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Abstract. Benjamini et al. (2003) introduced the concept of a dynamical random
walk. This is a continuous family of random walks, {S, () }nenter- Benjamini
et al. (2003) proved that if d = 3 or d = 4 then there is an exceptional set of ¢ such
that {Sn(t) }nen returns to the origin infinitely often. In this paper we consider
a dynamical random walk on Z2. We show that with probability one there exists
t € R such that {S,(¢)}nen never returns to the origin. This exceptional set of
times has dimension one. This proves a conjecture of Benjamini et al. (2003).

1. Introduction

We consider a dynamical simple random walk on Z2. Associated with each n is
Poisson clock. When the clock rings the nth step of the random walk is replaced
by an independent random variable with the same distribution. Thus for any fixed
t the distribution of the walks at time t is that of simple random walk on Z? and
is almost surely recurrent.

We prove that with probability one there exists a (random) set of times ¢ such
that S,,(t) # 0 Vn € N. Thus we say that recurrence of simple random walk on Z?2
is dynamically sensitive.

More formally let {Y;™},, nen be uniformly distributed i.i.d. random variables

chosen from the set {(0,1), (0,-1),(1,0),(-1,0)}. Let {Tém)}mzo,neN be an inde-
pendent Poisson process of rate one and T,(LO) = 0 for each n. Define
Xn(t) = v

for all t € [Ty(tm),Ty(Lm+1)). Let,
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Thus for each ¢ the random variables {X,,(t)}nen are ii.d.
Define the exceptional set of times

Exc = {t: Sp(t) # OV n}.
Our main result is

Theorem 1.1.
P(Ezc #0) = 1.
Moreover, Exc has dimension 1 a.s.

Remark 1.2. Our methods can be used to calculate a rate of escape. For any
a < 1/2 there is a set of t such that |Sp(t)] > n® for all n. The limits of our
method yield that with probability one there is a time t such where the rate of
escape is at least

|Sn(t)| > n.5—1/(10gn)1/4+6

for all n.

Benjamini et al. (2003) introduced the concept of dynamical random walk and
showed that the strong law of large numbers and the law of iterated logarithms are
satisfied for all times almost surely. Thus these properties are said to be dynami-
cally stable. They also proved that in dimensions 3 and 4 that the transience of
simple random walk is dynamically sensitive and in dimensions 5 and higher that
transience is dynamically stable. Khoshnevisan et al. (2004), Khoshnevisan et al.
(2005) have studied other properties of dynamical random walks. Haggstrém et al.
(1997) studied similar questions of dynamic stability and sensitivity for percolation.

Dynamical random walk and the results in this paper are related to several other
topics in probability. Most closely related to the work in this paper is a result of
Adelman et al. (1998) about sets missed by three dimensional Brownian motion.
The projection of Brownian motion on R? onto a fixed plane yields Brownian motion
in the plane which is neighborhood recurrent. For a fixed plane the projection of
almost every Brownian path onto the plane is neighborhood recurrent. They proved
that with probability one there is a (random) set of exceptional planes such that
the set of times that the projected path is in any bounded set is bounded.

The questions studied about dynamical random walks and dynamical percolation
have a strong resemblance to questions of quasi-everywhere properties of Brownian
paths. These are properties that hold simultaneously for every cross section of a
Brownian sheet with probability one. See Fukushima (1984) and Penrose (1989).

2. Outline

We start by introducing some notation. Let so = 1 and sj, = k922%” for k > 1.
This is a sequence of stopping times. Define the event Ry(t) to be
Ry (t) = {3n € {sk-1,...,5,} such that S,(0) = 0}.
For z € Z? we use the standard notation |z| = \/(z1)2 + (22)2. Define the annulus
Ay ={zez®: 2¥ <|a| < k'02F}.
Define the event Gi(t) to be
Gr(t) = {Ss
Also define the events G (0,t) = G(0) N

k(t) € Ak}'
G (t) and Rg(0,t) = Rr(0) N R (¢).
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En(0) = (MGi(0)) \ (V1" Ex(0)) -
Ep(0,t) = Ep(0) N Ep(8).
We will show in Lemma 4.1 that there is an integrable function f(t) such that for

all M
P(En(0,1))

®Ea o)y 1" 21
Theorem 1.1 follows from Lemma 4.1 by the second moment method.
We obtain (2.1) by multiplying together conditional probabilities. Some of our
bounds will hold only when k is sufficiently large compared with 1/¢. For this
reason we define K = K (t) to be the unique integer such that

1+ |logt| > K > |logt| (2.2)
fort <1and K =0if ¢t > 1. Our main lemma is the following.

Lemma 2.1. There is a positive sequence gy such that

(1) 2(1)0 i < 00, )
(2) (P(Ek(0)|Ek_1(0))) >1—2—gi for allk > 1, and

(3) P(Ex(0,0)|Ex 1(0,8)) <14 +gx for all k> K.

The next section is dedicated to proving Lemma 2.1. In the last section we show
how Lemma 2.1 implies Theorem 1.1.

We end this section with a few notes about notation. We use log(n) = log,(n).
We use C as a generic constant whose value may increase from line to line and
lemma to lemma. In many of the proofs in the next section we use bounds that
only hold for sufficiently large k. This causes no problem since it will be clear that
we can always choose C' such that the lemma is true for all k.

3. Proof of Lemma 2.1

For the rest of the paper we will use the following notation for conditional prob-

abilities. Let
PPl (x) = P (] S,,_, (0) = z)
and
PPV k1) =P (% S5,_,(0) =z and S, _, (t) = y)

The two main parts of the Proof of Lemma 2.1 are Lemma 3.3 where we get upper
and lower bounds on P**~*(R.(0)) and Lemma 3.6 where we get an upper bound
on P™¥*~1(R;(0,)). The main tool that we use are bounds on the probability
that simple random walk started at z returns to the origin before exiting the ball of
radius n and center at the origin. The probability of this is calculated in Proposition
1.6.7 on page 40 of Lawler (1991). We use only a weak version of the result there.

Let 1 be the smallest m > 0 such that S, (0) = 0 or [S,(0)] > n.

Lemma 3.1. There exists C such that for all x with 0 < |z| < n
log(n) — log |z| + C
log(n) '

log(n) —log |z| — C
log(n)
We will frequently use the following standard bounds.

< P(Sp(0) = 0[S0 (0) = z) <
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Lemma 3.2. There exists C such that for all x € Z2, n € N and m < \/n

P (3n' <n:Sp(0) >my/n) < % (3.1)
and
P (|5n(0) _al< %) < %

Proof : If |S,:(0)| > m+/n then one component of the random walk has absolute
value bigger than m+/n/2. Thus the left hand side of (3.1) is at most four times
the probability that one dimensional simple random walk is ever more than m+/n/2
away from the origin during the first n steps. The probability that a one dimensional
simple random walk has ever been larger than m+/n/2 in the first n steps is at
most twice the probability that one dimensional simple random walk is greater
than m+/n/2 after n steps. Chebyshev’s inequality then gives the first bound.

To bound the probability that |.S,, (0) —z| is too small we note that since m < \/n

the number of y € Z? such that |y — z| < Y2 is less than 1%, There is C such that

for any n € N and z € Z? the probability that S,(0) = z is less than C/n. O
Lemma 3.3. There exists C such that for any k and any x € Ap_4

2 Clogk b1 2 Clogk

- — < P* < - .

k k2 = (Rk (0)) =k + k2

Proof : If the random walk returns to 0 in less than sy steps then either it returns
to 0 before exiting the ball of radius /sy log(sg) or it exits the ball in less than s
steps. Thus by Lemmas 3.1 and 3.2 our upper bound is

log(y/5 log(s1)) ~ log2+) + ¢ ¢
log (/5 log(sk)) (log sx)?
S5logk+k>+Clogk— (k—-12+C C
5logk + k2 + log(2k2 + 101log k) k*
2k + Clogk
k2 ’
If the random walk returns to 0 after sx_; but before exiting the ball of radius
\/5k/ log(sk) and it is outside the ball of radius /5x/log(sx) at time s then it has
returned to 0 between times sg_; and si. Thus by Lemmas 3.1 and 3.2 our lower
bound is

log(/5i/ log(sk)) —log((k = 1)*°2¢-V") —¢ ¢
log(y/sk/ log(sk)) (log(sk))?
5logk + k> — Clogk —10log(k —1)— (k—1)2-C C
5log k + k2 — loglog sg, Kt
2k — Clogk
k2 '

Lemma 3.4. For any k and x € A1
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Proof : This follows directly from Lemma 3.2 |
Now we start to bound the probability that both walks return to the origin
between times s;_1 and si. We first need the following lemma.

Lemma 3.5. There exists C such that for all k, n > sp_1 + s;/2'%%, for all
I C{1,...,n} with |I| > s;/2'°% and for all {z;(t)}icqr,...np\1

P (3j € {n,...,sr} such that S;(t) = 0| {zi(t)}icq1,...n}\1) < %
Proof : Rearranging the first n steps of a random walk does not change the
random walk after time n. The probability is largest when n and |I| are as small
as possible. Thus it causes no loss of generality to assume that n = s,_; + s5,/21°%
and I = {Sk,]_ + 1,.. . ,TL}.

If the event happens then either

(1) 1Sa(t)] < 211

log |I]?

@) 15a®)] > X and

log [1]
inf{j : j >n and S;(t) = 0} < inf{j : j > n and |S;(¢)| > +/sklog(sk)}
or
(3) there exists j' such that n < j' < s; and |Sj (t) — Sn(t)| > .5¢/5k log sp.

The probability of the first event is bounded by the second half of Lemma 3.2
replacing n with |I| and m with log|I|. The probability of the second event is
bounded by Lemma 3.1 replacing n by /s log(si) and x by S, (t). The probability
of the third event is bounded by the first half of Lemma 3.2 replacing n with sy,
and m with .5log(sg). Thus our upper bound is

c log (/s log(sk)) — log (%) +C c

< + +
(log|1])? log(y/sk log(sk)) (log s¢)?
c Slog(sk) + log(log si) — (.510g s, — log(2°%) — log(log |I|)) +C
< +
(log|1])? 5log(sk) + log(log(sk))
< C N Ck+Clogk+C
(2k% — 10k)? k2
. ¢ o
(2k2 — 10k)2 ' K2
¢
e

O

Lemma 3.6. There exists C such that for any t, any k > K(t) and any z,y € Ag_1

U ke C
PPUR (R (0,1) < 1.
Proof : Let

IC {sk_l, ce,Sp—1+ 22(k—1)2/k2}
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be the set of ¢ such that conditioned on the Poisson process, X;(t) and X;(0) are
independent. Let B be the event that there exists n such that

Sp—1 <n<sp_1+ 22(’“_1)2/1412

such that S,(0) = 0. Let D be the event that there exist n and n' such that

(1) sp 1+ 22(’“_1)2/k2 <n<n' <s

(2) Sn(0) =S, (t) =0 and

(3) [I] > sk/2'%.

If Ry, (0,t) occurs then either the first return happens before step s;_y +22(—17/

k? or after that step. The probability that the first return is before is bounded by
twice the probability of B. If the first return is after then either |I| < s;/2'0%

or |I| > si/2'%. The probability that the first return is after and |I| is large is
bounded by twice the probability of D. Thus we get that

PV (R(0,0) < 2PHIA(B) 4 PRVATL(T] < 5,/210%) 4 2P0 (D),
By (2.2) min(1,¢) > 1/2K. As k > K this implies the expected size of |I| is

92(k—1)? 1. 92(k—1)? 92(k—1)? 92k? Sk
T > §m1n(17t) %2 > OK+1}2 > W > QW.
Thus by Chebyshev’s the probability that |I| < s;/2%% is at most C/k?.
By Lemma 3.2 the conditional probability of B is bounded by C/k%. In order
for D to happen we first need that the event R;(0) occurs. By Lemma 3.3 the
probability of this is bounded by C/k. Now we condition on the following events
(1) {Xi(0)}io
(2) the Poisson process,
(3) |I| > 2710%g, and
(4) {Xi(®)}ieqr,....np\1
and bound the probability that there exists n' € {n,...,sg} with S,/ (t) = 0.
By the first condition in the definition of D and (3.2)

(1—e™) (3.2)

9(k—1)?
n> Sk_1+ e > Skp_1 + Sk/210k
and Lemma 3.5 applies. Thus the conditional probability of D given Rj(0) is at

most C/k.
Putting this together we get

PTVEL(RL(0,) < 2PTPETY(B) + PRkl (1) < b 4 2priol(D)

210k
< 2% 09 (¢
- k2 k2 k k

C
< R
O
Proof of Lemma 2.1: We let
Clogk
gk = 2

Clearly this satisfies the summability condition. Note that if Ej_;(0) occurs then
Gr—1(0) occurs and S;, _,(0) € Ag_;. Since simple random walk is Markovian, for
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any x € Ay
P(E(0)|Ex_1(0) and S,,_,(0) =2) = P F1((Rk(0))° N G4 (0)).
Along with Lemmas 3.3 and 3.4 this tells us that
P(E,(0)|Ex_1(0)) > min P (Er(0)|Ex_1(0) and S,, , (0) = =)

TEAR-1

> min PTF(Re(0)7 NG (0))

> min PT((R(0)7) = max P ((Gr(0)7)
> - max PYU(RO) - o

> 1- (%+Cf§k> —k%

Squaring both sides yields condition 2 of Lemma 2.1.
Also note that if Ex_1(0,t) occurs then Gx_1(0,t) occurs and

Ssks—l (0)3 Ssk—l (t) € Ak—l-

Since dynamic random walk is Markovian, for any z,y € Ag_1

P (Ee(0,)|Be1(0,) and Sy, (0) = 2,55, () =)

= PR L((Re(0) N (Bx(1)° N Gi(0,1)).
Combining this with Lemmas 3.3 and 3.6 we get that
P (B, (0,8)| B 1(0,1))
< max PTUFTL((R(0)C N (R(1)C N Gr(0,1))

w7y€Ak—1

< max PP (R (0) N (R (1))
< 1-2 zg‘i&l P>F=1(R,(0)) + , max P2V *=1(R,(0,1))
< 14 Closk

This proves condition 3 of Lemma 2.1.

4. Proof of Theorem 1.1

Define
P(En(0,1))
(P(EM(0)))*

Lemma 4.1. There exists C such that for any t and any M

f(t, M) =

f(t, M) < C(1+ |logt|)*. (4.2)
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Proof : Choose n such that

% +g(k) < .5
for all k£ > n. Thus we get
fe ) = EEuGD)
(P(EM(O)))
P(E,(0,t)) 1 P(Ek(oatHEk—l(O:t))
(P(EH(O)))Z Pl P(Ek(O) | E,H(O))z

K M

S;H%Hm, (4.3)

2 4 4
(P, O) " wmia 9k i

where the first equality is repeating (4.1) and the inequality (4.3) comes from
Lemma 2.1.
The inequality
22—z <In(l —z) < -z

holds for all z € (0,.5). Thus

1n<ﬁ 1_;) - i ln(l—%—gk)

4
k=n+1 k Gk

< Y I 2
A Gk L 9k
k=n+1
4
< C+ Z E
k=n-+1
< C+4In(K).
By exponentiating both sides and (2.2) we get
s 1
Il —— <CK*<C@+|logt))*. (4.4)
k=n-+1 1= %=k
M 4 [e’s} [e%s}
1-44g 4 4
K+1 k K+1 K+1
= 4 4 4 2
< _= S N S
< D —rtm ( (k +gk> (k +gk> )
K+1
. 16  8gr
< 229k+k_2+7+gk
K+1
< C.
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Exponentiating both sides we get for all M
M 1— 4

H T 9k

4
Krl TR T 9k

Putting together (4.3), (4.4) and (4.5) we get

<C. (4.5)

ft, M) < 5C(1+ |logt])*C < C(1 + |logt)*.

(P(En(0)))

Proof of Theorem 1.1: Define
Ty = {t:te€[0,1] and En(t) occurs}
and
T =Ty
Now we show that T' is contained in the union of Exc and the countable set
A= Upmr™M)ul.

If t € N§°Ts then ¢t € Exc. Soif t € T\ Exc then ¢ is contained in the boundary
of Ty for some M. For any M the boundary of T is contained in A. Thus if
t € T\ Exc then t € A and

T Cc ExcUA.
As A is countable, if T' has dimension one with positive probability then so does

Exc.
By Lemma 4.1 there exists f(t) such that

/ " t)dt < oo
0
and for all M P(Ey (0.4))
(0,1
P (En(0))? < f(M,t) < f(2) (4.6)
Let L£(x) denote Lebesgue measure on [0,1]. Then we get
E(L(Tun)?) = /1 /1 P(Ep(r,8))dr x ds (4.7)
0o Jo
1o
< /0 /0 P(Ew (0, |s — r[))dr x ds (4.8)
< /0 2/0 P(Eu (0, ))dr x dt
< 2 [ fOPE0) (49)
0
1
< 2P(En(0))? / f(t)dt. (4.10)
0

The equality (4.7) is true by Fubini’s theorem, (4.8) is true because
Ewm(a,b) = En(b,a) = Ex(0,[b— al)
and (4.9) follows from (4.6).
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By Jensen’s inequality if h(z) = 0 for all z ¢ A then

2 E(h)
E(r%) > PA) (4.11)
Then we get
2 [ fod > B (4.12)
0

E(L(Ty))?
) (4.13)

P(Fu(0))°

2 BT £0)’

where (4.12) is a restatement of (4.10), and (4.13) follows from (4.11) with £(T'ar)
and Ty # 0 in place of h and A.
Thus for all M

P(Ty # 0) Zfo

As T is the intersection of the nested sequence of compact sets Ths

1
P(T #0) = hm P(Tu #0) >
T2y £ at
Now we show that the dimensions of 7" and Exc are one. By Lemma 5.1 of
Peres (1996) for any 3 < 1 there exists a random nested sequence of compact sets
F}, C [0,1] such that

P(r € Fy) > C(sy) ™" (4.14)
and
P(r,t € F},) < C(sg) 2P|r —t|75. (4.15)
These sets also have the property that for any set T if
P(TN(NPF,) #0)>0 (4.16)

then T has dimension at least 3. We construct Fj to be independent of the dy-
namical random walk. So by (4.1), (4.2), (4.14) and (4.15) we get

P(T‘,te TMﬁFM) P(’I‘,t ETM)P(’I‘,tE FM)

PlreTynNFy)?2 — PlreTy)?P(re Fy)?
P(Ep(r,t))P(r,t € Fyp)
P(EnN(r))?P(r € Fpy)?

IN

C (1 + ‘log|r —t|D4 Ir — . (4.17)

The same second moment argument as above and (4.17) implies that with posi-
tive probability T satisfies (4.16). Thus T has dimension 3 with positive probability.
As

T C (Excn[0,1)) UA,

and A is countable, the dimension of the set of ExcN[0, 1] is at least 8 with positive
probability. By the ergodic theorem the dimension of the set of Exc is at least
with probability one. As this holds for all < 1 the dimension of Exc is one a.s. [
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Finally we briefly state how to modify the proof to calculate the rate of escape
mentioned in Remark 1.2. For any € > 0 we replace the event Ry (t) with

Ri(t) = {ﬂn € {Sk—1,.-.,5k} such that |S,(t)| < n-5*1/(log(n))'25+€} ‘

Instead of Lemma 3.1 we use Exercise 1.6.8 of Lawler (1991). The proof goes
through with only minor modifications.

Acknowledgments. I would like to thank David Levin and Yuval Peres for intro-
ducing me to this problem and for suggesting the approach of modifying the paper
of Adelman, Burdzy, and Pemantle.
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