob lój (2004).
In particular, this implies that (Bt∧τ(n))t≥0 is uniformly integrable.
From the contruction of the stopping times described in the cited article (Section
11.1), one deduces that the increments of (τ(n))n≥1 are independent since those of
Z are.
Note that there exist constants c1, c2 > 0 such that c1N

2p+1 ≤ κ(N) ≤ c2N
2p+1

for all N sufficiently large. W.l.o.g. assume that c2 is so large that the upper bound
holds for all N . Then one has for ε > 0 and N large enough

P

[

sup
n=1,...,N

Zn ≤ 1

]

= P

[

sup
n=1,...,N

Bτ(n) ≤ 1

]

≥ P

[

sup
t∈[0,(1+ε)κ(N)]

Bt ≤ 1, τ(N) ≤ (1 + ε)κ(N)

]

(3.1)

≥ P

[

sup
t∈[0,(1+ε)c2N2p+1]

Bt ≤ 1

]

−P
[

τ(N)−κ(N) > εc1N
2p+1

]

.

Clearly,

P

[

sup
t∈[0,(1+ε)c2N2p+1]

Bt ≤ 1

]

∼
√

2

π(1 + ε)c2
N−(p+1/2), N → ∞. (3.2)

The second term in (3.1) may be estimated with Chebychev’s inequality if one can
control the centered moments of the stopping times τ(N). Concretely, we claim

that for all N and γ ≥ 2 such that E
[

|X1|2γ
]

< ∞, it holds that

E [|τ(N) − κ(N)|γ ] = E [|τ(N) − E [τ(N)]|γ ] ≤ CN (2p+1/2)γ , (3.3)

where C > 0 is some constant depending only on γ. If (3.3) is true, Chebychev’s
inequality yields

P
[

τ(N) − κ(N) > εc1N
2p+1

]

≤ E [|τ(N) − κ(N)|γ ] (εc1)−γ N−γ(2p+1)

≤ C (c1ε)
−γN−γ/2.

By choosing γ > max{2p + 1, 2}, this term is of lower order than N−(p+1/2). The
assertion of the proposition follows from (3.1), (3.2), and Remark 3.1.
Step 2: It remains to verify the validity of (3.3). Choose γ > max{2p + 1, 2} such
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that E
[

|X1|2γ
]

< ∞. Since (Bτ(n)∧t)t≥0 is uniformly integrable, we deduce from

the Burkholder-Davis-Gundy (BDG) inequality (see Proposition 2.1 of Ob lój, 2004)
that

E [τ(n)γ ] ≤ C(γ)E
[

∣

∣Bτ(n)

∣

∣

2γ
]

= C(γ)E
[

|Zn|2γ
]

< ∞.

The finiteness of the last expectation follows from our choice of γ and the assump-

tion E
[

|X1|2γ
]

< ∞. This shows that τ(n)γ is integrable.

Recall that
B̃ = (Bt+τ(n−1) − Bτ(n−1))t≥0

is a Brownian motion w.r.t. the filtration G(n) = (G(n)
t )t≥0 := (Ft+τ(n−1))t≥0 if B

is a Brownian motion w.r.t. (Ft)t≥0. Note that τ(n) − τ(n − 1) is a G(n)-stopping
time for all n. Using again the BDG inequality, we get

E [(τ(n) − τ(n − 1))γ ] ≤ cγ E

[

∣

∣

∣B̃τ(n)−τ(n−1)

∣

∣

∣

2γ
]

= cγ E
[

∣

∣Bτ(n) − Bτ(n−1)

∣

∣

2γ
]

= cγ E
[

|Zn − Zn−1|2γ
]

= cγ E
[

|X1|2γ
]

σ(n)2γ , (3.4)

where cγ is a constant depending on γ only and E
[

|X1|2γ
]

< ∞ by assumption.

For n = 1, 2, . . . , let

Yn := τ(n) − τ(n − 1) − E [τ(n) − τ(n − 1)] = τ(n) − τ(n − 1) − σ(n)2.

As remarked at the beginning of the proof, the Yi are independent centered random
variables. Using the Marcinkiewicz-Zygmund inequality (or the BDG-inequality),
we get

E [|τ(N) − κ(N)|γ ] = E

[∣

∣

∣

∣

∣

N
∑

n=1

Yn

∣

∣

∣

∣

∣

γ]

≤ C(γ)E





(

N
∑

n=1

Y 2
n

)γ/2




= C(γ)

∥

∥

∥

∥

∥

N
∑

n=1

Y 2
n

∥

∥

∥

∥

∥

γ/2

γ/2

,

where C(γ) is again some constant that depends only on γ and ‖·‖p denotes the

Lp-norm (here we need that γ ≥ 2). An application of the triangle inequality yields

(E [|τ(N) − κ(N)|γ ])
2/γ ≤ C(γ)2/γ

N
∑

n=1

∥

∥Y 2
n

∥

∥

γ/2
= C(γ)2/γ

N
∑

n=1

(E [|Yn|γ ])
2/γ

.

Clearly |Yn|γ ≤ 2γ(|τ(n) − τ(n − 1)|γ + σ(n)2γ) implying that

E [|τ(N) − κ(N)|γ ]
2/γ ≤ 4C(γ)2/γ

N
∑

n=1

(

E [|τ(n) − τ(n − 1)|γ ] + σ(n)2γ
)2/γ

≤ 4C(γ)2/γ
N
∑

n=1

(

(cγE
[

|X1|2γ
]

+ 1)σ(n)2γ
)2/γ

≤ 4
{

C(γ)(cγE
[

|X1|2γ
]

+ 1)
}2/γ N

∑

n=1

σ(n)4.
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In the above estimates, the second inequality follows from (3.4). We finally arrive
at

E [|τ(N) − κ(N)|γ ] ≤ 2γC(γ)(cγE
[

|X1|2γ
]

+ 1)

(

N
∑

n=1

σ(n)4

)γ/2

≤ 2γC(γ)(cγE
[

|X1|2γ
]

+ 1) c2γ
2 N (4p+1)γ/2,

proving (3.3) with C = 2γC(γ)(cγE
[

|X1|2γ
]

+ 1)c2γ
2 . �

3.1.2. Upper bound via coupling. The upper bound in Theorem 1.2 is a consequence
of the following more precise statement.

Theorem 3.3. Let (Xn)n≥1 be a sequence of i.i.d. centered random variables such
that E

[

X2
1

]

= 1. Denote by Z = (Zn)n≥1 the corresponding random walk defined

in (1.2) and assume that E
[

ea|X1|
]

< ∞ for some a > 0. Let σ be increasing such
that σ(N) � Np for some p > 0. Then for any ρ > 4p + 2

P

[

sup
n=1,...,N

Zn ≤ 0

]

- N−(p+1/2)(log N)ρ/2, N → ∞.

Proof : Let Z̃n :=
∑n

k=1 σ(k)X̃k where the X̃k are independent standard normal
random variables constructed on the same probability space as the Xk. As usual,
denote by Sn = X1 + · · · + Xn the corresponding random walk and define S̃ anal-
ogously. Let

EN :=

{

sup
n=1,...,N

∣

∣

∣Sn − S̃n

∣

∣

∣ ≤ C log N

}

for some constant C > 0 to be specified later. We now use a coupling of the random
walks S and S̃ that allows us to work with the Gaussian process Z̃ instead of the
original process Z. Since E

[

ea|X1|
]

< ∞ for some a > 0, we may assume by

Theorem 1 of Komlós et al. (1976) that the sequences (Xn)n≥1 and (X̃n)n≥1 are
constructed on a common probability space such that for all N and some C > 0
sufficiently large

P [Ec
N ] = P

[

sup
n=1,...,N

∣

∣

∣Sn − S̃n

∣

∣

∣ > C log N

]

≤ K N−(p+1/2) (3.5)

where K is a constant that depends only on the distribution of X1 and C.
On EN one has in view of Abel’s inequality (see Lemma 2.1 in Shao, 1995 and
recall that σ(·) is increasing) that for all n ≤ N

sup
k=1,...,n

∣

∣

∣Zk − Z̃k

∣

∣

∣ = sup
k=1,...,n

∣

∣

∣

∣

∣

∣

n
∑

j=1

σ(j)(Xj − X̃j)

∣

∣

∣

∣

∣

∣

(3.6)

≤ 2 σ(n) sup
k=1,...,n

∣

∣

∣Sk − S̃k

∣

∣

∣ ≤ 2 C σ(n) log N.

Therefore, on EN ∩
{

supn=1,...,N Zn ≤ 1
}

, one has

Z̃n = Z̃n − Zn + Zn ≤ 2Cσ(n) log N + 1, n ≤ N.
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We may now estimate

P

[

sup
n=1,...,N

Zn ≤ 1

]

≤ P

[

sup
n=1,...,N

Zn ≤ 1, E

]

+ P [Ec
N ]

≤ P

[

sup
n=1,...,N

Z̃n − 2Cσ(n) log N ≤ 1

]

+ P [Ec
N ] .

In view of (3.5), the term P [Ec
N ] is at most of order N−(p+1/2). It remains to

show that the order of the first term is N−(p+1/2)(log N)ρ/2 for ρ > 4p + 2. Let
κ(n) := σ(1)2 + · · · + σ(n)2. If B is a Brownian motion, one has in view of (2.1)
that

P

[

sup
n=1,...,N

Z̃n − 2Cσ(n) log N ≤ 1

]

= P

[

sup
n=1,...,N

Bκ(n) − 2Cσ(n) log N ≤ 1

]

.

One can now proceed similarly to the proof of Theorem 2.2. Note that

N
⋂

n=1

{

Bκ(n) − 2Cσ(n) log N ≤ 1
}

⊆
N−1
⋂

n=1

{

sup
t∈[κ(n),κ(n+1)]

Bt − 3Cσ(n) log N ≤ 1

}

∪
N−1
⋃

n=1

{

sup
t∈[κ(n),κ(n+1)]

Bt − Bκ(n) > Cσ(n) log N

}

=: GN ∪ HN .

Clearly,

P [HN ] ≤
N−1
∑

n=1

P

[

sup
t∈[0,1]

Bt >
Cσ(n) log N

√

κ(n + 1) − κ(n)

]

≤ N P

[

sup
t∈[0,1]

Bt > C̃ log N

]

where C̃ = C inf {σ(n)/σ(n + 1) : n ≥ 1} ∈ (0, C) since σ(·) is increasing and
σ(n) � np. It is easy to show that the last term of the preceding inequality is
o(N−α) for any α > 0, see the proof of Theorem 2.2.
It remains to estimate P [GN ]. Set c1 = inf

{

κ(n)/n2p+1 : n ≥ 1
}

∈ (0,∞) since

σ(n) � np and σ(n) > 0 for all n ≥ 1 by monotonicity. Hence, κ(n) ≥ c1n
2p+1 and

t ≥ κ(n) implies that (t/c1)1/(2p+1) ≥ n and therefore,

P [GN ] ≤ P

[

N−1
⋂

n=1

{

sup
t∈[κ(n),κ(n+1)]

Bt − 3Cσ
(

(t/c1)1/(2p+1)
)

log N ≤ 1

}]

≤ P

[

sup
t∈[κ(1),κ(N)]

Bt − c2t
p/(2p+1) log N ≤ 1

]

.

Choose ρ > 2(2p + 1), i.e. 1/ρ + p/(2p + 1) < 1/2. Then tp/(2p+1) log N ≤
tp/(2p+1)+1/ρ for t ≥ (log N)ρ and

P [GN ] ≤ P

[

sup
t∈[(log N)ρ,κ(N)]

Bt − c2t
p/(2p+1)+1/ρ ≤ 1

]

.

By Slepian’s inequality, we have

P [GN ] ≤
P
[

supt∈[0,κ(N)] Bt − c2t
p/(2p+1)+1/ρ ≤ 1

]

P
[

supt∈[0,(log N)ρ] Bt − c2tp/(2p+1)+1/ρ ≤ 1
] .

As already remarked in the proof of Theorem 2.2, the results of Uchiyama (1980)
imply that adding a drift of order tα (α < 1/2) to a Brownian motion does not
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change the rate T−1/2. Since p/(2p+ 1) + 1/ρ < 1/2 by the choice of ρ, this implies
that

P [GN ] -
P
[

supt∈[0,κ(N)] Bt ≤ 1
]

P
[

supt∈[0,(log N)ρ] Bt ≤ 1
] � κ(N)−1/2 (log N)ρ/2

� N−(p+1/2)(log N)ρ/2.

�

Remark 3.4. We applied the Komlós-Major-Tusnády coupling to the random walk
S whose increments Xi are i.i.d. If the Xi are independent, but not necessarily
identically distributed, one could use the coupling for non-i.i.d. random variables
introduced by Sakhanenko (1984):

Theorem 3.5. (Sakhanenko, 1984) Assume that the Xn are independent centered
random variables and that there is λ > 0 such that for all n

λE
[

eλXn |Xn|3
]

≤ E
[

X2
n

]

. (3.7)

Then for some absolute constant A > 0

P

[

sup
n=1,...,N

∣

∣

∣Sn − S̃n

∣

∣

∣ > C log N

]

≤
(

1 + λ

N
∑

n=1

E
[

X2
n

]

)

N−λA C , N ≥ 1.

In particular, under the assumptions of Theorem 3.5, we can control the term
P [Ec

N ] in the proof above as before.
Note that one can find λ > 0 such that (3.7) is satisfied if the Xn are uniformly
bounded or i.i.d. such that E

[

eλ0|X1|
]

< ∞ for some λ0 > 0. Moreover, assume
that (3.7) holds for some λ > 0. Then

λ
(

E
[

X2
n

])3/2 ≤ λE
[

|Xn|3
]

≤ λE
[

eλ|Xn| |Xn|3
]

≤ E
[

X2
n

]

,

i.e. 0 < λ ≤
(

E
[

X2
n

])−1/2
for all n implying that (E

[

X2
n

]

)n≥1 is necessarily
bounded.

3.2. Exponential weight functions. In this section, we briefly comment on the case
of an exponential weight function, i.e. σ(n) = eβn for some β > 0. The situation
here is completely different compared to the polynomial case.
First of all, the rate of decay for the discretized process and for the continuous time
process is not the same in general. This was observed already in the Brownian case
where

P

[

sup
0≤t≤N

B(eβt) ≤ 0

]

∼ 1

π
e−βN/2, N → ∞,

in view of (2.5) and the fact that (e−βt/2B(eβt))t≥0 is an Ornstein-Uhlenbeck pro-
cess. In particular, for β > 2 log 2, the decay is faster than 2−N which is a universal
lower bound in the discrete framework (cf. (2.9)).
Secondly, the universality of the survival exponent that one observes in the poly-
nomial case no longer persists even under the assumption of exponential moments
as the following example shows.
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Example 3.6. Let σ(n) = exp(βn) for some β ≥ log 2 and assume that P [Xn = 1] =
P [Xn = −1] = 1/2 for all n. Then for all N ≥ 1

sup
n=1,...,N

Zn ≤ 0 ⇐⇒ X1 = · · · = XN = −1. (3.8)

The implication “⇐” is trivial. On the other hand, if X1 = · · · = Xk−1 = −1 and
Xk = 1, for some k ≤ N , then

Zk = −
k−1
∑

j=1

eβj + eβk = eβ(k−1) e
β − 2 + eβ(2−k)

eβ − 1
> 0

since β ≥ log 2. This proves the implication “⇒”.
Note that (3.8) implies that P

[

supn=1,...,N Zn ≤ 0
]

= 2−N = exp(− log(2) N). If

we consider (B(eβn))n≥0, the corresponding survival probability is strictly greater
than 2−N by Lemma 2.11. To be very precise, we actually have to consider
(Bκ(n))n≥1 where

κ(n) =

n
∑

k=1

σ(n)2 = e2β e2βn − 1

e2β − 1
.

In particular,

P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

= P

[

sup
n=1,...,N

B(e2β − 1) ≤ 0

]

and the same arguments used in Lemma 2.11 show that

lim
N→∞

1

N
log P

[

sup
n=1,...,N

Bκ(n) ≤ 0

]

> − log 2.
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J. A. Beekman. Asymptotic distributions for the Orstein-Uhlenbeck process. J.
Appl. Probability 12, 107–114 (1975). MR0388521.

J. Bertoin. The inviscid Burgers equation with Brownian initial velocity. Comm.
Math. Phys. 193 (2), 397–406 (1998). MR1618139.
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