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Abstract. We show that there exists a connected graph G with subexponential
volume growth such that critical percolation on G × Z has infinitely many infinite
clusters. We also give some conditions under which this cannot occur.

This paper begins with the observation that if G is any connected graph and
p is any number in [0, 1], then the number of infinite clusters in p-percolation1 on
G × Z is deterministic, and is either 0, 1 or ∞. The proof is an easy consequence
of the fact that one can take any finite set of vertices and translate it along the Z

axis and get a set of variables disjoint from the one you started with.
In view of this, Sznitman asked2 whether the argument of Burton and Keane

(1989) applies. Namely, assume G is amenable, does it follow that G × Z has only
finitely many infinite clusters? The definition of amenability used here is that the
Cheeger constant is 0, namely, for every ǫ > 0 there is some finite set of vertices A
such that |∂A| ≤ ǫ|A| where ∂A is the edge boundary of A.

As stated the answer is no. A binary tree with an infinite path added at the
root serves as a counterexample. We suggest a slight modification of this question.

Say that G is strongly amenable if G contains no nonamenable subgraph.

Assume G is strongly amenable, can one find an interval [p1, p2] such that per-
colation on G × Z has infinitely many infinite clusters for every p in this interval?
What if we further assume that G has polynomial volume growth?

Our main result is to construct an example of a strongly amenable graph of the
form G × Z with non uniqueness at pc(G × Z). We do not see yet any example
of such a graph in which no percolation occurs at pc(G × Z), but non uniqueness
occurs for some p > pc(G × Z).
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It is tempting to reformulate this question as pc = pu. Recall that for a transi-
tive graph there is a unique transition between the regime of infinitely many infinite
clusters and the regime of a unique infinite cluster, i.e. a value pu such that for all
p > pu there is a unique infinite cluster, while for p < pu the number of infinite clus-
ters is either 0 or ∞. See Lyons with Peres (2012). However, such a reformulation
will be misleading as graphs of the type G×Z do not necessary enjoy monotonicity
of uniqueness. To see an example, connect the root of a Z99 lattice to the root of
a 10 regular tree T , denote this graph by G. The parameters were chosen so as to
satisfy

pc(Z
100) < pc(T × Z) < pu(T × Z),

(the first inequality follows from the fact that pc(Z
d) ≤ C/d, see Kesten, 1990 or

Alon et al., 2004, §4; and from the bound pc(T ×Z) ≥ 1
11 which holds for any graph

with degree 12. The second inequality follows from Schonmann, 2001). It is not
hard to see that for small p no percolation occurs on G×Z. Then between pc(Z

100)
and pc(T ×Z) there is a unique infinite cluster. Between pc(T × Z) and pu(T × Z)
there are infinitely many infinite clusters. Finally, above pu(T × Z) again one has
a unique infinite cluster. This example can be generalized to an arbitrary (even
infinite) number of transitions.

This note has two results on this problem. The first is a counterexample:

Theorem 1. There exists a connected graph G with subexponential volume growth
such that critical percolation on G × Z has infinitely many infinite clusters.

(note that a graph with subexponential volume growth is strongly amenable)
The second is a positive result, a family of graphs G for which we can prove that

G × Z does not have infinitely many infinite clusters at any p. The result is not
very satisfying, and calls for strengthening.

Theorem 2. Let G be a connected graph such that each finite set can be discon-
nected from infinity by removing a bounded number of edges. Then G×Z does not
have infinitely many infinite components.

In other words, we require from G that there exists some constant K such that
for every finite set of vertices A one can find K edges e1(A), . . . , eK(A) such that
removing these edges will make all the components of all v ∈ A finite.

Let us finish this introduction with a question unrelated to percolation. There
is no known example of an exponentially growing Cayley graph which is strongly
amenable and the existence of such is still open, (see de Cornulier and Tessera, 2008
for recent related work and a review of what is known for groups). Recall that a
graph G has uniform growth if all balls with the same radius have the same size
up to a fixed multiplicative constant. Is there a graph with a uniform exponential
growth which is strongly amenable?

Proof of theorem 1

Let d be some sufficiently large number to be fixed later. The graph is constructed
as follows. Take a tree of degree 4d. Let l1 = 1 and ln+1 = ln +

⌈
d2 log(n + 1)

⌉
.

Now, for each n ≥ n0 (n0 to be fixed later too, depending on d) and for each edge
(x, y) where x is in level ln − 1 and y is in level ln, disconnect (x, y) and instead
take a copy of Zd (considered as a graph with the usual structure) and connect x
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with the vertex (0, . . . , 0) and y with the vertex (n, . . . , n). All copies of Zd (for all
such (x, y)) are disjoint. This terminates the definition of the graph G.

We will show that at p = pc(Z
d+1) the graph G × Z has infinitely many infinite

clusters. One can rather easily convince oneself that in fact below pc(Z
d+1) our

graph G × Z has no infinite clusters, so p = pc(G × Z), but we will not do it here.
Note that p = (1 + o(1))/2d where o(1) is as d → ∞, see Kesten (1990).

Subexponential growth. Examine the ball B of radius r around the root of the tree
we started with. Now, for any x in level ln of the tree, d(x, 0) ≈ n2 because the
shortest path wastes k steps between levels lk − 1 and lk for each k < n. Therefore
B contains tree elements up to level lh for h ≈ √

r. Since lh ≈ √
r log r we get that

B contains ≤ exp(C
√

r log r) tree vertices. The non-tree vertices of B are contained
in ≤ exp(C

√
r log r) copies of a d-dimensional ball of radius r, so all in all we get

|B| ≤ CrdeC
√

r log r ≤ CeC
√

r log r

which is subexponential, as needed.

Existence. We now turn to show that there are infinite clusters. Let γ be some
path in G × Z. We say that γ is “between levels ln−1 and ln” if for each vertex
(v, n) of γ, either v is in the tree, and its level is between ln−1 and ln, or v belongs
to one of the copies of Zd that were connected between levels ln−1 and ln. Further
we require that only the first and last vertices of γ may have their v in levels ln−1

and ln. The interior vertices need to be in levels strictly between, or in the copies
of Zd. With this definition we have

Lemma 3. Let d be sufficiently large, n > n0 and let x be a tree element in level
ln−1. Let Z be the set of vertices z in level ln such that (z, 0) is connected to (x, 0)
by an open path between ln−1 and ln. Then |Z| stochastically dominates a variable
U , independent of n, with EU > 1.

Proof : Examine the set Y of vertices y of G in level ln−1 such that (x, 0) ∈ G×Z is
connected to (y, 0) inside the “slice” G×{0}. This is just a problem on supercritical
branching processes (for d sufficiently large pc of the tree, which is 1/(4d − 1), is
smaller than pc(Z

d+1) = (1 + o(1))/2d) and a standard second moment argument
gives that

P

(
|Y | > 1

2 ((4d − 1)p)d2 log n
)

> c,

where the term d2 log n is simply ln − 1 − ln−1, the height of the tree we are ex-
amining. Here and below c denotes positive constants which are allowed to depend
only on d. For d sufficiently large we may replace the term (4d− 1)p with 3/2 and
drop the the 1

2 before it. We get

P(|Y | > ncd2

) > c.

Examine next the set Z(y) of vertices z in level ln such that (y, 0) is connected to
(z, 0) by an open path that starts by moving from (y, 0) into an element (0, . . . , 0)
in one of the copies of Zd × Z “below” it, then winds around in that copy and
finally takes the last step from (n, . . . , n, 0) to (z, 0) (this time we allow the path
to use the extra dimension, i.e. it is not restricted to the slice G × {0}). By Hara
(2008), the probability that (0, . . . , 0) ↔ (n, . . . , n, 0) in Zd ×Z = Zd+1 is ≥ cn2−d,
recall that we are examining pc(Z

d+1). Further, all these events (for different y)
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are independent, because they examine disjoint copies of Zd+1. With the argument

of the previous paragraph we see that (x, 0) has probability > c to have ncd2

“children” in level ln − 1 and each one has probability > cn2−d to have a child
in level ln, independently. In other words, Z = ∪y∈Y Z(y) dominates a random

variable which is with probability 1− c empty, and with probability c a sum of ncd2

independent Bernoulli variables with probability cn2−d. Hence, for n sufficiently
large, Z dominates a variable U which is empty with probability 1 − c/2 and with
probability c/2 is 4/c. The lemma is thus proved. �

The existence of an infinite cluster at p now follows. Examine a vertex (x, 0) with
x in level n for n > n0. Define inductively sets of vertices Xi with X0 = {(x, 0)} and
Xi being all vertices (y, 0) with y in level ln+i which are connected to some vertex
in Xi−1 by an open path between levels ln+i−1 and ln+i. By lemma 3, the number
of elements in Xi which are connected to a given element in Xi−1, stochastically
dominates the variable U . Further, all these connection events are independent
i.e. if x and x′ are different elements in

⋃
Xi then the set of their descendants are

independent events, because the connections use different edges. Hence the process
Xi dominates an independent branching process with offspring distribution U . By
lemma 3, EU > 1 so by standard results, a branching process with distribution U
survives with positive probability. Hence the process Xi also survives with positive
probability. But if Xi survives to infinity then the cluster of (x, 0) is infinite. So
the probability that an infinite cluster exists is positive. As remarked above, this
is a 0-1 event, so in fact the probability is 1.

Below we will also need that the probability has a uniform lower bound, so let
us note it now: there exists some constant c > 0 such that

P((x, k) is in an infinite cluster) > c ∀x ∈ ln ∀n > n0 ∀k. (1)

Non-uniqueness. To see that there are infinitely many clusters we apply the ap-
proach of Benjamini and Schramm (1996, Theorem 4) of comparing to a branching
random walk. We will not use usual branching random walk but a slightly different
process. Let us describe it.

1. If we have a particle in some vertex (x, k) for x in the tree, it sends one
particle to each neighbour of (x, k) in G × Z with probability p. In particular, if x
is in level ln − 1 then a particle is sent to each copy of Zd+1 “below” it, and if it is
in level ln then one particle is sent to the copy of Zd+1 “above” it.

2. Now assume we have a particle in (0, . . . , 0, k) in some copy of Zd+1 in the
nth level. It sends two kinds of particles. First, one particle with probability p
to its tree neighbour (x, k) (which is “above” it in level ln − 1). Second, it sends
particles to all vertices (y, l) with y being in the same copy of Zd and equal to
either (0, . . . , 0) or (n, . . . , n), with the distribution of descendants identical to that
of vertices connected to (0, . . . , 0, k) by independent percolation at p in Zd+1.

3. A particle in (n, . . . , n, k) does the same, sending one particle with probability
p to its tree neighbour (x, k) “below” it, and extra particles to (0, . . . , 0, l) and
(n, . . . , n, l) with the percolation distribution.

This ends the description of the process. Denote the set of particles at time t by
Xt. The proof of non-uniqueness now follows from the following two claims
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Lemma 4. For any x ∈ G×Z, the set of vertices visited by Xt at some t stochas-
tically dominates C (x) \ Z where Z is the union of all copies of Zd+1.

(here and below C (x) denotes the cluster of x).

Lemma 5. For d and n0 sufficiently large (n0 depending on d), Xt is transient i.e.
the expected number of returns to the starting point is finite.

Proof of nonuniqueness given lemmas 4 and 5: Assume by contradiction that there
is only one infinite cluster. That would imply, for any x and y in G.

P((x, 0) ↔ (y, 0)) ≥ P({|C ((x, 0))| = ∞} ∩ {|C ((y, 0))| = ∞}) ≥
≥ P(|C ((x, 0))| = ∞)P(|C ((y, 0))| = ∞),

where the second inequality follows from FKG (see Grimmett, 1999, §2.2). Assum-
ing x and y belong to level ln (not necessarily the same n for x and y), (1) would
give

P((x, 0) ↔ (y, 0)) ≥ c.

On the other hand, our process X is transient (lemma 5) and symmetric, i.e. the
probability to reach x from y is the same as reaching y from x. Any such process
must satisfy that, when we fix the starting point of X ,

lim
y→∞

P

(
y ∈

⋃
Xt

)
= 0 (2)

since otherwise you will have a sequence yn → ∞ such that you can return to your
the starting point with probability > c after visiting yn. This clearly contradicts
transience.

Now apply the domination result. If we also assume that y is not in the copies
of Zd+1 then we get

lim
y→∞

P((x, 0) ↔ (y, 0)) = 0. (3)

We have reached a contradiction, demonstrating that one cannot have a unique
infinite cluster, and thus proving the theorem. �

Proof of lemma 4: This is completely standard: one simply explores the cluster
using breadth-first search and note that the “past” of the algorithm only blocks you
from exploring some vertices, while the branching process has no such restriction.
One has to adapt the breadth-first search to our branching process i.e. when it
enters a copy of Zd+1, search all neighbours in the two lines which connect outside
in one step, but other than that there is no change necessary in the standard proof
(see e.g. Benjamini and Schramm, 1996). �

Proof of lemma 5: We will show that even the projection of Xt on G is transient.
Since Xt avoids the copies of Zd (except for the points directly connected to the
tree), let us consider the graph H which is the tree of degree 4d, with every edge
between level ln − 1 and level ln “stretched” i.e. replaced by a line with three edges
and two vertices. The projection of Xt to G is equivalent to a process on H that,
from every particle, sends particles to all neighbours with probability p, sends an
average of 2p particles to itself; and sometimes sends additional particles to itself
and to one of its neighbours (above or below, depending on whether you are in one
of the stretched levels, and where exactly you are in them). By lemma 6 below,
the expected number of particles that remain in place (whether additional or not)
is < 1

2 , if only d is chosen sufficiently large. As for the expected number of the
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additional particles sent to the neighbouring vertices, it can be bounded directly
from the two-point function i.e. from P(0 ↔ x) ≤ C(d)|x|2−d, see Hara (2008), and
if only n0 is sufficiently large (as a function of d), the expectation of these can be
bounded by 1/4d.

As a final simplification, embed H in a 4d-regular tree by “filling” the two sparse
rows between ln − 1 and ln. Namely, level ln − 1 of H goes to a subset of level
ln − 1 + 2(n − n0) of the tree, the vertices on the stretched edges go to levels
ln + 2(n − n0) and ln + 1 + 2(n − n0) of the tree, level ln of H goes to level
ln +2+2(n−n0) of the tree etc. The process on H is now stochastically dominated
by a process on the tree, which sends from each vertex of the tree to each of its
neighbours a particle with probability p (like the “usual” vertices of H), and also
sends to itself and to all of its neighbors additional particles (like the vertices of
H on the stretched edges). In short, each vertex sends both the particles it would
have sent if it were a vertex of the tree and the particles it would have sent if it
were a vertex of the stretched edges.

We have now reached a very well-understood process: a branching random walk
on a 4d-regular tree, where each particle sends to each of its neighbours an expected
number p+1/4d < 1/d of offspring, and an expected number < 1

2 of offspring remain
in place. Showing that this process is transient can be done with a straightforward
calculation. Fix some t and examine the number of particles still at the origin at
time t. Any such particles must have done s steps on the tree (for some s ≤ t) and
stayed in place t − s steps. For a fixed t and s the expected number of offspring is
less than or equal to

#{paths in the tree of length s returning to x} · 1

ds
· 1

2t−s
= (4d)s/2 · 1

ds
· 1

2t−s

and summing over all t and s shows that the process is transient, if only d is
sufficiently large (this last step requires d > 4, but we also rely on pc(Z

d) being
sufficiently close to 1/2d and on lemma 6, both which require larger d). �

Lemma 6. Let d be sufficiently large. Then critical percolation on Zd satisfies
∑

n6=0

P(~0 ↔ (0, . . . , 0, n)) <
C√
d

(here ~0 = (0, . . . , 0) ∈ Zd and C is a constant independent of the dimension).

We assume that the correct asymptotic behaviour is C/d, but we do not need it
in this paper. It is well known that in d = 2 this sum is ∞, for example, it follows
from the estimate P(0 ↔ ∂B(n)) ≥ cn−1/3, see Kesten (1987, equation (5.1)). We
will not give more details on this fact, as it will take us too far off course.

Proof : We follow Heydenreich et al. (2008). Let us recall formula (1.41) ibid., in
their notation:

Ĝzc
(k) =

1 + O(β)

1 − D̂(k)
. (4)

Let us explain the notation. The zc is 2d ·pc (ibid., §1.2.3) and G is the connection
probability

Gz(x) = P(0 ↔ x)

where the probability is with respect to percolation at z/2d (ibid., §1.2.3 and equa-
tion 1.19) so Gzc

is the critical connection probability. β = K/d where K is some
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absolute constant (ibid., first line of §1.3) and the constant implicit in the O(·) is
also dimension independent. D(x) = 1

2d1{|x|=1} (ibid., equation 1.1). Finally ·̂ is

the usual Fourier transform and k ∈ [−π, π)d. In particular

D̂(k) =
1

d

d∑

i=1

cos(ki).

With (4) explained, let us calculate first the sum including the term P(~0 ↔ ~0),

∑

n

P(~0 ↔ (0, . . . , 0, n)) =
1

(2π)d−1

∫
Ĝzc

(k1, . . . , kd−1, 0) dk1 · · · dkd−1

≤ 1

(2π)d−1

∫
1 + C/d

d−1
d − 1

d

∑d−1
i=1 cos(ki)

dk1 · · ·dkd−1

=
d + C

d − 1
· 1

(2π)d−1

∫
dk

1 − D̂d−1(k)
.

Removing the term P(~0 ↔ ~0) = 1 = 1
(2π)d−1

∫
1 gives

∑

n6=0

≤ d + C

d − 1
· 1

(2π)d−1

∫
1

1 − D̂d−1(k)
− d − 1

d + C
dk

=
d + C

d − 1
· 1

(2π)d−1

∫
D̂d−1(k)

1 − D̂d−1(k)
dk +

C + 1

d − 1
. (5)

To estimate the integral, apply Cauchy-Schwarz and get

∫
D̂

1 − D̂
≤
(∫

D̂2

)1/2
(∫

1

(1 − D̂)2

)1/2

.

The first integral (with the (2π)1−d which we have omitted from the formula above)
is simply the probability that simple random walk returns to zero after two steps,
and hence it is simply 1/2(d − 1). The second integral is shown in Heydenreich
et al. (2008, (3.4)-(3.6)) to be bounded independently of the dimension (in that
paper there is an additional parameter in the calculation, s, which in our case is
1). All in all we get

1

(2π)d−1

∫
D̂d−1(k)

1 − D̂d−1(k)
dk ≤

(
1

2(d − 1)

)1/2

C1/2

which we plug into (5) and get

∑

n6=0

P(~0 ↔ (0 . . . , 0, n)) ≤ d + C

d − 1
· C√

2(d − 1)
+

C + 1

d − 1
≤ C√

d

as required. �

Proof of theorem 2

Fix some vertex v and examine the number N of infinite components that
intersect {v} × Z. N is invariant to the translations of Z so it is constant almost
surely. Further, the standard modification argument, Burton and Keane (1989),
shows that N cannot take any finite value > 1. The main step is to preclude the
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possibility that N = ∞. An infinite cluster which intersects {v}×Z could intersect
it either at finitely many vertices or at infinitely many vertices. We start with the
first case.

Lemma 7. For every vertex v of G, the probability that there exists an infinite
cluster intersecting {v} × Z only at finitely many vertices is 0.

Proof : The idea is simple: if such clusters exist then they have some positive
density. However, as you trace the cluster from v further and further in G, its
boundary must increase, eventually increasing beyond K/(the density), leading to
a contradiction to the disconnection property of G.

Let us make this more formal. Using the disconnection property of G repeatedly,
one may find a sequence of v ∈ Q1 ⊂ Q2 ⊂ · · · with |∂Qi| ≤ K and such that every
vertex w which belong to some edge in ∂Qi belongs to Qi+1. Denote by ∂v the
internal vertex boundary i.e. ∂vX is the set of all vertices in X with neighbours
outside X . Then the events

Ei := {(v, 0) ↔ ∂vQi × Z} \ {(v, 0) ↔ ∂vQi+1 × Z}
are disjoint. Hence

∑
P(Ei) ≤ 1, in particular P(Ei) → 0 as i → ∞. Fix now some

L and let Fi be the event that

0 < |{n ∈ Z : ∃x ∈ ∂vQi s.t. (v, 0) ↔ (x, n) in Qi × Z}| ≤ L

(as usual, “a ↔ b in X” means that there exists an open path from a to b using
only vertices in X). Then if Fi happened then there are at most KL edges through
which the cluster may continue, and if they are all closed this would imply Ei.
Hence P(Ei) ≥ (1 − p)LKP(Fi). Hence P(Fi) → 0 as i → ∞.

Assume now that the probability that the cluster of (v, 0) is infinite, but its
intersection with {v} × Z is finite, is positive. Let r be some number such that

q := P

(
|C (v, 0)| = ∞, (C (v, 0) ∩ {v} × Z) ⊂ {v} × [−r, r)

)
> 0.

Fix L = 8Kr/q (recall that K is the constant in the disconnection property of G)
and with this L define the event Fi above. Since P(Fi) → 0, let i be sufficiently
large such that P(Fi) < 1

4q. Subtracting we get

P




|C (v, 0)| = ∞,
(C (v, 0) ∩ {v} × Z) ⊂ {v} × [−r, r),
|C (v, 0) ∩ ∂vQi × Z| > L


 > 3

4q

(we used here that if C (0) is infinite then it cannot be contained in Qi ×Z, except
with probability 0, because pc(finite graph × Z) = 1). Finally, strengthen the last
requirement to |C (0) ∩ ∂vQi × [−N, N ]| > L for some N so large so that it only
decreases the probability by 1

4q. We get

P




|C (v, 0)| = ∞,
(C (v, 0) ∩ {v} × Z) ⊂ {v} × [−r, r),
|C (v, 0) ∩ ∂vQi × [−N, N ]| > L


 > 1

2q.

Denote this event by B and by Bn its translation by n. We finish by ergodicity of
the translations by 2rZ. Indeed, we know that

|{n ∈ 1, . . . , a : B2rn occurred}| > 1
2aq

for a sufficiently large (random). But this means that in ∂vQi × [2r − N, 2ar + N ]
there are > 1

2aq·L = 4Kar distinct points, since each cluster has > L points, and the
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clusters are disjoint since their intersections with {v}×Z belong to disjoint intervals.
But there is no room for 4Kar points, only to K(2ar−2r+1+2N) = 2Kar+o(a),
for a sufficiently large, leading to a contradiction and establishing the lemma. �

Lemma 8. It is not possible for infinitely many clusters to intersect {v} × Z at
infinitely many vertices each.

Proof : The idea is as follows: we construct a forest with minimal degree 3 of
trifurcation points in {v} × Z (as was done in Benjamini et al., 1999), and show
that this contradicts the amenability of Z. Let us give the details.

We first show that there are trifurcation points. Following Burton and Keane
(1989) we note that if there are infinitely many clusters that intersect {v} × Z,
then there are trifurcation points. Indeed, for some r ≥ 1 the probability that
three different infinite components intersect {v} × [−r, r] is positive. Let y1, y2, y3

be three different points in {v} × [−r, r] which are connected to infinity by three
simple open paths γ1, γ2, γ3, respectively, which do not intersect {v}× [−r, r] again
and are contained in three different components. Now modify the environment as
follows: Open all edges of {v} × [−r, r] and close all edges of {e} × [−r, r] for all
edges e ∋ v except the three edges which connect each yi to the next vertex in γi.
It is clear that after this modification one of the yi (the middle one) is a trifurcation
point. We have just showed that the probability that there is a trifurcation point
in {v} × [−r, r] is positive and hence by translation invariance the probability that
(v, n) is a trifurcation point is positive for any n.

We remark that, from lemma 7 we can deduce that for any trifurcation point,
each of the clusters one would get by removing the trifurcation point must intersect
{v} × Z at infinitely many vertices.

We now follow Benjamini et al. (1999, §4), which shows that under these condi-
tions one may find a forest with minimal degree 3 of trifurcation points. Since the
argument is clearly explained there, here we be will brief. The first step is

Claim 9. If (v, n) is a trifurcation point then each infinite cluster left after removal
of (v, n) has at least one other trifurcation point (v, m).

Proof : Define a mass transport function M(n, m) for any m, n ∈ Z as follows:
M(m, n) = 1 if (v, n) ↔ (v, m) and if (v, n) is the unique closest trifurcation point
to (v, m) (the distance is the graph distance on the cluster). Let M = 0 otherwise.
Then each m sends at most 1 unit of mass, and by the mass transport principle
the expected amount of mass received by n should also be no more than 1 (we are
using the mass transport principle on Z here). But the negation of the statement
of the claim means that n receives an infinite amount of mass (here is where we use
the previous remark, that each of the three remaining clusters after the removal of
(v, n) is not just infinite, but intersects Z at infinitely many vertices), so this must
happen with probability 0. �

As promised, we now construct an auxiliary graph T over the trifurcation points
as follows: m will be connected to n (denoted by m ∼ n) if both are trifurcation
points and if (v, m) is the closest trifurcation point to (v, n) in one of the remaining
clusters after the removal of (v, n), or vice versa. Again “closest” means in the
graph distance, and we break ties by adding i.i.d. variables Xn uniform in [0, 1] and
choosing the one with the larger value X . As in Benjamini et al. (1999), T is a
forest, and by claim 9 each vertex has degree ≥ 3.



24 Itai Benjamini and Gady Kozma

Finally we derive a contradiction to the amenability of Z. Denote q = P(0 is a
trifurcation). Let N be some parameter and define the event E(N) that 0 is a
trifurcation point and in additional the three v ∼ 0 satisfy v ∈ [−N, N ]. Taking N
to be sufficiently large one may assume that P(E(N)) > 3

4q. We fix N at this value
(and remove it from the notation E(N), so that we just denote it by E from now).
Denote by En the translation of E by n i.e. the event that n is a trifurcation point
with the condition on the neighbours as above.

Using ergodicity we know that as r → ∞, the number of trifurcation points in
[−r, r) is 2r(q + o(1)), while the number of En for n ∈ [−r, r) is > 2r · 3

4q. Denote
by A the set of these trifurcation points. Since T is a forest with minimal degree
≥ 3 we know that

|{v ∈ T \ A such that ∃w ∈ A, w ∼ v}| ≥ |A| + 2.

But this is clearly impossible, since any such v must be in [−r − N, r + N ], and
there are < 2N + 2rq(1

4 + o(1)) trifurcation points in this interval which are not in
A. This is a contradiction and the lemma is proved. With lemma 7, and since v
was arbitrary, the theorem has been demonstrated. �
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