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Convergence of the Tóth lattice filling curve to the
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Abstract. In this paper we consider the lattice filling curve, defined implicitly by
Tóth (1995) and explicitly by Tóth and Werner (1998), which forms the boundary
between forward and backward coalescing random walks starting from even and odd
space-time sub-lattices of Z2 respectively. We show that this lattice filling curve
converges in the diffusive scaling limit to a plane filling curve which is the boundary
between the forward and backward Brownian webs. A one-dimensional projection
of the two-dimensional result proves the convergence of Tóth’s self-repelling walk
to the Tóth-Werner continuum self repelling motion. Our main new result is the
tightness of the rescaled lattice model distributions.

1. Introduction

This paper concerns the convergence of the scaling limit of a specific random
lattice filling curve related to Tóth’s “true” self-avoiding walk on Z (Tóth, 1995;
Tóth and Werner, 1998) to its continuum limit, the Tóth-Werner random plane
filling curve (Tóth and Werner, 1998). This is one of a number of natural situations
in two dimensions where the lattice filling curve (and its continuum counterpart)
represents the boundary between a spanning tree and its dual tree.

In this paper, the spanning tree is that obtained from the graphs of coalescing
one-dimensional random walks starting from all lattice points of 1+1 dimensional
space time (Tóth and Werner, 1998) and the continuum spanning tree is the cor-
responding continuum object obtained from the Brownian web (Tóth and Werner,
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1998; Fontes et al., 2002, 2004). Other important examples are the uniform span-
ning tree and the minimal spanning tree.

Some results, e.g. about tightness, for the scaling limits of these lattice trees
were obtained in Aizenman et al. (1999), but without consideration of the corre-
sponding lattice or plane filling curves. It was argued by Schramm (2000) that
for the uniform spanning tree, the limiting plane filling curve should be given by
SLE8. This, along with the closely related result that scaled loop-erased random
walk converges to SLE2, has been proved in a recent paper of Lawler, Schramm
and Werner (2004). Although analogous results for minimal spanning trees and
their corresponding plane filling curves remain open problems (Camia et al., 2006),
related results concerning critical two-dimensional percolation and SLE6 have been
obtained (Schramm, 2000; Smirnov, 2001; Camia and Newman, 2004, 2006a,b). As
we shall see, the situation is simplified in the case treated in this paper, compared to
either the uniform or minimal spanning tree situation, because one of our two coor-
dinates is directed (i.e., the time) and because graphs of one dimensional Brownian
motions are simpler than traces of SLEκ.

Returning to our case of coalescing walks, we proceed as in Tóth and Werner
(1998) and consider the odd and even sub-lattices of Z2 (thought of as space-time)
denoted respectively by Z2

o and Z2
e. Suppose there are simple symmetric coalescing

random walks starting from every point in Z2 with those starting from Z2
e moving

forward in time and those starting from Z2
o moving backward in time. This can

be defined easily by first introducing a countable family of independent Bernoulli
random variables {ξ+

i,j |(i, j) ∈ Z2
e} where ξ+

i,j = ±1 with probability 1/2. If Z+(i)

denotes the position of a forward coalescing random walk on Z2
e at time i, then

Z+(i + 1) = Z+(i) + ξ+
i,Z+(i). This defines a family of coalescing forward random

walks starting from every point in Z2
e .

We now define a countable collection of mutually independent random variables
{ξ−i,j |(i, j) ∈ Z2

o} as follows. ξ−i+1,j = −ξ+
i,j . If Z−(i + 1) denotes the position

of a backward coalescing random walk at time i + 1, then Z−(i) = Z−(i + 1) +
ξ−
i+1,Z−(i+1). This defines a family of coalescing backward random walks starting

from every point in Z2
o. Moreover from the definition it is clear that the paths of the

forward and backward random walks never cross. Such families of forward and dual
backward coalescing walks were introduced by Arratia (1981a) — see also Arratia
(1979, 1981b). They were also introduced in the continuous time context for the
study of voter models by Harris (1977) (for the case of infinitely many colors, see
for example Fontes et al., 2001); there the forward and backward walks represent
color boundaries and color ancestry respectively.

Almost every realization of forward and backward random walks uniquely defines
a Z2 + (1/2, 0) lattice filling curve which is the boundary between the collections
of forward and backward paths (see Section 11 of Tóth and Werner (1998) for a
detailed construction). This boundary (which we call the Tóth lattice filling curve)
was implicit in Tóth’s study of the “true” self-avoiding walk with bond repulsion
on Z (Tóth, 1995). It and its continuum analogue (which we call the Tóth-Werner
plane filling curve) were defined explicitly by Tóth and Werner (1998) in their anal-
ysis of the true self repelling motion which is the natural candidate for the scaling
limit of the lattice self-avoiding walk. They showed that in both the discrete and
the continuum models the projection on the time axis of the lattice (respectively,
plane) filling curve represents the the “true” self-avoiding walk (respectively, true
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self repelling motion). Moreover the spatial projection gives the local time of the
walk (respectively, motion) at that point.

A limit theorem for the random walk local times proved in Tóth (1995) (The-
orem 1 there) implies that the finite dimensional distributions of the lattice filling
curve should converge to those of the plane filling curve. Therefore, if one could
prove tightness for the family of lattice filling curves obtained by diffusive scaling
of the curve in Z2 + (1/2, 0), the convergence of Tóth’s lattice filling curve to the
Tóth-Werner plane filling curve would also be proved.

The central object in the definition of the Tóth-Werner plane filling curve is
a process which is a natural candidate for the diffusive limit of the forward and
backward coalescing walks. It consists of forward and backward coalescing non-
crossing Brownian motions stating from “every” space-time point. Such an object
was defined by Arratia (1981a) and was an essential part of the paper of Tóth and
Werner (1998). One version of this object (Fontes et al., 2002), which is defined as
the closure of a countable collection of coalescing Brownian motions starting from a
dense countable set of space-time points, has more than one path starting from non-
generic random points. Arratia, as well as Tóth and Werner, introduced certain
criteria (flow continuity and right continuity respectively) to pick out a unique
path. On the other hand the scaling limit of the forward and backward coalescing
walks will have multiple paths starting from random points. This seems to make
the tightness argument for coalescing walks difficult in the formulations of Arratia
and of Tóth and Werner. Fontes, Isopi, Newman and Ravishankar (2004; 2006)
introduced a space and metric for the walks as well as the continuum object which
allowed them to keep all the paths passing through all points and thus were able
to prove first tightness for coalescing walks and then convergence to the continuum
object which they called the double Brownian web (DBW).

In this paper we use the ideas introduced in Fontes et al. (2004, 2006) to obtain
tightness for the family of measures describing the rescaled lattice filling curves
and prove the convergence of the distribution of the rescaled Tóth lattice filling
curve to the distribution of the Tóth-Werner plane filling curve. This is stated
as Theorem 4.2 below and is the major result of this paper. While the main
contribution is the tightness argument, we have also included a short section on the
proof of convergence of finite dimensional distributions for completeness.

We will first give a brief description and definition of the Tóth-Werner plane fill-
ing curve (ωBW ) discussed above and also a characterization for it. In the remainder
of the paper we will prove that the (rescaled) random lattice filling curve ωn (the
boundary between the forward and backward coalescing random walk paths) con-
verges in distribution to the random plane filling curve ωBW . The appendix gives a
brief description of the metric space where the Brownian web and double Brownian
web are defined and relevant characterization and convergence results.

2. Characterization of the Tóth-Werner plane filling curve

When taking the scaling limit, one can focus on fixed finite regions of R2, or
consider the whole R2 at once. The second option avoids dealing with boundary
issues, but requires an appropriate choice of metric.
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A convenient way of dealing with the whole R2 is to replace the Euclidean metric
with a distance function ∆(·, ·) defined on R2 × R2 by

∆(u, v) = inf
ϕ

∫

(1 + |ϕ|2)−1 ds, (2.1)

where the infimum is over all smooth curves ϕ(s) joining u with v, parametrized by
arclength s, and where | · | denotes the Euclidean norm. This metric is equivalent
to the Euclidean metric in bounded regions, but it has the advantage of making R

2

precompact. Adding a single point at infinity yields the compact space Ṙ2 which is
isometric, via stereographic projection, to the two-dimensional sphere. We denote
by I the point at infinity in Ṙ2.

Let C be the space of continuous curves ω : [−∞,∞] → Ṙ2, such that ω(−∞) =
ω(∞) = I. We now define a metric D on C, by

D(ω1, ω2) = sup
−∞≤t≤∞

∆(ω1(t), ω2(t)).

Let FC denote the Borel sigma algebra of subsets of (C, D). If νn is a sequence
of probability measures on (C, FC), then by the Arzela-Ascoli theorem, a sufficient
condition for tightness can be stated as follows:

Theorem 2.1. A sequence of probability measures νn on (C, FC) is tight if it sat-
isfies the following: for any ρ > 0,

lim
δ↓0

lim sup
n→∞

νn[ sup
s,t∈[−∞,∞], |t−s|<δ

|∆(ω(t), ω(s))| ≥ ρ] = 0.

We define the first time that a continuous curve ω ∈ C visits y as τ(y) =
inf{t|ω(t) = y}. In this and subsequent sections, we will use the notations for the
Brownian web and double Brownian web from the Appendix (Section 5).

Definition 2.2. Let ω′ denote an element of the sample space of the DBW. We
call an ω′-dependent point y in the plane “generic” if there is a unique forward and
unique backward path from y.

Remark 2.3. We point out that from Proposition 5.2 in the Appendix it follows
that any deterministic point is generic (µDBW )-almost surely. By an elementary ar-
gument using Fubini’s theorem it follows that non-generic points have zero Lebesgue
measure (µDBW )-almost surely.

Definition 2.4. For an ω′-dependent generic point y ∈ R
2 let fBW

y , bBW
y denote

the forward and backward paths starting from y. Define the random variable τBW (y)
on ((H, FH)× (Hb, Fb

H
), µDBW ) where µDBW is the double Brownian web measure

as τBW (y) = planar area enclosed by the four paths fBW
y , fBW

0 , bBW
y , bBW

0 .
Henceforth, we let y1, y2, · · · be a deterministic dense countable set of points

in R2 (yj = I is not allowed). We note that Tóth and Werner (1998) defined a
measure µBW on (C, FC) with the property that the finite dimensional distributions
of {τ(yi), i = 1, 2, · · · } under µBW are those of {τBW (yi), i = 1, 2, · · · }.
Proposition 2.5. If there exists a measure µ′

BW on (C, FC) such that the finite
dimensional distributions of {τ(yi), i = 1, 2, · · · } under µ′

BW are equal to the finite
dimensional distributions of {τBW (yi), i = 1, 2, · · · } then µ′

BW = µBW . We denote
a corresponding C-valued random variable by ωBW .

Proposition 2.5 follows from the next two lemmas.
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Lemma 2.6. a) {τBW (y) : y is generic } is µDBW -almost surely dense in R.
b) For µDBW -almost every ω′, if z1(ω

′) and z2(ω
′) are generic and also

τBW (z1(ω
′)) < τBW (z2(ω

′)),

then there exists at least one (actually infinitely many) τBW (yi)’s in

(τBW (z1), τBW (z2))

c) {τBW (yi), i = 1, 2, · · · } is µDBW -almost surely dense in R.

Remark 2.7. We point out that the proof of Lemma 2.6 follows the arguments used
to prove Lemma 3.2 of Tóth and Werner (1998) except for modifications to take
care of the fact that there can be more than one path starting from some random
points.

Proof: Proof of claim a): Suppose a) is not true. Then with positive µDBW -
probability there exist generic points z′

1, z
′
2, with τBW (z′1) < τBW (z′2) such that if

t ∈ (τBW (z′1), τBW (z′2)), then no generic y exists in R
2 such that τBW (y) = t. From

properties of Brownian motion we know that the four paths fBW
z′

1

, fBW
z′

2

, bBW
z′

1

, bBW
z′

2

µDBW -almost surely enclose a region ABW (z′1, z
′
2) of positive Lebesgue measure (in

fact with nonempty interior, as we shall see shortly). Moreover if z ′
3 ∈ ABW (z′1, z

′
2)

is generic (and z′
3 is distinct from z′

1, z
′
2) then τBW (z′3) ∈ (τBW (z′1), τBW (z′2)).

This implies that all points in the region ABW (z′1, z
′
2) are non-generic. This in

turn implies that with positive µDBW -probability non-generic points have positive
Lebesgue measure contradicting Remark 2.3. This proves claim a)

Proof of claim b): If z′
1 and z′2 are generic, then z′

1 can not lie on fBW
z′

2

or bBW
z′

2

and

z′2 can not lie on fBW
z′

1

or bBW
z′

1

. Then the planar region ABW (z′1, z
′
2) strictly enclosed

by the four paths above is a nonempty open set (of area = τBW (z′2) − τBW (z′1))
and hence contains at least one (in fact infinitely many) yi since the yi’s are dense
in R2. By the definition of τBW , there must be at least one τBW (yi) in the time
interval (τBW (z′1), τBW (z′2)). This proves claim b).

Claim c) follows from claims a) and b).

Lemma 2.8. Let µ′
1 and µ′

2 be two measures on (C, FC) (and let the corresponding
random variables be denoted by ω1 and ω2) such that {τω1

(yi), i = 1, 2, · · · } and
{τω2

(yi), i = 1, 2, · · · } are both dense (µ′
1 and µ′

2 respectively) almost surely. If the
finite dimensional distribution of {τω1

(yi), i = 1, 2, · · · } and {τω2
(yi), i = 1, 2, · · · }

are equal then µ′
1 = µ′

2.

Proof: For a given t ∈ (−∞,∞), let In(t) = max{τ(yi) : i ≤ n and τi ≤ t} and
Z1

n(t) = ω1(In(t)), Z2
n(t) = ω2(In(t)). Since {τ(yi)} is dense and ω1(.), ω2(·) are

continuous we have Z1
n(t) → ω1(t)and Z2

n(t) → ω2(t) almost surely. Since the finite
dimensional distributions of {τω1

(yi), i = 1, 2 · · · } and {τω2
(yi), i = 1, 2, · · · } are

identical, the finite dimensional distributions of Z1
n(t) and Z2

n(t) are also identical.
This proves that µ′

1 = µ′
2.

Proof of Proposition 2.5: Since the finite dimensional distributions of {τ(yi), i =
1, 2, · · · } under µ′

BW are equal to the finite dimensional distributions of {τBW (yi), i =
1, 2, · · · }, it follows from Lemma 2.6 that {τ(yi), i = 1, 2, · · · } is almost surely dense.
Lemma 2.8 then implies that µ′

BW = µBW .
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3. Tightness

Let L, T > 0 and define ΛT,L = [−T, T ] × [−L, L]. Let an > 0 be a se-
quence of positive numbers converging to zero and let µn be the measure on
(H, FH) × (Hb, Fb

H
) induced by forward coalescing random walks on the rescaled

lattice Le(an) = {(anu,
√

anv)|(u, v) ∈ Z
2
e} and backward coalescing random walks

on the rescaled lattice Lo(an) = {(anu,
√

anv)|(u, v) ∈ Z
2
o}. Almost every re-

alization of forward random walks on Le(an) and backward random walks on
Lo(an) uniquely defines a curve ωn = (ωn

t , ωn
x ) ∈ C that fills the lattice L(an) =

{(anu,
√

anv)|(u, v) ∈ Z2 + (1/2, 0)},which is the boundary between the collections
of forward and backward paths.

It was shown by Toth (1995) that ωn can be parametrized in a natural way using
the forward and backward paths. For all (u, v) ∈ Z2, n ∈ N let fn

(u,v) be the forward

path starting from the Le(an) site adjacent to (an(u + 1/2),
√

anv) and similarly
define a backward path bn

(u,v). The epoch s when ωn visits (an(u + 1/2),
√

anv) is

given by the area An((0, 0), (u, v)) in R2 enclosed by fn
(0,0), f

n
(u,v), b

n
(u,v) and bn

(0,0)

and the line segments joining (0, 0), (an, 0) and (anu,
√

anv), (an(u+1),
√

anv) . Let
µ′

n denote the distribution of the corresponding C-valued random variable ωn(.) on
((H, FH) × (Hb, Fb

H
), µn) which identifies µn- almost every element of (H, FH) ×

(Hb, Fb
H

) with its unique boundary curve (separating backward and forward paths).
We gave a characterization of the distribution of ωBW in Proposition 2.5. In the
rest of this paper we prove that ωn ⇒ ωBW .

Let A′
T,L(ε, δ) denote the event in (C, FC) that ∃ s1, s2 with |s1 − s2| ≤ δ and

with ω(s1), ω(s2) ∈ ΛT,L such that |ω(s1) − ω(s2)| ≥ ε. Using standard properties
of random walks (or Brownian motion) it is not difficult to show that for all C > 0,
for all ε′ > 0 there exists L(ε′), T (ε′) such that infn(µ′

n(ω(s) ∈ ΛT,L for all s ∈
[−C, C])) ≥ 1−ε′. (For example, consider the rectangle ΛL2+α,L1+α where 0 < α < 1
and the forward random walk paths in Le(an) which start from 0 and L. These
paths will stay within ΛL2+α,L1+α , meet before time L2+α and enclose an area
greater than CL3−α with probability approaching one as L → ∞. Of course, the
same analysis applies to the backward paths.) Then it follows from Theorem 2.1
that the family of measures {µ′

n} is tight if

∀L, T > 0, ∀ε > 0, lim sup
δ↓0

lim sup
n→∞

µ′
n(A′

T,L(ε, δ)) = 0.

Theorem 3.1. The family of measures {µ′
n} is tight.

Proof: We prove the theorem by contradiction. Suppose that {µ′
n} is not tight.

Then since A′
T,L(ε, δ) decreases as δ decreases, ∃ some L, T > 0, ε > 0 and subse-

quence {nj} of {n} such that for all δ > 0,

µ′
nj

(A′
T,L(ε, δ)) ≥ β > 0, ∀j ∈ N , (3.2)

for some β > 0.
To describe the strategy of the proof, we first recall that µ′

n, a measure on scaled
lattice filling curves, was induced by the measure µn on the collections of scaled
backward and forward random walk paths, and also that µn converges to the Dou-
ble Brownian web measure µDBW as n → ∞. Our strategy is then to show that
(3.2) would lead to a contradiction concerning the DBW — namely, that the DBW
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would, with strictly positive probability, contain forward and backward paths pass-
ing through each of two distinct points (t1, x1) and (t2, x2), which altogether would
enclose zero area. As we shall see, this would contradict standard properties of the
forward and backward Brownian motions from which the DBW is constructed.

Let 0 < γ < ε/2 be given and B̄((t, x), a) be the closed ball of radius a
centered at (t, x). Define AT,L(ε, δ, γ) as the event that (K, Kb) ∈ H × Hb is
such that there exist (t1, x1), (t2, x2) ∈ ΛL,T with |(t1, x1) − (t2, x2)| ≥ ε and
K contains forward paths fγ

(t1,x1)
, fγ

(t2,x2)
which start or pass through (t′1, x

′
1) ∈

B̄((t1, x1), γ), (t′2, x
′
2) ∈ B̄((t2, x2), γ) respectively with t′1 ≥ t1, t

′
2 ≥ t2 and Kb

contains backward paths bγ

(t1,x1)
, bγ

(t2,x2)
which start or pass through (t′′1 , x′′

1 ) ∈
B̄((t1, x1), γ), (t′′2 , x′′

2 ) ∈ B̄((t2, x2), γ) respectively with t′′1 ≤ t1, t
′′
2 ≤ t2 and the

area enclosed by fγ

(t1,x1)
, bγ

(t1,x1)
, the line segment joining (t′1, x

′
1) and (t′′1 , x′′

1 ),

fγ

(t2,x2)
, bγ

(t2,x2)
, and the line segment joining (t′2, x

′
2) and (t′′2 , x′′

2 ) is less than or

equal to δ.
Suppose (3.2) is true and let δi and γk be sequences converging to zero. Then

we have

lim inf
i→∞

lim inf
k→∞

lim inf
j→∞

µnj
(AT,L(ε, δi, γk)) ≥ β > 0.

Since the measures {µnj
} converge to the Double Brownian Web (DBW) (Sou-

caliuc et al., 2000; Fontes et al., 2004) and AT,L(ε, δi, γk) is a closed subset of
(H × Hb, dHD) [see Section 5.2], we have,

0 < β ≤ lim inf
i→∞

lim inf
k→∞

lim inf
j→∞

µnj
(AT,L(ε, δi, γk)) (3.3)

≤ lim inf
i→∞

lim inf
k→∞

lim sup
j→∞

µnj
(AT,L(ε, δi, γk)) (3.4)

≤ lim inf
i→∞

lim inf
k→∞

µDBW (AT,L(ε, δi, γk)) . (3.5)

Since AT,L(ε, δi, γ) decreases when γ decreases

lim inf
k→∞

µDBW (AT,L(ε, δi, γk)) = µDBW (∩∞
k=1AT,L(ε, δi, γk))

and since AT,L(ε, δ, γk) decreases when δ decreases

lim inf
i→∞

µDBW (∩∞
k=1AT,L(ε, δi, γk)) = µDBW (∩∞

i=1 ∩∞
k=1 AT,L(ε, δi, γk)) .

If K×Kb ∈ ∩∞
i=1∩∞

k=1AL,T (ε, δi, γk) then, since K and Kb are compact subsets of Π
and Πb respectively, K ×Kb contains pairs of forward and backward paths passing
through two points (t1, x1), (t2, x2) ∈ ΛT,L with |(ti, x1)−(t2, x2)| ≥ ε,which enclose
zero area.

Therefore we conclude that with positive probability the DBW contains forward
and backward paths passing through two points (t1, x1), (t2, x2) ∈ ΛL,T which en-
close zero area. Suppose t1 = t2. Then this implies that the DBW contains either
a forward or a backward path which traverses a distance ε/2 in zero time con-
tradicting the fact that realizations of the DBW are compact sets of continuous
functions of time. Suppose t1 6= t2 (we assume t1 < t2). Then it follows that
there exist real numbers a < b and forward (respectively, backward) paths in the
DBW passing through points (t̃1, x̃1), t̃1 > t1 (respectively, (t̃2, x̃2), t̃2 < t2) which
enclose zero area during the time interval [a, b]. That is, K ∈ H contains a path
f(t̃1,x̃1)(t) passing through (t̃1, x̃1) and Kb ∈ Hb contains a path b(t̃2,x̃2)(t) such that
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fBW
(t̃1,x̃1)

(t) = bBW
(t̃2,x̃2)

(t) for a.e. t ∈ [a, b]. But from the construction of the DBW

(see Soucaliuc et al. (2000); Fontes et al. (2006) and also Prop. 4.2 of Fontes et al.
(2004)) we know that the points where a forward and a backward path meet have
the same distribution as the record points of Brownian motion which in turn have
the same distribution as the zeros of Brownian motion. This would lead to the
conclusion that with positive probability the set of zeros of Brownian motion has
positive Lebesgue measure, but this contradicts the well known property of Brow-
nian motion that the set of zeroes of Brownian motion has zero Lebesgue measure
almost surely. Therefore we conclude that the family of measures {µ′

n} is tight.

4. Finite Dimensional Distributions

Let yi, i = 1, 2, · · · be a dense countable set of points in R2 and define a [−∞,∞]-
valued random variable τi, the first hitting time of yi, as τi = inf{t : ω(t) = yi}.
Recall that the random lattice filling curve in the lattice L(an) is denoted by ωn.
Let τ ε

i be the approximation to τi defined as

τ ε
i =

∫ 1

0

gε(r)τ
′
B(yi ,r)dr

where τ ′
B(yi,r) is the first hitting time of an open disk of radius r centered at yi and

the function gε is defined (for example) as follows:

gε(r) =















0 for r ≤ ε,
4
ε2

(r − ε) for ε < r < 3ε/2,
−4
ε2

(r − 3ε/2) + 2
ε

for 3ε/2 ≤ r < 2ε,
0 for r ≥ 2ε.

(4.6)

Note that gε satisfies
∫ 2ε

ε
gε(r)dr = 1. It is easy to see that τ ε

i as a function on
(C, D), is continuous and limε→0 τ ε

i = τi.

Theorem 4.1. Let µ′′ denote a sub-sequential limit of the sequence {µ′
n} along a

sub-sequence µ′
nk

and denote the corresponding random variable by ω′′. Then the
finite dimensional distributions of the random variables {τi(ω

′′)} are identical to
the finite dimensional distributions of {τBW (yi)}.
Proof: Since for all ε and i, τ ε

i is a continuous function on (C, D), it follows that
the finite dimensional distributions of {τ ε

i (ωnk
)} converge to those of {τ ε

i (ω′′)}. We
want to show that the finite dimensional distributions of {τ ε

i (ω′′)} converge to those
of {τBW (yi)} as ε → 0. For each i = 1, 2, · · · let yi(n) = (yt

i(n), yx
i (n)) ∈ L(an) be a

sequence of points converging to yi as n → ∞. Let τn
i (ωn) = inf{t|ωn(t) = yi(n)}.

Then it is easy to see that for each ε and i, τ ε
i (ωn) ≤ τn

i (ωn) for large enough
n = n(ε), µ′

n − a.s.
Therefore for any m ∈ N and tj ∈ R, j = 1, 2, · · · , m and large enough n(ε),

µ′
n(τ ε

1 > t1, τ
ε
2 > t2, · · · τ ε

m > tm) ≤ µ′
n(τn

1 > t1, τ
n
2 > t2, · · · τn

m > tk). (4.7)

By definition, τn
i (ωn) is the area An((0, 0), (yt

i(n) − an/2, yx
i (n))). From a conver-

gence property of the double Brownian web (Fontes et al., 2006) we know that
{fn

y1
, fn

y2
· · · fn

ym
, bn

y1
, bn

y2
, · · · bn

ym
} converge jointly in distribution to coalescing for-

ward and backward Brownian motions {W1, W2, · · ·Wm, W b
1 , W b

2 , · · ·W b
m} starting

from y1, y2, · · · ym. By Skorohod’s theorem there exist random variables

{f ′n
y1

, f ′n
y2

· · · f ′n
ym

, b′ny1
, b′ny2

· · · b′nym
} and {W ′

1, W
′
2, · · ·W ′

m, W ′b
1 , W ′b

2 , · · ·W ′b
m}
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on some probability space which have the same joint distribution as

{fn
y1

, fn
y2

· · · fn
ym

, bn
y1

, bn
y2

, · · · bn
ym

} and {W1, W2, · · ·Wm, W b
1 , W b

2 , · · ·W b
m}

respectively such that f ′n
yi

converges almost surely to W ′
i and bn

yi
converges to W ′b

i

almost surely for all 1 ≤ i ≤ m. Let us denote the area enclosed by f ′n
yi

, b′nyi
, f ′n

0 , b′n0
(and two line segments: one connecting the starting points of f ′n

yi
and b′nyi

, an-

other connecting those of f ′n
0 and b′n0 ) by A′n((0 − an/2, 0), (yt

i(n) − an/2, yx
i (n))).

Then using the property of Brownian motion that two coalescing Brownian motions
starting distance d apart enclose an area before coalescing which goes to zero al-
most surely as d → 0 we can conclude that A′n((0−an/2, 0), (yt

i(n)−an/2, yx
i (n)))

converges almost surely to A′BW ((0, 0), (yt
i , y

x
i )) where A′BW ((0, 0), (yt

i , y
x
i )) is the

area enclosed by W ′
i , W

′b
i , W ′

0, W
′b
0 . From this it follows that for all m ∈ N,the joint

distribution of the areas
An((0 − an/2, 0), (yt

1(n) − an/2, yx
1 (n))), An((0 − an/2, 0), (yt

2(n) − an/2, yx
2 (n)),

· · ·An((0 − an/2, 0), (yt
m(n) − an/2, yx

m(n)) converges to the joint distribution of
ABW ((0, 0), (yt

1, y
x
1 )), ABW ((0, 0), (yt

2, y
x
2 ), · · ·ABW ((0, 0), (yt

m, yx
m)). Thus we con-

clude that the finite dimensional distributions of τn
i (ωn) converge as n → ∞ to

those of {τi(ωBW )}. Therefore taking a subsequential limit along the sequence
{nk} in Equation (4.7), we have

µ′′(τ ε
1 > t1, τ

ε
2 > t2, · · · τ ε

m > tm) ≤ µDBW (τ1 > t1, τ2 > t2, · · · τm > tm). (4.8)

To complete the proof, we need to get an inequality in the opposite direction
when ε → 0. Let (t, x) = y ∈ R2 and for all ε > 0 again let B(y, ε) denote the open

ball of radius ε centered at y. Let ε̃ = |y|
8 ε̂. Let us denote a forward path in K ∈ H

starting or passing through y′ by f̃K
y′ and similarly a backward path in Kb ∈ H

b

starting from or passing through y′′ by b̃Kb

y′′ . Let (K, Kb) = Kd ∈ H × Hb. Let

z, z′ ∈ B(0, 4ε̃) and w, w′ ∈ B(y, 4ε̃), where (tz, xz) = z, (t′z, x′z) = z′, with tz ≥ t′z,

(tw, xw) = w, (t′w, x′w) = w′, with tw ≥ t′w. Also we denote by AKd

(z, z′, w, w′)

the area enclosed by f̃K
z , f̃K

w , b̃Kb

z′ , b̃Kb

w′ and the line segment joining z, z′ and the
line segment joining w, w′.

Define for all y1, y2, · · · ,

τB(yi,4ε) = τB(yi,4ε)(K
d) = inf

w,w′,z,z′

(AKd

(z, z′, w, w′)),

where the infimum is over z, z′, w, w′ as above but with y replaced by yi and ε̃ by ε.
We know that µn ⇒ µDBW and that the family of measures {µn} is tight (Fontes
et al., 2004). Thus for all ε′ > 0, there exists a compact set Mε′ ∈ H × Hb such
that µn(Mε′) ≥ 1 − ε′ for all n ∈ N. Using the compactness of Mε′ it is easy to
see that τB(yi,4ε)(K

d)1{Mε′}
(Kd) is a lower semi-continuous function on H × Hb.
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Therefore for small enough ε,

µDBW (τB(y1,4ε) > t1, τB(y2,4ε) > t2, · · · , τB(ym,4ε) > tm)

≤ µDBW (τB(y1,4ε)1{Mε′}
> t1, · · · , τB(ym,4ε)1{Mε′}

> tm) + ε′

≤ lim inf
n

µn(τB(y1,4ε)1{Mε′}
> t1, · · · , τB(ym,4ε)1{Mε′}

> tm) + ε′

≤ lim inf
n

µn(τB(y1,4ε) > t1, · · · , τB(ym,4ε) > tm) + ε′

≤ lim sup
k

µnk
(τ ′

B(y1,4ε) > t1, · · · , τ ′
B(ym,4ε) > tm) + ε′

≤ lim sup
k

µ′
nk

(τ2ε
1 ≥ t1, · · · , τ2ε

m ≥ tm) + ε′

≤ µ′′(τ ε
1 > t1, · · · , τ ε

m > tm) + ε′. (4.9)

In the third line we have used lower semi-continuity and in the fifth line we have
used the fact that for large enough n, τ ′

B(yi,4ε)(ωn) ≥ τB(yi,4ε)(ωn). In the last line

we have used the fact that {τ 2ε
i ≥ t} is a closed subset of (C, D) and that τ ε

i ≥ τ2ε
i ,

µ′′-almost surely.
Since the above equation is true for all ε′ > 0 we conclude that

µDBW (τB(y1,4ε) > t1, τB(y2,4ε) > t2, · · · , τB(ym,4ε) > tm) (4.10)

≤ µ′′(τ ε
1 > t1, τ

ε
2 > t2, · · · τ ε

m > tm). (4.11)

Now from (4.8) and (4.10) we have

µDBW (τB(y1,4ε) > t1, τB(y2,4ε) > t2, · · · , τB(ym,4ε) > tm)

≤ µ′′(τ ε
1 > t1, τ

ε
2 > t2, · · · , τ ε

m > tm) (4.12)

≤ µDBW (τ1 > t1, τ2 > t2, · · · , τm > tm). (4.13)

Taking the limit as ε → 0 we conclude that the finite dimensional distributions
of {τi(ω

′′)} are identical to those of {τi(ωBW )}. Therefore it follows from Proposi-
tion 2.5 that µ′′ = µBW . We have proved:

Theorem 4.2. ωn ⇒ ωBW ; i.e., the rescaled Tóth lattice filling curve converges in
distribution to the Tóth-Werner plane filling curve in the diffusive scaling limit.

5. Appendix

5.1. Brownian Web: We recall first Fontes, Isopi, Newman and Ravishankar’s (2002;
2004) choice of the metric space in which the Brownian Web takes its values.

Let (R̄2, ρ) be the completion (or compactification) of R2 under the metric ρ,
where

ρ((t1, x1), (t2, x2)) =

∣

∣

∣

∣

tanh(x1)

1 + |t1|
− tanh(x2)

1 + |t2|

∣

∣

∣

∣

∨ | tanh(t1) − tanh(t2)|. (5.14)

R̄2 can be thought of as the image of [−∞,∞] × [−∞,∞] under the mapping

(t, x) (Ψ(t), Φ(t, x)) ≡
(

tanh(t),
tanh(x)

1 + |t|

)

. (5.15)

This compactification of R2 is rather different than the one-point compactification
introduced in Section 2 above; here the points at infinity consist of two intervals at
x = ±∞ (and −∞ < t < ∞) together with two points at t = ±∞.
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For t0 ∈ [−∞,∞], let C[t0] denote the set of functions f from [t0,∞] to [−∞,∞]
such that Φ(t, f(t)) is continuous. Then define

Π =
⋃

t0∈[−∞,∞]

{t0} × C[t0], (5.16)

where (t0, f) ∈ Π represents a path in R̄2 starting at (t0, f(t0)). For(t0, f) in Π, we

denote by f̂ the function that extends f to all [−∞,∞] by setting it equal to f(t0)
for t < t0. Then we take

d((t1, f1), (t2, f2)) = (sup
t

|Φ(t, f̂1(t)) − Φ(t, f̂2(t))|) ∨ |Ψ(t1) − Ψ(t2)|. (5.17)

(Π, d) is a complete separable metric space.
Let now H denote the set of compact subsets of (Π, d), with dH the induced

Hausdorff metric, i.e.,

dH(K1, K2) = sup
g1∈K1

inf
g2∈K2

d(g1, g2) ∨ sup
g2∈K2

inf
g1∈K1

d(g1, g2). (5.18)

(H, dH) is also a complete separable metric space. Let FH denote the Borel σ-
algebra generated by dH.

5.2. Double Brownian Web: Our description of the DBW and some of its properties
will rely on a paper of Soucaliuc, Tóth and Werner (2000).

We begin with an (ordered) dense countable set D ⊂ R2, and a family of
i.i.d. standard B.M.’s B1, B

b
1, B2, B

b
2, . . . and construct forward and backward paths

W1, W
b
1 , W2, W

b
2 , . . . starting from (tj , xj) ∈ D:

Wj(t) = xj + Bj(t − tj), t ≥ tj (5.19)

W b
j (t) = xj + Bb

j (tj − t), t ≤ tj . (5.20)

Then we construct coalescing and “reflecting” paths W̃1, W̃
b
1 , . . . inductively, as

follows.

W̃1 = W1; W̃ b
1 = W b

1 ; (5.21)

W̃n = CR(Wn; W̃1, W̃
b
1 , . . . , W̃n−1, W̃

b
n−1); (5.22)

W̃ b
n = CR(W b

n; W̃1, W̃
b
1 , . . . , W̃n−1, W̃

b
n−1), (5.23)

where the operation CR is defined in Soucaliuc et al. (2000), Subsubsection 3.1.4.

We proceed to explain CR for the simplest case, in the definition of W̃2.
As pointed out in Soucaliuc et al. (2000), the nature of the reflection of a forward

Brownian path W̃ off a backward Brownian path W̃ b (or vice-versa) is special. It

is actually better described as a push of W̃ off W̃ b (see Subsection 2.1 in Soucaliuc
et al. (2000)). It does not have a simple explicit formula in general, but in the
case of one forward path and one backward path, the form is as follows. Following
our notation and construction, we ignore W̃1 and consider W̃ b

1 and W̃2 in the time

interval [t2, t1] (we suppose t2 < t1; otherwise, W̃ b
1 and W̃2 are independent). Given

W2 and W̃ b
1 , for t2 ≤ t ≤ t1,

W̃2(t) =

{

W2(t) + supt2≤s≤t(W2(s) − W̃ b
1 (s))−, if W2(t2) > W̃ b

1 (t2);

W2(t) − supt2≤s≤t(W2(s) − W̃ b
1 (s))+, if W2(t2) < W̃ b

1 (t2).
(5.24)
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After t1, W̃2 interacts only with W̃1, by coalescence. We call

W
D
n := {W̃1, W̃

b
1 , . . . , W̃n, W̃ b

n}
coalescing/reflecting forward and backward Brownian motions (starting at the point
{(t1, x1), . . . , (tn, xn)}). We will also use the alternative notation W

D(Dn) below,
essentially in place of WD

n , where Dn := {(t1, x1), . . . , (tn, xn)}.

Remark 5.1. In Theorem 8 of Soucaliuc et al. (2000), it is proved that the above
construction is a.s. well-defined, gives a perfectly coalescing/reflecting system (see
Subsubsection 3.1.1 in Soucaliuc et al. (2000)), and for every n ≥ 1, the distribution
of WD

n does not depend on the ordering of Dn. It also follows from that result that

{W̃1, . . . , W̃n} and {W̃ b
1 , . . . , W̃ b

n} are separately forward and backward coalescing
Brownian motions, respectively.

We now define dual spaces of paths going backward in time (Πb, db) and a corre-
sponding (Hb, dHb) in an obvious way, so that they are the dual versions of (Π, d)
and (H, dH), and then define HD = H × Hb and

dHD ((K1, K
b
1), (K2, K

b
2)) = max(dH(K1, K2), dHb(Kb

1, K
b
2)).

We now define

W
D
n (D) = {W̃1, . . . , W̃n} × {W̃ b

1 , . . . , W̃ b
n}, (5.25)

W
D(D) = {W̃1, W̃2, . . .} × {W̃ b

1 , W̃ b
2 , . . .}, (5.26)

W̄
D(D) = {W̃1, W̃2, . . .} × {W̃ b

1 , W̃ b
2 , . . .}. (5.27)

The latter closures are in Π for the first factor and in Πb for the second one.
From Remark 5.1, we have that

W̄ := {W̃1, W̃2, . . .} and W̄
b := {W̃ b

1 , W̃ b
2 , . . .}

are forward and backward Brownian webs, respectively.
We now state a proposition which describes some of the properties of the DBW.

Proposition 5.2. W̄D(D) satisfies

(oD) From any deterministic (t, x) there is almost surely a unique forward path
and unique backward path.

(iD) For any deterministic D′
n := {(s1, y1), . . . , (sn, yn)} the forward and back-

ward paths from D′
n, denoted W̄D(D, D′

n), are distributed as coalescing/re-
flecting forward and backward Brownian motions starting at D

′
n. In other

words, W̄D(D, D′
n) has the same distribution as WD(D′

n).

Definition 5.3. Let Y n and Y b,n denote the forward and backward coalescing
random walks on Le(an) and Lo(an) respectively.

Theorem 5.4. (Y n, Y b,n) converges in distribution as n → ∞ to the double Brow-
nian web.

For a proof of this theorem we refer the reader to Fontes et al. (2003).
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