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Abstract. The study of equilibrium fluctuations of a tagged particle in finite-range
simple exclusion processes has a long history. The belief is that the scaled centered
tagged particle motion behaves as some sort of homogenized random walk. In fact,
invariance principles have been proved in all dimensions d ≥ 1 when the single
particle jump rate is unbiased, in d ≥ 3 when the jump rate is biased, and in d = 1
when the jump rate is in addition nearest-neighbor.

The purpose of this article is to give some partial results in the open cases in
d ≤ 2. Namely, we show the tagged particle motion is “diffusive” in the sense
that upper and lower bounds are given for the tagged particle variance at time t
on order O(t) in d = 2 when the jump rate is biased, and also in d = 1 when
in addition the jump rate is not nearest-neighbor. Also, a characterization of the
tagged particle variance is given. The main methods are in analyzing H−1 norm
variational inequalities.

1. Introduction and Results

One of the interesting questions in Spitzer’s seminal paper on particle systems
Spitzer (1970) asks for the asymptotics of a distinguished or “tagged,” particle as it
interacts with others. Although the tagged particle is not in general Markovian, due
to the particle interactions, the understanding is that it behaves in some sense as
a “homogenized” random walk. In the context of finite-range translation-invariant
simple exclusion processes, this belief has been substantiated in large part through
a quilt of results sometimes depending on the specific form of the single particle
jump rate p, and the dimension d of the underlying lattice Zd.

For instance, laws of large numbers, both in equilibrium Saada (1987) and non-
equilibrium Rezakhanlou (1994b) have been shown. Also, equilibrium central limit
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theorems and invariance principles when p is mean-zero Arratia (1983),Rost and
Vares (1985), Kipnis and Varadhan (1986), Varadhan (1995), and when p has a
drift in d ≥ 3 Sethuraman, Varadhan, and Yau (2000) and in d = 1 when p is in
addition nearest-neighbor Kipnis (1986) have been proved. See also Landim, Olla
and Volchan (1998), Landim and Volchan (2000) for fluctuations in d = 1 with
respect to a non-translation invariant p. Non-trivial non-equilibrium fluctuation
results have even been derived in d ≥ 1 when p is symmetric (excluding the d = 1
nearest-neighbor case) Rezakhanlou (1994a), and recently in the exceptional case in
d = 1 when p is symmetric and nearest-neighbor Jara and Landim (2006). In addi-
tion, large deviations results have been proved in some cases Quastel, Rezakhanlou
and Varadhan (1999), Seppäläinen (1998). Some of these results and others are re-
viewed in Ferrari (1996), section 4.VIII Liggett (1985), chapter 4.III Liggett (1999),
chapter 6 Spohn (1991), and sections 4.3, 8.4 and 11.5 Kipnis and Landim (1999).

In terms of equilibrium fluctuations, however, open are the behaviors in d = 2
when p has a drift, and also in d = 1 when in addition p is not nearest-neighbor. The
difficulty in their solution is roughly that in low dimensions with asymmetry one
has to deal with more involved particle interactions than in high dimensions, where
transience estimates can be used, and under symmetry, when reversibility helps.
The main goal of this article is to shed light on the open low dimensional cases by
giving some upper and lower bounds on the variance of the tagged particle at time
t which are “diffusive,” that is on order O(t) (Theorems 1.2 and 1.3). In addition,
a characterization of the variance, which recasts an expression in the literature (cf.
equation (1.18) De Masi and Ferrari (1985)) in terms of certain “dynamical” and
“static” contributions, is given (Theorem 1.1).

The method of the upper bounds is to bound above the variance of a “drift”
additive functional as O(t) by estimating certain H−1 variational formulas with the
help of integral estimates in the spirit of Bernardin’s work for occupation times
Bernardin (2004). In particular, one of the main contributions of this article is
to give a framework for tagged particle H−1 norms in which “environment” and
“tagged-shift” dynamics are understood. The variance characterization, and lower
bounds follow from explicit computations, and comparisons with “symmetrized”
variances as in Loulakis (2005).

Loosely speaking, the simple exclusion process follows the motion of a collection
of random walks on the lattice Zd in which jumps to already occupied vertices are

suppressed. More precisely, let Σ = {0, 1}Z
d

and let η(t) ∈ Σ represent the state
of the process at time t. That is, the configuration at time t is given in terms
of occupation variables η(t) = {ηi(t) : i ∈ Zd} where ηi(t) = 0 or 1 according to
whether the vertex i ∈ Zd is empty or full at time t. Let p = {p(i, j) : i, j ∈ Zd} be
the single particle transition rates. Throughout this article we concentrate on the
translation-invariant finite-range case: p(i, j) = p(0, j−i) = p(j−i) and p(x) = 0 for
|x| > R and an integer R <∞. In addition, to avoid technicalities, we concentrate
on the situation when (p(i) + p(−i))/2 is irreducible, and p(0) = 0. We will say p
is nearest-neighbor when the range R = 1.

The system η(t) is a Markov process on D(IR+,Σ) with semi-group Tt and gen-
erator, well defined on functions φ supported on a finite number of vertices, namely
“local” functions,

(Lφ)(η) =
∑

i,j∈Zd

ηi(1 − ηj)p(j − i)(φ(ηi,j) − φ(η)) (1.1)
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where ηi,j is the “exchanged” configuration, (ηi,j)i = ηj , (ηi,j)j = ηi and (ηi,j)k =
ηk for k 6= i, j. We note the transition rate ηi(1−ηj)p(j− i) for η → ηi,j represents
the exclusion property.

With respect to a configuration η, distinguish now one of the particles and call
it the tagged particle. Let x(t) ∈ Zd be its position at time t. To compensate
for the non-Markovian character of the tagged motion, we form the larger process
(x(t), η(t)) which is Markovian. In fact, as is standard practice, we will consider
the system in the reference frame of the tagged particle, (x(t), ζ(t)) where ζ(t) =
πx(t)η(t). Here, for a configuration η ∈ Σ, the k-shifted state is πkη where (πkη)l =

ηk+l for l ∈ Zd. The “reference frame” process ζ(t) is also Markovian with semi-
group Tt, and generator L well defined on local functions,

(Lφ)(ζ) =
∑

i,j∈Zd\{0}

ζi(1 − ζj)p(j − i)(φ(ζi,j) − φ(ζ))

+
∑

j∈Zd\{0}

(1 − ζj)p(j)(φ(τjζ)) − φ(ζ))

where τjζ = πj(ζ
0,j) accounts for the reference frame shift when the tagged particle

displaces by j.
Naturally, L splits as L = Le +Lt where (Leφ)(ζ) =

∑
i,j∈Zd\{0} ζi(1− ζj)p(j −

i)(φ(ζi,j)−φ(ζ)) and (Ltφ)(ζ) =
∑

j∈Zd\{0}(1− ζj)p(j)(φ(τjζ))−φ(ζ)) correspond

to movement around, and by the tagged particle, e.g. “environment” and “tagged-
shift” motions, respectively. The main idea of the reference process is that, although
the tagged particle is always at the origin (ζ0(t) ≡ 1), one can keep track of the
position of the tagged particle by counting the various reference “j-shifts” (cf.
(1.2)). We refer to Liggett (1985) for details of the construction of these processes.

We now discuss the equilibria for these systems. Let Pρ, for ρ ∈ [0, 1], be the
infinite Bernoulli product measure over Zd with coin-tossing marginal Pρ{ηi =
1} = 1 − Pρ{ηi = 0} = ρ. It is known that Pρ and Qρ = Pρ(·|ζ0 = 1) are
invariant extremal measures for L and L respectively Saada (1987). We remark
with respect to Pρ, the semi-group Tt and generator L can be extended to L2(Pρ)
(cf. section IV.4 Liggett (1985)); similarly, with respect to Qρ, Tt and L can be
extended to L2(Qρ). We note the adjoints L∗ and L∗ with respect to Pρ and
Qρ, corresponding to time-reversal, are straightforwardly computed and identified
as generators corresponding to reversed jump rates p(−·). It will sometimes be
convenient to write L into symmetric and anti-symmetric parts, L = S + A where
S = (L+L∗)/2 and A = (L−L∗)/2. We note the operator S is the generator of a
reference frame process with symmetric jump rates (p(·)+p(−·))/2. Also, as before,
S and A can be split into “environment” and “tagged-shift” parts, S = Se + St
and A = Ae + At.

We denote Eρ for expectation with respect to the reference process measure
starting from Qρ. Denote also, for vector-valued functions f, g : Σ → IRm and

m ≥ 1, the innerproduct 〈f, g〉ρ = Eρ[f · g], and L2 norm ‖f‖0 =
√
〈f, f〉ρ with

respect to Qρ.
We now specify a family of martingales associated with the exclusion process.

For j ∈ Zd, let Nj(t) denote the counting processes which count the number of
j-shifts made by the reference process, e.g. j-displacements of the tagged particle,
up to time t ≥ 0. By subtracting appropriate compensators, we can then form
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the martingale Mj(t) = Nj(t) − Aj(t) where Aj(t) =
∫ t
0
p(j)(1 − ζj(s))ds. These

martingales, as jumps are not simulateneous, are orthogonal for j ∈ Zd. Then, the
tagged particle position x(t) may be written into the sum of a martingale and an
additive functional term,

x(t) =
∑

j

jNj(t) =
∑

j

jMj(t) +
∑

j

jAj(t).

These relations, by stationarity of the process measure, give the quadratic variation
Eρ[M

2
j (t)] = (1 − ρ)p(j)t and mean position, Eρ[x(t)] = (

∑
j jp(j))(1 − ρ)t. Then,

after centering,

x(t) −Eρ[x(t)] = M(t) +A(t) (1.2)

with martingale M(t) =
∑
jMj(t) and “drift” A(t) =

∫ t
0

F(ζ(s))ds with F(ζ) =∑
jp(j)(ρ− ζj).
Let now

V (t) = Eρ

[
|x(t) −Eρ[x(t)]|2

]
.

Define also the measure dµk,ρ = (ζk/ρ)dQρ and its expectation Ek,ρ for k ∈ Zd\{0}.
The first result is a characterization of the variance. In a different form, it was first
derived by De Masi and Ferrari (cf. equation (1.18) De Masi and Ferrari (1985)),
however, the interpretation below seems new. See also Sethuraman (2006) for
analogous expressions in zero-range processes.

Theorem 1.1. In d ≥ 1,

V (t) = (1 − ρ)
∑

j

|j|2p(j)t+ 2ρ
∑

j

jp(j) ·
∫ t

0

{
Eρ[x(s)] −E−j,ρ[x(s)]

}
ds.

The first term above, (1 − ρ)
∑ |j|2p(j)t, is the mean quadratic variation of the

martingale M(t) and can be thought of as a “dynamical” part of the variation.
The second term, however, as a difference in expected tagged particle positions
from different initial measures, is in a sense variation due to initial conditions.

We note in d = 1 when p is totally asymmetric and nearest-neighbor, say p(1) > 0
and p(i) = 0 for i 6= 1, the second term in the decomposition vanishes as the “extra”
particle at −1, being behind, cannot interfere with the tagged particle position; in
this case, V (t) = p(1)(1−ρ)t and moreover it is known the tagged motion is actually
a Poisson process with rate p(1)(1−ρ) (cf. Corollary VIII.4.9 Liggett (1985)). Also,
in d = 1 when p is nearest-neighbor, the formula can be evaluated to some extent,
and the limit limt→∞ V (t)/t = (1− ρ)|p(1) − p(−1)| has been proved De Masi and
Ferrari (1985).

However, for the next upper bounds, other methods are used.

Theorem 1.2. When p has a drift,
∑
jp(j) 6= 0, in d = 2, and in d = 1 when

additionally p is not nearest-neighbor, we have a constant C = C(d, p, ρ) such that

V (t) ≤ Ct.

For a general lower bound, we only give an estimate on a “Tauberian” quantity
which resembles V (t).
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Theorem 1.3. In d ≥ 1 and for 0 ≤ ρ < 1, excluding the nearest-neighbor sym-

metric case in d = 1 when p(1) = p(−1), we have a constant C = C(d, p, ρ) > 0
such that

lim inf
λ↓0

λ2

∫ ∞

0

e−λtV (t)dt ≥ C.

The lower bound, by formal (non-rigorous) analogies, suggests

1

T

∫ ∞

0

e−t/TV (t)dt ∼ 1

T

∫ T

0

V (t)dt ∼ V (T ) ≥ CT.

We note also our proofs of Theorems 1.2 and 1.3 only give gross estimates on the
constants C(d, p, ρ).

However, well-known when p is mean-zero and not nearest-neighbor in d = 1,
biased in d ≥ 3, or biased and nearest-neighbor in d = 1 , the variance is on order
V (t) = O(t) Kipnis and Varadhan (1986),Varadhan (1995), Sethuraman, Varadhan,
and Yau (2000), Kipnis (1986); in the excluded d = 1 nearest-neighbor symmetric
case, due to “trapping” phenomena, V (t) = O(

√
t) Arratia (1983). Also, when

ρ = 1, there is no motion and V (t) ≡ 0.
We remark now, in terms of remaining open questions, the limit

lim
t→∞

1

t
V (t) = σ2(d, p, ρ), (1.3)

and full invariance principles should hold more generally in d ≤ 2 when
∑
jp(j) 6= 0.

We suspect more detailed H−1 norm estimation might allow martingale approx-
imation of the tagged position x(t) leading to limits (1.3) and invariance principles
in this situation. Namely, one wants to show the “drift” F (cf. (1.2)) can be approx-
imated in terms of Luε where uε is a local function satisfying ‖F − Luε‖H−1 < ε.
This type of program was done in Sethuraman, Varadhan, and Yau (2000) in d ≥ 3
using “transience estimates” which unfortunately are not available in d ≤ 2. We
hope however the basic H−1 estimates given in this article will serve as building
blocks for subsequent work.

The structure of the article is to prove first the variance characterization and
lower bound in section 2. The upper bound is proved in section 4 with the aid of
some preliminaries in section 3 and technical computations in section 5.

2. Proofs of Theorems 1.1 and 1.3

Let s and a be the symmetric and anti-symmetric parts of p, s(i) = (p(i) +
p(−i))/2 and a(i) = (p(i) − p(−i))/2 for i ∈ Zd. Recall the “drift” function
F =

∑
jp(j)(ρ − ζj) in the introduction, and define analogous “drifts” Fs(ζ) =∑

js(j)(ρ − ζj) and F←(ζ) =
∑
jp(−j)(ρ − ζj) corresponding to rates s(·) and

p(−·) = s(·) − a(·) respectively.
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Proof of Theorem 1.1. Following decomposition (1.2), write

V (t) = (1 − ρ)
∑

j

|j|2p(j)t+ 2Eρ[M(t) ·A(t)] +Eρ[|A(t)|2]

= (1 − ρ)
∑

j

|j|2p(j)t+ 2

∫ t

0

Eρ[M(s) · F(ζ(s))]ds +Eρ[|A(t)|2]

= (1 − ρ)
∑

j

|j|2p(j)t+ 2

∫ t

0

Eρ[x(s) · F(ζ(s))]ds (2.1)

where we note Eρ[|A(t)|2] = 2
∫ t
0
Eρ[A(s)·F(ζ(s))]ds. We now reverse time at s, and

note the time-reversed process ζ(s−·) with respect to process measure started from
Qρ has the same distribution as the process with reversed jump rates. In particular,
Nj(s) with respect to the process begun from Qρ has the same distribution as
N−j(t) with respect to the reversed process. Hence, as x(t) =

∑
jNj(t), we have

Eρ[x(s) ·F(ζ(s))] = E∗ρ [−x(s) ·F(ζ(0))] where E∗ρ is expectation with respect to the
reversed process begun with Qρ. Then, by spatial reflection, simple manipulations,
and recalling the measure dµk,ρ = (ζk/ρ)dQρ with expectation Ek,ρ, we have

−E∗ρ [x(s) · F(ζ(0))] = −Eρ
[ ∑

k

kN−k(s) ·
∑

j

jp(j)(ρ− ζ−j(0))

]
(2.2)

= ρ
∑

j

jp(j) ·
{
Eρ[x(s)] −E−j,ρ[x(s)]

}
.

�

Proof of Theorem 1.3. The proof follows straightforwardly from Propositions 2.1
and 2.2 below which allow comparisons with the tagged particle variance for the
symmetrized process. �

Let ESρ be expectation with respect to the symmetric reference process generated

by S with initial distribution Qρ. Let also Vs(t) = ESρ [|x(t) − Eρ[x(t)]|2] be the
corresponding variance of the tagged particle at time t. Then, the following estimate
is proved in Kipnis and Varadhan (1986).

Proposition 2.1. In d ≥ 1 and for 0 ≤ ρ < 1, except for the nearest-neighbor

symmetric case in d = 1 when p(1) = p(−1), we have a constant C = C(d, p, ρ) > 0
such that Vs(t) ≥ Ct for all t ≥ 0.

Form now, for λ > 0, two resolvent equations,

λuλ −Luλ = F and λvλ − Svλ = Fs

with respect to uλ = (λ−L)−1F =
∫∞
0 e−λt(TtF)dt and vλ = (λ−S)−1Fs. We now

state a comparison, in whose proof, the last part is Corollary 1 Loulakis (2005).

Proposition 2.2. We have
∫ ∞

0

e−λt[V (t) − Vs(t)]dt =
2

λ2

[
〈Fs, (λ− S)−1Fs〉ρ − 〈F←, (λ−L)−1F〉ρ

]

=
2

λ2

[
λ‖uλ − vλ‖2

0 + 〈uλ − vλ, (−S)(uλ − vλ)〉ρ
]
.
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We note, as −S is a non-negative operator, the Dirichlet form 〈uλ−vλ, (−S)(uλ−
vλ)〉ρ ≥ 0, and so as a consequence,

∫∞
0
e−λtV (t)dt ≥

∫∞
0
e−λtVs(t)dt.

Proof. We first evaluate further (2.2) as

−Eρ[x(s) · F←(0)] = −Eρ[A(s) · F←(0)]

after the martingale part in x(s) = M(s) + A(s) vanishes. Then, the last term of
(2.1) equals

−2

∫ t

0

Eρ[A(s) · F←(ζ(0))]ds = −2

∫ t

0

∫ s

0

〈F←, TsF〉ρdrds.

Hence, by two integration by parts,
∫ ∞

0

e−λtV (t)dt = λ−2(1 − ρ)
∑

j

|j|2p(j) − 2λ−2

∫ ∞

0

e−λt〈F←, TtF〉ρdt

= λ−2(1 − ρ)
∑

j

|j|2p(j) − 2λ−2〈F←, (λ−L)−1F〉ρ.

Since,
∑ |j|2p(j) =

∑ |j|2s(j) and F = F← = Fs when p(·) = s(·), we obtain the
first equality in the proposition directly.

For the second equality, we compute, using F + F← = 2Fs, the two resolvent
equations and 〈uλ,Auλ〉ρ = 0, that

〈Fs, vλ〉ρ − 〈F←, uλ〉ρ = 〈Fs, vλ〉ρ + 〈F, uλ〉ρ − 2〈Fs, uλ〉ρ
= 〈vλ, (−S)vλ〉ρ + 〈uλ, (−S)uλ〉ρ

+λ‖uλ‖2
0 + λ‖vλ‖2

0 − 2〈 Fs, uλ〉ρ
= 〈vλ, (−S)vλ〉ρ + 〈uλ, (−S)uλ〉ρ

+λ‖uλ − vλ‖2
0 + 2λ〈vλ, uλ〉ρ − 2〈Fs, uλ〉ρ.

Since 2〈λvλ, uλ〉ρ − 2〈Fs, uλ〉ρ = −2〈(−S)vλ, uλ〉ρ, we have the right-side equals
λ‖uλ − vλ‖2

0 + 〈uλ − vλ, (−S)(uλ − vλ)〉ρ as desired. �

3. Preliminaries for Upper Bound

We discuss here some definitions and results useful for the upperbound.

3.1. Duality. As the tagged particle is always at the origin with respect to the
reference process, consider the underlying lattice Zd \ {0} . Let Ed denote the
collection of finite subsets of Zd \ {0}, and let Ed,n be those subsets of cardinality

n ≥ 0. Let βρ =
√
ρ(1 − ρ) and, for non-empty B ∈ Ed, let ΨB be the function

ΨB(ζ) =
∏

x∈B

ζx − ρ

βρ

when 0 < ρ < 1, and ΨB ≡ 0 when ρ = 0 or 1. By convention, we set Ψ∅ ≡ 1.
One can check that {ΨB : B ∈ Ed} is a Hilbert basis of L2(Qρ). In particular, any
function f ∈ L2(Qρ) has decomposition

f =
∑

n≥0

∑

B∈Ed,n

f(B)ΨB
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with coefficient f : Ed → IR which in general depends on ρ. Then, for f, g ∈ L2(Qρ),
we define innerproduct

〈f, g〉 = 〈f, g〉ρ =
∑

B∈Ed

f(B)g(B),

and L2 norm by ‖f‖2
0 = ‖f‖2

0 = 〈f, f〉ρ.
Let also Cd,n be the subspace of coefficient functions on Ed,n. When f is in the

span of {ΨB : B ∈ Ed,n}, we have f ∈ Cd,n, and we say both f and its coefficient f

are of degree n. Note also, when f is local, then f is also local on Ed, that is with
support on a finite number of subsets of Zd \ {0}.

The operators L, S and A have counterparts L = Le + Lt, S = Se + St and
A = Ae + At which act on “coefficient” functions f:

Lef =
∑

B∈E

(Lef)(B)ΨB , Sef =
∑

B∈E

(Sef)(B)ΨB , and Aef =
∑

B∈E

(Aef)(B)ΨB

with analogous expressions for Lt, St and At.
Recall the symmetric and anti-symmetric parts of p, s(i) = (p(i) + p(−i))/2 and

a(i) = (p(i)−p(−i))/2 for i ∈ Zd; by assumption s(0) = a(0) = 0. For B ⊂ Zd\{0},
denote

Bx,y =





B \ {x} ∪ {y} when x ∈ B, y 6∈ B
B \ {y} ∪ {x} when x 6∈ B, y ∈ B

B otherwise

and

τxB =

{
B + x when − x 6∈ B

(B + x) \ {0} ∪ {x} when − x ∈ B

where as usual B + x = {i + x : i ∈ B} for B nonempty, and ∅ + x = ∅. As in
Sethuraman, Varadhan, and Yau (2000), the symmetric parts Se and St can be
computed as

(Sef)(B) =
1

2

∑

x,y∈Zd\{0}

s(y − x)[f(Bx,y) − f(B)]

(Stf)(B) = (1 − ρ)
∑

z 6∈B

z∈Zd\{0}

s(z)[f(τ−zB) − f(B)] + ρ
∑

z∈B

s(z)[f(τ−zB) − f(B)]

+βρ
∑

z 6∈B

z∈Zd\{0}

s(z)[f(B ∪ {z})− f(τ−z(B ∪ {z}))]

+βρ
∑

z∈B

s(z)[f(B \ {z})− f(τ−z(B \ {z}))].

Note that Sef ∈ Cd,n for f ∈ Cd,n, and so Se “preserves” degrees. However, St does
not “preserve” degrees but, as will be seen, we will not need to deal directly with
St in our calculations.

Also, the anti-symmetric parts Ae and At are decomposed into sums of three
operators which preserve, increase, and decrease the degree of the function acted
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upon: Ae = Ae0 + Ae+ + Ae− and At = At0 + At+ + At− where

(Ae0f)(B) = (1 − 2ρ)
∑

x∈B

y 6∈B,y∈Zd\{0}

a(y − x)[f(Bx,y) − f(B)]

(Ae+f)(B) = 2βρ
∑

x,y∈B

a(y − x)f(B \ {y})

(Ae−f)(B) = −2βρ
∑

x,y 6∈B

x,y∈Zd\{0}

a(y − x)f(B ∪ {x})

(At0f)(B) = (1 − ρ)
∑

z 6∈B

z∈Zd\{0}

a(z)[f(τ−zB) − f(B)] + ρ
∑

z∈B

a(z)[f(τ−zB) − f(B)]

(At+f)(B) = βρ
∑

z∈B

a(z)[f(B \ {z})− f(τ−z(B \ {z}))]

(At−f)(B) = βρ
∑

z 6∈B

z∈Zd\{0}

a(z)[f(B ∪ {z})− f(τ−z(B ∪ {z}))].

It will also be helpful to write A in terms of its explicit “degree” actions,

A =
∑

n≥0

(
An,n−1 + An,n + An,n+1

)

where Am,n is the part which takes a degreem function to a degree n function. Here,
by convention A0,−1 ≡ 0 is the zero operator; one also sees A0,0 = A1,0 = A0,1 ≡ 0.
Similarly, Ae and At can be decomposed in terms of degree actions Aem,n and Atm,n
so that Am,n = Aem,n + Atm,n for m,n ≥ 0. We later evaluate in Proposition 4.1,
and its proof in section 5, some of the relevant actions.

3.2. Variational Formulas. Define, for λ > 0 and local φ, the H1,λ,L norm ‖ · ‖1,λ,L

by

‖φ‖2
1,λ,L = 〈φ, (λ − S)φ〉ρ + 〈Aφ, (λ − S)−1Aφ〉ρ

where we note 〈φ, (−S)φ〉ρ , 〈Aφ, (λ − S)−1Aφ〉ρ ≥ 0 as −S is a non-negative op-
erator. The H1,λ,L Hilbert space is then the completion over local functions with
respect to this norm.

To define a dual norm, consider for f ∈ L2(Qρ) and local φ that

〈f, φ〉ρ ≤ ‖f‖0‖φ‖0 ≤ λ−1/2‖f‖0‖φ‖1,λ,L .

Then, the dual norm of ‖ · ‖1,λ,L, given by

‖f‖−1,λ,L = sup
φ local

‖φ‖1,λ,L=1

〈f, φ〉ρ,

is always finite with bound ‖f‖2
−1,λ,L ≤ λ−1‖f‖2

0. Let H−1,λ,L be the corresponding

Hilbert space with respect to ‖ · ‖−1,λ,L. An equivalent expression for ‖f‖−1,λ,L,
given in the next result, is proved in p. 46-47 Olla (1994).
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Proposition 3.1. For f ∈ L2(Qρ) and λ > 0, we have

‖f‖2
−1,λ,L = 〈f, (λ−L)−1f〉ρ

= sup
g local

{
2〈f, g〉ρ − 〈g, (λ− S)g〉ρ − 〈Ag, (λ− S)−1Ag〉ρ

}

= inf
g local

{
〈f −Ag, (λ− S)−1(f −Ag)〉ρ + 〈g, (λ− S)g〉ρ

}
.

Hence, when L = S is symmetric, we have for f local, ‖f‖2
1,λ,S = 〈f, (λ−S)f〉ρ

and ‖f‖2
−1,λ,S = 〈f, (λ − S)−1f〉ρ. In this context, it will be useful to define

corresponding H1 and H−1 “coefficient” norms, that is, ‖f‖2
1,λ,S = 〈f, (λ − S)f〉 =

‖f‖2
1,λ,S, and ‖f‖2

−1,λ,S = supg local{2〈f, g〉 − ‖g‖2
1,λ,S} = ‖f‖2

−1,λ,S .
Also, in the following, it will be convenient to denote, when B and its coefficient

B are symmetric exclusion-type operators, that ‖f‖2
1,λ,B = 〈f, (λ−B)f〉ρ = 〈f, (λ−

B)f〉 = ‖f‖2
1,λ,B and ‖f‖−1,λ,B = supg local{2〈f, g〉ρ−‖g‖2

1,λ,B} = supg local{2〈f, g〉−
‖g‖2

1,λ,B} = ‖f‖2
−1,λ,B.

3.3. Some Variance Bounds and Comparisons. For a real local mean-zero function
f , Eρ[f ] = 0, denote the variance

σ2
t (f) = Eρ

[(∫ t

0

f(ζ(s))ds

)2]
.

A well known upperbound on σ2
t (f), which connects with H−1 norms, and proved

say in Proposition 6.1, appendix 1 Kipnis and Landim (1999), is given in the next
statement.

Proposition 3.2. There is a universal constant C1 such that for t ≥ 0,

σ2
t (f) ≤ C1t〈f, (t−1 −L)−1f〉ρ .

We now compare 〈f, (λ−L)−1f〉ρ with other quadratic forms depending on the
dimension d. Let Lnn be the reference process generator corresponding to nearest-
neighbor jump rates pnn supported on standard vectors {±el} of Zd where

pnn(±el) =

{
max[±el ·

∑
jp(j), 0] when ± el ·

∑
jp(j) 6= 0

1 when ± el ·
∑
jp(j) = 0

for 1 ≤ l ≤ d, and pnn(z) = 0 for |z| 6= 1. Note that snn(z) = (pnn(z)+pnn(−z))/2 >
0 for |z| = 1.

When d = 1, define also operator N on local functions f by

(Nf)(ζ) = f(ζ−1,1) − f(ζ), (3.1)

that is, the symmetric exchange operator on bond connecting −1 and 1. Its coeffi-
cient operator N defined on local functions f is then (Nf)(B) = f(B−1,1) − f(B).

The next proposition, which indicates the H−1 norm with respect to L is on
the same order as that for a nearest-neighbor dynamics with the same drift, is
Theorem 2.1 Sethuraman (2003) for d ≥ 2 and proved by the proof of Theorem 2.2
Sethuraman (2003) for d = 1 (cf. Lemma 3.5 and p. 50 Sethuraman (2003)).

Proposition 3.3. We have a constant C = C(d, p), such that for λ > 0 and local

f in d ≥ 2,

C−1〈f, (λ −Lnn)
−1f〉ρ ≤ 〈f, (λ −L)−1f〉ρ ≤ C〈f, (λ− Lnn)

−1f〉ρ,
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and in d = 1,

C−1〈f, (λ −Lnn −N )−1f〉ρ ≤ 〈f, (λ −L)−1f〉ρ ≤ C〈f, (λ− Lnn −N )−1f〉ρ.
Let Snn and Ann be the symmetric and anti-symmetric parts of Lnn = Snn+Ann.

Let also Senn and Stnn be the “environment” and “tagged-shift” parts of Snn =
Senn + Stnn. We denote also by Ann and Se

nn the respective coefficients of Ann and
Senn.

Recall the H1 and H−1 norm expressions ‖ · ‖±,λ,B for symmetric operators B
at the end of subsection 3.2. The following bound allows us to bound H1 and H−1

norms of the non-local “tagged-shift” operator S tnn in terms of the more manageable
“environment” operator Senn. The proof is postponed to the last subsection of this
section.

Proposition 3.4. We have a constant C = C(n, p) such that for λ > 0 and local

f with degree n in d ≥ 2,

‖f‖1,λ,Se
nn

≤ ‖f‖1,λ,Snn ≤ C‖f‖Se
nn
,

and so consequently,

C−1‖f‖−1,λ,Se
nn

≤ ‖f‖−1,λ,Snn ≤ ‖f‖−1,λ,Se
nn
.

In d = 1, the inequalities hold with Senn replaced by Senn + N .

3.4. “Extended” Coefficient Functions. To aid later computations, we now extend
the underlying space Zd \ {0} to Zd. We concentrate on dimension d ≤ 2 for
simplicity. Let Ēd be the set of finite subsets of Zd, and let Ēd,n be those subsets of
Zd with cardinality n. Let also C̄d,n denote the collection of functions on Ēd,n.

For n ≤ 2, let f ∈ Cd,n be a coefficient function. We now give extensions fext

and f� belonging to C̄d,n; we also give an “inverse” of the � extension, namely gres,
which restricts g ∈ C̄d,n to Cd,n. In addition, we define some related operators, an
innerproduct, and norms, acting on these functions.

Extension fext. This extension assigns to sets B 3 0 the “local” average of
“nearest-neighbor” sets and is well suited for later comparisons of Dirichlet forms
over Zd \ {0} and Zd (cf. Proposition 3.6). More precisely, when n = 1, let

fext({x}) =

{
f({x}) for x ∈ Zd \ {0}

1
2d

∑
|z|=1 f({z}) for x = 0.

When n = 2, for distinct x, y ∈ Zd \ {0}, let fext({x, y}) = f({x, y}), and

fext({0, y}) =

{
1

2d−1

∑
z 6=y

|z|=1
f({z, y}) when |y| = 1

1
2d

∑
|z|=1 f({z, y}) when |y| ≥ 2.

Extension f�. This type of extension vanishes on sets involving the origin and
allows H−1 norm comparisons over Zd \ {0} and Zd (cf. Proposition 3.6). Let

f�(B) =

{
f(B) when B ∈ Ed,n

0 otherwise.

Restriction gres. For g ∈ C̄d,n, let gres ∈ Cd,n be the restriction of g to subsets
B ∈ Ed,n. This restriction is useful in extending operators with respect to Zd \ {0}
to underlying space Zd (cf. definition of Ānn;n,m below).
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Operator Sext. Recall operator Senn and its coefficient form Se
nn from subsection

3.3. We now extend Se
nn on local Cd,n functions to Sext acting on local C̄d,n functions

in the usual way, namely transitions are now allowed into the origin. Define the
nearest-neighbor operator, acting on local g ∈ C̄d,n, by

(Sextg)(B) =
∑

|i−j|=1

i,j∈Zd

(
g(Bi,j) − g(B)

)
.

Operator Ānn;n,m. Recall operator Ann and its coefficient form Ann in subsec-
tion 3.3. With respect to Ann;n,m, the part of Ann which takes degree n functions
to degree m, define on local g ∈ C̄d,n that

(Ānn;n,mg)(B) =

{
(Ann;n,mgres)(B) when B ⊂ Zd \ {0}

0 otherwise.

Extended Innerproduct and Norms. The innerproduct naturally extends
to L2 functions in C̄d,n:

〈f, g〉ext =
∑

|B|=n

B⊂Zd

f(B)g(B).

Also, H1 and H−1 norms of f ∈ C̄d,n, with respect to Sext, are defined for λ > 0:

‖f‖2
1,λ,Sext

= 〈f, (λ− Sext)f〉ext

= λ〈f, f〉ext +
1

2

∑

|B|=n

B⊂Zd

∑

|i−j|=1

i,j∈Zd

(f(Bi,j) − f(B))2 (3.2)

‖f‖2
−1,λ,Sext

= sup
g local on Ēd

{
2〈f, g〉ext − 〈g, (λ − Sext)g〉ext

}
.

In addition, we have the following useful bounds which relate further the various
extensions.

Lemma 3.5. For 0 < λ ≤ 1, we have a constant C(d) such that for g ∈ Cd,1 and

any extension g′ ∈ C̄d,1,

‖gext‖2
1,λ,Sext

≤ C

[
‖g′‖2

1,λ,Sext
+ |g′({0}) −

∑

|z|=1

g′({z})|2
]
.

Proof. Note first gext = g′ + [
∑
|z|=1 g′({z}) − g′({0})]ω0 where ω0 ∈ C̄d,1 and

ω0({x}) = 1 for x = 0 and vanishes otherwise. Then,

‖gext‖2
1,λ,Sext

≤ 2‖g′‖2
1,λ,Sext

+ 2
[ ∑

|z|=1

g′({z}) − g′({0})
]2‖ω0‖2

1,λ,Sext
.

By calculation, using (3.2), ‖ω0‖2
1,λ,Sext

≤ λ+ C and so the result follows. �

Recall symmetric operators Senn and N , and their coefficients Se
nn and N from

subsection 3.3, and H1 and H−1 norm expressions ‖·‖±,λ,B for symmetric operators
B at the end of subsection 3.2.

Proposition 3.6. For n ≤ 2 and λ > 0, we have a constant C = C(d, n, p) such

that for f ∈ Cd,n in d = 2,

C−1‖f‖1,λ,Se
nn

≤ ‖fext‖1,λ,Sext ≤ C‖f‖1,λ,Se
nn

(3.3)
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and

‖f‖−1,λ,Se
nn

≤ C‖f�‖−1,λ,Sext .

In d = 1, the inequalities hold with operator Se
nn replaced by Se

nn + N.

We postpone the proof to the last subsection of this section.

3.5. “Free Particle” Bounds. For later detailed analysis, it will be helpful to “re-
move the hard-core exclusion.” In other words, we want to get equivalent bounds
in terms of operators which govern completely independent or “free” motions. We
follow the treatment of Bernardin (2004) with respect to occupation times.

“Free Particle” Generator Sfree. Let υd,n = (Zd)n and consider n indepen-
dent random walks with symmetric nearest-neighbor symmetric jump rates on Zd

for d ≥ 1. The process xt = (x1
t , . . . , x

n
t ) evolves on υd,n and has generator Sfree

acting on local, namely finitely supported, functions on υn,d,

(Sfreef)(x) =
1

2d

∑

1≤j≤n

|z|=1

(
φ(x+ zωj) − φ(x)

)

where zωj = (0, . . . , 0, z, 0, . . . , 0) is the state with z in the jth place.

Free Innerproduct and Norms. With respect to local functions on υd,n,
define

〈φ, ψ〉free =
1

n!

∑

x∈υd,n

φ(x)ψ(x).

Define also, for λ > 0, H1,λ and H−1,λ norms ‖φ‖2
1,λ,free = 〈φ, (λ − Sfree)φ〉free

and

‖φ‖2
−1,λ,free = sup

ψ local on υd,n

{
2〈φ, ψ〉free − ‖ψ‖2

1,λ,free

}
.

Extension ffree. Let Gn ⊂ υd,n be those points whose coordinates are distinct.
For a function f ∈ C̄d,n, define the natural extension to υd,n by

ffree(x) = f(U)

where U is the set formed from coordinates of x ∈ υd,n. Note ffree is supported on
Gn.

Extension f̃. We now give an extension f̃ on υd,n which allows some H1 and
H−1 norm comparsions (cf. Proposition 3.7). Let τ be the arrival time into Gn,

τ = inf
{
t ≥ 0 : xt ∈ Gn

}
.

Then, for f ∈ C̄d,n, define for x ∈ υn,d that

f̃(x) = Ex[ffree(xτ )].

Free Bounds and Relations. The next result relates Sext and Sfree with
respect to H1 and H−1 norms of f and f̃, and is a part of Theorems 3.1 and 3.2
Bernardin (2004).

Proposition 3.7. We have, for a constant C = C(d, n, p), λ > 0, and f ∈ C̄d,n,
that

C−1‖̃f‖1,λ,free ≤ ‖f‖1,λ,Sext ≤ C‖̃f‖1,λ,free.
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Also,

‖f‖−1,λ,Sext ≤ C‖1Gn
f̃‖−1,λ,free.

The following relations, which follow from straightforward manipulations, will
also be useful.

Lemma 3.8. Let g ∈ Cd,1 be a local function, and let g′ ∈ C̄d,1 be any extension.

Then, for x ∈ Zd

g̃′(x) = g′free(x), and 1G1
˜(Ann;1,1g)�(x) = (Ānn;1,1g

′)free(x).

Also, for x, y ∈ Zd,

1G2
˜(Ann;1,2g)�(x, y) = (Ānn;1,2g

′)free(x, y).

Fourier Transform Expressions. It will be convenient to express “free” H1,λ

and H−1,λ norms in terms of Fourier transforms. Let ψ be a local function on υd,n
and let ψ̂ be its Fourier transform

ψ̂(s1, . . . , sn) =
1√
n!

∑

x∈υd,n

e2πi(x1·s1+···+xn·sn)ψ(x)

where s1, . . . , sn ∈ [0, 1]d. Compute

Ŝfreeψ(s1, . . . , sn) = −
[ n∑

j=1

θd(sj)

]
ψ̂(s1, . . . , sn)

where θd(u) = (2/2d)
∑

z∈Zd

|z|=1

sin2(π(u · z)) = (2/d)
∑n
j=1 sin2(πuj). Hence, we have

‖ψ‖2
1,λ,free =

∫
s∈([0,1]d)n

s=(s1,...,sn)

(
λ+

n∑

j=1

θd(sj)

)
|ψ̂(s1, . . . , sn)|2ds

and

‖ψ‖2
−1,λ,free =

∫
s∈([0,1]d)n

s=(s1,...,sn)

|ψ̂(s1, . . . , sn)|2
λ+

∑n
j=1 θd(sj)

ds.

3.6. Putting Bounds Together. We now incorporate the previous bounds into a
single statement.

Proposition 3.9. In d ≤ 2, for local degree one functions f ∈ Cd,1, we have a

constant C = C(d, p, ρ) such that for t ≥ 1,

σ2
t (f)/t ≤ C inf

g∈C̄d,1,

local

{
‖(f�)free − (Ānn;1,1g)free‖2

−1,t−1,free + ‖gfree‖2
1,t−1,free

+‖(Ānn;1,2g)free‖2
−1,t−1,free + |gfree(0) −

∑

|z|=1

gfree(z)|2
}
.
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Proof. In the following, the constant C = C(d, p, ρ) can change from line to line.
We have, in sequence, from Propositions 3.2, 3.3, 3.1, 3.4 and 3.6, when d = 2 that

σ2
t (f)/t ≤ C〈f, (t−1 −L)−1f〉ρ

≤ C〈f, (t−1 −Lnn)−1f〉ρ

= C inf
g local

{‖f −Anng‖2
−1,t−1,Snn

+ ‖g‖2
1,t−1,Snn

}

≤ C inf
g local

{
‖f −Anng‖2

−1,t−1,Se
nn

+ ‖g‖2
1,t−1,Se

nn

}

≤ C inf
g local

{
‖f� − (Anng)�‖2

−1,t−1,Sext
+ ‖gext‖2

1,t−1,Sext

}
.

When d = 1, in the fourth line of the sequence above, Senn is replaced by Senn + N .
The last infimum, by first restricting to g ∈ Cd,1 and Schwarz inequality, second

using Lemma 3.5 to estimate ‖gext‖2
1,t−1,Sext

in terms of ‖g′‖2
1,t−1,Sext

for g′ ∈ C̄d,1,
and then third applying Proposition 3.7 and Lemma 3.8 to estimate in terms of
“free” norms on local functions in C̄d,1, is further bounded by twice

inf
g∈Cd,1,

local

{
‖f� − (Ann;1,1g)�‖2

−1,t−1,Sext

+‖(Ann;1,2g)�‖2
−1,t−1,Sext

+ ‖gext‖2
1,t−1,Sext

}

≤ C inf
g′∈C̄d,1,

local

{
‖(f�)free − (Ānn;1,1g

′)free‖2
−1,t−1,free

+‖(Ānn;1,2g
′)free‖2

−1,t−1,free

+‖g′free‖2
1,t−1,free + |g′free(0) −

∑

|z|=1

g′free(z)|2
}
.

�

3.7. Proofs of Propositions 3.4 and 3.6.

Proof of Proposition 3.4. The H1 lower bound follows as

〈f, (−Snn)f〉ρ = 〈f, (−Senn)f〉ρ + 〈f, (−Stnn)f〉ρ
and

〈f, (−Stnn)f〉ρ =
1

2

∑

|z|=1

snn(z)Eρ[(1 − ζz)(f(τzζ) − f(ζ))2] ≥ 0.

For the H1 upper bound, note

Eρ[(1 − ζz)(f(τzζ) − f(ζ))2] ≤ Eρ[(f(τzζ) − f(ζ))2]

=
∑

B⊂Zd\{0}
|B|=n

(f(τ−zB) − f(B))2,

and by the proof of Lemma 5.1 Landim, Olla and Varadhan (2002),
∑

B⊂Zd\{0}
|B|=n

(f(τ−zB) − f(B))2 ≤ Czn
∑

B⊂Zd\{0}
|B|=n

∑

i∼j

(f(Bi,j) − f(B))2 (3.4)
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where Cz is a constant depending on z, and i ∼ j means a “neighboring” pair
i, j ∈ Zd \ {0} with |i− j| = 1, or also (i, j) = (1,−1) and (−1, 1) when d = 1. Also

∑

B⊂Zd\{0}
|B|=n

∑

i∼j

(f(Bi,j) − f(B))2 ≤
{

C ′〈f, (−Senn)f〉ρ when d ≥ 2
C ′〈f, (−Senn −N )f)〉ρ when d = 1

where C ′ = C ′(snn). The H1 estimates in the proposition follow now by adding
over |z| = 1. Also, the H−1 bounds are deduced from the H1 bounds through
simple estimates with the definition of ‖f‖2

−1,λ,B (cf. subsection 3.2). �

Proof of Proposition 3.6. We prove the statement for d = 2, and mention at
the end modifications for d = 1. In the following, C = C(n, p) denotes a constant
which can change from line to line. The lowerbound inequality in (3.3) follows from
overcounting:

〈f, (−Se
nn)f〉 =

1

2

∑

B⊂Z2\{0}
|B|=n

∑

|i−j|=1
i,j 6=0

(f(Bi,j) − f(B))2snn(j − i)

≤ C

2

∑

B⊂Z2

|B|=n

∑

|i−j|=1

i,j∈Z2

(fext(Bi,j) − fext(B))2 = C〈fext, (−Sext)fext〉ext;

also, we have ‖f‖2
0 ≤ 〈fext, fext〉ext.

For the upperbound in (3.3), as snn(z) > 0 for |z| = 1, we have

〈f, (−Se
nn)f〉 ≥ C

∑

B⊂Z2\{0}
|B|=n

∑

|i−j|=1

i,j∈Z2\{0}

(f(Bi,j) − f(B))2

and so

〈fext, (−Sext)fext〉ext ≤ C〈f, (−Se
nn)f〉

+C
∑

|i−j|=1

i,j∈Z2

∑

B or Bi,j30

|B|=n

(fext(Bi,j) − fext(B))2. (3.5)

When n = 1, the last term of (3.5) is on order

∑

|z|=1

(fext({0}) − fext({z}))2 =
1

16

∑

|w|,|z|=1

(f({w}) − f({z}))2 ≤ C〈f, (−Se
nn)f〉.

Here, for the last inequality, we build a path from w0 = e1 to w1 = e1+e2 to w2 = e2
and so on to w7 = e1 − e2 back to w8 = e1, and bound each of the finite number of

terms (f({w}) − f({z}))2 ≤ 8
∑7
i=0(f({wi}) − f({wi+1}))2 ≤ C〈f, (−Se

nn)f〉.
When n = 2, the last sum in (3.5) is on order

∑

y 6=0

[ ∑

|z|=1
y+z 6=0

(fext({0, y + z}) − fext({0, y}))2 +
∑

|z|=1
z 6=y

(fext({z, y})− fext({0, y}))2
]

=
∑

|y|≥2

∑

|z|=1

[
(fext({0, y + z}) − fext({0, y}))2 + (fext({z, y})− fext({0, y}))2

]

+ finite number of remaining terms.

The first line is straightforwardly bounded by C〈f, (−Se
nn)f〉. The remaining finite

number of terms are handled as follows: For |y| = |z| = 1, the terms with y+ z 6= 0
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are bounded
(

fext({0, y + z}) − fext({0, y})
)2

=

(
1

4

∑

|x|=1

f({x, y + z})− 1

3

∑

|w|=1
w 6=y

f({w, y})
)2

≤ C〈f, (−Se
nn)f〉

and the terms with |y| = |z| = 1 and z 6= y are bounded
(

fext({z, y})− fext({0, y})
)2

=

(
f({z, y})− 1

3

∑

|w|=1
w 6=y

f({w, y})
)2

≤ C〈f, (−Se
nn)f〉

through similar arguments using the path built in the n = 1 case.
Also, more directly, 〈fext, fext〉ext ≤ C‖f‖2

0 to finish the upperbounds in the first
statement of the proposition.

For the second statement after (3.3), write

‖f‖2
−1,λ,Se

nn
= sup

φ local

{
2〈f, φ〉 − ‖φ‖2

1,λ,Se
nn

}

= sup
φ∈C2,n local

{
2〈f, φ〉 − ‖φ‖2

1,λ,Se
nn

}
.

The last step follows as for f ∈ C2,n with φ =
∑

m φm decomposed in degrees,
〈f, φ〉 = 〈f, φn〉 and as Se

nn preserves degrees, ‖φ‖2
1,λ,Se

nn
=

∑
m ‖φm‖2

1,λ,Se
nn

; so one

does best by choosing φ = φn.
Continuing, as 〈f, φ〉 = 〈f�, φext〉ext and using the proved lowerbound in (3.3),

‖f‖2
−1,λ,Se

nn
is bounded above by

sup
φ∈C2,n local

{
2〈f�, φext〉ext − C−1‖φext‖2

1,λ,Sext

}
≤ C‖f�‖2

−1,λ,Sext
.

The modifications for d = 1 take advantage of inequalities

〈f, (−N)f〉 =
1

2

∑

B⊂Z\{0}
|B|=n

(f(B1,−1) − f(B))2

=
1

2

∑

B⊂Z\{0}
|B|=n

(fext(B1,−1) − fext(B))2

≤ 1

2

∑

B⊂Z

|B|=n

(fext(B1,−1) − fext(B))2

≤ C
∑

B⊂Z

|B|=n

[
(fext(B1,0) − fext(B))2 + (fext(B0,−1) − fext(B))2

]

which hold as B−1,1 = ((B1,0)0,−1)1,0 and by applying Schwarz inequality. The
arguments are now similar to those in d = 2. �

4. Proof of Theorem 1.2

First, by (1.2) and that quadratic variation Eρ[|M(t)|2] = (1− ρ)t
∑
j |j|2p(j) =

O(t), we need only bound

Eρ[|A(t)|2] ≤
∑

|j|2σ2
t (ρ− ζj)p(j) = O(t).
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Clearly, it is sufficient to show that σ2
t (ρ− ζj0) = O(t) for j0 ∈ Z2 \ {0} and t ≥ 1.

To accomplish this, through Proposition 3.9, it will be useful to compute, for

a local function g ∈ C̄d,1, Fourier transforms ̂(Ānn;1,1g)free and ̂(Ānn;1,2g)free where
Ānn;n,m are the nearest-neighbor operators defined in subsection 3.4. When d = 2,
let a1 = ann(e1) and a2 = ann(e2), and when d = 1 let a1 = a(1). Note, by the
assumption

∑
jp(j) 6= 0, that a2

1 + a2
2 > 0 in d = 2 and |a1| > 0 in d = 1.

Let γ(r) = e2πir − e−2πir = 2i sin(2πr) for r ∈ [0, 1]. The following proposition
is proved in section 5.

Proposition 4.1. In d ≤ 2, for local g ∈ C̄d,1 and a constant C = C(d, p, ρ),

̂(Ānn;1,1g)free(v) = ρ

[ d∑

i=1

aiγ(vi)

]
ĝfree(v) + δ0(v)

where |δ0(v)| ≤ κ(v)
∑
|z|≤1 |gfree(z)| and κ(v) is a bounded function such that

κ(v)2 ≤ C|v − z|2

as v → z for z = (0, 0), (0, 1), (1, 0) and (1, 1) in d = 2, and z = 0 and 1 in d = 1.
Also,

√
2 ̂(Ānn;1,2g)free(v, w) = 2βρ

[ d∑

i=1

aiγ(vi + wi) + αd(v, w)

]
ĝfree(v + w)

+βρ

[
−

d∑

i=1

aiγ(vi) + αd(v, w)

]
ĝfree(v)

+βρ

[
−

d∑

i=1

aiγ(wi) + αd(w, v)

]
ĝfree(w) + δ1(v, w)

where, for r, s ∈ [0, 1]d,

αd(r, s) =

d∑

i=1

ai

[
γ(ri) + γ(si) − γ(ri + si)

]

and |δ1(v, w)| ≤ κ(v, w)
∑
|z|≤1 |gfree(z)| and κ(v, w) is a bounded function such that

κ(v, w)2 ≤ C[|v − z1|2 + |w − z2|2]

as (v, w) → (z1, z2) for z1, z2 = (0, 0),(0, 1), (1, 0) and (0, 1) in d = 2, and z1, z2 = 0
and 1 in d = 1.

Let now f(ζ) = ρ− ζj0 . As

(f�)free(z) =

{
−βρ z = j0

0 otherwise,

we calculate
̂(f�)free(v) = −βρe2πi(j0·v) = −βρ + δ2(v)

where δ2(v) = −βρ(e2πi(j0 ·v) − 1) and so |δ2(v)|2 ≤ C|v − z|2 as v → z for z =
(0, 0), (0, 1), (1, 0), and (1, 1) in d = 2, and z = 0 and 1 in d = 1.
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We now apply Propositions 3.9 and 4.1. Write, for local g ∈ C̄d,1 and λ = t−1,
in Fourier expression (cf. subsection 3.5), that σ2

t (f)/t is less than

2

∫

[0,1]d

| − βρ − ρ
[ ∑d

i=1 aiγ(vi)
]
ĝfree(v)|2

λ+ θd(v)
+ (λ+ θd(v))|ĝfree(v)|2 dv (4.1)

+2

∫

[0,1]d

|δ0(v) + δ2(v)|2
λ+ θd(v)

dv +

∣∣∣∣gfree(0) −
∑

|z|=1

gfree(z)

∣∣∣∣
2

+
3

2
β2
ρ

∫

([0,1]d)2

dvdw

λ+ θd(v) + θd(w)

×
∣∣∣∣2ĝfree(v + w)

d∑

i=1

aiγ(vi + wi) − ĝfree(v)

d∑

i=1

aiγ(vi) − ĝfree(w)

d∑

i=1

aiγ(wi)

∣∣∣∣
2

+
3

2
β2
ρ

∫

([0,1]d)2

|αd(v, w)ĝfree(v, w) + αd(v, w)ĝfree(v) + αd(w, v)ĝfree(w)|2
λ+ θd(v) + θd(w)

dvdw

+
3

2

∫

([0,1]d)2

|δ1(v, w)|2
λ+ θd(v) + θd(w)

dvdw.

Note that the infimum on the six lines of (4.1) over local g ∈ C̄d,1 is the same as if
over L2 functions in C̄d,1.

The strategy now follows three steps. In Step 1, we bound uniformly in λ > 0,

inf
g

∫

[0,1]d

| − βρ − ρ
[ ∑d

i=1 aiγ(vi)
]
ĝfree(v)|2

λ+ θd(v)
+ (λ+ θd(v))|ĝfree(v)|2 dv, (4.2)

and find the L2 minimizer function gλ.
In Step 2 we show gλ is a real function and (gλ)free(0) =

∑
|z|=1(gλ)free(z) = 0.

Also, we show for x ∈ Zd that supλ>0 |(gλ)free(x)| <∞. Then, as

sup
λ>0

sup
v∈[0,1]d

|δ0(v) + δ2(v)|2
λ+ θd(v)

< ∞ and sup
λ>0

sup
v,w∈[0,1]d

|δ1(v, w)|2
λ+ θd(v) + θd(w)

< ∞,

the integrals in the second and sixth lines of (4.1) are uniformly bounded. Also,
the other term in absolute value in the second line of (4.1), with g = gλ, vanishes.

Finally, in Step 3 we show that the two integrals, with g = gλ, in the third
through fifth lines of (4.1) are uniformly bounded in λ > 0. Hence, σ2

t (f)/t is
uniformly bounded over t ≥ 1, completing the proof of Theorem 1.2. �

We now argue these steps.

Step 1. By straightforward optimizations on the quadratic expression in the
integrand, observe infimum (4.2) evaluates to

β2
ρ

∫

[0,1]d

λ+ θd(v)

ρ2
∣∣ ∑d

i=1 aiγ(vi)
∣∣2 + (λ+ θd(v))2

dv (4.3)

with minimizer

̂(gλ)free(v) =
βρρ

∑d
i=1 aiγ(vi)

ρ2
∣∣∑d

i=1 aiγ(vi)
∣∣2 + (λ+ θd(v))2

.

We now check (4.3) is uniformly finite in λ > 0: As noted near equation (5.6)
Bernardin (2004), which considers almost the same integral, problems arise when
v = (0, 0), (0, 1), (1, 0), and (1, 1) in d = 2; and in d = 1, when v = 0 and 1.
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In d = 2, by using a possible sign change, the uniform bound of (4.3) is equivalent
to bounding ∫

V

λ+ v2
1 + v2

2

(c1v1 + c2v2)2 + (λ+ v2
1 + v2

2)2
dv1dv2

where V ∈ IR+ × IR+ is a neighborhood of the origin and c1, c2 are arbitrary
constants with c21 + c22 > 0. As the difficulty is when c1v1 + c2v2 = 0, bound-

ing the above integral is the same as bounding, with c1/
√
c21 + c22 = sin(φ0) and

c2/
√
c21 + c22 = cos(φ0),

∫ 1

0

∫ π/2

0

(λ+ r2)r

(c21 + c22)r
2 sin2(φ+ φ0) + (λ + r2)2

dφdr

or more simply on order

∫ 1

0

∫ π/2

0

(λ+ r2)r

(c21 + c22)r
2 sin2(φ) + (λ + r2)2

dφdr

which is finite uniformly in λ > 0 (cf. Lemma 5.2 Bernardin (2004) for similar
calculations).

In d = 1, (4.3) is on order

∫ 1

0

λ+ v2

v2 + (λ+ v2)2
dv

which also, by straightforward computation, is finite uniformly in λ > 0.

Step 2. Noting γ(r) = −γ(r), we now show ̂(gλ)free is the transform of a real
function:

∫

[0,1]d
e2πiv·x ̂(gλ)free(v)dv = −

∫

[0,1]d
e−2πiv·x ̂(gλ)free(v)dv

=

∫

[0,1]d
e−2πiv·x ̂(gλ)free(~1 − v)dv

=

∫

[0,1]d
e2πiv·x ̂(gλ)free(v)dv

where ~1 is the vector with components all 1. The last sequence also shows (gλ)free
is odd, that is (gλ)free(x) = −(gλ)free(−x) for x ∈ Zd. Then,

∑
|z|=1(gλ)free(z) =

(gλ)free(0) = 0. Also, for x ∈ Zd, again as (gλ)free is odd,

sup
λ>0

|(gλ)free(x)|

= sup
λ>0

∣∣∣∣
∫

[0,1]d
i sin(2πv · x) ̂(gλ)free(v)dv

∣∣∣∣ (4.4)

≤ C sup
λ>0

∫

[0,1]d

| sin(2πv · x)||∑d
i=1 aiγ(vi)|dv

ρ2|∑d
i=1 aiγ(vi)|2 + (λ + θd(v))2

where C = C(ρ). As with (4.3) above, the only problem with the denominator in
d = 2 comes at points v = (0, 0), (0, 1), (1, 0) and (1, 1), and in d = 1 at v = 0 and
1.
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The bound on (4.4) in d = 2, similar to the calculation in Step 1, is the same as
bounding ∫ 1

0

∫ π/2

0

rdφdr

sin2(φ) + r2

which is finite. The bound on (4.4) in d = 1 is also finite and simpler.

Step 3. The two integrals in the third through fifth lines of (4.1), after adding
and subtracting 2βρb with b = −βρ/ρ, are bounded up to a constant C = C(p, ρ)
by

C

∫

([0,1]d)2

∣∣b−
[∑d

i=1 aiγ(vi + wi)
]

̂(gλ)free(v + w)
∣∣2

λ+ θd(v) + θd(w)
dvdw (4.5)

+C

∫

([0,1]d)2

dvdw

λ+ θd(v) + θd(w)
(4.6)

×
{∣∣b−

[ d∑

i=1

aiγ(vi)
]

̂(gλ)free(v)
∣∣2 +

∣∣b−
[ d∑

i=1

aiγ(wi)
]

̂(gλ)free(w)
∣∣2

}

+C

∫

([0,1]d)2

|αd(v, w) ̂(gλ)free(v + w)|2
λ+ θd(v) + θd(w)

dvdw (4.7)

+C

∫

([0,1]d)2

|αd(v, w) ̂(gλ)free(v)|2 + |αd(w, v) ̂(gλ)free(w)|2
λ+ θd(v) + θd(w)

dvdw (4.8)

The first integral (4.5), noting
[ ∑d

i=1 aiγ(ri)
]2

= −
∣∣∑d

i=1 aiγ(ri)
∣∣2, is on order

∫

([0,1]d)2

(λ+ θd(v + w))2∣∣ ∑d
i=1 aiγ(vi + wi)

∣∣2 + (λ + θd(v + w))2

dvdw

λ+ θd(v) + θd(w)

which in d = 2 is bounded simply and uniformly in λ > 0 by
∫

([0,1]2)2

dvdw

θ2(v) + θ2(w)
<∞.

In d = 1, as supλ>0 supv,w∈[0,1](λ+ θ1(v+w))/(λ+ θ1(v) + θ1(w)) <∞, we bound
on order by ∫

[0,1]2

λ+ θ1(v + w)

|γ(v + w)|2 + (λ+ θ1(v + w))2
dvdw.

Then, as

sup
λ>0

sup
v,w∈[0,1]

θ1(v + w)

|γ(v + w)|2 + (λ+ θ1(v + w))2
< ∞,

we need only bound
∫

[0,1]2

λdvdw

|γ(v + w)|2 + (λ+ θ1(v + w))2
≤

∫ 2

0

λds

sin2(2πs) + (λ+ sin2(πs))2

which is uniformly finite in λ > 0.
The second integral (4.6) is analogously, and more simply, bounded in d = 1, 2.
For the third integral (4.7), on order we need to bound

∫

([0,1]d)2

|αd(v, w)|2|∑d
i=1 aiγ(vi + wi)|2

[|∑d
i=1 aiγ(vi + wi)|2 + (λ+ θd(v + w))2]2

dvdw

λ+ θd(v) + θd(w)
.
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In d = 2, noting the form of αd(v, w), the integral is bounded on order by

∫

([0,1]2)2

|∑2
i=1 ai(γ(vi) + γ(wi))|2|

∑2
i=1 aiγ(vi + wi)|2dvdw

[|∑2
i=1 aiγ(vi + wi)|2 + θ22(v + w)]2[θ2(v) + θ2(w)]

+

∫

([0,1]2)2

dvdw

θ2(v) + θ2(w)
.

The first term is considered and bounded, modulo constants, in Bernardin (2004,
Lemma 5.3) through an analysis of singularities of the denominator. The second
term is clearly bounded. In d = 1, write, for v, w ∈ [0, 1],

α1(v, w) = 2ia1

[
sin(2πv)[1 − cos(2πw)] + sin(2πw)[1 − cos(2πv)]

]

= 8ia1 sin(πv) sin(πw) sin(π(v + w)).

Then, the uniform bound on (4.7) follows from the bound on the integrand

sup
λ>0

sup
v,w∈[0,1]

|α1(v, w)|2|a1γ(v + w)|2
[|a1γ(v + w)|2 + (λ+ θ1(v + w))2]2[λ+ θ1(v) + θ1(w)]

< ∞.

The last integral (4.8) is bounded on order by
∫

([0,1]d)2

|αd(v, w)|2
|∑d

i=1 aiγ(vi)|2 + θd(v)2

dvdw

θd(v) + θd(w)
.

As

αd(v, w) =
d∑

j=1

aj

[
γ(vj)(1 − e2πiwj ) + γ(wj)(1 − e−2πivj )

]

and supr∈(0,1)d(
∑d

j=1 |1 − e±2πirj |2)/θd(r) <∞, the last integral is on order

∫

[0,1]d

∑d
j=1 |1 − e±2πivj |2

|∑d
i=1 aiγ(vi)|2 + θd(v)2

dv. (4.9)

In d = 2, the singularities are at v = (0, 0), (0, 1), (1, 0) and (1, 1), and as in Steps
1, 2 the bound on (4.9) is the same as

∫ 1

0

∫ π/2

0

r

sin2(φ) + r2
dφdr

which is finite. In d = 1, as supr∈(0,1) |1 − e±2πir|2/|γ(r)|2 < ∞, the integrand in

(4.9) is itself finite.

5. Proof of Proposition 4.1

We prove the proposition in d = 2. The argument in d = 1 is analogous, and
follows in particular by choosing a2 = 0.

To make notation simple, in the following, we will omit the brackets for singletons
{x} and two-tuple sets {x, y} and denote them as x and x, y. Also, we will drop
the suffix “nn” with respect to operators An,m = Ann;n,m. Recall {e1, e2} denotes
the standard basis of Z2.
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First, from the formulas in subsection 3.1, we compute the actions of A1,1 and
A1,2 on local one-degree functions, g ∈ C2,1. For x ∈ Z2 \ {0},

(Ae1,1g)(x) = (1 − 2ρ)
∑

y 6=x,0

[g(y) − g(x)]ann(y − x) and

(At1,1g)(x) = −(1 − ρ)
∑

y 6=x,0

[g(y) − g(x)]ann(y − x) − ρ[g(x) − g(−x)]a(x)

which together give

(A1,1g)(x) = −ρ
∑

y 6=x,0

[g(y) − g(x)]ann(y − x) − ρ[g(x) − g(−x)]ann(x).

Also, for distinct x, y ∈ Zd \ {0},

(Ae1,2g)(x, y) = 2βρ[g(x) − g(y)]ann(y − x)

(At1,2g)(x, y) = βρ[g(x) − g(x− y)]ann(y) + βρ[g(y) − g(y − x)]ann(x).

Then, we may write for x ∈ Z2 and local g ∈ C̄2,1 that (Ā1,1g)(x) (cf. subsection
3.4) equals





−ρ[g(x+ e1) − g(x− e1)]a1 − ρ[g(x+ e2) − g(x− e2)]a2 for x 6= ±e1,±e2, 0
∓ρ[g(±2e1) − g(∓e1)]a1 − ρ[g(e2 ± e1) − g(−e2 ± e1)]a2 for x = ±e1
∓ρ[g(±2e2) − g(∓e2)]a2 − ρ[g(e1 ± e2) − g(−e1 ± e2)]a1 for x = ±e2
0 otherwise.

Also, for x, y ∈ Z2, we write (noting (Ā·1,2g)(x, y)=(Ā·1,2g)({x, y})=(Ā·1,2g)(y, x)),

(Āe1,2g)(x, y) =





2βρ[g(x) − g(x+ e1)]a1 for y = x+ e1, x 6= 0,−e1
2βρ[g(x) − g(x+ e2)]a2 for y = x+ e2, x 6= 0,−e2
0 otherwise.

and (Āt1,2g)(x, y) equals





±βρ[g(x) − g(x∓ e1)]a1 for x 6= ±e1,±e2, 0, y = ±e1
±βρ[g(x) − g(x∓ e2)]a2 for x 6= ±e1,±e2, 0, y = ±e2
βρ[±(g(e1) − g(e1 ∓ e2))a2

+(g(±e2) − g(±e2 − e1))a1] for x = e1, y = ±e2
βρ[±(g(−e1) − g(−e1 ∓ e2))a2

−(g(±e2) − g(±e2 + e1))a1] for x = −e1, y = ±e2
βρ[−(g(e1) − g(2e1))a1 + (g(−e1) − g(−2e1))a1] for x = e1, y = −e1
βρ[−(g(e2) − g(2e2))a2 + (g(−e2) − g(−2e2))a2] for x = e2, y = −e2
0 otherwise.

We now compute corresponding Fourier transforms. To simplify notation, we

drop the subscript “free” and call gfree = g. First, we have ̂(Ā1,1g)free(v) (cf.
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subsection 3.5) equals

∑

x∈Z2

e2πix·v(Ā1,1g)free(x)

=
∑

x6=±e1,±e2,0

−ρe2πix·v[(g(x+ e1) − g(x− e1))a1 + (g(x+ e2) − g(x− e2))a2]

−ρe2πiv1 [(g(2e1) − g(−e1))a1 + (g(e2 + e1) − g(−e2 + e1))a2]

−ρe−2πiv1 [−(g(−2e1) − g(e1))a1 + (g(e2 − e1) − g(−e2 − e1))a2]

−ρe2πiv2 [(g(2e2) − g(−e2))a2 + (g(e1 + e2) − g(−e1 + e2))a1]

−ρe−2πiv2 [−(g(−2e2) − g(e2))a2 + (g(e1 − e2) − g(−e1 − e2))a1].

The sum further equals

−
∑

x6=0,2e1,

e1±e2,e1

ρe2πix·ve−2πiv1g(x)a1 +
∑

x6=0,−2e1,

−e1±e2,−e1

ρe2πix·ve2πiv1g(x)a1

−
∑

x6=0,2e2,

e2±e1,e2

ρe2πix·ve−2πiv2g(x)a2 +
∑

x6=0,−2e2,

−e2±e1,−e2

ρe2πix·ve2πiv2g(x)a2.

Recall now that γ(r) = e2πir − e−2πir = 2i sin(2πr). Combining and canceling
terms gives that

̂(Ā1,1g)free(v) = ρ[a1γ(v1) + a2γ(v2)]ĝ(v)

−ρa1(e
−2πiv1 − 1)g(e1) + ρa1(e

2πiv1 − 1)g(−e1)
−ρa2(e

−2πiv2 − 1)g(e2) + ρa2(e
2πiv2 − 1)g(−e2)

−ρ[a1γ(v1) + a2γ(v2)]g(0)

= ρ[a1γ(v1) + a2γ(v2)]ĝ(v) + δ0(v)

where |δ0(v)| ≤ κ(v)
∑
|z|≤1 |g(z)| and κ(v) is a bounded function on order κ(v) =

O(|v − z|) when v → z for z = (0, 0), (0, 1), (1, 0), and (1, 1).
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We also compute that
√

2 ̂(Āe1,2g)free(v, w) equals

∑

x,y∈Z2

e2πi(x·v+y·w)(Āe1,2g)free(x, y)

= 2βρa1

∑

z 6=0,−e1

e2πiz·(v+w)(e2πiw1 + e2πiv1)[g(z) − g(z + e1)]

+2βρa2

∑

z 6=0,−e2

e2πiz·(v+w)(e2πiw2 + e2πiv2)[g(z) − g(z + e2)]

= 2βρa1

∑

z 6=0,±e1

e2πiz·(v+w)(γ(w1) + γ(v1))g(z)

+2βρa2

∑

z 6=0,±e2

e2πiz·(v+w)(γ(w2) + γ(v2))g(z)

+2βρa1e
2πi(v1+w1)(e2πiw1 + e2πiv1)g(e1)

−2βρa1e
−2πi(v1+w1)(e−2πiw1 + e−2πiv1)g(−e1)

+2βρa2e
2πi(v2+w2)(e2πiw2 + e2πiv2)g(e2)

−2βρa2e
−2πi(v2+w2)(e−2πiw2 + e−2πiv2)g(−e2)

= 2βρ[a1(γ(w1) + γ(v1)) + a2(γ(w2) + γ(v2))]ĝ(v + w)

−2βρ[a1(γ(w1) + γ(v1)) + a2(γ(w2) + γ(v2))]g(0)

+2βρa1[(e
2πiw1 + e2πiv1)g(e1) − (e−2πiw1 + e−2πiv1)g(−e1)]

+2βρa2[(e
2πiw2 + e2πiv2)g(e2) − (e−2πiw2 + e−2πiv2)g(−e2)].

Also, we have
√

2 ̂(Āt1,2g)free(v, w) equals

∑

x,y∈Z2

e2πi(x·v+y·w)(Āt1,2g)free(x, y)

= βρa1

∑

z 6=0,±e1,±e2

(e2πiz·ve2πiw1 + e2πiz·we2πiv1)[g(z) − g(z − e1)]

−βρa1

∑

z 6=0,±e1,±e2

(e2πiz·ve−2πiw1 + e2πiz·we−2πiv1)[g(z) − g(z + e1)]

+βρa2

∑

z 6=0,±e1,±e2

(e2πiz·ve2πiw2 + e2πiz·we2πiv2)[g(z) − g(z − e2)]

−βρa2

∑

z 6=0,±e1,±e2

(e2πiz·ve−2πiw2 + e2πiz·we−2πiv2)[g(z) − g(z + e2)]

+βρ(e
2πiv1e2πiw2 + e2πiv2e2πiw1)

×[a2(g(e1) − g(e1 − e2)) + a1(g(e2) − g(e2 − e1))]

+βρ(e
2πiv1e−2πiw2 + e−2πiv2e2πiw1)

×[−a2(g(e1) − g(e1 + e2)) + a1(g(−e2) − g(−e2 − e1))]
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+βρ(e
−2πiv1e2πiw2 + e2πiv2e−2πiw1)

×[a2(g(−e1) − g(−e1 − e2)) − a1(g(e2) − g(e2 + e1))]

+βρ(e
−2πiv1e−2πiw2 + e−2πiv2e−2πiw1)

×[−a2(g(−e1) − g(−e1 + e2)) − a1(g(−e2) − g(−e2 + e1))]

+βρa1(e
2πiv1e−2πiw1 + e−2πiv1e2πiw1)

×[−g(e1) + g(2e1) + g(−e1) − g(−2e1)]

+βρa2(e
2πiv2e−2πiw2 + e−2πiv2e2πiw2)

×[−g(e2) + g(2e2) + g(−e2) − g(−2e2)]

= βρĝ(v)[a1(γ(w1) − γ(v1 + w1)) + a2(γ(w2) − γ(v2 + w2))]

+βρĝ(w)[a1(γ(v1) − γ(v1 + w1)) + a2(γ(v2) − γ(v2 + w2))]

+βρg(0)[a1(−γ(v1) − γ(w1) + 2γ(v1 + w1))

+a2(−γ(v2) − γ(w2) + 2γ(v2 + w2))]

−βρa1g(e1)[e
−2πiw1 + e−2πiv1 + 2e2πi(v1+w1)]

+βρa1g(−e1)[e2πiw1 + e2πiv1 + 2e−2πi(v1+w1)]

−βρa2g(e2)[e
−2πiw2 + e−2πiv2 + 2e2πi(v2+w2)]

+βρa2g(−e2)[e2πiw2 + e2πiv2 + 2e−2πi(v2+w2)]

Putting terms together, we compute the Fourier transform for (Ā1,2g)free. In

particular, we note the last four lines of the computation for ̂(Āt1,2g)free and the

last two lines of the computation for ̂(Āe1,2g)free are O(1) as (v, w) → (z1, z2) for

z1, z2 = (0, 0), (0, 1), (1, 0) and (1, 1). However, they match in the sense, when they
are added to each other, the sum is small on the desired order. We have

√
2 ̂(Ā1,2g)free(v, w)

= 2βρ[a1(γ(w1) + γ(v1)) + a2(γ(w2) + γ(v2))]ĝ(v + w)

+βρĝ(v)[a1(γ(w1) − γ(v1 + w1)) + a2(γ(w2) − γ(v2 + w2))]

+βρĝ(w)[a1(γ(v1) − γ(v1 + w1)) + a2(γ(v2) − γ(v2 + w2))] + δ1(v, w)

where |δ1(v, w)| ≤ κ(v, w)
∑
|z|≤1 |g(z)| and κ(v, w) is a bounded function on order

κ2(v, w) = O(|v − z1|2 + |w − z2|2) when (v, w) → (z1, z2) for points z1, z2 =
(0, 0), (0, 1), (1, 0) and (1, 1).
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