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Abstract. We study the time that the simple exclusion process on the complete
graph needs to reach equilibrium in terms of total variation distance. For the graph
with n vertices and 1 ≪ k < n/2 particles, we show that the mixing time is of order
1
2n logmin(k,

√
n), and that around this time, for any ε, the total variation distance

drops from 1 − ε to ε in a time window whose width is of order n (i.e. in a much
shorter time). Our proof is purely probabilistic and self-contained.

1. Introduction

Let G = (V, E) be a finite connected graph and 1 6 k 6 |V | − 1 an integer. We

define a configuration as an element of η ∈ {0, 1}V with k ones and |V | − k zeros
(ones can be considered as particles moving on the graph). The simple exclusion
process on the graph G with k particles, can be described as follows: One starts
with a given configuration and at each time step, one chooses an edge e uniformly
at random in E and one interchanges the contents (zero or one) of the two vertices
adjacent to e. This Markov chain is reversible and has the uniform measure over
all configurations as equilibrium measure.

In this paper we study the rate of convergence to equilibrium of the exclusion
process on the complete graph with n vertices, k(n) particles, and k going to infinity
with n. For obvious symmetry reasons, one can restrict the problem to the case
k 6 n/2 without any loss of generality. For the sake of clarity we give a formal
definition of the exclusion process
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The configuration space is

Ω(n, k(n)) :=
{

η ∈ {0, 1}[1,n]∩N |
∑

x∈[1,n]∩N

η(x) = k(n)
}

.

We consider the discrete-time Markov chain on Ω(n, k(n)) that at each time step
independently selects two vertices uniformly at random in {1, . . . , n} and inter-
changes their contents (emptiness or particle). Note that with probability 1/n the
two chosen vertices are the same: in that case nothing happens. We give now
the transition kernel of this process: the symmetric group Sn acts transitively on
Ω(n, k(n)) in a natural way. If σ ∈ Sn then

(σ.η)(x) := η(σ−1(x)),

and for η, η′ ∈ Ω(n, k(n)), η 6= η′, the transition rates are given by

P (η, η′) =

{

2
n2 if η′ = τ.η for some transposition τ
0 if it is not the case

One can check that this implies P (η, η) > 1/2.
This Markov chain is reversible, aperiodic and its equilibrium measure is the

uniform measure on Ω(n, k(n)) that we denote by π. Given an initial configuration
ξ ∈ Ω(n, k(n)), one writes P

ξ (and E
ξ denotes the associated expectation) for the

law of the Markov chain (ηt)t > 0 started from the configuration η0 = ξ and µξ
t for

the marginal distribution of P
ξ at time t (t ∈ N).

We study the convergence to equilibrium of this chain. Distance to equilibrium
is given by the following quantity

d(n)(t) := max
ξ∈Ω(n,k(n))

‖µξ
t − π‖.

where ‖ · ‖ denotes the total variation distance: for two measures on Ω(n, k(n))

‖µ − π‖ :=
1

2

∑

η∈Ω(n,k(n))

|µ(η) − π(η)|.

The main result of this paper is a sharp estimate of the time needed to reach
equilibrium.

Theorem 1.1. If limn→∞ k(n)/
√

n = ∞, then for every ε > 0 there exists β > 0
such that for all n

d(n)

(

1

4
n log n + βn

)

6 ε

d(n)

(

1

4
n log n − βn

)

> 1 − ε.

If limn→∞ k(n)/
√

n = 0, and limn→∞ k(n) = ∞, then for every ε > 0 there
exists β > 0 such that for all n

d(n)

(

1

2
n log k(n) + βn

)

6 ε

d(n)

(

1

2
n log k(n) − βn

)

> 1 − ε.

If k(n)/
√

n → l ∈ (0,∞), then (1.1) and (1.1) hold.
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The function t 7→ d(n)(t) is non-increasing. Thus for any ε one can set

T
(n)
mix(ε) := inf{t | d(n)(t) 6 ε} = sup{t | d(n)(t) > ε}.

From the above theorem one has that for any ε > 0

T
(n)
mix(ε) − T

(n)
mix(1 − ε) = Oε(n) = oε(Tmix),

where Oε and oε underline dependence in ε. In words: the time in which the distance
to equilibrium drops from close to one to close to zero is at most of order n and
much smaller than Tmix. This phenomenon is known as cutoff. It was first identified
by Diaconis and Shahshahani (1981) for the random walk on the symmetric group
generated by transpositions (see also Berestycki et al., 2010 for a recent extension
of this result with a probabilistic proof), and was given its name in the celebrated
paper of Aldous and Diaconis (1986) where it is shown that cutoff occurs for top-

to-random card shuffle. The bound that is obtained for T
(n)
mix(ε) − T

(n)
mix(1 − ε) (in

the present case, O(n)) is often called the cutoff window . Our result is optimal
in the sense that O(n) is the best window one can obtain: it will be shown in the
proof that

lim
ε→0

lim inf
n→∞

T
(n)
mix(ε) − T

(n)
mix(1 − ε)

n
= ∞.

The simple exclusion process on the complete graph maps to another problem:
the Bernouilli Laplace Diffusion Process. In Diaconis and Shahshahani (1987),
Diaconis and Shashahani studied this model and, using purely algebraic methods,
proved cutoff in the case k(n) = n/2. Their method should be extendable to some
other values of k (e.g. using the same method Donnelly et al., 1994 extended the
result to the case where k = αn for some α ∈ (0, 1)), but it clearly fails to give the
right result when k(n) ≪ √

n (e.g. the upper-bound given in Theorem 2 fails to be
sharp in that particular case). We also underline that the methods we present here
are purely probabilistic.

The simple exclusion process on the complete graph can be seen as a projection of
the random walk on the symmetric group generated by transposition, and therefore
the mixing time for simple exclusion is always smaller than the mixing time for
random transposition. What our result underlines is that while the spectral gaps
(this a general result that holds for every graph, see Caputo et al., 2010) for the
two processes are the same, the mixing time differ: the mixing time for the random
transposition model is n/2 logn(1+o(1)), whereas the mixing time for the exclusion
process is at most n/4 logn(1+ o(1)). This result is specific to the complete graph:
for the exclusion process on the segment or on the circle, mixing time for exclusion
process with a density of particle and interchange process are expected to coincide
Wilson (2004).

Let us also compare the mixing time of the simple exclusion process with the
mixing time of the simple exclusion process with k labeled particles: the space of
configurations is

Ω′(n, k(n)) :=
{

η ∈ {0, 1, . . . , k}[1,n]∩N | ∀i ∈ {1, . . . , k} ∃!x, η(x) = i
}

.

The rules for the evolution are the same: at each time step, one chooses two vertices
at random and interchanges their contents. As there is no risk of confusion we use
for the labeled process the same notation as that for the exclusion process. The
equilibrium measure π for this process is the uniform measure over Ω′(n, k(n)).
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What we can show is that if k ≪ √
n then the mixing times of labeled and unlabeled

exclusion process coincide but that they differ as soon as k ≫ √
n. We suspect that

for every value of k and every ε one has

T ′
mix(ε) :=

n

2
log k + O(n).

We prove in the following that

Theorem 1.2. For the exclusion process on the complete graph with n vertices and
k labeled particles, for every ε, there exists β > 0 such that for every k and n

d(n)

(

1

2
n log k − βn

)

> 1 − ε.

Moreover if limn→∞ k(n)/
√

n = 0 then for every ε, there exist β > 0 such that for
all n

d(n)

(

1

2
n log k(n) + βn

)

6 ε.

The mixing time of the simple exclusion process has been studied for some other
graphs than the complete graph. However, to our knowledge, cutoff has not been
proved for any other graph. We refer to Wilson (2004) for a study of the mixing
time of the simple exclusion process on the segment {0, . . . , n} (the edges of the
graph are the (k, k + 1), k ∈ [0, n − 1]), Morris (2006) for simple exclusion on the
d-dimensional torus, and Oliveira (2011) for a recent general study of the exclusion
process mixing time.

The sequel of the paper is organized as follows

• In Section 2, we reduce the study of the the unlabeled exclusion process to
the study of a birth of death chain, which is a first step towards the proof
of Theorem 1.1.

• In Section 3, we prove Theorem 1.1 in the case of small k.
• In Section 4, we prove Theorem 1.2.
• In Section 5, we prove Theorem 1.1 in the case of large k.

2. Reduction to the study of a birth and death chain

Our Markov chain is a lazy simple random walk on a transitive graph. Therefore,

by transitivity, the distance ‖µξ
t − π‖ does not depend on the initial configuration

ξ. We can set η0 to be

(η0)(x) :=

{

1 if x ∈ [1, k(n)]
0 if not

and we simply write P - and E for the associated expectation - (resp. µt) for the
law of (ηt)t > 0 (resp. ηt) starting from this configuration.

We now claim that for every t, µt is invariant under permutations of the coor-
dinates in {1, . . . , k(n)} and in {k(n) + 1, . . . , n}. This is obviously true for t = 0,
and this remains true for t > 0 as the dynamic itself is invariant under these per-
mutations. Therefore, if one sets

W (η) :=

k(n)
∑

x=1

η(x),

Wt := W (ηt).
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then for any m and t such that µ(Wt = m) > 0, µt(·|W = m) is the uniform
measure over all the configuration η such that W (η) = m.

Let µ̄t and π̄ be the law of W under µt and π respectively. The preceding remarks
imply that

d(t) = ‖µ̄t − π̄t‖
One can check that the evolution of Wt is Markovian. Our problem is now confined
to the study of the mixing time of this new Markov chain, which is what is called
a birth and death chain on {0, . . . , k(n)}.

We write µ̄i
t for the law of Wt starting from W0 = i. As (Wt)t > 0 is a projection

of the Markov chain (ηt) > 0, one has

‖µ̄t − π̄‖ = max
ξ∈Ω(n,k(n))

‖µξ
t − π‖ > max

i∈{1,...,k}
‖µ̄i

t − π̄‖ > ‖µ̄t − π̄‖,

that is to say that for any value of t, Wt is farther from the equilibrium measure if
W0 = k.

Remark 2.1. At this point of our analysis, one can already show that there is
cutoff for our process. Indeed, the cutoff phenomenon for general birth and death
chain has been studied in Ding et al. (2010), in which the authors prove that
Trel = o(Tmix(1/4)) is a necessary and sufficient for having cutoff (where Trel, the
relaxation time is by definition the inverse of the spectral gap). This condition can
be checked rather easily in our case. However, one cannot get the location of the
cutoff, nor the correct order for the size of the window by using only this general
result.

We use the notation P̄ to denote the transition probability of (Wt)t > 0. For the
sake of clarity, we often omit the dependence in n in the notation. We have

P̄ (i, i + 1) =
2(k − i)2

n2
,

P̄ (i, i − 1) =
2i(n − 2k + i)

n2
,

P̄ (i, i) =
n2 − 2[(k − i)2 + i(n − 2k + i)]

n2
.

We end this section with a first simple Lemma giving the expectation of Wt. It
will constantly be used in the sequel.

Lemma 2.2. One has, for any value of k, for any t

E
ξ[Wt] =

(

W (ξ) − k2

n

)(

1 − 2

n

)t

+
k2

n

Proof : Using the jump rates we compute the expected value of Wt+1 given Wt.
One has

E
ξ[Wt+1|Wt] = Wt + P̄ (Wt, Wt +1)− P̄ (Wt, Wt−1) =

k2

n
+

(

Wt −
k2

n

)(

1 − 2

n

)

.

Taking the expectation on both sides, and making a trivial induction, one gets the
desired result. �
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3. The case k(n) ≪ n1/2

In this section we prove the main theorem with the assumptions that

lim
n→∞

k(n)√
n

= 0 and lim
n→∞

k(n) = ∞.

3.1. Upper bound on Tmix. Under the assumption that limn→∞
k(n)√

n
= 0, π̄(W =

0) = 1 − o(1). Indeed, with this condition, the expectation of W at equilibrium is

π̄(W ) =
k2(n)

n
= o(1).

Let us choose γ > 0 and set tγ = n
2 log k(n) + γn (is has to be thought as the

integer part, but we omit this in the notation to keep things simpler; at any rate it
would not change the proof). One has

µ̄tγ
(W ) = k

(

1 − 2

n

)
n
2 log k+γn

+ o(1)

Altogether we get that

‖µ̄tγ
− π̄‖ 6 e−2γ + o(1).

And therefore

Tmix(ε) 6
n

2
(log k(n) − log ε + o(1)) .

�

3.2. Lower bound on Tmix. To get the other bound, we make the following consider-
ation: the equilibrium measure π̄ is concentrated on the event {W = 0}. Therefore,
on the original exclusion process, every particle has to be moved at least once in
order to be significantly close to equilibrium. To formalize this properly, we present
an alternative construction of the simple exclusion process.

Let (Xt, Yt)t > 1 be a sequence of i.i.d. random variables distributed uniformly
on {1, . . . , n}2 (we include this process in the probability law P). Under E

ξ, we
start from η0 = ξ and we build ηt from ηt−1 by interchanging the content of sites
Xt and Yt if Xt 6= Yt:

ηt(x) :=







ηt−1(x) if x /∈ {Xt, Yt},
ηt(Yt) if x = Xt,
ηt(Xt) if x = Yt.

We define τ as the time were all the sites in {0, . . . , k(n)} have been selected at
least once by the process (X, Y )

τ := inf

{

t > 0 |
t
⋃

s=1

{Xs, Ys} ⊃ {1, . . . , k(n)}
}

.

Notice that if t < τ , then Wt 6= 0, so that

‖µ̄t − δW=0‖ > P [τ > t]

Therefore one has

‖µ̄t − π̄‖ > P [τ > t] − o(1)
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Estimating the time τ boils down to the so-called coupon collector problem (see
Levin et al., 2009, Section 2.2 in particular). Set X ′

2s−1 := Xs and X ′
2s = Ys. Then

X ′
s is an i.i.d. sequence One has the following equality in law

τ = ⌈τ ′/2⌉ =

⌈

1

2

k
∑

i=1

Ei

⌉

.

where

τ ′ := inf {t > 0 |{X ′
s, s = 1, . . . , t} ⊃ {1, . . . , k(n)} } .

and the Ei are defined by

i
∑

j=1

Ej := inf
{

t > 0
∣

∣#({X ′
s|s = 1, . . . , t} ∩ [1, k(n)]) = i

}

.

It is not difficult to check that (Ei)i∈[1,k] are independent geometric variables of
mean ( n

k−i+1 )i∈[1,k]. From this, one gets the following moment estimates: for some
constant C

E

[

k
∑

i=1

Ei

]

> n log k − Cn,

VarP

[

k
∑

i=1

Ei

]

=
k
∑

i=1

1 − (i/n)

(i/n)2
6 Cn2.

Therefore, if one chooses tγ := 1
2n log k − γn (suppose that this in an integer), one

has by classical second moment inequality:

P

[

k
∑

i=1

Ei 6 2tγ

]

6
C

(2γ − C)2

And therefore from (3.2) and (3.2)

d(tγ) > 1 − C

(2γ − C)2
− o(1),

and hence, for any ε > 0

Tmix(1 − ε) >
n

2

(

log k(n) −
√

C/ε − C + o(1)
)

.

(One could get a tighter bound with log ε instead of −ε−1/2 by using exponential
moments instead of second moment). �

4. Bounds for the labeled process

The methods of the previous section can be applied for the proof of Theorem
1.2. For the lower-bound we remark that at equilibrium, for any i ∈ {1, . . . , k},
π(η(i) = i) = 1

n . Thus in every case the expected number of fixed points is less
than one: π(#{i|η(i) = i}) 6 1, and for any integer K

π(#{i|η(i) = i} > K) 6 1/K.
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One constructs the exclusion process from (Xt, Yt)t > 0 as in the previous section.
We define τ as the first time at which all of the k first sites have been selected.

τ := inf

{

t > 0 | #((

t
⋃

s=1

{Xs, Ys}) ∩ {1, . . . , k(n)}) > k − K

}

.

If one starts the process from

(η0)(x) :=

{

x if x ∈ [1, k(n)]
0 if not

One has

µη0

t (#{i|η(i) = i} > K) > P(t > τ)

and therefore

‖µη0

t − π‖ > P(t > τ) − 1

K
.

Taking the same definition for Ei as in the previous section one has

τ = ⌈
k−K
∑

i=1

Ei⌉,

and Ei are independent geometric variables of respective mean
(

n
k−i−n

)

. One has:

E

[

k−K
∑

i=1

Ei

]

> n log k − n log K − Cn,

VarP

[

k
∑

i=1

Ei

]

=

k
∑

i=K

1 − (i/n)

(i/n)2
6 Cn2/K,

and therefore, using Chebychev inequality one gets:

P (τ 6
n

2
log k − n log K) 6

C

K(log K − C)2
.

Overall, this gives that for K sufficiently large and for t = n
2 log k − n log K:

‖µη0

t − π‖ > 1 − 2

K
.

which gives

Tmix(1 − ε) >
n

2
log k + n log ε/2.

For the upper bound, we assume that limn→∞ k(n)/
√

n = 0. We notice that as
for the unlabeled process, the distance to equilibrium is the same for every starting
position by symmetry.

d(t) = ‖µη0

t − π‖.
Let W be the number of particles lying on the vertices {1, . . . , k}. (W (η) :=
∑k

x=1 1η(x) 6=0). Now notice that for every t > k one has

µη0

t (·|W = 0) = π(·|W = 0),

as the initial condition and the dynamics are invariant under permutation of {k(n)+
1, . . . , n}. Therefore the same analysis as in section 3.1 gives

Tmix(ε) 6
n

2
(log k(n) − log ε + o(1)) .
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5. The cases k(n) ≫ √
n and k(n) ≈ √

n

In this section we prove the main theorem with the assumption that either
limn→∞ k(n)/n = ∞ or limn→∞ k(n)/n = l > 0. The latter case is a bit more
complicated than the other as the distribution of W at equilibrium is asymptotically
non-degenerate. One makes use of second moment arguments for the lower bound
of the mixing time, and a diffusion argument to get an upper bound.

5.1. Lower bound on the mixing time. In this section we work with the weaker
assumption lim infn→∞ k(n)/

√
n > 0. To get the right bound on the mixing time

one uses a second moment method. The first and essential step is to compute a
tight estimate of µ̄t

[

W 2
]

. We start by writing an explicit formula for the second
moment of Wt.

Lemma 5.1.

E[W 2
t ] =

(

1 − 4

n
+

4

n2

)t

k2

+
t−1
∑

s=0

[(

4k2

n2
− 8k

n2
+

2i

n

)

E[Ws] +
2k2

n

](

1 − 4

n
+

4

n2

)t−1−s

.

Proof : One simply uses the transition of the Markov chain to get a recurrence
relation

E[W 2
t+1|Wt] = W 2

t + 2Wt(P̄ (Wt, Wt + 1) − P̄ (Wt, Wt − 1))

+ P̄ (Wt, Wt + 1) + P̄ (Wt, Wt − 1).

By taking the expectation on both sides, one gets the following recursive relation

E(W 2
t+1) =

(

1 − 4

n
+

4

n2

)

E[W 2
t ] +

(

4k2

n2
− 8k

n2
+

2i

n

)

E[Wt] +
k2

n
.

which after induction gives the expected result. �

Then, using the formula above, we get a clean bound on the variance of Wt.

Lemma 5.2. There exists a constant C such that for any K, n large enough (de-
pending on K), and t = n

4 log n − γn
2 , γ ∈ [−K, K]

VarP(W 2
t ) 6

Ck2

n
+

eγk√
n

.

Proof : Suppose that t = n
4 (log n − 2γ) for some γ ∈ [−K, K]. All the O(·) are

uniform in γ ∈ [−K, K] when n is large enough. We start by giving an estimate of
the expectation squared

[E(Wt)]
2 =

[

k2

n
+

(

k − k2

n

)(

1 − 1

2n

)t
]2

=

[

k2

n
+

(

k − k2

n

)

eγ

√
n

(

1 + O

(

log n

n

))]2

=
k4

n2
+

2k2

n3/2

(

k − k2

n

)

eγ + n−1

(

k − k2

n

)2

e2γ + O(k2/n).
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Estimating E(W 2
t ) is a bit more tricky. For practical reasons we divide it in three

terms

E(W 2
t ) =

(

1 − 4

n
+

4

n2

)t

k2 +
2k2

n2

t−1
∑

s=0

(

1 − 4

n
+

4

n2

)t−1−s

+
t−1
∑

s=0

(

4k2

n2
− 8k

n2
+

2

n

)

E(Ws)

(

1 − 4

n
+

4

n2

)t−1−s

The first one gives
(

1 − 4

n
+

4

n2

)t

k2 =
k2e2γ

n
+ O(k2/n).

The second:

2k2

n2

t−1
∑

s=0

(

1 − 4

n
+

4

n2

)t−1−s

= O(k2/n).

We divide the third term it into two contributions

t−1
∑

s=0

(

4k2

n2
− 8k

n2
+

2

n

)

E(Ws)

(

1 − 4

n
+

4

n2

)t−1−s

=

(

4k2

n2
− 8k

n2
+

2

n

)(

k − k2

n

)(

1 − 4

n
+

4

n2

)t−1 t−1
∑

s=0

(

1 − 2
n

1 − 4
n + 4

n2

)s

+

(

4k2

n2
− 8k

n2
+

2

n

)

k2

n

t−1
∑

s=0

(

1 − 4

n
+

4

n2

)s

.

The first contribution can be estimated as follows
(

4k2

n2
+

2

n
+ O(k/n2)

)(

k − k2

n

)

e2γ

n
·

·
(

1 + O

(

log n

n

)) √
ne−γ − 1 + O(n−1/2 log n)

2
n + O(n−2)

=
2k2

n3/2

(

k − k2

n

)

eγ − 2k2

n2

(

k − k2

n

)

e2γ +
eγk√

n
+ O(k2/n).

The second is equal to
(

4k2

n2
+ O(1/n)

)

k2

4

(

1 − e2γ

n
+ O

(

1

n

))

=
k4

n2
− e2γ k4

n3
+ O(k2/n).

Summing everything up gives the expected result. �

Now we use the bounds that we have on the second and first moment to bound
the mixing time. Set t = n

4 (log n − 2γ). Let (W1, W2) be a maximal coupling
between µ̄t and π̄, and let ν̄t be its law (such that ‖µ̄t − π̄‖ = ν̄t(W1 6= W2)).

One has

ν̄t(W1 − W2)
2 = ν̄t{W1 6= W2}ν̄t

(

(W1 − W2)
2 | W1 6= W2

)

> ν̄t{W1 6= W2} [ν̄t ((W1 − W2) | W1 6= W2)]
2

=
(νt(W1 − W2))

2

‖µ̄t − π̄‖ .
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And hence

‖µ̄t − π̄‖ >
[νt(W1 − W2)]

2

ν̄t(W1 − W2)2
=

1

1 +
Varν̄t(W1−W2)

[νt(W1−W2)]2

.

It is then easy to compute the moments. The expectation is given by

ν̄t(W1 − W2) = µ̄t(W ) − π̄(W ) = eγ 1√
n

(

k − k2

n

)

(1 + o(1)).

For the variance, first notice that:

Varπ̄(W ) =

k
∑

i,j=1

π̄(η(i)η(j))− k4

n2
= kπ̄(η(1))+k(k−1)π̄(η(1)η(2))− k4

n2
6

k2

n
.

And therefore

Varν̄t(W1 − W2)
2 6 2[Varµ̄t

(W ) + Varπ̄(W )] 6 C′ k
2

n
+

eγk√
n

.

Hence one gets

‖µ̄t − π̄‖ >



1 +
C′ k2

n + eγk√
n

e2γ

n

(

k − k2

n

)2
(1 + o(1))





−1

>

(

1 + 4C′e−2γ +
4
√

n

k
e−γ + o(1)

)−1

.

where in the last line one used k 6 n
2 . Using the assumption that lim inf k(n)/

√
n >

0, one obtains that for n large enough

‖µ̄t − π̄‖ >
(

1 + C′′ max(e−2γ , e−γ) + o(1)
)−1

Therefore

Tmix(ε) >







n
4 log n − n

4 log
(

C′′

ε−1−1

)

if ε > (1 + C′′)−1

n
4 log n + n

2 log
(

ε−1−1
C′′

)

if ε 6 (1 + C′′)−1

5.2. Upper bound on Tmix. To give an upper bound on the mixing time, we bound
the following quantity

d̄(t) = max
x,y∈[0,k]2

‖µ̄x
t − µ̄y

t ‖ > d(t).

We define a coupling of two replicas of the Markov chain W starting from different

states as follows: let (W
(1)
t , W

(2)
t ) be the Markov chain on {1, . . . , k}2 given by the

following transition

P((i, j), (i ± 1, j)) := P̄ (i, i ± 1), if i 6= j,

P((i, j), (i, j ± 1)) := P̄ (i, j ± 1), if i 6= j,

P((i, i), (i ± 1, i ± 1)) := P̄ ((i, i ± 1),

P((i, j), (i, j)) := P̄ (i, i) + P̄ (j, j) − 1,

P((i, i), (i, i)) := P̄ (i, i),

where all the other transitions have zero probability. One can check that the coef-
ficients are positive and that this indeed defines a stochastic matrix. This coupling
has the property that once W (1) and W (2) merge, they stay together. Moreover,
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before the merging, at most one of the two coordinates changes at each time step,
and therefore the sign of W (1) − W (2) is constant in time (i.e. W (1) and W (2)

cannot cross without merging). With our choice for initial condition, in the sequel
it is always non-negative.

If one denotes by Px,y the law of (W
(1)
t , W

(2)
t ) with initial condition (x, y), x > y

and defines

τ := inf{t > 0 | W
(1)
t = W

(2)
t },

then

‖µ̄x
t − µ̄y

t ‖ 6 Px,y [τ > t] .

Set Dt := W
(1)
t − W

(2)
t > 0. According to Lemma 2.2

Ex,y[Dt] = (x − y)

(

1 − 2

n

)t

.

A first moment analysis is enough to treat the case limn→∞ k(n)/
√

n = l. Indeed
for any x and y

Px,y [τ > t] = Px,y [Dt > 1] 6 Ex,y[Dt] 6 l
√

n(1 + o(1))

(

1 − 2

n

)t

.

Setting tβ = 1
4n log n + βn one gets

Px,y [τ > tβ ] = le−2β(1 + o(1)).

and therefore

Tmix(ε) 6
1

4
n logn − n

2
log(ε/l).

The rest of the section is therefore devoted to the case limn→∞ k(n)/
√

n = ∞.

Given that W
(1)
t > W

(2)
t , Dt has the following transition probabilities

P(Dt+1 = Dt − 1 | W
(1)
t , W

(2)
t ) = P(W

(1)
t , W

(1)
t − 1) + P(W

(2)
t , W

(2)
t + 1)

= 2
W

(1)
t (n − 2k + W

(1)
t ) + (k − W

(2)
t )2

n2
,

P(Dt+1 = Dt + 1 | W
(1)
t , W

(2)
t ) = P(W

(1)
t , W

(1)
t + 1) + P(W

(2)
t , W

(2)
t − 1)

= 2
(k − W

(1)
t )2 + W

(2)
t (n − 2k + W

(2)
t )

n2
.

One can check that the evolution of D is not Markovian (it depends on the values

of W
(1)
t and W

(2)
t and not only on Dt). This makes the analysis of τ difficult.

We now sketch the method we use to tackle this problem:

• First, we use a first moment method to show that after a time t0 := n
4 log n,

with probability close to one W
(1)
t0 − W

(2)
t0 is of order k/

√
n.

• Then, we do a sequence of stochastic comparisons to state that starting

from W
(1)
t0 − W

(2)
t0 6 k/

√
n, τ is stochastically dominated by (t0 plus) the

hitting time of zero for a simple symmetric random walk on Z with jump
rate k2/n2 .

• Finally, we use a reflection argument to show that the typical time for hit-
ting zero when starting from k/

√
n for such a walk is of order n. Altogether

this gives that τ is smaller than t0 + Kn with probability close to one if K
is sufficiently large.
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The idea of combining a first moment method and diffusion in order to evaluate
mixing times has already been used to compute the mixing time of the mean field
Ising model in Levin et al. (2010), the method was then refined in Ding et al. (2009).
The interest of the method here lies in the particular manner the coupling has to
be constructed.

Set tα = n
4 log n + αn. One uses Markov property to get the following bound on

τ .

Px,y (τ > tα+1) 6 Ex,y
[

PW
(1)
tα

,W
(2)
tα (τ > n)

]

6 Px,y[W
(1)
tα

− W
(2)
tα

6 M ] + max
x′ > y′,x′−y′ 6 M

Px′,y′

[τ > n]

6
Ex,y[W

(1)
tα

− W
(2)
tα

]

M
+ max

x′ > y′,x′−y′ 6 M
Px′,y′

[τ > n].

We apply it for M = ke−α

√
n

. As we have

Ex,y[W
(1)
tα

− W
(2)
tα

] = (x − y)

(

1 − 2

n

)tα

6
k√
n

e−2α,

this gives

d̄(tα+1) 6 e−α(1 + o(1)) + max
x′ > y′,x′−y′ 6 ke−α

√
n

Px′,y′

[τ > n],

and all that remains to do is estimating the second term. The next step is to show
that

Px′,y′

[τ > n] 6 Qx′−y′

[τ ′ > n]

where τ ′ is the first hitting time of zero for a nearest neighbor symmetric random
walk on Z with “jump rate” n/k2, starting from x′ − y′ (law Qx′−y′

). The result is

rather intuitive, as Dt = W
(1)
t − W

(2)
t has a drift towards zero and the probability

of jumping is bounded from below by k2/n2. However, stochastic comparisons have
to be made with some care in order to prove the result rigorously. We construct a
coupling explicitly.

We define Ji the sequence of moving time for (W (1), W (2)) i.e. J0 = 0 and for
i > 0

Ji+1 := inf{t > Ji | (W
(1)
t , W

(2)
t ) 6= (W

(1)
Ji

, W
(2)
Ji

)}.

We remark that (W
(1)
Ji

, W
(2)
Ji

)i > 0 = (W̄
(1)
i , W̄

(2)
i )i > 0 is itself a Markov chain

(something similar to the skeleton of a continuous time/discrete space Markov

chain), and that conditionally to (W
(1)
Ji

, W
(2)
Ji

)i > 0, (Ji+1−Ji)i > 0, it is a sequence of

geometric variables of mean (2−P̄ (W
(1)
Ji

, W
(1)
Ji

)−P̄ (W
(2)
Ji

, W
(2)
Ji

))−1 if W
(1)
Ji

6= W
(2)
Ji

,

and of mean (1 − P̄ (W
(1)
Ji

, W
(1)
Ji

))−1 if the processes have merged.
Let (Ui)i > 0 and (U ′

i)i > 0 be two independent sequences of i.i.d. random vari-

ables. One constructs the process (W
(1)
t , W

(2)
t )t > 0 starting from (x, y) determinis-

tically from the sequences (Ui)i > 0 and (U ′
i)i > 0 as follows (for the sake of simplicity,

we do not give details of how the construction is done after the merging as we do
not use it):
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• First, one constructs recursively (W̄
(1)
i , W̄

(2)
i )i > 0, (W̄

(1)
0 , W̄

(2)
0 ) = (x, y)

and

(W̄
(1)
i+1, W̄

(2)
i+1) :=



















(W̄
(1)
i + 1, W̄

(2)
i ) if U ′

i+1 ∈ [0, a(W̄
(1)
i , W

(2)
i )]

(W̄
(1)
i , W̄

(2)
i − 1) if U ′

i+1 ∈ (a(W̄
(1)
i , W

(2)
i ), b(W̄

(1)
i , W

(2)
i ))]

(W̄
(1)
i − 1, W̄

(2)
i ) if U ′

i+1 ∈ (b(W̄
(1)
i , W

(2)
i ), c(W̄

(1)
i , W

(2)
i ))]

(W̄
(1)
i , W̄

(2)
i + 1) if U ′

i+1 ∈ (c(W̄
(1)
i , W

(2)
i ), 1]

where a(i, j), b(i, j), c(i, j) are chosen such that the chain has the right
transition probabilities. It is important to notice that b(i, j) 6 1/2 for all
i, j.

• Then, given (W̄
(1)
i , W̄

(2)
i )i > 0 we construct the sequence of moving times:

J0 = 0 and

Ji+1−Ji = m if Ui+1 ∈
[

1 − (1 − q(W̄
(1)
i , W̄

(2)
i ))m−1, 1 − (1 − q(W̄

(1)
i−1, W̄

(2)
i−1)

m
)

,

where q(i, j) := (2 − P̄ (i, i) − P̄ (j, j)) > k2/n2 is the inverse of the mean
jumping time from (i, j).

Using the same variables (Ui)i > 0 and (U ′
i)i > 0, one constructs a simple random

walk on Z.

• First, one defines X̄i as

X̄i = (x − y) +

i
∑

j=1

1{U ′
i 6 1/2} − 1{U ′

i>1/2}.

• Then, one defines Hi by H0 = 0 and

Hi+1 − Hi = m if Ui+1 ∈
[

1 − (1 − k2/n2, )m−1, 1 − (1 − k2/n2)m
)

.

• Finally, one sets

Xt = X̄i if t ∈ [Hi, Hi+1).

From this construction one has that Hi > Ji and X̄i > W̄
(1)
i − W̄

(2)
i for all i.

Therefore

τ ′ := inf{t | Xt = 0} = Hinf{i | X̄i=0} > J
inf{i |W̄ (1)

i =W̄
(2)
i } = τ.

By construction (Xt)t > 0 is a random walk with transition probability p(x, x±1) =
k2/(2n2) and p(x, x) = 1 − k2/n2, and therefore we proved (5.2). We now finish
the proof of the main theorem. From (5.2) and (5.2)

d̄(tα+1) 6 e−α(1 + o(1)) + Q
⌈ ke−α

√
n

⌉
[τ ′ > n],

where Qm is the law of (Xt)t > 0 starting from m. Then from Proposition 5.3

Q
⌈ ke−α

√
n

⌉
[τ ′ > n] 6 e−α(1 + o(1))

and therefore

Tmix(ε) 6
n

4
log n + n log(ε/2) + o(n).

Using the same technique one can get that there exists a function c(ε) that goes to
infinity when ε goes to 0 such that

Tmix(1 − ε) 6
n

4
log n − c(ε)n + o(n).
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(this, together with the lower-bound part shows that the window of size O(n) is an
optimal result (1)).

5.3. Diffusion bounds. One is left with proving the approximation we used for the
law of τ ′. Let n be a fixed integer. Let (Xt)t > 0 be a nearest-neighbor random
walk on Z with transitions p(x, x ± 1) = q(n)/2, p(x, x) = 1 − q(n). We start our
random walk from αs(n) where s(n) and q(n) satisfy:

s(n)2 = q(n)n.

We denote Qx the probability associated to this random walk starting from x and
Q = Q0. We want to estimate τ ′, the hitting time of zero for this random walk.

Proposition 5.3. One has for any given positive α and β

lim
n→∞

Qαs(n) [τ ′ > βn] =
1√
2π

∫

h

− α√
β

, α√
β

i

e−
s2

2 ds 6
α√
β

.

In fact the proof can almost be reduced to proving the following lemma.

Lemma 5.4. For any positive integer m and n,

Qm [τ ′ > n] = Q [Xn ∈ [−m + 1, m]]

Proof : We have

Qm [τ > n] =
∑

j>0

Qm (∀i ∈ [1, n− 1] Xi > 0, Xn = j) .

Moreover,

Qm (∀i ∈ [1, n− 1] Xi > 0, Xn = j)

= Qm (Xn = j) − Qm (∃i ∈ [1, n− 1] Xi = 0, Xn = j)

= Qm (Xn = j) − Qm [Xn = −j] = Q [Xn = j − m] − Q [Xn = j + m] .

The second inequality just comes from the application of the reflection principle.
Therefore

∑

j>0

Qm (∀i ∈ [1, n − 1]Xi > 0, Xn = j) = Q (Xn ∈ [−m + 1, m]) .

�

With the previous lemma, all one has to do is prove the convergence of
Xβn/

√

βnq(n) to a Gaussian variable. We do it by computing the Fourrier trans-
form. For any fixed K we have that uniformly for all |t| 6 K

Q

[

e
it

Xβn√
βnq(n)

]

=

[

1 − q(n)

(

1 − cos
t

√

βnq(n)

)]βn

=

[

1 − q(n)
t2

2βnq(n)
(1 + o(1))

]βn

= e−
t2

2 (1 + o(1)).
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Therefore

lim
n→∞

Qαs(n) [τ ′ > βn] = lim
n→∞

Q

[

Xβn√
nqn

∈ [−αs(n) + 1, αs(n)]
√

βnq(n)

]

= P

[

N ∈
[

− α√
β

;
α√
β

]]

.

where N (with law denoted by P ) is a standard normal variable.

Acknowledgment:

The authors are very grateful to Pietro Caputo for his constant scientific and
technical support, and to Franois Simenhaus for several enlightening discussions.
This work has been carried out in the Department of Mathematics of the University
of Roma Tre during H.L’s postdoc and R.L.’s research internship. They gratefully
acknowledge the kind hospitality of the department, the support of the Applied
Mathematics Department of the Ecole Polytechnique (for R.L.) and the support of
ERC Advanced Research Grant “PTRELSS” (for H.L.).

References

D. Aldous and P. Diaconis. Shuffling cards and stopping times. Amer. Math.
Monthly 93 (5), 333–348 (1986). MR841111.

N. Berestycki, O. Schramm and O. Zeitouni. Mixing times for random k-cycles
and coalescence-fragmentation chains. ArXiv Mathematics e-prints (2010).
http://arxiv.org/abs/1001.1894.

P. Caputo, T. M. Liggett and T. Richthammer. Proof of Aldous’ spectral gap
conjecture. J. Amer. Math. Soc. 23 (3), 831–851 (2010). MR2629990.

P. Diaconis and M. Shahshahani. Generating a random permutation with random
transpositions. Z. Wahrsch. Verw. Gebiete 57 (2), 159–179 (1981). MR626813.

P. Diaconis and M. Shahshahani. Time to reach stationarity in the Bernoulli-
Laplace diffusion model. SIAM J. Math. Anal. 18 (1), 208–218 (1987).
MR871832.

J. Ding, E. Lubetzky and Y. Peres. The mixing time evolution of Glauber dynamics
for the mean-field Ising model. Comm. Math. Phys. 289 (2), 725–764 (2009).
MR2506768.

J. Ding, E. Lubetzky and Y. Peres. Total variation cutoff in birth-and-death chains.
Probab. Theory Related Fields 146 (1-2), 61–85 (2010). MR2550359.

P. Donnelly, P. Lloyd and A. Sudbury. Approach to stationarity of the Bernoulli-
Laplace diffusion model. Adv. in Appl. Probab. 26 (3), 715–727 (1994).
MR1285456.

D. A. Levin, M. J. Luczak and Y. Peres. Glauber dynamics for the mean-field Ising
model: cut-off, critical power law, and metastability. Probab. Theory Related
Fields 146 (1-2), 223–265 (2010). MR2550363.

D. A. Levin, Y. Peres and E. L. Wilmer. Markov chains and mixing times. American
Mathematical Society, Providence, RI (2009). ISBN 978-0-8218-4739-8. With a
chapter by James G. Propp and David B. Wilson. MR2466937.

B. Morris. The mixing time for simple exclusion. Ann. Appl. Probab. 16 (2),
615–635 (2006). MR2244427.

http://www.ams.org/mathscinet-getitem?mr=MR841111
http://arxiv.org/abs/1001.1894
http://www.ams.org/mathscinet-getitem?mr=MR2629990
http://www.ams.org/mathscinet-getitem?mr=MR626813
http://www.ams.org/mathscinet-getitem?mr=MR871832
http://www.ams.org/mathscinet-getitem?mr=MR2506768
http://www.ams.org/mathscinet-getitem?mr=MR2550359
http://www.ams.org/mathscinet-getitem?mr=MR1285456
http://www.ams.org/mathscinet-getitem?mr=MR2550363
http://www.ams.org/mathscinet-getitem?mr=MR2466937
http://www.ams.org/mathscinet-getitem?mr=MR2244427


Cutoff for SEP on the complete graph 301

R. I. Oliveira. Mixing of the symmetric exclusion processes in terms of the cor-
responding single-particle random walk. ArXiv Mathematics e-prints (2011).
http://arxiv.org/abs/1007.2669.

D. B. Wilson. Mixing times of Lozenge tiling and card shuffling Markov chains.
Ann. Appl. Probab. 14 (1), 274–325 (2004). MR2023023.

http://arxiv.org/abs/1007.2669
http://www.ams.org/mathscinet-getitem?mr=MR2023023

	1. Introduction
	2. Reduction to the study of a birth and death chain
	3. The case k(n)n1/2
	3.1. Upper bound on Tmix
	3.2. Lower bound on Tmix

	4. Bounds for the labeled process
	5. The cases k(n)n and k(n)n
	5.1. Lower bound on the mixing time
	5.2. Upper bound on Tmix
	5.3. Diffusion bounds

	Acknowledgment:
	References

