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Abstract. Let —oo < f < a < co. Denote the inverse functions of s = g,(t) =
ftOO u_a—le_udu, t € (07 OO)7 and
1
s =gpa(t) = (D(a—pB)~" / (1 —u)* Py du,
¢

€ (0,1), by t = fo(s) and ¢t = fg,4(s), respectively. Improper stochastic integrals

I fa(s)dX " and I F5.0(5)dX " with respect to Lévy processes X =

{X"™:t > 0} on R? having distribution s at time 1 are studied. Denote the
distributions of these improper integrals by ¥, (1) and ®3 ,(p), respectively. Thus
operators ¥, and ®p , from p to ¥, (u) and ®g (1), respectively, are defined. The
domains of ¥, and ®3 . and the ranges of ¥, are described. They are subclasses
of the class ID(R?) of infinitely divisible distributions on R?. The ranges of ¥,
constitute a decreasing family which includes the Goldie-Steutel-Bondesson class
B(R?) for @« = —1 and the Thorin class T(R?) for @ = 0. The relation ¥, =
V3Pg o, = Pg,o¥3, with the equality of the domains, is established. The improper
stochastic integrals in two generalized senses (compensated and essential) and in
one restricted sense (absolutely definable) are also studied.

1. Introduction

Let ID(R?) be the class of infinitely divisible distributions on R¢. For each
i € ID(R?) denote by X = {X{": ¢ > 0} a Lévy process on R? with distri-
bution g at time 1. Given a real-valued nonrandom function f(s) of s € [0, 00),
we denote by ®7(u) or ®¢p the distribution of fooo_ f(s)dX ) When this improper
stochastic integral is definable. This ®; can be considered as an operator with do-
main D(®5) = D(®5; R?) being the class of p € ID(R?) for which [~ F(s)dx ™
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is definable and range R(®f) = R(®5;RY) = {®f(p): p € D(P4;R?)}. The range
is again a subclass of ID(R?). We are concerned with two families of ®; which
generalize the following three examples:

1. If f(s) = e~%, then D(®;) = IDig(R?), the class of infinitely divisible
distributions on R? with finite log-moment, and R(®;) = L(R?), the class of self-
decomposable distributions on R¢ (Wolfe (1982), Gravereaux (1982), Jurek and
Vervaat (1983), Sato and Yamazato (1983)). We denote this ®; by ®. The station-
ary distribution of the Ornstein—Uhlenbeck type process driven by Lévy process
X(®) is equal to ®(p).

2. Let log" 0 = 0V logh for § > 0. If f(s) = logt(1/s), then &; is denoted
by T and R(Y) = B(R?), the Goldie-Steutel-Bondesson class on R?, with D(Y) =
ID(R?) (Barndorff-Nielsen and Thorbjgrnsen (2002a,b), Barndorff-Nielsen et al.
(2006)).

3. Define f(s) by s = f;(os) u~le “du. Then ®; is denoted by ¥y, D(¥y) =
IDiog(R?), and R(To) = T(R?), the Thorin class on R? (Barndorff-Nielsen et al.
(2006)).

The three operators ®, T, and ¥ are related as

To = To = 37, (1.1)
which is shown in Barndorff-Nielsen et al. (2006).
Let —0 < B8 < a < 0. Let
oo
ga(t) = / u e Udu fort € (0,00), (1.2)
t

and let a, = go(0+4), which equals I'(—a) for a < 0 and oo for a > 0. Denote by
fa(s) =t for 0 < s < a, the inverse function of s = g,(¢) for 0 < ¢t < co. Let

1 1
3 / (1—w)* P ly=>"tdy for 0 <t <1, (1.3)
¢

98,a(t) = Ta—3)

and let ag,o = 9g8,a(0+), which equals I'(—a)/T'(—f) for & < 0 and oo for a > 0.
Denote by fz,a(s) = t for 0 < s < ag, the inverse function of s = gg 4(t) for
0 <t < 1. The function f,(s) strictly decreases from oo to 0 as s goes from 0 to
ao; 5.0(8) strictly decreases from 1 to 0 as s goes from 0 to ag o. For u € ID(R?),
we denote

Vo) = B, (1) = £ (/m_ fa(s)dXs(”)> for a3 0,
0
I'(—a)
T, (pu) = (u) =L < / fa(s)dX§“)> for a < 0,
0
Ppa(p) =P, (1) =L </°° fg,a(s)ngl‘)) fora >0, 8<a,
0

I'(~a)/T(-B)
Bpa() = s, (0 =L | [ fra(s)dX®) ) for f<a <0,
0

whenever the integral or the improper integral is defined. Here, for an R¢-valued
random variable Y, £(Y") denotes the distribution of Y. The operator ¥, coincides
with that of the third example above; ®_; ¢ and ¥_; coincide with ® and T in the
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first and the second example above, respectively. Furthermore,
Ja1,at) =(1/a)t*=1), for1a(s)=14+as) > fora#0
and
g8,—1(t) = (/T(=B)(A =) P71, f5-1(s) = 1= (L(=H)s)" /7Y for p < 1.

In this paper we study, first, the domains of ¥, and ®g, 4, second, the relation
between ¥, and ®g3 ., and third, the ranges of ¥,.

The following asymptotic behaviors of f, and fg, are proved by standard tech-
niques.

Proposition 1.1. We have

fa(s) ~log(1l/s) assl0 for a € R, (1.4)
and, as s — 00,
fa(s) ~ete™®  for a=0, (1.5)
fa(s) ~ (as)™'*  for a >0, (1.6)
fi(s) =s7' —s57%logs + o(s % log s), (1.7
fa,0(8) ~ e2e TR for B <0, (1.8)
f8.0(8) ~ (@l (a — B)s)™Y* fora >0 and B < a, (1.9)
faa(s) = (TA=p)tst + BT (1 —-B) 2s %logs + o(s 2logs) for B <(1, |
1.10

where

e8] 1
¢ = / u te Vdu — / u (1 —e ¥)du
1 0

andco = (f+1) fol(l —u) 7P 2log(1/u)du.

In Section 2 we study the domains of ®; when f(s) has an asymptotic behavior
for s = oo slightly more general than that of f,(s) and fs(s) in Proposition
1.1. We assume that f is locally square-integrable on [0, 00). Then f(f f(s)dX W i
defined for all finite ¢ > 0 and for all u € ID(R?), as shown in Sato (2005). The
improper stochastic integral fooo_ f(s)dX ) ig defined as the limit in probability
of fot F(s)dX!" as t = oo, whenever the limit exists. The domain D(Ps;RY) is
the class of y € ID(R?) for which [[° f(s)dX () is definable in this sense. Two
extensions, compensated and essential, of the improper stochastic integrals are
introduced in Sato (2005), together with two extended domains ®.(®;;R?) and
De(®s; R?). In this paper we introduce a restricted domain D°(®¢;R?), which is
the class of u € ID(R?) such that [;° f(s)dX W) is absolutely definable. We will
study D°, D, D, and D, for &; on R¢. When f = f;, the description of D, D,
and D, is already given in Sato (2005). It is noteworthy that, for a class of f which
includes fi and fz,1, the classes D°, D, D, and D, for ®; are independent of f
and different from each other.

Section 3 proves the relation

U, = lI;ﬁ(Pﬂ,a = (I‘g,all’ﬁ for —0o<fB<a<oo, (111)
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which generalizes (1.1). In general, given improper stochastic integral operators @ ¢
and ®,, we define the domain of the composite operator ®,®; as

D(®,8;;RY) = {pne€ ID(RY): p € D(®s;R?) and &y € D(P,;RY)}.

The assertion (1.11) includes the equality of the domains. The proof of (1.11) is
complicated when o = 1 and we treat it separately.

In Section 4 a description of the ranges of ¥, is provided. We obtain a new
decreasing family of classes R(¥,), —0o < a < 2, satisfying R(¥_;) = B(R?) and
R(To) = T(R?). The relations of R(¥,) with the class &, of a-stable distribu-
tions on R?, the class &Y of strictly a-stable distributions on R?, and the class of
tempered a-stable distributions in the sense of Rosiriski (2004) are established. In
particular, for 0 < a < 1, 84 C (5., R(¥p) but o ¢ R(Ty); for 1 < a < 2,
&0 C Np<a R(Tp) but &% ¢ R(¥,). The moment properties of R(T,) are also
discussed.

In the final section we will give some comments on remaining problems.

In the direction contrary to ours, Jurek (1985) is interested in obtaining sto-
chastic integral representations for given classes of limit distributions derived from
sequences of independent random variables. He shows in Jurek (1983) that the de-
creasing sequence of the classes L,,(R%), m = 0,1,2,..., beginning with Ly(R¢) =
L(R?), has representation

Ly (RY) = R(Dp,, ) with D(®y,,) = {u € ID(RY): / (log™ |z[)™ ! u(dx) < oo} ,
Rd

where hp,(s) = est/ Y although his expression is different. See Jurek (1983),

Rocha-Arteaga and Sato (2003), or Sato (1980) for the definition of L., (R?).

This work is much influenced by discussions with M. Maejima, V. Pérez-Abreu,
and O.E. Barndorff-Nielsen in Yokohama, Nagoya, London, and in e-mails.
Barndorff-Nielsen and Pérez-Abreu have studied ¥, in the level of Lévy measures
as a one-parameter generalization of the Lévy measure transformation connected
with Y. Some of their results are given in Barndorff-Nielsen and Pérez-Abreu
(2005). Those three and the author have been discussing extensions of the paper
Barndorff-Nielsen et al. (2006) for long time. Some ideas in this paper are in fact
jointly developed. The author expresses his sincere thanks to them.

2. Domains of the stochastic integral operators

Let R? be the d-dimensional Euclidean space. Elements of R? are column d-
vectors = (zj)1gjga; the inner product is (z,y) = Z?=1 z;jy; and the norm is
|z| = (z,z)'/2. For u € ID(R?), ji(z), z € R, is the characteristic function of p
and Cy(z) is the cumulant function of p, that is, Cy(2) is the unique continuous
function satisfying fi(z) = e“+(*) and C,(0) = 0. Each pu € ID(R?) corresponds to
a unique Lévy—Khintchine triplet (A,v,~) in the sense that

Cule) = =5 A2) + [ al,2)oldo) +i,2), (2.1

iz, )

— i<zaw> —_ ]_ - 7’
g(z,z‘) € 1+ |.’L'|2,

(2.2)
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where A is a d x d symmetric nonnegative-definite matrix, called the Gaussian
covariance matrix of p, v is a measure on R? satisfying v({0}) = 0 and [,.(|z|* A
1)v(dz) < oo, called the Lévy measure of u, and +y is an element of R?, called the
location parameter of y. Sometimes we denote 1 = p(4,,,,)- As in Sato (1999),
Cy = Cy(R?) is the class of bounded continuous functions on R? vanishing on a
neighborhood of the origin. Let C&" be the class of nonnegative functions in Cj.
Denote by B(R?) the class of Borel sets in R?, and by p-lim the limit in probability.

We use the stochastic integrals of nonrandom functions with respect to natu-
ral additive processes or independently scattered random measures, developed by
Urbanik and Woyczynski (1967), Rajput and Rosinski (1989), Kwapieri and Woy-
czytiski (1992), and Sato (2004, 2005). In particular, see the definition of local
X (#)_integrability in Sato (2005). The following fact is found in Sato (2005).

Proposition 2.1. Fiz d. Let f(s) be an R-valued measurable function on [0, 0c0).
Then, f(s) is locally X " -integrable for all u € ID(R?) if and only if f(s) is locally
square-integrable on [0,00), that is, fo )2ds < oo for every t € [0,00).

Two extensions of improper stochastic integrals are introduced in Sato (2005).
We say that the compensated improper integral of f with respect to X(#) is de-
finable if there is a nonrandom vector ¢ € R? such that [~ f(s)ngu*é_") is
definable. Here §_, is the distribution concentrated at —g. Let

Dc(®7;R?) = {u € ID(R?): compensated improper integral of f 23

with respect to X *) is definable}.

We say that the essential improper integral of f with respect to X is definable if
there is a nonrandom R¢-valued function ¢ on [0, 00) such that fo s)dXs —q is
convergent in probability as ¢ — oo. Let

De(®;;RY) = {p € ID(R?): essential improper integral of f (2.4)

with respect to X is definable}.

In order to introduce the concept of absolute definability, let us recall the fol-
lowing fact.

Proposition 2.2. Let f be locally square-integrable on [0,00). Then

/ T f(syax®
0

is definable if and only if
t

tlim Cu(f(s)2)ds exists in C for all z € R?. (2.5)
*Jo
IfYy=[=" dX(“ is definable, then

Cy(z) = Cu(f(s)z)ds for z € R%. (2.6)

0
Proof. For any bounded measurable set B, the formula (4.7) of Sato (2004) says
that

Cy)(z /C s)z)ds for Y(B /f )dX . (2.7)
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Assume (2.5). Let Vi, = [ f(s)dX) — [T f(s)dx{™ = [" f(s)dX{") for
0 <t < wu. Then

Fei{zYeu) — exp/ Cu(f(s)z)ds — 1 as t,u — oo.
¢

Thus, for € > 0, P[|Y;,u| > €] = 0 as t,u — oo. Hence [~ f(s)dXs(”) is definable.
Conversely, if [~ f(s)dX$" is definable, then £ (fot f(s)dXs(”)) tends to an

infinitely divisible distribution as ¢ — oo and thus its characteristic function con-
verges to a nonzero continuous function, which implies (2.5).
The last assertion in the proposition is now obvious. O

Corollary 2.3. If

/OO |Cu(f(s)2)|ds < oo for all z € R?, (2.8)
0

then [~ f()dX™ is definable.

If (2.8) holds, we say that the improper integral fooo_ f (s)dXS,“ ) is absolutely
definable. Let

DY@ RY) = {p € ID(R?): / f(s)dX " is absolutely deﬁnable} . (29
0

We usually write D(®5), D(®f), De(®s), D°(®y), suppressing to write R?.
Clearly,
Qo(q)f) CO(Ps) CD(Ps) C De(Py). (2.10)

For the last inclusion, recall that
t ¢ t
| raxesn = [ peax® - [ fs)dse.
0 0 0

We restrict f(s) by its behavior as s — oo and study the domains in (2.10) more
explicitly. For two functions f and g, we write f(s) < g(s), s — oo, if there are
positive constants a; and as such that 0 < a1g(s) < f(s) < a29(s) for all large s.

Theorem 2.4. Let o € [0,1) U (1,00). Suppose that @, is locally square-integrable
on [0,00) and satisfies

% as s = 0o with some ¢ > 0, (2.11)

po(s) <e~
9a(s) < sV as s = 00 for a € (0,1) U (1,00). (2.12)
(i) If « = 0, then

90((}9’0) = 9((1)800) = 90((1)900) = ge(q)vio)
= {IU/ = HApny): /Rd 10g+ |.’L'|V(d.’£) < OO} (2.13)
= {,u € ID(RY): /Rd logt |z|u(dr) < oo} ,

which we denote by IDoz(RY).
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(i) If 0< a <1, then

2°(® =D.(® cpa) = De(Py.,)
{/1/ KA,y - ‘ >1 |$|ay(dx) < OO} (2‘14)
{uEID (R%): |z|*p(dx) <oo}.
R
(iil) If 1 < a < 2, then
D°(3,,) =D(y,) G De(Py.) = De(®y..), (2.15)
QC(CI)CPQ) = {/’L = HKApny): / |;1:|a1/(dx) < OO}
lz|>1 (2.16)
= {uGID(]Rd): |z|* u(dx) <oo},
Rd
_ _ Y 4 C)
D(@,.) = 2u(8,.) 1 {1 = a7 = - [ A o

=D(®,. )N {u € ID(RY): / x p(de) = 0} .
Rd
(iv) If a > 2, then
D°(,,) = D(Py.) = {00} S De(®y,) = De(Dy.) = {6,: ¥ €RT}. (2.18)
We prepare two propositions and a lemma.

Proposition 2.5. Let f be a measurable function and let X(®) be a Lévy process
on R? with p = WA,y - Then fis locally X ) _integrable if and only if

/Ot F()2(tr A)ds < oo, (2.19)

t
/ ds / ()22 A DYw(dz) < oo, (2.20)
0 R4
t 1 1
[l 10 [ (i ~ rrmp) 6] <

for all t € (0,00).
This follows from Corollary 2.19 and Theorem 3.1 of Sato (2005).

(2.21)

Proposition 2.6. Let X®) be a Lévy process on R? with p = W(Awy)- Let f be

locally X®)-integrable. Let Y; = fo dX(”) and let (AY+,vYe ~Y4) be the triplet
of L(Y;). Then the following are true.
(i) For allt € (0,00) and z € RY,

/ |Cu(f(s)z)|ds < oo and Cy,(z / Cu( (2.22)
Y, ¢ 2
A't = Ads, .
/0 f(s)"Ads (2.23)

/ ds/ 15(f v(dz) for B € B(R?) satisfying 0 ¢ B,  (2.24)
R4
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= /otf @i (v+ [ o (Tme ~ 1ogp) ) @)

(i) We have pn € D(®y) if and only if the following three conditions are satisfied:

/ f(s)2(tr A)ds < oo, (2.26)
/ ds/ (1 ()22 A DYw(dz) < oo, (2.27)
Yt s convergent in R? as t — oo. (2.28)

(iii) We have pu € @e(éf) if and only if (2.26) and (2.27) are satisﬁed
(iv) If p € D(®y), then the triplet (A, 7,7) of L(Yao_) for Yo, = =[ (s)dx ™

is given by
A= / f(s)?Ads, (2.29)
0
/ ds/ 1s(f v(dz) for B € B(R?) satisfying 0 ¢ B,  (2.30)
R4
; Y:

J= tlg(r)lo'y . (2.31)

The proofs of these results are given in Propositions 2.17, 5.5, 5.6, and Corollary
2.19 of Sato (2005).

Lemma 2.7. For a € [0,1)U(1,00) let ¢, be as in Theorem 2.4. Let @1 be locally

square-integrable on [0, 00) and satisfies p1(s) < s~ as s — oo. Let v be a measure

on R? such that v({0}) =0 and [.(|z]* A 1)v(dz) < co. Then

/ ds/ (|pa(s)z])? A )v(dr) < oo, (2.32)
0 Rd
if and only if
Jralogt |z|v(dz) < 0o when a =0,
f o> 1717 (dz) < 00 when 0 < a < 2, (2.33)
v=20 when a > 2.

Proof. Since @, is locally square-integrable, f = ¢, satisfies (2.20) by Proposi-
tions 2.1 and 2.5. Let 0 < a < 2. There are sp > 0 and 0 < ¢; < ¢ such that
1571 < pa(s) < eas7H/* for s > so. Then

/:o ds /]Rd(l%(s)w|2 A 1)v(dz) < /:o ds /Rd(|023—1/a$|2 A1)w(dz)

< C3/ ds/ (|s7*/2z|?> A)v(dz) (with some c3)
80 Rd

:Cg/ ds/ |~z 2 (dx) +03/ ds/ v(dx)
s0 |s=1/ez|<1 S0 |s=1/eg|>1

= .[1 +I2 (say),

L =03/ |m|2u(d$)/ s~2/ds
R4 soV|z|e
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o0 o
=03/ |m|21/(dx)/ 5_2/ads+03/ |$|21/(d$)/ s~2/ds
] <5 5 >89/ 2/

< C4/ |z|?v(dz) + 05/ |z|*v(dz) (with some cq,c¢s5),
2] <50/ j2[>50/"

I =cs /R () / " = / (2] — so)v(dz),

S0 \w\>sé/a

and similar estimates from below are possible with ¢, replaced by ¢;. Thus (2.32)
and (2.33) are equivalent if 0 < a < 2.

If @ = 0, then essentially same estimates with log™ |z| in place of |z|* yield the
equivalence. If @ > 2, then (2.32) implies v = 0, as is seen from a modification of
the discussion above. O

Proof of Theorem 2.4. (i) The proof is similar to that of (ii).

(ii) Let 0 < a < 1. There are so > 0 and 0 < ¢; < ¢ as in the proof of Lemma
2.7. Thus f0°° ©0a(8)%ds < oo and f(s) = @, (s) satisfies (2.26). Lemma 2.7 says
that it satisfies (2.27) if and only if

/l o |z|*v(dz) < oo. (2.34)

This property (2.34) is equivalent to the property that [;,|z|*u(dz) < oo, which
is a special case of Theorem 25.3 of Sato (1999). If (2.34) holds, then (2.28) also
holds for f = @, Indeed, we have (2.21), [ ¢a(s)ds < oo, and

[ ateras [ e

because, letting ¢, (s) < 1 for s > sq,

i 1 1
[ eaterds [ 1
80 R4

1+ |pa(s)z]? 14|z

</(’o goa(s)ds/ |z|>v(dx)

50 re (14 [@a(s)z[?)(1 + |2[?)

* i/a |z[v(dx)
<Cz/ S/“/AHMSU%WOHW)
S0 R 1

oo
< cz/ s~/ ds (/ |z|2v(dz) + |z|v(dz)
S0 |lz|<1 |z|>1, [s—1/=z|<1

|z|v(dz) )

+ / _zitdr)
2.—2 2
lo|>1, [s=1/a|>1 1872/ ||

<Cz/ s’l/“ds/ |a:|2u(d:v)+C2/ leu(da:)/ s~ Vds
so lz|<1 |z|>1 soV|z|

‘ a

soV|z
—|—020f2/ |m|711/(da:)/ st/%ds
|z|>1

S0

1 1
1+ |pa(s)z|2 1+ |z|?

v(dz) < oo, (2.35)

v(dz)

< 03/ |m|21/(dw) +C4/ |z|*v(dz)
lz|<1

|z|>1
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with some c¢3, ¢4. Further, if (2.34) holds, then (2.8) holds for f = ¢4, since

Culpals)2) = ~5¢a(s (e 42+ [ a(e.palo)a)olin)

”<z’“”“(8”+%(3) L (= imer ~1o7) ”(d”’)>
(2.36)

from (2.1) and since
l9(2, pa(8))| < cx(|pa(s)al* A1) (2.37)

with ¢, depending on z. Combining these considerations with (2.10), we obtain
(2.14).

(iii) Let 1 < a < 2. We have f:}o va(s)?ds < oo but f:)o Va(s)ds = oo. If
w€ D(P,,), then we have (2.34) by Lemma 2.7, and

z|z|*v(dr)
=— —_ 2.38
== [ AR (2.39)

which follows from (2.28) since
1 1 |z — [pa(s)]®
x - v(dz =/ x v(dr)
for (e~ 00) 40 = L et T

/ z|z|?v(dz)
_) _
ra 1+|[z?

as s = oo. The property (2.38) is equivalent to the property [o.zp(dz) =0, as
is seen from differentiation of C,(z). Conversely, if (2.34) and (2.38) hold, then
w € D(P,,), since

/ eotoits (1 = (T pmee ~ T37m) Y@)

_ [ |pa ()2
= — /SO pa(s)ds /Rdml n |(pa(s)$|21/(da:)

(2.39)

and

> | |pa (8)2[*v (dx)
/so 2el(9)ds | T T lpa(e)al

o0
<C2/. s~M%ds / |m|sc§s_2/au(dm)+/ |z>c5s ™%/ *v(dx)
50 lz|<1 le|>1, |s—1/oa|<1
+/ lz|2c3s™ %/ v (dx)
o> 1, |s=/ag|>1 €18 x]?

o o] (o]
ch/ s_s/ads/ |:c|3u(d:v)+c§/ |ac|3u(da:)/ s qs
50 lz|<1 |z[>1 soVlz|™

|

soV|z
+cgcf2/ |w|l/(dw)/ s Hods
lz|>1

S0
< 03/ |z|*v(dz) + 04/ |z|*v(dz) < 0o
|z|<1 |z[>1

with some c3, ¢4. If (2.34) and (2.38) hold, then we have u € D°(®,,_ ), using (2.36)
and (2.37). If (2.34) holds, then p € D(®,,,) by virtue of Proposition 2.6 (iii), and
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1€ De(Py,) since pxd_g € D(Dy,,,) for ¢ =7+ [paz|z|*(1+ |2>)~'v(dz). Thus
we obtain (2.15)—(2.17).

(iv) Let a > 2. Both f:}o Yo (s)ds and f:)o 0o (8)%ds are infinite. Use Proposition
2.6 and Lemma 2.7. If 4 € D(®,_), then u = do. If pp € De(Py,,), then p=4,. If
p = 0., then clearly p € D.(®,.). O

Next we turn our attention to the case o = 1. This case is delicate and interest-
ing.

Theorem 2.8. Suppose that @1 is a locally square-integrable function on [0, 00)
such that

p1(s) xstass— o0 (2.40)
and, for some sg >0, ¢ > 0, and (s),
©1(8) = s7p(s) for s > so with / s Heh(s) — c|ds < o0. (2.41)
S0
Then
90(¢¢1) ; g(q)(pl) g DC((I)sﬂl) ; Qe(CI)<P1)7 (242)
De(Pypy) = b= H(awn): / 2| v(dx) < 00}
l2[>1 (2.43)
= {u € ID(R?): / || u(dx) < oo} ,
R4
De(Py,) = De(Py,) N {1 = 1(a,v7):

. by o (2.44)

lim / s ds/ zv(dz) exists in R},

t—o0 80 |z|>s
z|z|?v(d
R (2.45)
@) {uep@): [ au)-o},
R4
DY(®y,) = D(Py,) N {,u = (A / s~ tds / zv(dz)| < oo} . (2.46)
s0 |z|>s

Moreover,

D(®,,) N {H = WA / s_lds/ll |z|v(dz) < oo} g D(®,,). (247)
z|>s8

s0

Remark to Theorem 2.8. Suppose that f‘z|>1 |z|v(dx) < 0o. Then the condition

that
t

lim s_lds/ zv(dz) exists in R? (2.48)
0 |z|>s

t—o0 s

is equivalent to the condition that

lim zlog(|z| A t)v(dz) exists in RY. (2.49)

t—o0 ‘$|>1
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This is a kind of balancing condition for the Lévy measure v. The condition of

finiteness of f;o s~ 1ds f\z\>s |z|v(dzx) is equivalent to the condition that

/ |z| log™ |z|v(dx) < oo.
Rd

Proof of Theorem 2.8. For brevity we write ¢ = 1 in this proof. Suppose
that g = pa,,y) € D(®,). Then,

/ o |z| v(dz) < o0 (2.50)

and (2.38) by the same reason as in the proof of (iii) of Theorem 2.4. We have also
(2.28) from Proposition 2.6. Let us show that (2.28) is equivalent to the condition
(2.48) under the conditions (2.38) and (2.50). First,

[ ewas (o [ (e ~ 757 @)

_ /t go(s)ds/Rdm (W - 1) v(dz)

= [ votas [ o (e 1) v

= /: cs_lds/Rda: (m - 1) v(dz) + L(t) + I(t),
10 = [ v s [ o (g ~ ) Y

S$0

b(t) = /S:(zp(s) _o)slds /Rm (Ti—lﬂ? _ 1) v(d).

Since
o 2| [les™1af? — [y(s)s~z]?
/so VST | s a3+ s a4
o |z| |s~1z|?v(dz)
sa / He=volds [ ()= T2P) (1 + e~ 12

R . 2
<o / e — (s)|ds (/Wm v(de) + /|x>1|x|u<dx)) <o

with some ¢; and ¢g, I (t) is convergent as t — co. Since

/ " Jo(s) — cfsds / |z [cs~"&[*v(dx)

g ki L+ [esTa]

is finite in the same way, I (t) is convergent as ¢ — oo. Hence (2.28) is equivalent
to the convergence of

¢ 1
—1d / — 1 dz).
/SO 5o Rdw 1+ |es1x)? v(dz)
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This is equivalent to the convergence of

t
1
_ld/ — 1 d. 2.51
/ o Tl ap ~ 1) V4 (231
since

o0 —1,.|2 o]
/ s tds [l les™ " v(dz) < E/ s_2ds/ |z|*v(dz) < oo,
S0 lz|<1

1+ |es—1z2 T 2 s |z/<1

noting that 6/(1 + 6?) < 1/2 for § > 0. Further, an equivalent condition is the

convergence of
1 2.—2(,.]2
/ xlog +C+g|wz|1/(da:) (2.52)
|z|>1 1+t |£U|

as t = oo, since
t 2,32 2,—2,.12
c?s73|z|?ds 1 1+t 2|z
(2.51) = —/ .Z‘I/(diL‘)/ —_— == zlog —————v(dx).
2[>1 s0 LH 572022 2 /g5 1+ 255 |2
This is equivalent to the condition that
|| :
zlog ——————v(dz) is convergent as t — oo, (2.53)
/$>1 1+t |

since we see that

1 2.—2 2
lim z | log 1tciso |2l° 2log _ el v(dzx) exists,
t—o0 |$‘>1 1+t72|$|2 1+t71|$|

noting that

(1+t ")) I o 2 2
\W<2 and c¢“sp” < EE <1+4+c%sy”.
Now
. ||
lim / zlog — ———w(dx) — zlog(|z| At)v(dz) | =0,
t—oo ( z/>1 L+t |z|>1
since w
. T
tlgglorc (log (=T log(|z| A t)> =0
and
||
log——— —1 At
08 T t=1]g| og(lz| At)
1 () log ————| 4 1110 oy (@) [1og L | < 10g2
{1<|:E‘St} g 1 +t_1|$| {|z|>t} g 1 + t_1|$| X g

for || > 1. Thus (2.28) is equivalent to (2.49). Finally, (2.49) is equivalent to
(2.48), because

t [z |At
/ silds/ zv(dz) =/ my(dm)/ s lds
s0 |z|>s |z|>s0 80

= z log(|x v(dz) — zv(dz) log sg.
[ sl now@n) — [ avamtog

|z|>s0
Conversely, if (2.50), (2.38), and (2.48) are satisfied, then p € ®(®;), as is seen
from the discussion above.
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Assertion (2.43) on ®¢(®,,) follows from Proposition 2.6 (iii) and Lemma 2.7.

If o = pay) € De(Py), then p = g,y € D(P,) for some 7' and hence
(2.50) and (2.48) are fulfilled. Conversely, if we have (2.50) and (2.48), then p =
(A € D(By) for ' = — [z]z|*(1+ |2[*) 1v(dz) and p € D(P,,). This shows
(2.44).

Let us prove assertion (2.46). Suppose that p satisfies (2.50), (2.38), and

/ s~tds / zv(dz)
s0 |z|>s

In order to show that u € D°(®,,), it is enough to show finiteness of

/s:o p(s)ds |y + /Rd:v (1 m |c,01(s)g;|2 = +1|m|2> o(d)

since we have (2.36) and (2.37). We may assume so > 1. We have

Lo (s = 1) v
L e —

< /:o cs~ds /Rm (ﬁ _ 1) o(d)

J = :o P(s)sds /Ra: (1 — |¢(;)Sfla;|2 -3 |ci1m|2> v(dz)
[ (s 1) v

oo

Jy = / [¢(s) — c|s™tds
S0

The finiteness of Ji, J2, and f;o s~ tds ‘flw\Sl z((1+ |es™z|?)~t — l)l/(dz)‘ can be

checked as before. Next,

< * s~ lds

I,

o 1
-1
/ s ds/ z(ﬁfl)u(dw)
s0 |z|>1 1+ |es™ 1z
(o)
d
30 lz|>s 1+ ‘cs z‘

Tt = (dr)
J4:/ sfds/ z(771>udw
0 1<|z|<s 1+ |es—1z|?

and J3 and Jy are finite because

oo d |z| -1y
/ 5—1d5/ LT)? :/ |$|U(dm)/ Sifz
so |z|>s 1+‘657 w‘ |z|>s0 30 1+‘657 .'E|

1 1
= / |z (— log so + log |z| — = log(1 + sazc2|z|2) + —log(1 + c2)> v(dz),
|2|>s0 2 2

o) —1..12 d o) —3,2 2d
/ s_lds/ || |cs cc_|1u(2w) :/ \|v(da) s c_|2:c|2 52
S0 1<|z|<s 1+ ‘CS £C| lz|>1 soV|z| 1+s~%c |$|

1 1
_ _/ | log (1 + 55 2c2|z|2)w(dx) + —/ |z|log(1 + ¢2)v(da).
1<|z|<s0 |z|>s0

< 00. (2.54)

, (2.55)

(2.55) = /00 p(s)ds

50

= - Y(s)s tds

+ J1 + Jo,

)

/ zv(dx)| + J3 + Ja,
|z|>s

)

2
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Conversely, suppose that p € D°(®,). Then we have (2.50) and (2.38), since
w € D(®,). We have

/oo Im Cp(p(s)2)|ds < 00
0

and
Im Cy(p(s)z) = /Rd (sin(z,cp(s)m) — %) v(dzx)

1
Lo
R4
* 1 |o(s)a?
ds/ (—z 3 4z, p(s)r)| ——2—— | v(dz
<foaf (G e s ) i)
+C3/ ds/ v(dz)
le(s)z|>1
< 04/ ds/ lo(s)z|>v(dx) +C3/ ds/ v(dz),
lp(s)z|<1 |lp(s)z|>1
/ ds/ lo(s)z|>v(dr) <cz/ ds/ “LzPPu(dr)
lo(s)z|<1 c1\5—1z|<1
:cz/ lz3( dx)/ s73ds < 0o,
soV(eilz|)

soV(ea|z|)
/ ds/ v(dx) / ds/ v(dz) / (dx)/ ds < o0,
(s)z|>1 cals—lz|>1 R4 S0

where 157! < p(s) < cas™! for s > 50 and c3 and ¢4 are constants depending on

z. Hence
(sotmvete) [ (rpmen ~ o) 70)| <>

sin(z, (s

/ ds
S0

Since z is arbitrary, it follows that (2.55) is finite. Then we obtain (2.54) similarly
to the discussion that we made after (2.55). Thus we have proved (2.46). This also
yields (2.47) except the strictness of the inclusion.

It remains to show the strictness of the inclusions in (2.42) and (2.47). Example
2.9 will show that D°(®,) # D(®,). It is evident from (2.44) and (2.45) that
D(®,) # Dc(Py). In order to see that D (P,) # De(Py,), consider a measure

_ e u du 4
3= [ 20 [ 1nl) et B e BE),

where 0 < p < 1 and X is a finite measure on the unit sphere in R? such that
fl€|=1 EX(dE) # 0. Then fw|>1 |z|v(dz) < oo but (2.49) does not hold, since

> du
/|z|>l zlog(le] At)u(dr) = /|g|=1 EMdE) /2 log(u At) u(logu)t+p

and [, log(u A t)u=(logu)~'~Pdu — oo as t — co. In order to see the strict-
ness of the inclusion in (2.47), consider a symmetric Lévy measure v such that
f|$|>1 |z|v(dz) < co and [g|z|log" |z|v(dz) = oo. O
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Example 2.9. Let ¢; be as in Theorem 2.8. Define a measure v on R? as

v(B) = ,\ (d) > 1p(néan, B e BRY), (2.56)
neZ
where Sy is a nonempty Borel set on the unit sphere {|¢| = 1} satisfying SoN(—Sy) =
0, X is a finite measure on Sy satisfying |, Sy EX(dE) # 0, Z is the class of all integers,
and a,, n € Z, are such that ap = a1 = a_1 = 0 and, for positive integers n, m,

SENS

anp =

1 1 2 2
- —n =0 for 2™ 2(m+1) dd
(logn log(n+1))’a n =0 for <n< , m odd,

[y

1 1
logn  log(n+1)

ap =0, a_p, = — ( > for 2™ < n < 2(m+1)2, m even,

3

ap =

S|+

1 1 2
—n=0f =2"
(logn+log(n+1)>’ a_p, =0forn , M even,

[y

1 1 2
=0 a ,=- for n = 2™, dd.
“ 0, a (logn+log(n+1)) orm mo

3

Then

/ | |z|v(dx) / A(dE) Z |n|a, < oo, (2.57)
z|>1

nez

* _ * _
/2 s ' ds /|w|>sx1/(da:) =1/s, 5)\(d§)‘/2 s7'ds lnlz>snan = 00, (2.58)
-1 —1 .
/ ds /z|>s v(dx) (/ EN(dE) ) / ds lnlz>snan is (2.50)

convergent as t — oo.

Consequently, if g = pa,,) € ID(R?) has this v as Lévy measure and v =
— Jalz (1 + |2%)"u(ds), then p € D(D,,) \ DO(By,).

Proof of (2.57)—(2.59) is as follows. Since n(a, + a_,) is either = (logn)~! —
(log(n +1))~! ~ n~1(logn)? or = (log2™" )~ + (log(2™" +1))~! ~ 2m~2log?2, we
see that >, ., |klar < oo, that is, (2.57). Since f sov(dr) = fIZIZS zv(dz) for
almost every s, we consider flz\zs zv(dz). For some b E R we have

b+ (logn)™! forn—1<s<n, 2<n<24,
b— (logn)~! forn—-1<s<n,2'<n< 29
5 o =

e b+ (logn)~! forn—1<s<n, 2°<n<2!8,

Since )y 55 kar — 0 as s — oo, we see that b = 0. Hence ‘Z\k\zn kak‘ = (logn)~t
forn=3,4,..., and

1 1
s~ > R
/2 ds E kay| > + 1logd + - 0,

k| >s
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that is, (2.58). Next, let us show (2.59). Denote

ntt ds
Pm = Z /n slog(n + 1)’

am2 Lp<2(m+1)?
o(m+1)2

d 1
qm:/ i :2log<1+—>.
om? slogs m

Then )~ (=1)™* g, is convergent. Also > °_, |pm — gm| < o0, because

n+1 L 1 1
< — < E - —
0 gm=Pm < /n s ds <logn log(n + 1))

am? Ln2(m+1)?

1
< const Z W .

2m? Ln<2(m+1)?

We have
9(m+1)2
-1 — (_1\m+1
/2m2 s dsZkak—( 1™ oy
[k|>s

Hence

M o(m+1)2 M M

DO RS SETED BICVIRED S LA

m=1"2" |k|>s m=1 m=1

which is convergent as M — co. Thus we obtain (2.59).

Remark 2.10. As is remarked immediately after Theorem 2.8, (2.59) is equivalent
to (2.49), that is, to convergence 0ff|z|>1 zlog(|z| At)v(dz) ast — oo. But this is
not equivalent to convergence of f1<|$|<txlog|a:| v(dz) ast — oo. Indeed,

/:c>1 zlog(Jal At)v(dw) = /1<|z|<t$log |z| v(dx) + (logt) / zv(dz)

|z[>t
and in this ezample (logn) 3 >, kar oscillates, taking values 1 and —1.

3. Relation between the two families

We study the relation between the families {¥,} and {®3,,} defined from the
functions f, and fg,o in Section 1. If needed, we define f,(s) = 0 for s > a, and
f5,(8) =0 for s > ag,q. In this way we will consider D, D%, D, D, for ¥, with
o < 0 also and for ®3 , with 3 < o < 0 also. Propositions 1.1 and 2.1 guarantee
that, for a € R, f, is locally X ®)-integrable for all Lévy processes X ). Thus, for
a > 0, Theorems 2.4 and 2.8 are applicable in the description of the domains of ¥,
and ®3,,. In particular,

D(T,) =D(Ps,,) fora>0,8<aq, (3.1)

and the same equalities with ®°, ®., D, in place of ® hold. If a > 2, then
D(Ty) =D(Pg,0) = {00}

Theorem 3.1. Let —oo < f < a < 0. Then
U, =UgP5,=P5,,¥3, (3.2)

including the equality of the domains.
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In order to prove the theorem, we use the expressions

Canl2) = / o Oulfa(s)2)ds = / ) Cu(uz)u™ e du (3.3)
0 0+
for p € ®(¥,) and
Capau(2) (3.4)
ag,a— 1 1
= /0 Cu(fp.alt)z)dt = T@=5) Jo, Cp(v2)(1 —v)* P~ v= dy

for p € D(P3,4)-
Lemma 3.2. Let —o0 < < a < 0o. We have

.o ag
/ dt/ |CL(f5(8) fa,a(t)2)|ds < 00 for z € R (3.5)
0 0
if and only if p € D°(V,). If p € D°(Ty,), then p € DO(Tg) ND(Dp,4,), Ysu €
D°(2p,0), p,ap € D(¥g), and
Vap =Vpdp a1 = PpaVppu. (3.6)

Proof. Assume that a > 0. Using Theorem 2.4, Theorem 2.8, and Remark to it,
we see that D°(¥,) = D%(®g,,) C D°(¥p). Using them for fo(s) = 1j1,00)(s)s™H/*
(for a > 0) or fo(s) = e~* (for a = 0), we also see that u € D°(¥,) if and only if

[e’s} 1
/ |CL(s7%2)|ds = a/ |C,(uz)|u™* tdu < oo
1 0
(for a > 0) or fooo |C(e™%2)|ds = fol |Cy(uz)|u™du < oo (for @ = 0). Let us prove

that u € D°(¥,) if and only if (3.5) holds. Denote by I the double integral in
(3.5). Then

1 1 oo
I= 7/ 1—w “_B_lv_“_ldv/ C,(uwvz)|uP e *du.
F(a _ ﬂ) 0 ( ) o | H( )|
Let ¢1,ca,. .. denote positive constants. If fol |Cp(uz)|u=*"'du < oo, then I < oo,
because
1 (o]
I< cl/ (1 —v)a_ﬁ_ldv/ |C, (uvz) u=P e du
1/2 0

1/2 o0
+02/ v*"*ldv/ |Cu(uv2)|u P le “du=1 + I, (say)
0 0
1 e8]
L<es / (1= v)>=F=1qy / 1C, (uz)|u=B—" e~/ du
1/2 0
= C3/ |Cu(uz)|u*ﬁ’1e’”du/ v P (u +v) 2 Pedy
0 0
< C4/ |C,l(uz)|u7°‘7167"du/ v¥ P le 0y
0 0

1
<o+ 06/ | (uz)|u™P " du < oo,
0

1/2 [}
I = 02/ vB*afldv/ |C(uz)|uP e/ du
0 0
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o o0
= 02/ |Cu(uz)|u_a_1du/ v* P le™Vdy
0 2u

1
<er+ cs/ |Cy(uz)|u™* tdu < oco.
0

If fol |Cp(uz)|u=*tdu = oo, then I > colo = oo. Now, if u € D°(¥,), then
Usp € D9(Pp,4) and ®5 4p € DO(Tp), since

/ooo [Copulfaalt)2)ldt < / dt/ (5)fp,a(t)2)|ds = I < oo,
/0 1Cas.0n(fp(s)2)|ds < / ds/ (Fa.0(t) fa(s)2)|ds = I < .

Further, if u € ©°(¥,), then (3.6) holds, since it follows from (3.5) that

Cop owsu(2) / dt/ Cu(f5(s) f,a(t)2)ds
- / ds / Co(f.0(t) fo(5)2)dt = ()
0 0

and that
1 o 1
Cupop,.an(2) = m/o u*ﬁ*le’”du/0 Cp(uwvz)(1 —v)* P 1y o gy
1

- - * —u “ _ a—p-1, —a—1
_I‘(a—,B)/ e “du | Cp(wz)(u —v) v dv

0
1 o0 oo
7/ C’u(vz)v_a_ldv/ e % u—v)*P du
0 v

[(a—B)

1 /OO —a—1 / —u—v, a—f—1
= C,(vz)v™ dv e UV Py
L(a—B) Jo u(v?) 0
=/ Cu(vz)v™ " te dv = Cy, ,(2).
0

This proves the lemma under the assumption that a > 0.
If @ <0, then T < oo for all y € ID(R?) and we have D°(T,) = D°(Tg) =
D°(®5,,) = ID(R?), which makes similar discussion easier. d

Proof of Theorem 3.1 for a # 1. Assume that @ > 2. Then D(¥,) =
D(®s,a) = {do}- For o, (3.2) is trivial. Further, D(¥pPsz,) = {d}. To see
D(®3,0¥p) = {do}, notice that if ¥gp = WAy = 0o for p = H(A,v,7)> then
A =0 from A" =0 by (2.29), v =0 from v’ =0 by

0=/Rd(|x|2/\1)y'(d:v) =/0oo u*ﬁfle*uzzu/mdqumﬁ/\1)u(dm),

and v =0 from ' = 0 combined with » = 0 by (2.25) and (2.31).

Assume that a € (—00,1) N (1,2). We have D(¥,) = D°(¥,) = D(®s,4) =
D%(®3,,) from Theorem 2.4. Hence, if u € D(¥,), then p € D°(¥s) ND(P5.,4),
Uspu € D(®p,0), Ppap € D°(¥s), and (3.6) holds by virtue of Lemma 3.2.
Hence D(¥,) = D(¥pPs,o) and D(¥,) C D(Pp,o¥s). In order to see D(T,) D
D(Pp,0¥p), suppose that p = pavy,) € D(¥s) and p' = Vgp = peary 4y €
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D(®p,0). We claim that p € ®(¥,). This is trivial if & < 0. Now recall Theorem
2.4. If a =0, then

ag
o0 > / log* |2/ (d) = / ds / log | £ (s)|v(dx)
o Jigstoreist

oo
= / t_ﬁ_le_tdt/ log [tz|v(dx)
0 [tz|>1

:/ I/(dx)/ t P let 10gtdt+/ 10g|a:|1/(dz')/ t P Lletdt
R4 1/l R4 1/|z|
=0 +C2/ log |z|v(dx)

|z|>1

with ¢1,¢2 > 0 and hence p € D(¥y). If 0 < a < 1, then, similarly,

o
00 >/ |z|*v' (dx) :/ |rc|°‘u(da:)/ toPlemtat > 03/ |z|%v(dx).
|z[>1 Rd 1/|z| |z|>1
If1 < a < 2, then f|z|>1 |z|*v(dz) < oo in the same way and moreover v =
— Jgaz|z|*(1 + |z|*)~ v (dx); this is from p € D(¥g) if B > 1 or from the two
expressions

o = _/ z|z|?v' (dz) _ _/°° t_B_le_tdt/ tz|tz|?v(dz)
R4 0 R4

1+ |z|? 1+ [ta]?

[T [ z|z|*v(dz) / 11
/0 e dt( /R TP Jee " \TH 1P~ 13 p) "))

> 1 1
'=1i tPe~tdt / - d
v=lg [ rrerdot LT e T T e ) Ve
if B < 1. O

Let us prepare a technical lemma, for the proof of Theorem 3.1 for o = 1.

Lemma 3.3. Let ¢ be a function satisfying the conditions on @1 imposed in Theo-
rem 2.8. Let 1 = pa,v,y) € D(Py). Letz, = flw|>n zv(dz) and let pn = (A, v vm)
be such that A, = A,

o (dz) = 4 Wlal<ny(@(A2) + 07 e, 10, (d2) - if 20 £0,
’ L{ja|<n}(2)v(d2) if o =0,

and v, = — [pazlz|*(1 + |z[*)"vp(dz). Then, pp € D(®,) and, as n — oo,
pn = poand Quou, = Suu.

Proof. Notice that

/ zlog |z|v,(dz) = / zlog |z|v(dz) + =, logn
|z|>1 1<|z|<n

(3.7
= / zlog(|z| A n)v(dz).
|z|>1

It is clear from Theorem 2.8 that u, € D(®,). We have |z,| — 0, [ h(z)v,(dz) —
J h(z)v(dz) for each h € Cj, and

2 2 2
Tn = _/| zle] v(dz) — =, n 5 —/ zlal v(dz) =1~.

olgn 1+ []? 1+n ra 1+ |z|?
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Moreover, v, = v on |z| < 1. Hence we have p, — u, using Theorem 8.7 of
Sato (1999). Let it = ®,pu = I i57) and i, = ®upu, = H(Z, 50 Fn)” Let us
prove that [i, — fi. We use so, ¢, and ¢(s) in (2.41) and 0 < ¢1 < c2 such that
c1571 < o(s) < cas ! for s > so. First, A, = A from (2.29). Next, from (2.30),

h(z)Dy, (dz) / ds/ v(dz) / h(p(s)n|z,| 1o, )dsn |z,
Rd lz|<n

—)/ ds [ h(e(s)x)v(dr) = h(z)v(dz)
0 R4 Rd
for h € Cy, since, for any € > 0,
|t enlea " adsn el = [ 1gpsadsn i
80 80

[eS) e
< / Liers—tnsepdsn | < ?|mn| — 0.

S0

Further we claim that

lim |z|?7,,(dz) = 0 uniformly with respect to n. (3.8)
A0 Jizie

Indeed,
[ epitn = [Tas [ ol
|z|<e 0 lo(s)z|<e
= / |z|* vy, (dax) / o(s)2ds
Rd (s0,00)N{| 0 (5)z|<e}

+/ Iw|2vn(d$)/ p(s)’ds =1 + I (say)
R (0,50)0{ o()2]<<}

and

L g/ |m|21/n(d:c)/ c38™2ds
Rd (s0,00)N{c1s~|z|<Le}
o0 oo
=c§/ |.’L’|2Vn(d$)/ s*2ds+cg/ |x|21/n(dm)/ s 2ds
|z|<eso/c1 S0 |z|>es0/c1 c1|z|/e

= chsy ! / |z|*v(dz) + c%/ ecyz|v(dz)
|z|<eso/c1 eso/c1<|z|<1

+ecie;? / |z|v(dz) + |zn]| |,
1<|z|<n

where, as ¢ | 0, the first and the third terms tend to 0 uniformly in n (recall that
f|$|>1 |z|v(dz) < o0), and the second term also tends to O since the integrand is

bounded by s;*|z|? and tends to 0. Further,
B[ flvia) [ ols)ds
lz|<1 (0,50)n{|e(s)z|<e}

S0
+ (a / |w|u<dw)+e|xn|) / lo(s)ds,
1<|z|<n 0

which tends to 0 uniformly in n. This proves (3.8).
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We prove that 4,, — 7 as n — oo. This will finish the proof that p,, — i, using
Theorem 8.7 of Sato (1999). From (2.25), (2.31), and (2.38) we have

t 2
5= lim J'(t), JLt) = /0 o(s)ds /]R d%y(dm,

t 2
o o 2l (s)e]

Tn = tlig)lo Jn(t)J Jn(t) - /0 (p(S)dS R 1 + |(,0(S)$|2 Vﬂ(dm)
Consider the following chain of approximations of 7:

JA(t) = /t gp(s)ds/d M J3(t) = /t go(s)ds/ z|p(s)e|’v(dz)

s re 1+p(s)z]” so e>1 1+ le(s)zl>

J4(t) :/t cp(s)ds/ M J5(t) :/t cs_lds/ M

s joj>1 1+ ]es™lz|? ’ s jzj>1 1+ ]es™lz|? ’

1
Tt = ¢ / plog =212l Ly sy = / wlog(|z| A t)v(dz).
|z|>1 1+ct=tz| |z|>1 o

For each n, denote by Ji(t), j = 2,...,7, the functions J7 (t) with v, in place of v.
Notice that lim;_, o J7(t) = Cf\w\>1 z log |z|vy (dz) and hence

lim lim J7(¢) = Jim J(t)
—00

n—oo t—oo

by virtue of (3.7) and condition (2.49). We claim that

Jim (J7(t) = JITL(t)) exists in R?, (3.9)
Jim (Ji(t) — JitL(t)) exists in RY, (3.10)
—00

im 1 34 — JitL ) = T () — Jitl

Jim Lim (J3(¢) = Jp™ (8) = lim (J7(2) — 7 (1)) (3.11)

for j =1,...,6. Then, since we have
6

THE) =D (TEE) = T ) + TT()

i=1

and the corresponding identity for J!(¢), it follows that 7, — 7. The proof of
(3.9)—(3.11) is as follows. For j = 1 we have

S0
JU(t) = J2(t) = / o(s)ds
0
which is independent of ¢. Notice that

" o] ()2 ()
|| eas [ L1 [o(s)a?

alp(s)al2v(de)
v 1+ [p(s)a]

1 80 80
<o erdas [ aPudn)+ [ letlids [ faiv(de) < oc
2 /o lz|<1 0 |z|>1
and
o 2y (da) o p(s)n?
J,llt—J,%t:/ sds/ M+xn/ §) ———5—ds
=m0 =J o | T leE)P 0 P e
— JHt) = J*(t) asn — oo.
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For j = 2 notice that

p [ 2lp(s)ev(de)
T =J (t"/ 0 “’(S)ds/mgl 1+ [p()aP

o5} 2
_>/ S(,(s)ds/ dlels)alvlde) 0 L o
EX) |lz|<1

1+ [p(s)z|?
/50 ©(s)ds /|z|<1 % < /:O c3s3ds /I<1 |z|3v(dz) < oo,
J2(1) — J3(t) = /t o(s)ds /|z|<1 %&ﬁf) — J2() = J*(t) forn > 2.
For j = 3
ot [, S
[T [ R i
= [Tt —das [ T F

< /:o s72(s)[1b(s) — c|ds (C; . @) /|w|>1 2| v(dz) < oo

0

by (2.41) and
Y 2(js~ ()2 ]? — |es™af?)v(da)
Jim (J3(6) — JA(1) = / s (s)d /1<|z|<n o T 2t (s

% s 1y(s) (s p(s)n)? — (cs™'n)?)ds
T on / A+ (s D)1+ (5 p(Em)?)

As n — oo, the first term tends to lim; oo (J3(t) — J*(t)) and the second term
tends to zero. For j =4,

JHt) = J°(t) = /t s Hw(s) — c)ds/

z|es™1z|?v(dzx)

S0 |z|>1 1+|CS_1.'E|2 ’
o —1,.12 d
|5t —elas [ e ol
50 |2|>1 1+ |es—lz|

< / s op(s) — clds / el (de) < oo,
80 |z|>1

z|les™1z|?v(dz)

lim (740 — J20) = [ 57 w(s) —9as [

t—o0 50 1<|z|<n 1+ |CS_1.CL'|2
[e] —1,,\2
1 _ 3 (es7In)%ds
+a, [ )~ g

As n — oo, the first term tends to lim; . (J*(t) — J5(¢)) and the second term
tends to zero. For j = 5 notice that

¢ 25-2|,12d 1+ 26=2|z|2
Jo(t) =/ an/(dx)/ cs_l% = E/ zlog +c+02|x|2u(dm),
|2|>1 s 1+ ?572|z 2 Jiz|>1 1+ 2t2|z|
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1 22,2 1 $—1 2
T () — J(t) = E/ plog L S0 DAL )"
2 Jja>1 (1 +c2t=2|af?)(eso " |z])
1 2 ,—2 2
o[ amgttis kb
2 Jjzj>1 c?sq " |7

v(dz) ast— oo,
by a discussion similar to that concerning (2.53), and
c 1+ sy |z|? c 1+ c?sy%n?
lim (J2(t) — JS(¢ :—/ zlog ———2 " y(dx) + =z, log ———2—,
t—)OO( n() n( )) 2 1< |zl<n g 0280_2|$|2 ( ) 2 n 108 02352’"/2

which tends to lim;_,o(J?(t) — J®(t)) as n — co. Finally, for j = 6,

T8 — J(t) = c/ z (log ﬂ — log(|| A t)) v(dz),

lz|>1 +ct~1z|
-1
CS X
/| s log#%—logqxh\t) v(dz)
z|>

csy 't x|

—v(d
1+ ct=1|z] v(dz),

log

esqt
- ol og 20| vtan) + [ 1o
/1<ac<t 1+ ct=tz| || >t

—1
10%#()%‘ < |log(esy ') +log(l+¢) on {1l < |z| < t},

—1,-1
csy t 1z 1 c
— | <1 1 .
1 + Ct_1|$| X | Og(SO )| + Og 1 +c on {|'Z.| > t}
Thus
lim (J(t) — J7(£)) = / 2 log(csg V) v(dz),
t—o0 ‘$‘>1
lim (J5(t) — J'(t)) = c/ zlog(csy v (da) + cxy log(csy t)
t—o0 1<|z|<n
: 6.4\ _ 77
— lim (J°(2) = J'(2))
as n — oo. O

Proof of Theorem 3.1 for a = 1. Let —oo < § < 1. We use ¢y,c¢s, ... for
positive constants.

Step 1. Given p € D(¥;) = D(Pp,1), we prove that ®g1p € D(¥s) and
V385,14 = Tip. Consider p, in Lemma 3.3. Since u, € D°(¥;) by virtue of
Theorem 2.8, we can apply Lemma 3.2. Thus u, € D°(®5,1), 5,14 € D°(¥p),
and

11’5(1)5’1,1.1% = 11/1;1,”. (312)
Lemma 3.3 says that p, = p, ¥ip, = ¥1u, and @514, = ®514. We claim that
@g,l/.l/ € Q(q’ﬂ) and Wﬂ‘l)ﬁ’lp,n — 1Il@<1>5,1u. (313)

Denote i = W1y, p' = ®gap, p' = Vpp', fin = Yipin, py, = Pp1pn, and p, =
Wgpl. The triplets of w, i, p', u”, pn, fn, t,, and p! are written as (4,v,7),
(A,7,%), and similarly. If 3 < 0, then D(¥5) = ID(R?),

T'(-B)
Coy(2) = / Co (f3(s)2)ds,
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and
|Cur, (f3(s)2)| < %(tr A f5(9)z + 3(1 + |fa(s)2I”) /M(Iﬂcl2 A Dy (dz) + [yl | f5(s)2l,

where A!, = A', sup,, [54(|z]> A1)v},(dx) < o0, and sup,, |7},| < oo (recall the proof
of Lemma 3.3). Since C (2) = Cu (2) for all z, we see that C,.(2) = Cur(2),
that is, (3.13) holds if 8 < 0. Next, assume that 0 < 8 < 1. In order to prove that
' € D(¥g), it is enough to show that f|z‘>1 |z|?v' (dz) < oo (Theorem 2.4). We
have

1 1
z|Pv' (dx) = 7/ (1- v)_ﬁv_2dv/ VP |z|Pu(dx)
/z|>1| | F(l _5) 0 |vz|>1 | |
1 / |z|Pv(dx) /1 (1—v) P 2dv 1 (I + o)
=0 - =7 (I + 1),
L(1=8) Jizj>1 1/|z| INQIE)
where
1
I = / |:c|51/(da:)/ (1—v)Pv2dv c1/ lz[Pv(dz) < oo,
1<lo/<2 1/]al 1<ol<2
1/2
L=c+ / |a:|ﬁ1/(da:)/ (1—v)Pv2dv
|z|>2 1/]z|
1/2
<e+ 63/ \x\ﬁu(dx)/ v 2dv < ep + 04/ |z|v(dz) < oco.
lz[>2 1/]z| |z|>2

Hence p' € ©(¥g). It follows from (2.29) that A, = A’ and A]! = A"”. For any

h € C we have [ h(z)v!(dz) — [ h(z)v"(dx), noticing that, first, v/ = 7, from
# n n

(3.12), second, [ h(z)Vn(dz) = [ h(z)P(dz) from Lemma 3.3, and third,

/h(x)l/"(d:c) = ﬁ /000 u P e tdu /01(1 —v) Po2dy /Rd h(uvz)v(dz)

:/ v™%e Vdv | h(vz)v(dr) :/h(x)ﬁ(da:)
0 R4

in the same way as in the proof of Lemma 3.2. We have
[os} t
1 1
"= dsy' + li / d / - "(d
= ) sty + i [ gotovs [ o (g — ) @)

and the corresponding expression of /. Recall that v/, — +'. We will prove the
following three facts:

/ h(z)|z|Pv! (dz) = / h(z)|z|°v' (dz) as n — oo for h € Cy; (3.14)
R¢ R4
o0 1 1 cs|z)? if |2] <1,
— < 3.15
/0 |f5(8)$| 1+ |f5(8)$|2 1+ |22 {C6|$|B if |z| > 1; ( )
/ |z|?v!, (dz) — 0 uniformly in n as € . 0. (3.16)
|/ <e

If we prove these facts, then

"_ * ! * 1 _ 1 '
v ‘/0 f"(s)ds”/o fﬁ(s)ds/@dw<1+|fﬁ(s)w|2 1+|w|2)”(d””)
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together with the similar expression of 7], and We will obtain v, — ~". Using
(3.16), we will reach the conclusion that u!! — p'". To prove (3.14), it suffices to
show

lim sup/ |z|P V! (dx) = 0. (3.17)
|z|>1

l—oo p

Notice that

1 1
B — —B,,—2 B
sup/ z|v,, (dzr) = sup/ (1—-v)"Pv dv/ vz|P vy, (de
n \z\>l| | ( ) F(l_ﬁ) n Jo \vz|>l| | )

1

1 / B8 — —2
= _————_sup x Vn(d.'L')/ (1 —v)PvP2d
L(1—=B) n>i |w|>l| | 1|

B—1 B-1
7 sup / ||? ( l ) v(dz) +n"3@ (i)
n>l \Ji<|z|<n || n \n

¢y sup lﬁ71/ |z|v(dz) + 1P Yz, | =0, 1— oo.
n>l I<|z|<n

Thus (3.17) is true. To see (3.15),

* ||lz|* = | fs(s :vl |ds
/0 |fa(s)z| 1+ |fs(s)zP)(1 + [z]?) / / =5L+1 (say),
(|2 + | £5(5)z|?)ds { “Lsolz|? + 27 z[? [0 fa(s)2ds,
2

N

ne o) @2 PN 2B S | 2150 + 271 [ f5(5)ds,

o0
I, < cs|x|3/ s7YPds < eolz|? for |z < 1
50

L<e /Oo s~ /Pla|*ds
2PN @ lens VBzP) (1 + [of?)

[} soV]z|? 71/3 zlds
< C1o/ s~ VP|z|ds + C10/ % < eplz|? for |z > 1.
soV|z|P s0 C s | |

Finally, in order to see (3.16), it suffices to notice that

! 1 1/\s|.gc|_1 B
/|w<s |£U|2Vn(d$) = m /Rd |x|2yn(dx)/0 (1-v) B dv

< c13/ |z|? vy (dz) + 014/ glz|vy (dx)
|z|<e

|z|>e

< 013/ |z|?v(dz) + 014/ elz|v(dz) + 0146/ |z|vy (dz),
|z|<e e<|z|<1 |z|>1
where the second term tends to zero as € | 0 since £|z| < |z|? on {e < |z| < 1}
and so does the third term since f|z|>1 |z|vn(dz) < f‘$|>1 |z|v(dx). Now the proof
of (3.13) in the case 0 < B < 1 is complete. Modification in the case § = 0, which
is not difficult, of the proof for 0 < 8 < 1 is omitted. Thus we have (3.13) in all
cases. Combining this with (3.12), we obtain that u" = p.

Step 2. Given p € D(¥;) C D(¥g), we prove that Tgu € D(Pg1) and
®51¥sp = Tyipu. In this step we denote it = Uy, p' = Ugp, p" = 514/,
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and the corresponding triplets in an obvious way. To see that p’' € ®(®4,1), notice
that, first,

/ ||V (dz) =/ |$|V(dar)/ uPe tdu
|z|>1 R4 1/|z|

< / lz|e~ /171y (dx) + cz/ |z|v(dz) < oo,
lz]<1

|z|>1

second,

ag aﬁ 1 1
= s)ds +/ sds/m( — )Vd.il;’
= — * -B,—u |$|2 _ 1 1 d

/0 ve d“/Rd””<1+|x|2 Tz T 17 ap ) V)

(o] 2 2
= —/ u_ﬁe_“du/ x%ll(dl‘) = —/ zle] V' (dx),
0 Rd 1+|'U/ZL'| R4 1+|.’E|

using (3.15) for 0 < 8 < 1 and similarly for § < 0, and (2.38), and third,
||

xlog —————1/'(dz) is convergent as t — oo, (3.18)
/|z|>1 1+t x|

which is equivalent to (2.48) with v replaced by »’. The proof of (3.18) is as follows.
Denote by I1(t) the integral in (3.18). Then

T - = —Be—u] ﬂd_
1(t) /Rd;m/(d:c) /l/lzlu e 0g1+t_1|u$| u

Let

L(t) / mu(dm)/oo uPe %log [uz] du
2(t) = ——du,
z|>1 1/le| 1+t uz|

I;(t) / :1:1/(d:1:)/0o uPe % log [uz] du
3() = T 1 s
z>1 1/lz| 1+t

|| < s
Li(t) =/ zlog — ———v(dzx) uPevdu,
z|>1 1+t 1/lz|

zlog %I/(dflf).

|z|>1
We claim that I;(t) — I;11(¢) is convergent as ¢ — oo for j = 1,2,3,4. Since
convergence of I5(t) as t — oo is known from p € ®(¥;), this will prove (3.18).
For j = 1, convergence of I (t) — I5(t) follows from 271 < (1 +¢71)7! < |uz|(1 +
t~ uz|)™' < |uz| for |uz| > 1 and ¢t > 1 and from

o0
/ |.’E|I/(d$)/ u Pe % (log2 + log |uz|)du < co.
le|<1 /||

For j = 2, notice that

|uz]|

o o luz| | 1+t z|
STt tur] Ttttz

log ——~ =1
%1t t—1ux|

< |logu
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for all t > 0, u > 0, and = € R?, since

1 -1 1
IZM/— foru > 1,
1+t Huz| ~ u
1+t 1z 1
— < - forO<uxgl
S 1+t uz] T u o ¢S

For j = 3, simply note that

oo
/| 1|.Z’|I/(d$)/0 uPe | logu|du < co.
z|>

For j = 4, notice that 271 < (1 +¢ 1)~ < |z|(1 + ¢t z|)~ < |z| for t > 1 and
|z| > 1 and that

1/lz]
/ |z| log |ar|1/(da:)/ uPetdu < C3/ |z|° log |z|v(dz) < oo.
|z|>1 0 lz[>1

Hence p' € ©(®3,1).

In order to prove u” = Ji, it suffices to show that A" = A, " =¥, and 7" = 7.
We use (2.29)-(2.31). Among them, A" = A and v = ¥ are proved like the
discussion in lines 94 above (3.14). To show 7" = 7, let

_ |uz|” / _/ uzl*
q(u) _/Rdml—i—|uw|2y(dm)’ q(u) - Rd$1+|um|21/(dm)‘

These are functions from [0,00) into R? (¢'(u) does not mean the derivative of
q(u)). We have, using also (2.38) and the like,

= - hm / fi(s = —lsiﬁ)l u” e g(u)du,
g

=— hm / f8,1(8)d (f3,1(s))ds l1r51r(17_1/3)/5 (1—v) P~ t¢ (v)dv

_lgligm/a (1—v)_ﬁv_1dv/0 uPe " q(uv)du

_1 oo 1
1 -3 _ \—B,8-2_—u/v
151&1 711(1_@/0 u q(u)du/E (1—-v)"PvP % dv
i -1 /OO o ( )d / ~H(1—e) 5 vy
=lim ———— u e “q(u)du v Pe"dv.
0 T(1-25) Jo 0

Recall that lim, g f:o u~te %q(u)du exists. Then, as € | 0,

e e~ (1—e)u
/ ute g (u )du/ v Pe Vdv
0 0
1-¢ 5
= / U*Be*”dv/ u e “q(u)du — 0,
0

e(l—e)~1v

/OO “eg(u) [ /5—1(1_5)u Pe=vdv -1 d
u e Yqu) | =—=—— v Pe Vdv — in
. TINTT=5) J

1 o

— Oou_le_“q U du/ v Pe dv
F(l - /8) /5 ( ) e~ 1(l—¢)u
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1 oo 5 5(1—5)_11) L

= v e_”dv/ u” e "g(u)du — 0.
F(l - ﬂ) /1 €

It follows that v = 7.

Step 3. We prove that ¥y, ¥g®Ps 1, and ®31¥s have the identical domain.
Recall that (%) = D(Pgs,1). It is already proved that D(VsdPs1) = D(¥1) and
that D(¥;) C D(®,1¥p). It remains to show that D(Pz1¥s) C D(¥;). Let
w € D(Ps,:1¥pz). That is, let p € D(¥g) and Vg € D(Pp,1). Again we denote
p' = Ugu. We have [, |zv(dz) < oo, because

oo>/ ||’ (dz) =/ |x|1/(dx)/ U_Be_“dUZ/ |x|1/(da:)/ wPe du.
|z|>1 Rd 1/|z| |lz|>1 1

We also have v = — [pqz|z[>(1 + |z|*) 'v(dz) because, if not, then lines 7-9 of
Step 2 would show that 7' # — [,.x|2[*(1 + |z[*)~'+'(dz), which contradicts that
p' € D(®gs,1). Finally, we see the convergence of flw\>1 zlog(|z|/(1 + t t|z|))v(dz)
as t — 00, since the proof of (3.18) in Step 2 shows that this convergence is
equivalent to the convergence of flw\>l zlog(|z|/(1 4+ t~1|z|))v' (dz). Consequently,

uw e D(Ty). O

The proof of Theorem 3.1 is now complete.

—€

4. Ranges of the stochastic integral operators

We study the ranges R(¥q). If 1 = pa,,,,) € D(¥,) with —oo < a < 2, then
the triplet (A4,7,7) of it = P, pu is expressed as

A=T(2-a)4, (4.1)
5(B) = / T artetgy / Ap(tau(ds), B e BEY, (4.2)

o 1 1
=1 —agt — — d dt 4.
7=t [Tt (v [ (v - rrepp) ) 4 09

as Proposition 2.6 says. We will repeatedly use this expression.
We begin with establishing the one-to-one property of ¥,.

Proposition 4.1. For each o € R the mapping ¥, is one-to-one. That is, if
b= WAy € D(Ps) and Yop = 1 = I(iz5) then (A,v,7) is determined by

(ﬁ, U,%5). Furthermore, A is determined by A alone, and v is determined by v
alone.

Proof. If @ > 2, then ®(¥,) = {do} and the assertion is trivial. Let @ < 2. Then,
A is determined by A from (4.1). Given ¢ € C;, we have, for any p > 0,

/Rd p(p~ z)v(dx) :/0 u” e_”du/Rd p(p~ uz)v(dx)
from (4.2). Thus
p® /Rd o(p'2)v(dz) = /000 sTo lemPs (s /Rd p(sz)v(dz).

By the uniqueness theorem in Laplace transform theory, we see that, for a.e. s,
s [pap(sz)v(de) is determined by v. Since s> [, p(sz)v(dz) is continuous
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in s > 0, it is determined by ¥ for all s > 0. Letting s = 1, we see that [, ¢(z)v(dz)
is determined by 7. If & < 1, then [;* t~“e 'dt < 0o and 7 is determined by ¥ and
5 from (4.3). If a > 1, then Theorem 2.4 says that v is determined by v. O

A distribution p = p(a,,,,) € ID(R?) is said to be Gaussian if v = 0; otherwise
it is said to be non-Gaussian. It is said to be centered Gaussian if v = 0 and v = 0.
It is said to be purely non-Gaussian if v # 0 and A = 0.

If @ > 2, then R(¥,) = {do}, which follows from Theorem 2.4 (iv). Let S =
{€ € R?: |¢] = 1}, the unit sphere in R%. The ranges R(¥,) for a < 2 are described
as follows.

Theorem 4.2. Let —co < < 2. Let i = p 55, € ID(RY). In order that i €

R(TV,), it is necessary and sufficient that one of the following conditions depending
on a is satisfied.
(i) (—oo < @ < 1) Fither i1 is Gaussian, or i is non-Gaussian and

/ X(d€) / 1p(u€)u Yhe(u)du, B € B(RY), (4.4)

where
X is a measure on S and 715 (u) is a function measurable
in & and, for A-a. e. &, completely monotone in u € (0, 00), (4.5)
not identically zero, and lim,_, Eg (u) = 0.

(ii) (o = 1) FEither i is centered Gaussian, or [ is non-Gaussian and U has
expression (4.4) with a = 1 together with (4.5), and

o0 2 d
1511101/5 te tdt /Rd % exists in RS and equals —7 (4.6)

for the measure v satisfying (4.2), which is uniquely constructed from v.

(iii) (1 < a < 2) Either i is centered Gaussian, or i is non-Gaussian and U has
expression (4.4) satisfying condition (4.5), and

/ wfi(dz) = 0. (4.7)
R4
(1t follows from (4.4) and (4.5) with 1 < a < 2 that [, |z|i(dr) < cc.)

The result (i) is already known for @ = —1,0 in Theorems A and C of Barndorfi-
Nielsen et al. (2006). In fact it is shown there that SR(¥_;) = B(R?) and R(¥¢) =
T(R?), where B(R?) and T(R?) are, respectively, the Goldie-Steutel-Bondesson
class and the Thorin class on R? introduced in Barndorff-Nielsen et al. (2006).

Remark 4.3. In (4.5) it follows from the complete monotonicity of ﬁg(u) that
limy, o0 he(u) exists and is nonnegative. If a < 0, then automatically

a5, he(w) =0
for A-a. e. &, since

00 > /w|>1 v(dz) = /5 (dE) /1 ” u= " he (u)du.

We prepare a lemma.



Two families of improper stochastic integrals 7

Lemma 4.4. Let —c0 < a < 2. Let U be a measure on R? such that 7({0}) =0
and 0 < [pu(|z]> A 1)P(dx) < oo. Then there is a measure v on R* satisfying

v({0}) =0,

Jra(|z]* A Dv(dz) < oo for a <0,
Jra(|z[? Alog(1 + |z|))v(dz) < oo fora =0, (4.8)
Jea(lzl? Alz|*)v(dz) < 0o foro<a<2,

and condition (4.2) if and only if U satisfies (4.4) together with condition (4.5).

Proof. The “only if” part. Suppose that there is a measure v satisfying v({0}) = 0
and conditions (4.2) and (4.8). Then v # 0. Let (\,v¢) be a polar decomposition
of v, that is,

/ A(d¢€) / 1p(ré)ve(dr), B € B(R?), (4.9)

where X is a measure on S with 0 < A(S) < oo, v¢ is a measure on (0,00) with
0 < v¢((0,00)) < o0 and v (B) is measurable in ¢ for each B € B(R?) (see Lemma
2.1 of Barndorff-Nielsen et al. (2006)). We have

/ A(d€) / " 0% A e (dr) < oo (4.10)
S 0

from (4.8). It follows from (4.2) that for any nonnegative measurable function ¢(z)

/Rd p(z)v(dz) = /oo a1 ftdt/Rd p(tz)v(dz)
//\df / ve (dr) /Omtalet(p(trg)dt

/ A(de) / p(u€)u=" g (u)du,
where -
Eg(u) :/ rae_“/rug(dr). (4.11)
0

This expression of ﬁg (u) shows that it is measurable in £ and, for A-a.e. £, com-
pletely monotone in u € (0, 00), not identically zero, and lim,, ﬁg (u) =0.

The “if” part. Suppose that ¥ satisfies (4.4) and (4.5). Then, for -a.e. £, we
can find by Bernstein’s theorem a measure ég on (0, 00) such that

T (u) = / = 0 (dv). (4.12)
(0,00)
In general @5 is a measure on [0, 00), but it has no point mass at 0 since
ull)rgo h¢(u) = 0.

Choosing Eg (u) = 0 for ¢ in the exceptional set of A-measure 0, we define @5 for
all £. For each Borel set B in (0,00), Q¢(B) is measurable in & (see the proof of
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Lemma 3.3 of Sato (1980) for the details). If two measures v¢ and Q¢ satisfy

| e@@etan) = [ ot yrove(an (4.13
0 0
for all nonnegative measurable functions ¢ on (0, c0), then
/ W(r)ve(dr) = / B0 Y0P Qe (dv) (4.14)
0 0

for all nonnegative measurable functions 1) on (0, cc0). Therefore we define v¢ from
Q¢ by (4.14). Let A = X and define v by (4.9). Then
o0 > / (22 A 1)(dz) = / 3 (de) / (02 A )u~ e (u)du
R4 s 0
= / A(de) / (U2 A Du~du / e 0 (dv)
s 0 (0,00)
~ [ R [ aw)e(av).
S (0,00)
where
1 00
a(v) :/ ul_ae_“”du+/ u"* e du
0 1
=va_2/ ul_ae_"du—}—va/ u”* e vdu.
0 v

Thus we obtain (4.8), since

cv® asv |} 0fora <0,

a(v) ~ log(1/v) as v ] 0 for a =0,
Co asv |l 0for 0 < a<?2,
c3v® 2 as v 1 oo for —oo < a < 2,

where c1, ¢a, and c3 are positive constants. Since we have (4.11), we can repeat the
calculation above (4.11), which gives (4.2). O

Remark to Lemma 4.4. The prootf of this lemma shows the following. A polar
decomposition (A, V) of ¥ is determined from a polar decomposition (A, v¢) of v by
A=A, (44), (4.5), and (4.11). Conversely, given (A, 7¢) satisfying (4.4) and (4.5),

we can determine a decomposition (A, v¢) by A = A and
ve = Invy (L2 (he)). (4.15)

Here L is the Laplace transform of measures and L~! is the inverse of L; for two
measures p and p on (0, 00) we say that p is the a-inversion of p if

/ $(r)p(dr) = / (0™ ) B(dv) (4.16)
(0,00) (0,00)

for all nonnegative measurable functions 1 and write p = Inv,(p). Note that
Inv, (Inv,(p)) = p- (4.17)

Proof of Theorem 4.2. (i) (—o0 < a < 1) Assume that g € R(¥,). If g
is non-Gaussian, then Lemma 4.4 assures that (4.4) and (4.5) hold. To see the
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converse part, if g is Gaussian, then, letting A = (['(2 — a))_lg, v = 0, and
v =T - )17, we see that u = pu(4,,,,) € D(¥s) and i = Topu. If ¥ # 0 and
(4.4) and (4.5) hold, then choose the measure v in Lemma 4.4, A = (T'(2 — o))" * A
and

=T(1-a) (7 —agt / _
1= @) (”*1£ te “'Rdw(1+wxv 1+t%xP>l“¢”)’
1 1

noting that
o0
t_pe_tdt/ T —
/ o TH P ™ TP

as is checked in Section 3, and see that p = i(4,,,,) € D(¥o) and You = fi.

(ii) (e = 1) Suppose that i € R(¥y) and = ¥yp with g = pa,,) € D(¥y).
If iz is Gaussian, then v = 0 by Proposition 4.1 and v = 0 by Theorem 2.8, and
consequently ¥ = 0 by (4.3), that is, z is centered. If i is non-Gaussian, then
Lemma 4.4 assures us of the expression (4.4) of 7 with @ = 1 and the condition
(4.5), and it follows from (2.38) and from (4.3) with a = 1 that (4.6) is true.

Turning to the converse, if [ is centered Gaussian, then i € $3(¥;) from Theorem
2.8. Suppose that & is non-Gaussian and satisfies (4.4), (4.5), and (4.6). Then, by
Lemma 4.4, there is a measure v satisfying v({0}) = 0, [o.(|z[* A |z])v(dz) < oo,
and (4.2) with a = 1. The proof of Proposition 4.1 shows the uniqueness of such
a measure v. Let v = — [, zlz[?(1 + |z>)'v(dz), A = 4, and p = peaq). It
follows from (4.6) that

1 2
lim [ tet ( / M) dt exists in R, (4.18)
|

v(dz) < oo,

el0 Je z|>1 1+t2|.'L'|2

because

[’} 3 d 1 3 d
/ te_tdt/ M < oo and / te_tdt/ M < 00
1 ra 1 +t2|z] 0 lzj<1 1+ 2|z

Hence p € ©(¥) by Theorem 2.8, since the condition (2.48) is rewritten to (4.18)
in our case (see also Theorem 5.12 (i) of Sato (2005)). It also follows from (4.6)
that

o] 2 d
5 = —lim te_tdt/ [z av(dr)
ed0 J, Rd 1+¢ |.’ll'|2

* 2zv(dx) 1 1
=1 tle tdt —/ [z zv(dz) _/ _ d
i [t (= [ L (e ) e

which equals the right-hand side of (4.3). Therefore ¥ypu = and i1 € R(¥y).

(iii) (1 < @ < 2) Assume that i = ¥, pu with some p = pa,,,) € D(¥o). If 11 is
Gaussian, then [i is centered by the same reason as in (ii). Next, suppose that g is
non-Gaussian. Then Lemma 4.4 says that 7 has expression (4.4) satisfying (4.5).
Since p € (¥, ), v and + satisfy (2.34) and (2.38). Thus

00 3u(d s
/ t2*°‘e*tdt/ M g/ |x|31/(da:)/ > e tdt
0 ra 1+ 12|z] || <1 0

1/|z| oS
—+—/ |.’L'|3I/(d117)/ t2*°‘e*tdt+/ |$|V(da:)/ t~ e tdt
|z|>1 0 |z|>1 1/|z|
= Il + 12 + 13 (say)
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and I, < o0, b <y flw\>1 |z|*v(dz) < o0, and I3 < ¢2 flw|>1 |z|*v(dz) < oo with

some ci, c2. Hence, using (4.2), we see that [, |z[*(1+ |2|*)~'D(dz) < oo, that is,
f|$|>1 |z|v(dz) < co. Using (4.3) and (2.38), we obtain

%= —lim t27a67tdt/ |z[*2v(de) _ _/ tQ,ae,tdt/ |z|>zv(dz)
R 0 R

€0 J, a 14+ t2|x)? a 14+ ¢2|z|?
Hence
- |z)?z
=— d 4.19
i== [ {it), (4.19)

which is equivalent to (4.7).

Let us consider the converse. If i is centered Gaussian, then obviously p €
R(T¥,). Let & be non-Gaussian such that (4.4), (4.5), and (4.7) are satisfied. Using
Lemma 4.4, we can find a measure v satisfying v({0}) = 0, (4.2), and (4.8). We

have flr|>1 |z|7(dz) < oo by the same reason as in the preceding paragraph. Thus
Jgalz|i(dz) < oo and we have (4.19). Let v = — [o,z|z|*(1 + |z|*) " 'v(dz), A =

(T(2—a))"'4, and p = W(Awy)- Then p € D(¥,) by Theorem 2.4. Further,

N L 1 1 _ lz|?x
W)t (7 /Rd”” (1 TP 1 +t2|x|2> ”(d“’)> dt = /Rd T+ a2 (%)
which equals 4. Hence (4.3) is true. Therefore ¥, u = i and thus g € R(¥,). O

Let us study how 2(¥,) changes with a.
Proposition 4.5. For —co < a < 2
R(T.) 2 | R@a). (4.20)
a'>a
Corollary 4.6. For —co < 8 < a <2, R(¥s) 2 R(¥a).
Proof of Proposition 4.5. Step 1. Let us show that R(¥,) D R(¥,) for
—0 < a<da <oo If @ > 2 then this is evident since R(¥y) = {dg}. Let
—m<a<a <2 Letp= MAizz) € R(Ty). If v =0, then we get © € R(TL,),

using Theorem 4.2. Suppose that ¥ # 0. Then, Lemma 4.4 says that U satisfies
(4.4) and (4.5) with a replaced by o/. Thus
~ S ’ ~f0
¥(B) = / X(d¢) / 1p(u€)u= =@ =R du,
s 0

where Ega,) is completely monotone and tends to 0 as u — oo. Since y—(@'—a)
is completely monotone, u_(a'_a)ﬁga,) is completely monotone and tends to 0 as
u — oo. Hence, again by Lemma 4.4, there is v(*) satisfying »(®) ({0}) = 0, (4.2),
and (4.8) with v replaced by »(®). In the case a < 1, we have now i € R(¥,) by
Theorem 4.2 (i). In the case a > 1, Theorem 4.2 says that [, zf(dr) = 0 and
fi € R(¥,). In the case o = 1, we have [, |2[*(1+|z[*)~'¥(dz) < oo and (4.19)
since 1 < o' < 2. Tt follows that
[} t3(1)d _ [} txl2t (l)d
/ R / [ty (da) o and 5 = — / P / [tz*tav'" (dz)
0 Rd 1+ |t.'L'|2 0 Rd 1+ |tl’|2

Hence (4.6) is satisfied. This means that i € R(¥,).
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Step 2. Let —oo < a < 2. Step 1 shows (4.20) except the strictness of the
inclusion. In order to see the strictness, let us construct gz € R(¥,) such that

i # Un s R(8ar). Let
5(B) = /S 3 (de) /0 B (ue)u—o ety

with 0 < A(S) < oo. Then [y.(|z|* A1)#(dz) < co. We use Theorem 4.2. If a < 1,
then let ot = (A 57 with arbitrary A and 7, and see that 1 € R(T,). 1l < a < 2,

then, noting f\w |z|7(dx) < oo, choose ¥ satisfying (4.19), let 1 = I(Z57) with

[>1
arbitrary A, and see that g € R(¥,). If @ = 1, then choose X as the uniform
measure on S, find that the corresponding v constructed in the proof of Lemma 4.4
is rotation-invariant, and let g = KA, with ¥ = 0 and A arbitrary to conclude
that i € R(¥).

In all cases i & UysqR(¥or). Indeed, suppose that, on the contrary, i €
R(T,) for some a < o’ < 2. Then

7(B) = [309) [ 1pueu H ),

v7)

where, for \(®)-a.e. €, 712“,) (u) is completely monotone, is not identically zero, and
tends to 0 as u — oo. Using the uniqueness assertion of polar decompositions in
Lemma 2.1 of Barndorff-Nielsen et al. (2006), we can find a measurable function

0 < ¢(€) < oo such that A@)(d€) = ¢(£)A(d€) and

c(E)u‘al_lﬁéal)(u) =u *le™® for Ma.e. €.
It follows that, for A-a.e. £, lim,, 10 Eéal)(u) = 0, which contradicts the complete
monotonicity. O

A distribution g is said to be trivial if it is concentrated at a point. Let u €
IDR?) and 0 < a < 2. We say that p is strictly a-stable if, for any t > 0,
f(2)t = it/ *2), z € RY. We say that u is a-stableif, for any t > 0, there is y; € R?
such that fi(z)! = fi(t/*z) exp(i(y,2)). (When p is trivial, this terminology is
different from that of Sato (1999).) Let

6% =6%(R?Y) = {p € ID(R?): u is strictly a-stable},
Bo =6, (RY) = {u € ID(R?): pu is a-stable}.
Proposition 4.7. (i) Let 0 < a < 1. We have
Ga C [ R(Tp). (4.21)
B<a
If p € &4 and p is non-trivial, then pu & R(T,).
(i) Let 1 < a < 2. We have
8% C [ R(Tp). (4.22)
BLa

If pe &, \ &Y, then u ¢ U R(Tp). If p € Sy and p # do, then p & R(Ty,).
p>1
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Proof. Let 1= pa,,) € ID(R?). If 0 < a < 2, then p € S, if and only if A =0
and

v(B) = /S/\(df) /000 1g(r&)r—>"tdr, B € B(R%) (4.23)

with a measure XA on S satisfying 0 < A(S) < oo. Hence, factoring r—2=1 =
r=B=1p=(2=B) for B < a, we obtain (4.21) and (4.22) from Theorem 4.2. The other
assertions are proved from the same theorem and the uniqueness assertion of polar

decompositions and from R(¥3) = {do}. O
Proposition 4.8. If 0 < a < 2, then
(] R(¥s) 2 R(L). (4.24)
B<La
Proof. Without the strictness, (4.24) follows from Corollary 4.6. The strictness is
a consequence of Proposition 4.7. O

Let 0 < a < 2. Rosifiski (2004) calls 1 = p(a,,,,) € ID(R?) tempered a-stable if
A=0and
v(B) = / A(d) / 1(r€)rLhe(r)dr, B € B(RY),
s 0
where A is a measure on S with 0 < A(S) < oo and hg(u) is measurable in § and
completely monotone in u, lim, o he(u) = 0, and lim,, g he (u) = 1.

Proposition 4.9. (i) Let 0 < a < 1. If i is tempered a-stable in Rositiski’s sense,
then i € R(T,).

(i) Let 1l < a<2. Ifup= (i) 15 tempered a-stable in Rosiriski’s sense and
if (4.6) (for a=1) or (4.7) (for 1 < a < 2) is satisfied, then i € R(T,).

(iii) Let 0 < a < 2. Some purely non-Gaussian § in R(V,) is not tempered
a-stable in Rosiriski’s sense.

Proof. The assertions (i) and (ii) follow from Theorem 4.2. To show (iii), choose
B € &, for some o € (a,1) if 0 < a < 1 or choose i € &%, for some o' € (a, 2) if
1< a< 2. Then i € R(¥,) by virtue of Proposition 4.7 while f is not tempered
a-stable in Rosiriski’s sense. a

Let us study properties of moments of distributions in R(P,).
Proposition 4.10. Let 0 < a < 2.

(i) If [t € R(T,), then, for all B € (0,a), [pq|z|PR(dz) < co.

(ii) There is i € R(¥q) such that [o,|2|*fi(dx) = oc.

(iii) There is a non-Gaussian i € R(V,) such that, for all o' > 0,

/ |z fi(dz) < oo.
R4

Proof. (i) Let p € ®(¥,) and f = U,pu. Let v and v be their Lévy measures. It
follows from (4.2) that

/ [P (der) = / [P v(da) / @B 1oty < oo
|z|>1 R4 1/]z|

for 0 < B < a, since f‘w |z|*v(dz) < oo from Theorems 2.4, 2.8.

[>1
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(i) Define a measure v by

v(B) = /S)\(df) /00 1p(r&)r~1=*(logr)~Pdr

with 0 <A(S) <ocoand1<p<2. Then [, |z[*v(dz) < co. Let A be arbitrary.
If o = pea,v,y) with some v is in D(¥,), then the Lévy measure v of 1 = ¥, (u)
satisfies
o oo
/ [ (dz) = / \dE) / = (log r)~Pdr / te~tdt = oo,
|z|>1 S e 1/r
since flo/or t~le~tdt ~ logr as r — 0o, and hence [, |z|*i(dz) = 00. f 0 < a < 1,
then, for any ~, p is in D(¥,). If @ = 1, then, letting A be the uniform measure

on S and v =0, we get u € D(¥q). If 1 < a < 2, then, choosing v as in (2.38), we
get u € (¥, ). We have used Theorems 2.4, 2.8.

(iii) Let p = (A 75) With A arbitrary and

7(B) = /S A(de) / L (u)u e du,

where 0 < A(S) < oo. Then, for all & > 0, f|z|>1 |2|*'¥(dz) < oo and hence
S |z|* fi(dz) < oo. If 0 < a < 1, then, for any 7, Ji is in R(¥,). If @ = 1, then,

letting A be the uniform measure on S and 5 =0, we get p € R(¥y). fl < a < 2,
then, choosing 7 as in (4.19), we get u € R(¥,). We have used Theorem 4.2. O

Remark 4.11. By the same method as above we can prove that, for 0 < a < 2,
any 1 € R(Vy) has Lévy measure U satisfying f|z|<1 |z|*V(dz) = oo. Indeed, for

ﬁ:lpall/;
1/|z|
/ |a:|°‘ﬁ(da:):/ |w|°‘u(d3:)/ t1e~tdt = oc.
|z|<1 R4 0

Proposition 4.12. There is i € R(¥o) = T(R?) such that [5, |z|* fi(dz) = oo for
all o/ > 0.

On the other hand, it is clear from Proposition 4.10 that there is a non-Gaussian
Ji € R(To) satisfying [p.|z|* fi(dz) < oo for all o/ > 0, since R(To) D R(T,) for
a>0.

Proof of Proposition 4.12. Let h(u) = (log(2+w))~P. Then h(u) is completely
monotone on (0,00) for p > 0. Let

o0
5(B) = / A(de) / 1 (u€)u—Th(u)du
s 0

with 0 < A(S) < oo and p > 1. Then flz\<1 2|20 (dz) = X(S) fol wh(u)du < oo,

/ac|>1 P(dr) = X(8) /100 u”th(u)du < oo,

and f‘$|>1 |z[P(dz) = X(S) [ uP~ h(u)du = oo for all p > 0. Use Theorem 4.2.
Then any g with Lévy measure 7 is in 2R(¥) and has the desired property. d
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We introduce the modified ranges of ¥, connected to compensated and essential
improper integrals and absolute definability, as follows:

Re(Ty; RY) = {c (/ fa(s)dX§”*5—4)> : € ID(R?) and ¢ € R?
0

oo
such that / fa(s)dX (H*0=a) ig deﬁnable} ,
0

t—o00

¢
Re(To; RY) = {ﬁ (p—lim (/ fa(s)dX (M) — qt>) : p € ID(R?) and ¢; from
0

t
[0, 00) into R? such that p-lim (/ fa(s)dXH) — qt> exists } ,
0

t—o0

RO(Ta; RY) = {Tq(p): p € D°(To; RY)}.
We usually write Re(¥,), Re(¥q), and RO(¥,,), omitting R?. Clearly,
RO(T,) C R(T,) C R(Ty) C Re(Ty). (4.25)
Proposition 4.13. For any a € R, R(Vo) = R(T,).

Proof. If ji € R (¥,), then ji = £ ( oo fa(s)dXs(“*‘s“’)) for some p € ID(R?)
and ¢ € R? and thus i = U, (u x 6_,) € R(T,). O

Proposition 4.14. (i) Let —oo < a@ < 1. Then R (¥,) = R(T,).

(ii) Let 1 < o < 2. Then Re(Vo) 2 R(Va) and Re(To) is the class of i €
ID(R?) which is either Gaussian or non-Gaussian with Lévy measure U having
expression (4.4) with (4.5).

(iii) Let a > 2. Then Re(¥y) = {d,: v € R?} 2 R(T,) = {do}.

The assertion (ii) has different implications between in the case 1 < a < 2 and
in the case @ = 1. Indeed, recall Theorem 4.2. For 1 < a < 2, any i € Re(Vy)
can be shifted to a member of R(¥,), but, for a = 1, Re(¥q) is truly larger than
R(P;) in the sense that there is 1 € Re(¥1) which cannot be shifted to a member
of R(¥y) as the example in the proof of D.(P) # De(Py) of Theorem 2.8 shows.

Another consequence of the theorem above combined with Theorem 4.2 is that,
for all a € (—00,2), Re(T,) is the class of i € ID(R?) which is either Gaussian
or non-Gaussian with Lévy measure ¥ having expression (4.4) with (4.5). It is
noteworthy that the class is determined only by properties of Lévy measures.

Proof of Proposition 4.14. (i) Let —oo < a < 1. Let i € Re(¥,). Then
I is the distribution of p—limt_,oo(f(f fa(s)dXs(“) — q¢) for some p € D(¥,) and
function g;. Since De(¥,) = D(¥,) (Theorem 2.4), fg’ fa (s)dXs(”) is convergent in
probability. Hence g; is convergent to some g in R?. It follows that 1 = (Tau)*d_z.
Thus i € R(¥,) by virtue of Theorem 4.2. Hence Re(Ty) = R(Ty).

(ii) Denote by R(¥,) the class of i € ID(R?) which is either Gaussian or
non-Gaussian with Lévy measure ¥ having expression (4.4) with (4.5).

Let 1 < a < 2. Let it € Re(¥y). Then f is the distribution of

t
p-lim, ( / fa(8)dX ) — %)
0
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for some function ¢; and some p = (4, ) With fw|>1 |z|*v(dz) < oo (Theorem
2.4 (iii)). Choose ¢’ in such a way that p * é_y has mean 0. We have

/ Fals)dX W) — g, = / fa(s)d(XW — s¢') + (/0 fa(s)dsq' — (It) .

As t — oo, the first term in the right-hand side is convergent in probability (see
Theorem 2.4 (iii)). Denote the limit law by p. The second term is thus convergent
to some g in R¢. Now we have p € ’(¥,) and Ji = p * d7. Hence, by Theorem 4.2,
i € R (T,).

Conversely, let 1 € R:(¥,) with 1 < a < 2. Then, by Theorem 4.2, there is
q € R* such that fix6_g € R(¥,). Thus thereis pu € D(¥,) such that [, Fa(s)dx ™
is convergent in probability as ¢ — oo to a random variable with distribution fixd_z.
Choose ¢; such that ¢ = —g. Then fg’ fa(s)dXs(“ ) q¢ is convergent in probability
as t — oo to a random variable with distribution i. Hence i € Re(T,).

Next we consider the case @ = 1. Let fi = piz;5) € Re(Py1). Then [ is the

distribution of p-lim,_, ., (fot fl(s)dXs(“) _ Qt) for some ¢; and some p = pi(4,,,)

with flw|>1 |z|v(dz) < oo (Theorem 2.8). Suppose that 7 # 0. Then, using Lemma
5.4 of Sato (2005), we see that (4.2) holds with & = 1. Hence, by Lemma 4.4, ¥
satisfies (4.4) and (4.5) with @ = 1. That is, z € R:(¥,).

Let i = piz5) € R;(Vy). If v = 0, then let v = 0. If ¥ # 0, then Lemma
4.4 guarantees the existence of v satisfying v({0}) = 0, [(|z|* A |z|)v(dz) < oo,
and condition (4.2) with o = 1. Let u = p(a,,,) with A = A and v arbitrary. By
Theorem 2.8, 1 € De(¥1). Thus, for some ¢, f(f fl(s)dXs(”) — ¢ is convergent in
probability as ¢ — oo. Denote the limit law by p. Then we have p = IZ5,) with
some 7, € R? by Lemma 5.4 of Sato (2005). Therefore [ fi(s (5)dX" — g — v, +7
has limit law 7 ; 5. That is, i € Re(T1).

(iii) The assertion is clear from Theorem 2.4 (iv). O

Proposition 4.15. We have

Re(T) 2 Re(Ty) for —0o<fB<a<g2, (4.26)
¥,) 2 |J Re(Tor)  for —o<a<2, (4.27)
a'>a
[ Re(¥5) 2 Re(Ta) for 0 < a < 2. (4.28)
B<La

Proof. First let us prove non-strict inclusion in (4.26). Let —oo < f < a < 2. Let
o= A5 € Re(Tqo). If 7 = 0, then evidently 1 € Re(¥p). If U # 0, then a<?2
and v has expression (4.4) together with (4.5), which implies 1 € Re(¥g), since
e T

Next, we can show (4.27) similarly to Step 2 of the proof of Proposition 4.5. The
strict inclusion in (4.26) follows from this.

To show (4.28), notice that a-stable distributions belong to the left-hand side
but do not to the right-hand side. a

Proposition 4.16. If a € (—o0,1) U (1,00), then R°(¥,) = R(T,). Ifa =1,
then R°(¥1) G R(T1).
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Proof. This is obvious from Theorems 2.4, 2.8, and Proposition 4.1. O
Proposition 4.17. We have
RO(Tp) 2 RO(T,) for —o<f<a<g?2, (4.29)
R (Ty) 2 U RO (Ty) for —co<a<2, (4.30)
a'>a
] R(Tp) 2 R(Ta) for0 < a<2. (4.31)
B<Lla

Proof. If @ # 1 and 8 # 1, or if 8 < 1 = a, then (4.29) is a consequence of
Corollary 4.6 and Proposition 4.16. If § = 1 < a < 2, then (4.29) is shown from
Theorems 2.4, 2.8, and the remark to Theorem 2.8. We also have (4.30) for a # 1
by the same reason. To show (4.30) for @ = 1, Step 2 of the proof of Proposition
4.5 works. Use Propositions 4.8 and 4.16, to prove (4.31). O

5. Comments

We mention some remaining problems directly related to the preceding three
sections.

1. The proof of the relation (3.2) between ¥, and ®3, in Theorem 3.1 is long
and complicated in the case where & = 1. A simpler proof is desirable.

2. Theorem 3.1 suggests the relation

(I)ﬂ’,a = (I)ﬂ,aq)ﬁ’,ﬁ = (135/’5(1)5,(1 for —o0 < ,8’ <B<a<oo.

This seems to be verifiable similarly to the theorem.

3. In the description of $3(¥;) in Theorem 4.2 (ii), it is desirable to give to the
condition (4.6) an expression directly related to .

4. Tt is not known whether there exists a non-Gaussian distribution in the class
Naco R(Ey).

5. In connection with Proposition 4.16, a description of SR°(¥;) should be given.

6. It is not known whether the strict inclusions in (4.24), (4.28), and (4.31)
concerning R(¥,), Re(¥,), and R°(¥,) hold not only for 0 < a < 2 but also for
—o<a<g0.

7. Let —00 < B < a < 2. In connection with Lemma 3.2, it is not known
whether p € D°(¥,) whenever p € D°(¥g) and Tgp € D°(P34).

8. It is an open problem whether there is a function f for which

D°(®;) S D(¥f) G De(Py) G De(Py)

but which has asymptotic behavior different from that of Theorem 2.8.
9. Description of R(®s,4) as well as of R, Re, and R for B4, is to be made.
They are known for ®_; o, since ®_; 9 = ®.
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