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Abstract. Extending Tanaka’s stochastic differential equation to transition ker-
nels, we show that all the solutions can be characterized by probability measures
on [0,1].

1. Introduction

Tanaka’s stochastic differential equation (SDE) is one the simplest example of
SDE that does not have a strong solution in the usual sense. The objective of
this paper is to apply to this example the theory of flows of transition kernels
developed in our previous work Le Jan and Raimond (2004a), denoted hereafter
by LJR, (see also Tsirelson (2004) for an improved presentation of some results).
We first classify all the solutions of Tanaka’s SDE, extended to transition kernels
(this notion of solution of SDE was precisely defined in LJR). It is shown that they
can be characterized by a probability measure on [0,1]. The domination and the
weak domination relations (defined in LJR) between different solutions are then
fully understood in terms of barycenter and balayage of the associated measures.

2. Statement of the results.

On a probability space (2, F,P), let W = (W4, s < t) be a real white noise and
K = (K, s <t) (resp. ¢ = (95,6, s < t)) be a stochastic flow of kernels (resp.
flow of measurable maps) on the real line. Recall that for all s < ¢, Ky : R — P(R)
is measurable, with P(R) denoting the set of probability measures on R, equipped
with the topology of weak convergence. We say that (see also definition 5.4 p. 1300
in LJR) (K, W) solves Tanaka’s SDE if for all s < ¢, f € C%(R) and z € R,
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with sign(z) = 1;>0 — 1z<0. Note that (2.1) is a generalization of the SDE
dX; = sign(Xy)dWy,

where Wt = WO,t]-tZO - Wt,01t<0-

In LJR (see section 6 and Remark 6.3 p. 1307), it is shown that this implies that
o(W) C o(K) (this is also a consequence of Lemma 3.1 below). Let NX be the
noise of K (see LJR and Tsirelson (2004) for a precise definition)!. The noise NV of
W is a subnoise of N¥. So we can simply say that K solves Tanaka’s SDE (since W
is a function of K). We say that ¢ solves Tanaka’s SDE if §, solves Tanaka’s SDE.
The law of a solution K is given by a Feller convolution semigroup v = (4, t > 0),
where v, is the law of Ky ; (cf. LJR section 2 for a precise definition).

Two particular solutions of Tanaka’s SDE are given in LJR: the coalescing so-
lution ¢° and the Wiener solution K. The solution K" is the only solution of
Tanaka’s SDE such that N = NW. And ¢° is the only flow of maps solution
of Tanaka’s SDE. The Wiener solution can be obtained by filtering the coalescing
solution: KW = E[§,|W]. An explicit expression of K" can be given. For z € R,
set 7, = inf{t > 0; Wy, = —|z|}. Let W+ = (W;F, t > 0) be defined by

W, = Wo, — inf Wo 4.
s<t

It is well known that the law of (Wt+)t20 and the law of (|W;|)¢>0 coincide.
Note that Wyp,. can be recovered out of W+ by Doob-Meyer decomposition. Then
for t > 0,

1
Kgf;(x) = 6$+Sig"($)WO,t1{tSTm} + 5(6Wt+ + 5—Wt+)1{t>7'm}‘ (2.2)

Let 6} be the shift operator such that W4 0 0}V = Wyyp 44n. Then for all s < ¢,
K = K§',_,060%. In LJR, ¢° was defined by the consistent families of its n-point
motions, obtained by transforming the n-point motion associated with K" into a
coalescing motion. A more explicit definition can be given in this special case, as
we will see in the following.

In this paper, we prove the following results.

Theorem 2.1.

a) Each solution K of Tanaka’s SDE defines a probability measure m on [0,1],
with mean 1/2, which is the law of fooo Ko,+(0,dy) for all't > 0.

b) The mapping defined in a) is a bijection between equivalence classes of solu-
tions? of (2.1) and probability measures on [0,1] with mean 1/2. The Feller
convolution semigroup associated with a measure m is denoted {vj"; t > 0}
or v™.

¢) KW is associated with 61/ and ¢ with (8o + 61).

Definition 2.2. Let my and mo be probability measures on [0, 1].

a) We say my is swept by ma if and only if for all positive convex function f,

IWe recall that NX is defined by a family of o-fields FE =0(Kuyp, s<u<v<t)and a
shift operator 6, such that it is P stationary and Ky, 0 0p = Kyyp otp for allu <ov and h € R.

2Two solutions are equivalent when they have the same law, namely when they induce the same
Feller convolution semigroup. In LJR we defined a canonical realization of a Feller convolution
semigroup.
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b) We say that mo is a barycenter of my if and only if there exists a measurable
map P : [0,1] = [0,1] such that Y*m1 = mg and v*(I-my) = I-my (where
I denotes the identity function).

It can easily be seen that a) and b) define partial order relations. The order
defined by a) is the balayage order. The fact that ms is a barycenter of m; is
equivalent to say that if U; is a random variable of law m, there exists a random
variable U of law my, which is ¢(U;)-measurable and satisfying E[U; |Us] = Us.

In LJR, a domination and a weak domination relation between (laws of) stochas-
tic flow of kernels is defined: Let v! and v be two Feller convolution semigroups.
We recall that Definition 3.3 in LJR essentially says that ' dominates v? if and
only if there is a joint realization (K, K?) such that K' (resp. K?) is a stochas-
tic flow of kernels associated to v' (resp. to v?), satisfying E[K'|K?] = K? and
o(K?) C o(K?'), and v! weakly dominates 2 when only the conditional expectation
assumption is verified (o0(K?) needs not be a sub-o-field of o(K!)).

Theorem 2.3. Let m; and my be two probability measures on [0,1], with mean
1/2.

a) v™ dominates v™2 if and only if ma is a barycenter of m;.

b) v™ weakly dominates v™2 if and only if my is swept by mo.

Finally, note that for all z, (¢§(z), t < 7;) is o(W)-measurable. Indeed, for
t < 75, we must have ¢f ,(z) = z + sign(z)Wo . If 6° is the shift operator such
that ¢S ;005 = 05,y 11 p, then we also have Wy 1 00 = Wiip11n and (¢54(2), t <
s+ 7, 00¢) is also o(W)-measurable. We denote by N¢ the noise of ¢°.

3. The coalescing flow ¢°

Let K be a solution of Tanaka’s SDE. Denote by v its associated Feller convolu-
tion semigroup. In LJR, another Feller convolution semigroup denoted v° is associ-
ated to v. A Feller convolution semigroup is determined by its family of n-point mo-

tions. The n-point motion Xt(")’c associated to v° coincides with the n-point motion

of v for t < Ta, with Ta = inf{t;Xt(")’C € A} and A = {z € R*; Ji # j, z; = z;}.
With the consistency of the family of n-point motions, one can see that v°¢ is de-
termined by this property. Note that the one-point motion of v (and of v°) is a
Brownian motion.

Lemma 3.1. For allt > 0 and x € R, Ko (%) = pqsign(z)w, for t < 7, where
Ty = il’lf{t; WO,t = —|£U|}

Proof : Take z > 0. Let 7, = inf{¢; f]_o@o[ Ko(z,dy) > 0}. Then, for t < 7, (2.1)
with f(z) = z implies that [ yKo(z,dy) = 2+W; and (2.1) with f(z) = 2? implies
that [(y — 2 — Wy)?> Ko (x,dy) = 0. This proves that for ¢ < 7, Ko () = dp4w,-
The fact that 7, = 7, easily follows. O

Lemma 3.2. Let Xt") be the n-point motion of v (or of v°) started at (z1,--- , )
¢ A, and 1 = 0. Then for t < Ta, fori> 2,

XM = 2, + sign(a) W,

where Wy = f(f sign(X™Hax Mt and X™ " is a Brownian motion started at 0.
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Proof : It s an easy consequence of Lemma 3.1. |

This Lemma implies that if v and p are Feller convolution semigroups associated
to different solutions of Tanaka’s SDE, then v¢ = pu°. This Feller convolution
semigroup will be denoted v°¢ in the following. Note that v is associated to a
coalescing flow of maps, we will denote ¢°. The law of ¢°¢ will be denoted P¥".

Lemma 3.3. The flow of maps ¢°¢ solves Tanaka’s SDE. Moreover all flow of maps
solution of Tanaka’s SDE have the distribution P¥".

Proof : Let W ; = f: sign(5 ,(0))dy; ,(0). Then W is a real white noise. Lemma
3.2 implies that for all x,

(Pi,t(w) = ('fL’ + Sign(w)WS,t)l{tSTg} + W§,t(0)1{t>7'§}7
with 77 = 7, 0 65. jFrom this it is easy to check that Tanaka’s SDE

of (@) =z + / sign (.., ()W (du)

holds. This proves the first part of the Lemma. The second part of the Lemma is
a consequence of Lemma 3.2. a

4. Proof of Theorem 2.1.

4.1. Construction of a solution. Let m be a probability measure on [0, 1] such that

/ zm(dz) = 1/2.
[0,1]

Let (€s,t, Us,t, Ws,t)s<t be a process, indexed by {(s,t) € R?; s < t}, taking its
values in {—1,1} x [0,1] x R, such that W is a real valued white noise. To describe
the law of (¢,U) knowing W, we set W = Wo ¢ 114>01 — Wiolis<oy (so that for all
s<t, Wy =Wy —W,) and define for all s < ¢

ming ; = inf{W,; u € [s,t]}. (4.1)

For s < t and {(s;,t;); 1 < i < n} with s; < ¢;, the law of (es4,Us¢) knowing
(€si,t:5 Usit:)1<i<n and W is given by

m(du) (udy + (1 — u)d_) (4.2)

when ming; & {mins, +,; 1 <4 < n} (in particular when s > sup;<;<,, ti); and is
given by

n

1. .
min, ,=min,;, ,,
Z 665- t-,Us- t; X . . . (43)
R Card{i; ming, ;, = ming 4}

1= b bl

otherwise. Note that it defines the law of (e, U, W). In particular, we have P(es; =
1|Us,+) = Us+ and the law of U ; is m. We define the filtrations féf’w and ]_-giw

by fé:ng = 0((€u,v, Unyos Waw); 0 <u <w < t) and f(g{;sw = 0((Uu,vs Wa,w); 0 <
u<v<t).

For s € R and z € R, set 72 = inf{t > s; |z| + W, = 0}. For s < t, set
Wj’t = W; — ming ;.

Note that W is (W, .)*. For 2 € R and s < t, set
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@s,t(x) (z + Sign(x)WS,t)l{tS'rf} + es,th—t_t]‘{t>T:}; (4.4)
Ksi(x) = Ouqsign(@yw..l{t<rs} (4.5)
+ (Us,t(sW;ft +(1- Us,t)é_W:t)l{t>Tf}'
We denote by Q™ the law of K.

Proposition 4.1.
(i) ¢ is a coalescing solution of Tanaka’s SDE: For all x € R, s < ¢,

¢
pra(@) =2+ [ sign(pen(@)dV..
(ii) For all z € R, all s < t and all bounded continuous function f,
K1 f(z) = E[f(s,¢(x)|(U, W)].
(iii) K is a flow of kernels solution of Tanaka’s SDE.

Remark 4.2. Note that the one-point motion of a solution of Tanaka’s SDE is a
Brownian motion. If [ @m(dz) # 1/2, it cannot be the case.

Proof : (ii) is obviously checked.(i) follows from the fact that for all s < ¢, ¢§,; and
¢s,+ have the same law and that ¢ is a flow of maps with independent increments.

Lemma 4.3. ¢ is a flow of maps with independent increments.

Proof : For s € Rand z € R, ps5(z) = . Let z € R and s < t < u. We recall
that 77 = inf{t > s; W+ = —|z|}. In the following, it will sometimes be denoted
Ts(z). All the equalities below hold a.s.

On the event {u < 72}, p,(x) =  + sign(z) Wi, 7(ps(z)) =77 < w and

Pruopst(®) = x+sign(@)(Wsi+ Wiw)
=z +sign(z)W,
On the event {77 €]t,u]}, we still have ¢, ¢ () = a:+5|gn( )W and 7 (ps,¢(2)) =

77 < u, thus
Pt © Pst(2) = et Wiy = €W,
since on the event {7% €]t,u]}, mins u = ming, and Wi, = W, — min, , = W,.
On the event {7¥ <t} N{r(W;) < u}, ps(2) —estW ", and

_ +
Pt,u O(ps,t(x) = (Pt,u(eé‘,th,t)
= ft,th—f_u
= esmW;’:u
since W (W) = = 0 and thus min,, = min;,, which implies €5, = €, and
8Tt t
+ _
W, Wtu

On the event {72 <t} N {r(W;,) > u}, pss(x) = €;,:W,}, and
Ptu © Ps,t (IIJ) = SOt,u(fs,th,t)

€s,t (W:,_t + Wt,u)

= es,qu‘fu
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since in this case ming, = ming;, which implies €5, = €, and

Ws""u = W, —ming,
= Wy —Ws;+W;—ming;
— +
- Ws,t + Wtau'

Thus we have, a.s.

Pt 0 Ps,t(T) (z + sign(z)Ws,u) X Liucr=y
+ esuWih X Lire<uy
= @sul(2)
which proves that ¢ is a flow of maps. The fact that it has independent increments
follows from the definition of ¢. d

Remark 4.4. One can also check directly that for all s and x in R, (s, s4+())i>0
is a Brownian motion started at x.

Proof : Note that ¢g +(0) = <-:0,tWtJr and that
+ _ + +
CO’tWt - (COaSWS + Wsat)l{mino,szmino,t} + CO’tWt 1{min0,s <min0,i}'

For s > 0, set Fs = c(Wyvs€uw; 0 <u <v<s). Then Fy = 0(pye; s<u<v<
t}. The expression of the conditional distribution (4.2) implies that, on the event
{ming s < ming .}, the law of €, conditionally to W and o(ey,; 0 <u <v <s)is
1(6_1 4 41). Hence

E[f(CO,tWt+)1{min0,s<min0,t}|'7:s] =

%E[(f(Wﬁ) + (Wi min, . <ming, 1 75]

for all bounded Borel function f.
Moreover (we denote by P; the heat semigroup)

E[f(‘fO,sW:_ + Ws,t)l{mino,szmino,i}|}-S]
= Pt—sf(eo,sW:—) - E[f(fo,sW; + Ws,t)l{mino‘s<min0‘t}|‘7:S]

= P fle0s ) — SEIOV) + W) L ming , <aning, 15
by the reflecting principle applied to W~ + W, for u € [s,t]. This proves that
E[f (e0,sW")|Fs] = Pe—s f (€0,s W)
This proves the Remark. O

Remark 4.5. One can also prove directly that ¢ solves Tanaka’s SDE driven by
W: For all s <t and =z,

t
psi(z) —z = / sign(@s,u(z))dW,.

Proof : Set B; = f(f €0,5d0,5(0). Then B is a Brownian motion, and ¢g(0) =
f(f €;dB,. We also have
|¢0,t(0)| = By + Ly
where L is the local time at 0 of ¢g_.(0). But, since |¢g+(0)| = WOth, we have
)

|00,6(0)| = Wy —mo,q.
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This implies that B = W and

ena(0) = [ sign(in, (0.

For z € R, using the fact that for ¢ > 7§, ¢o,t(z) = ¢0,:(0),

t
/ sign(o,s(2))dW, = (sign(z)W;) 1< ey
0

+ (sign(@)Wre +¢0.6(0) — 9o,73) Lit>rs1-
When t < 7§, sign(z)W; = @o,¢(x) — . We have Wrs = —|z| and ¢,z (0) = 0, so
when t > 77,
sign(z)Wre + ¢0,:(0) — wo,7e = —2 + ©0,:(0).
This proves that
¢
/ sign(o.s (2)) AW = po.s(z) — .

0
This proves the Remark. |
Lemma 4.6. K solves Tanaka’s SDE.

Proof : For all f € C%,

fual@) = 1@ + [ G0tV na@)iWa + 5 [ (prl))d

To prove that K solves Tanaka’s SDE, it remains to prove that (EY>" denotes the
conditional expectation with respect to (U, W))

/ (signf')(sos,m))dwu] = [ EW g pnale)] T,

EU,W

and

EUW [ / p (%,u(x))du] -/ B[Py (@)

S
The second equality is standard. For the first one we apply the following Lemma.

Lemma 4.7. Let H, be a bounded L?-continuous process adapted to the filtration
e,U W
Foi' - Then

t t
EVW [ / Huqu] = / E[H,|FLW]dW,.
0 0

Proof : We take measurable versions of H and of K, = E[H,|FJW].
We have that as the step of the subdivision 0 =ty < t; <--- <t, =t goes to 0
that >0 | Hy,_,Wy,_, 1, converges in L? towards fot H,dW,. For all i,
EU,W[Hti—lwti—lyti] = E[Hti—1|f(§{;5?11]Wti—1,ti
= Kti—lwti—l,ti'

We also have that f(f K, dW, is the limit in L? of Y7 | Ky, Wy, 4,.

Since EVW [0 | Hy, Wy, 4, converges in L? towards E[f(;S H,dW,|U, W],
this proves the Lemma. a

Proposition 4.1 shows the existence of a stochastic flow of kernels such that for all
s < t, the law of K ; is v} ;, and which solves Tanaka’s SDE. The weak domination
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of v™ by p1/2(0-1+61) jg also proved in this Proposition, the extension of the noise

uw
)

of the coalescing flow being given by (f;:t s<t-

Remark 4.8. The noise of K is given by fft =F 5[{ ;W. To each local minimum of
W is attached an independent random variable of law m. The case of ¢° is directly
related to the description given in Warren (1999) for the noise of splitting. The
noise of ¢ is given by f;fv . Among related works let us also mention Le Jan and

Raimond (2004b) and Watanabe (2000).
4.2. Study of a solution of Tanaka’s SDE.

4.2.1. Properties satisfied by a solution. In this section, K is a solution of Tanaka’s
SDE and 6 denotes the shift operator such that K, 00, = Kgyp tyh-

Lemma 4.9.
(i) E[K|W]=K".
(ii) There exists an extension N of N¢ and a subnoise N of N such that
E[5<PC |N] = K.
(iii) For all s <t and z € R,

Ks,t(x) = 5m+sign(z)Ws,t 1t§s+'rmo€s + Ks,t(o) 1t>s+rmoas .
(iv) For all s <t there ezists a random variable U, € [0, 1] such that
Ks,t(()) = Us’t(sw{tsoas + (1 — Us’t)(S*W{"_soas'

In the terminology of LJR, (i) is equivalent to say that K" is strongly dominated
by K, (ii) is equivalent to say that K is weakly dominated by ¢°¢ (cf. LJR section
6.4 and Remark 6.3). We recall that weak and strong dominations are partial
order relations and that strong domination implies weak domination (the converse
is false). In (iv), the Wiener solution corresponds to the case U, ; = 1/2 and the
coalescing solution to the case P(U;y = 1) =1 — P(U,+ = 0) = 1/2. Finally, note
that (i) implies that E[U, |[W] = 1/2.

Proof of Lemma 4.9: (i) and (ii) are proved in LJR in a more general context.
We now consider the probability space associated to the noise IV, the extension of
N¢ given by (ii). On this probability space, ¢°, K and W are well defined, NX,
NW and N°¢ are subnoises of N. Since N" is a subnoise of N¥ and since (f is the
shift operator of V)

‘Pg,t () = (z + Sign(x)WS,t)l{t§3+7—moés} + ‘p.cs,t (0)1{t>3+7—moés}7
(ii) implies that
Ks t(x) = E[(scpg’t(z)|NK]

K
6W+Sign(w)Ws,t ]‘{tgs—i-'rmoés} + E[6<P§,t(0)|N ]]‘{t>s+rmo§s}
= 6Z+Sign(z‘)Ws,t l{tgs_”moés} + Ks,t (0)1{t>s+rzo§s}'

This proves (iii).
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To simplify the notation, take s = 0 and denote W; = Wy 4. Then since ¢§ ,(0) =
t .
fO Slgn(wﬁ,u(o))qua

t
W, = / sign(96,.,(0)) i ., (0),

and it is well known (see for example Revuz and Yor (1999) p. 239-240 and Ex.
1-19 p. 375) that W;" = |¢§ ;(0)|. Thus there exists an event A; such that ¢§ ,(0) =
14, Wi —14:W;. (i) and (ii) then imply that Up, = P(A;|W). O

Since K solves Tanaka’s SDE, K can be modified in such a way that for all
p € P(R) and s € R, ¢ €]s,00[— uKj, is continuous in ¢. We will now work with
this modification. If we set Us; = f]O,oo[ K, (0,dy) and Uy = Uy, then the process
U is constant on the excursions of W (since Ko +(0) = do Ko, charges 0 if and only
if W;" =0).

Note that for all 4 € P(R), (uKo,t)e>0 is a Feller process taking its values in
P(R). Denote by P, the law of this process. It satisfies the strong Markov property:

Lemma 4.10. (strong Markov property) Let T be a finite (Fo,¢)i>0 stopping time.
Then the low of (VKo 14¢, t > 0) knowing of Fo 1 is Purc -

If v = §p and T is such that W, = 0 then uKor = Ko 1(0) = dp. Thus in this
case, (1Ko r4¢, t > 0) is independent of Fy 1 and its law is Py, .

4.2.2. The process Uy,. given W. All the o-fields considered in the following will
be assumed to include all P-negligible sets. We first remark that, by Doob-Meyer
decomposition, a(W}; s <t) = fg’};. Let T and L the random times defined by

s
T = inf{t>0; W;" =1}
L = sup{te[0,T); W;f =0}.
Then T is an F"W stopping time but L is not. Define (H)¢>0 to be the usual
augmentation of (Fg% V 0(L));>0. Define the following o-fields
F; =0o(Xr : X is a bounded F"W — previsible process),
Ff =o0(Xr : X is a bounded FW — progressive process).
Note that (see Jeulin (1980), p. 77) F} = Hr.
Lemma 4.11. F; = ]-'2'.

Proof : We follow Barlow et al. (1989). Note that (W, ,; ¢ <T — L) is a BES(3)
up to its first hitting time of 1, and that this process is independent of F; . For
€ €]0,1[, let T, = inf{t; W/, = €}. Then L + T; is an H-stopping time and
Hevr, = Fp VoW, ;s u < T.). By the zero one law (for the Bessel process),

NesoHr+1, = Ff , which implies that F; = F. a

Lemma 4.12. Let f : R — R be a bounded continuous function. Set X; =
E[f(Uy)|W]. There exists an F" -progressive version of X that is constant on the
excursions of Wt out of 0.

Proof : By induction, for all integers k and n, define the stopping times S¥ and T*
by the relations T° = 0 and for k > 1,

Sk = inf{t>Th 1 W =2"");
TF = inf{t> Sk, W;" =0}.
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Then for t € [SF, TF[, Uy = Usx. Set I, = Up>1[SE, T[. In the following U} will

n'*tn n»n

denote U(S*). Note that for all ¢t € [SX, Tk], E[f(U;)|W] = E[f(UF)|W] a.s., and

n>-n

that E[f(UF)|W] is F¥. measurable since §gx (W) and Fgi are independent.

We define a sequence X™ of FW-progressive processes by induction. For t €
[Sk, TE[, set XP = E[f(U)W] and X? = 0 if t & I. Then X° is FW-progressive.
Suppose a F"W-progressive process X" is defined such that for t € [SF, T*[, X =

n» n

E[f(UK)|W] and X} = 0if t ¢ I We now define X"t1. For t ¢ I,41, set
X+ = 0. On the event t € [S% 1, T 1[D [SK,TF[ (note that for all k there

n»—n

exists ! such that ]Sk, T% ]S, ,T!,4]), set X = X3, This implies that
Xp = XM for t € I,. On the event t €]S%,,, T ] and T nNSh 1, T ] = 0,
set X”+1 = E[f(UL,,)|W]. The process X" is FW -progressive and for all ¢t €
]Sn—i-lJTn—i-l] th+1 = E[f( n+1)|W] a.s.

For all t, X" is a stationary sequence. Set X; = limsup,, ,  X. For all t>0,
a.s., there exist integers k and n such that t € [S¥, T*[. Thus a.s., X; = X;. This

proves that X is a modification of X, and X is F W _progressive. O

We now take for X this " -progressive version. Then Xt = E[f(Ur)|W] is
F-measurable.

Lemma 4.13. E[Xr|F[ ] = E[f(Ur)].

Proof : Let S be an F"-stopping time and A € F¥. Set ds =inf{t > S: W;" =
0}. Note that a.s. on the event {S < L}, dg < L. This implies that {S < L} =
{ds < T} (up to some negligible set) and that 141y5<r} = 1al{gs<7}, Which is
F ¥ -measurable. Now

E[X7T1alggs<ry] = E[f(Ur)lal{as<t}]
= E[f(d0Ko,r(]0,00[))1al{as<1}]
= E[f(doKo,r(]0,00[))]P(AN{ds <T})

by the strong Markov property (Lemma 4.10) at time dg. Since F is generated
by the random variables 141{s<r}, this implies the Lemma. |

The fact that F; = F; and the fact that X7 is F; measurable imply that
Xt = E[f(Ur)|W] = E[f(Ur)] a.s. Since this holds for all bounded continuous
function f, this proves

Lemma 4.14. Ur is independent of W.

The result of this Lemma also holds if we replace T by inf{t > 0: W;" = a} for
all positive a. This implies that

Lemma 4.15. For all n, (Urlf)k21 is a sequence of independent identically dis-
tributed random variables. Moreover, this sequence is independent of W.

Proof : Denote by pu, the law of U} = Ugi. Lemma 4.14 shows that U} is inde-
pendent of W. Using the strong Markov property at time 7! and Lemma 4.14,
we show that the law of U¥ knowing Fpr-1 and W is pn. The Lemma now easily
follows. o

Lemma 4.16. The process U is stationary. Denote by m the law of Uy, then for
all positive t, on the event {W;" # 0}, the law of U; knowing W is m.
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Proof : We have for all positive ¢t and all bounded continuous function f: R — R,

Ef (U)W s 20y = HILH;OZE[lte[S’;,Tg[f(UJf)|W]
k
JL’&; Liegsn,mat ( / f dﬂn) :

= Jim, ([ ) Yy + 8]

where €, (t) = ligr, l{Wt+¢0}(f fdun) < ||f||001t€1n1{wt+¢0}- On the event {W;" #
0}, 14¢1, = 0 as n — oo. This implies that €,(t) converges towards 0 as n — oo
and that (ffd,un)l{W;r#O} converges towards E[f(U)|W]1 yy+ 40y In particular
this shows that [ fdu, converges, its limit being E[f(U;)] (since P(W;" # 0) = 1).
Thus U is stationary (lim [ fdu, does not depend on t) and E[f U)Wy + 4o =
(f fd,u)th+¢0, where p is the law of U;. The Lemma is proved. O

Thus we have proved

Proposition 4.17. Let K be a solution of Tanaka’s SDE. Then there exists a
probability measure m on [0,1] such that f[o 1 zm(dz) = 1/2, a standard Brownian
motion W and a random variable Uy of law m and independent of W such that

Kot(7) = Ogisign(zyw, Lit<rat + Uiyt + (1= U)0_yyrs N gisr, s
where T, = inf{t > 0: W; = —|z|} and W;} = W, — infs<; W.

This property shows that the law of Ko is v{®. Thus the Feller convolution
semigroup associated to K is v™. This finishes the Proof of Theorem 2.1.

5. Proof of Theorem 2.3
5.1. The filtration f({f’t. Let K be the solution of Tanaka’s SDE constructed in
section 4.1. Then
fOK,t =o(Uy) V U(Uu,vl{mino,t;éminu,v}; 0<u<v<t)V f(m
and, by construction, U; is independent of the o-field

0(Uu,v1 tmin,, ,4min, ,); 0 < u<v <t)VFgh.

5.2. Strong domination. We prove the first part (a) of Theorem 2.3.

Assume that »™! dominates v™2. Then, on N™ the noise associated to v™,
there exists a subnoise N2 such that K2 = Eqm:[K'|N?] has law Q™2 (K denotes
the canonical stochastic flow of kernels of law Q™) and N? is the noise of K.
Note that the noise of W is a subnoise of N2.

Note first the following easy lemmas.

Lemma 5.1. Let A, B and C be o-fields such that A C BV C and AV B is
independent of C. Then A C B a.s.

Proof : For all A, B and C be respectively bounded A, B and C measurable
functions,

E[ABC] = E[AB]E[C] = E[E[A|B]B]E[C] = E[E[A|B]BC]
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which implies A = E[A|B] a.s. O

Lemma 5.2. Let N' and N2 be two noises such that N2 is a sub-noise of N1.
Then for all t, FL ; and F}, are independent conditionally to N*.

Proof : Let B (resp. F}) be bounded F _ ;-measurable (resp. F} , -measurable).

Let P2, (resp. F7.) be bounded F? _ ,-measurable (resp. F7, -measurable).

Then (using the fact that 7', and F}  are independent, that N? is a subnoise
of N* and that 72  , and F7, are independent)

E[PtlFt1Pt2Ft2] = E[Ptlptz]E[Ftlth]
= E[E[Pt1|N2]Pt2]E[E[Ft1 |N2]Ft2]
= E[E[Ptl|N2]E[Ft1|N2]Pt2Ft2]-
Since F? oo = F2 ot V Fi oo, this proves that
E[PtlFt1 |N2] = E[Pt1|N2]E[Ft1|N2]-
O

Note that for all 0 < u < v < ¢, on the event {min, , = ming.}, Uy = Uy,
where U = (UI,U2) and Ut = UO,t-

Lemma 5.3. For all positive t, Uy = (U},U?) is independent of
0 ((Usor Ust o)L (ming . zmina oy = 0 <u <o <)V Fgh.

Proof : Let (Uiavi)ISiSn be such that 0 S u; < v; S t. Let (fi)ISiSN be bounded
measurable functions. Then the random variables of the form

n
Z = H (fi(UUi,vi)1{minui,vi¢mino,t})
i=1
generate the o-field o(Uulimin, ,2ming,} : 0 < v < v < t). Let A be the
complementary of U, [u;,v;]. Then A can be written as the disjoint union of
intervals: A = U¥_,]s;,t;[, with k < n+1, s; € {0} U{v; i < n} and t; €
{t} U{u;; i <n}. Then
n k

ﬂ{minui,vi #ming;} = U{mino,t = min,; 4, }.

i=1 j=1
Let F : [0,1]? — R be bounded measurable. Since, on the event {ming; = min,; 4, },
Ui = Us, 1;, we have

k
E[F(Uy)Z|W] = Z E[Zs,F(Us;,t;)Zt; W11 {min, , min
j=1

Sj,tj}

where
Zy= II  fiUuw)
{i vi<s;j}
is J§ s,-measurable and

th,t = H fl(Uu'L,'Uz)

{4 ui>t;}
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is .7-'t1j 4measurable. Lemma 5.2 then implies that
BlZs, F(Us;t;)Ze;4IW] = E[Z,[WIE[F (Us; ;) [WE[Zy; 4| W]
= E[F(Us, ;) \WIE[Zs, Zy; «|W].

Like in section 4.2.2, one can prove that for all s < ¢, Us; is independent of W, its
law being independent of s and ¢. we denote the law of U, ; by m"2. Then we have

k
E[F(Uy)Z|IW] = m1’2(F) x EE[ZSjth,t|W]1{min0,i=minsj,t].}
j=1
= m"*(FE[Z|W].
This proves the Lemma. |

We now apply Lemma 5.1 with A = o(U7), B = o(U}), € = 0(Uu,ol{min, ,»
min,,}: 0Su<v< t)VFgY,. This proves that o(U?) C o(U}). Thus U7 = (U})
for some measurable 1). We conclude using the fact that E[U}|K?] = E[U}|U?] =
U?.

On the converse, assume that my = ¥*my and (I - ma) = ¢¥*(I - my). Let W
be a Brownian motion started at 0 and U an independent [0, 1]-valued random
variable of law m;. Let # be the law of K;, where K; : R2 — P(R?) is defined by
Ki(a,y) = K} (2) ® K}(y) where

Ktl (.CL') = (Sw—i-sign(a:)Wt 1{t§7'm}
+ (U5Wt+ + (1 - U)(S_Wt+)1{t>‘rm}7

KtQ(y) = ‘sy—i-sign(y)th{tS‘ry}
b )y + (1= YONS_ )iy

(W;t =W, — infs<; W, and 7, is the first time W hits —|z|.) Then like in section
4.1, we prove that © defines a Feller convolution semigroups to which is associated
a stochastic flow of kernels K on R2. Then K, (z,y) = K}, (z) ® K2 ,(y), where
K' and K? are respectively stochastic flows of kernels on R of law Q™! and Q™2.
And we have

E[Ké’t|K§,tl, RRE) Kfn,t] = E[Ké,tl |Kg,t1] Tt E[Ktl",t|Kt2",t]
= Kg,tl "'Kth,t
= K3,

This proves part (a) of Theorem 2.3.

5.3. Weak domination. We prove part (b) of Theorem 2.3.

Assume v™! weakly dominates »™2. Then there exists an extension N of N™
the noise associated to ™, and a subnoise N2 such that K2 = E[K'|N?] has law
Q™2 (K! denotes the canonical stochastic flow of kernels of law Q™!) and N? is
the noise of K2. We then have, for all positive ¢, E[U}|K2] = U2, and Jensen’s
inequality implies that m; is swept by mo.

To prove the converse statement, we prove the following Lemma which is a
consequence of Rost Theorem:
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Lemma 5.4. Assume my is swept by my, then there exists a probability space
(Q,F,P) on which exists a random variable X of law m1 and a sub-o-field G such
that the law of E[X|G] is ma.

Proof : (cf. Dellacherie et al. (1992), chap. XVIII p. 47): On some filtered
probability space,

(Qa f7 (ft)ty P)
there exists a F;-Brownian motion B with initial distribution ms and a finite stop-
ping time T such that By = E[Br|Fo]. O

We now finish the Proof of part (b) of Theorem 2.3. Like in section 4.1 we
construct (U, U2, W) by replacing e (in section 4.1) by U' and U by U? such that
for all s < t, the law of U}, is m; and the law of U7, is my and E[U} ,|UZ,] = UZ,.
This way we construct K and K2, such that the law of K! is Q™!, the law of K?
is Q™2, and K? = E[K'|K?). O
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