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Abstract. In this note, we prove a conditionally centered version of the quenched
weak invariance principle under the Hannan condition, for stationary processes. In
the course, we obtain a (new) construction of the fact that any stationary process
may be seen as a functional of a Markov chain.

1. Introduction

Let (X,A, µ) be a probability space and θ be an invertible bi-measurable trans-
formation of X , preserving µ, and assume that θ is ergodic. Let F0 be a sub-σ-
algebra of A such that F0 ⊂ θ−1(F0). Define a filtration (Fn)n∈Z, by Fn = θ−nF0

and denote F−∞ = ∩n∈ZFn. For every n ∈ Z, we denote by En the conditional
expectation with respect to Fn and we define the projection Pn := En − En−1.

Let f be F0-measurable. We want to study the stationary process (f ◦θn)n∈N un-
der the following condition introduced by Hannan (1973) and known as the Hannan
condition:

∞
∑

i=0

‖Pif‖2 =
∞
∑

i=0

‖P0(f ◦ θi)‖2 <∞. (1.1)

If E−∞(f) = 0, the Hannan Condition guarantees the CLT see Hannan (1973))
and even the weak invariance principle (WIP) (see Dedecker et al. (2007)). The
condition has been shown to be very useful in applications, see for instance Dedecker
et al. (2007) or Wu (2007) (see also Cuny (2012)). In general, as shown in Durieu
(2009), the Hannan Condition is independent of the so-called Dedecker-Rio and
Maxwell-Woodroofe conditions, that are also sufficient for the WIP. The “natural”
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Lp versions of the Hannan Condition have been used in Wu (2007) and more recently
in Cuny (2012).

Let us denote Sn = Sn(f) =
∑n

i=1 f ◦ θi. We are interested in the quenched
versions of the CLT or of the WIP (see the next section for a proper definition).
It is known that the Hannan condition is not sufficient in general to ensure the
validity of quenched CLT. This fact has been proven by Volný and Woodroofe
(2010a). However, by Cuny and Peligrad (2012) and Volný and Woodroofe (2010b)
the quenched CLT holds under the Hannan condition for (Sn−E0(Sn))n≥1. In this
paper, we prove that under the Hannan condition (Sn − E0(Sn))n∈N satisfies the
quenched WIP as well. Then we deduce the quenched WIP for (Sn)n∈N itself under
the following stronger condition.

∑

n≥1

‖E0(f ◦ θn)‖2√
n

<∞. (1.2)

In the proof, we make use of the operator Q defined by Qg := E0(g ◦ θ) for every
g ∈ L1(X,F0, µ). It turns out that this operator is a Markov operator, and allows
to see the process (f ◦θn)n∈N as a functional of a Markov chain. This is explained in
full details in Section 4. An important difference with previous constructions (Wu
and Woodroofe (2004)) is that the state space is the original X and the functional
is f itself.

2. Results

Let µ(·, ·) denote a regular conditional probability on A given F0. For every
x ∈ X , write µx := µ(x, ·). Thus, for every x ∈ X , µx is a probability measure on
A, and for every A ∈ A, µ(·, A) is a version of µ(A|F0).

Let f ∈ L2(X,F0, µ). Recall that Sn = Sn(f) =
∑n

i=1 f ◦ θi and write, for every

t ∈ [0, 1], Sn(t) = S[nt] + (nt− [nt])f ◦ θ[nt]+1 and S̄n(t) = Sn(t) − E0(Sn(t)).

Definition 2.1. We say that (Sn)n≥1 satisfies the quenched CLT if σ2 := limn
E(S2

n
)

n
exists and for µ-almost every x ∈ X , for every bounded continuous function ϕ on
R,

∫

X

ϕ(Sn/
√
n)dµx −→

n→+∞
E(ϕ(σW )) , (2.1)

where W stands for a standard normal variable.
We say that (S̄n)n≥1 satisfies the quenched CLT if the above holds with Sn

replaced with S̄n.

Definition 2.2. We say that (Sn)n≥1 satisfies the quenched WIP if σ2 := limn
E(S2

n
)

n
exists and for µ-almost every x ∈ X , for every bounded continuous function ϕ on
C([0, 1], ‖ · ‖∞), we have

∫

X

ϕ(Sn(t)/
√
n)dµx −→

n→+∞
E(ϕ(σWt)),

where (Wt)0≤t≤1 stands for a standard Brownian motion.
We say that (S̄n)n≥1 satisfies the quenched WIP if the above holds with Sn

replaced with S̄n.
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Theorem 2.3. Let f ∈ L2(X,A, µ) satisfy the Hannan condition. Then there
exists a martingale (Mn)n with stationary ergodic increments such that

E0( max
1≤n≤N

(S̄n −Mn)2) = o(N) µ-a.s. (2.2)

In particular, (S̄n)n≥1 satisfies the quenched WIP.

The fact that (2.2) implies the quenched WIP for (S̄n)n≥1 follows from the fact
that the quenched WIP holds for stationary martingale differences. This has been
carefully proved by Derriennic and Lin (2001). Their proof was done in the setting
of functionals of Markov chains. To see that the result holds in our setting one may
see that their arguments apply in this situation or one may just use section 4.

Corollary 2.4. Let f ∈ L2(X,A, µ) be such that (1.2) holds. Then, (1.1) holds
and E0(Sn) = o(

√
n) µ-a.s. In particular, (Sn)n≥1 satisfies the quenched WIP.

The fact that (1.2) implies that (1.1) holds and that E0(Sn) = o(
√
n) µ-a.s. has

been observed in Cuny and Peligrad (2012).
The quenched WIP for (Sn)n≥1 has been obtained by Cuny and Merlevède (2012)

(after this work has been finished) under the Maxwell-Woodroofe condition, namely
when

∑

n≥1

‖E0(Sn)‖2/n
3/2 <∞ .

As noticed in Maxwell and Woodroofe (2000), condition (1.2) implies also the
Maxwell-Woodroofe condition, hence Corollary 2.4 also follows from Cuny and Mer-
levède (2012).

3. Proof of the results

Our method of proof is somehow classical, and follows a line that has been
particularly well illustrated by Gordin and Peligrad (2011), in the study of the
(usual) weak invariance principle.

We first establish a maximal inequality (under µx, for µ-a.e. x ∈ X). Then, we
combine this inequality with an approximation argument to prove (2.2), which in
turn allows to deduce the quenched WIP, from the case of stationary martingale
differences.

To illustrate this approach we first give a sketch of the proof of the usual WIP,
under the Hannan condition. For another (more recent) use of this approach, we
refer to Cuny (2012), where the almost sure invariance principle is established under
the Hannan condition.

Let U be the unitary operator defined by Ug = g ◦ θ. Then UPi = Pi+1U . Let
f ∈ L2(X,F0, µ) be such that E−∞(f) = 0. Let us denote fi = P0U

if , i ∈ N.

Then, f =
∑

i∈N
U−ifi and Sn(f) =

∑

i∈Z

∑n−1
j=0 U

j−ifi. Hence, as in Wu (2007),
we see that for every 1 ≤ n ≤ N ,

|Sn(f)| ≤
∑

i∈N

U−i max
1≤k≤N

∣

∣

k−1
∑

j=0

U jfi

∣

∣ ,
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while for every i ∈ N, the process
(
∑k−1

j=0 U
jfi

)

k≥1
is a martingale. Hence, by

Doob’s Maximal Inequality and orthogonality of (U jfi)0≤j≤N−1,

(

E(max
n≤N

S2
n(f)

)1/2 ≤ 2
∑

i∈N

(

E(S2
N (fi))

)1/2
= 2

√
N

∑

i∈N

‖fi‖2. (3.1)

Write Mn =
∑n

i=1 U
im where m =

∑

i∈N
P0U

if is well-defined by (1.1). The
WIP will follow, if we can prove that

||max
n≤N

(Sn(f) −Mn)||2 = o(
√
N). (3.2)

Let r ≥ 1. Define m(r) =
∑r

k=0 fk, f (r) =
∑r

k=0 P−kf . Then, we have Sn(f−m) =

Sn(f−f (r))+Sn(f (r)−m(r))+Sn(m(r)−m). For the first term we use (3.1). For the
second term we notice that f (r) −m(r) is a coboundary (i.e. f (r) −m(r) = g − Ug
with g ∈ L2). Finally, the third term may be estimated using Doob’s maximal
inequality. For further details, see the proof of Theorem 2.3.

The proof extends easily to the non-adapted case, i.e. f ∈ L2(X,F∞, µ), where
F∞ := ∨n∈NFn and to Hilbert valued variables. A different proof of (3.2) for
non-adapted Hilbert valued variables under Hannan’s condition has been given in
Dedecker et al. (2012), where also Lp versions of (3.2) may be found.

We now turn to the proof of Theorem 2.3.
To avoid technical difficulties (and since it is also convenient for the next section)

we assume that X is a Polish space and that A is the σ-algebra of its Borel sets. It
is known (see for instance Neveu (1970, Proposition V.4.4)) that in this case there
exists a regular version of the conditional probability given F0 on A. In the general
case we can (like in Volný (1989)) transport the situation from X to a Polish space
Y with a measure preserving transformation S by a mapping ψ : X → Y which
preserves the measure and for which ψ ◦ T = S ◦ ψ.
We use the notations of the introduction.

For an adapted (i.e. F0-measurable) function f ∈ L2 we have

f =

∞
∑

i=0

P−if + E−∞(f) =

∞
∑

i=0

U−iP0U
if + E−∞(f) =

∞
∑

i=0

U−ifi + E−∞(f)

where fi = P0U
if , i = 0, 1, . . . . Therefore, since for every n ≥ 0, E0(E−∞(f)) =

E−∞(f), we have

S̄n(f) = Sn(f) − E0(Sn(f)) =

n−1
∑

i=0

n−i
∑

j=1

U jfi. (3.3)

Denote, for h ∈ L1, Qh = E0(Uh). Then Q is a Dunford-Schwartz operator (it
is a contraction in all Lp, 1 ≤ p ≤ ∞). Notice that Qnh = E0(U

nf). The use of
the operator Q is crucial in our proof. Its relevance to the problem is made more
clear in the next section.

Let us recall several facts from ergodic theory that will be needed in the sequel.
By the Dunford-Schwartz (or Hopf) ergodic theorem (cf. Krengel (1985, Lemma

6.1)), for every h ∈ L1, denoting h∗ = supn≥1(1/n)
∑n−1

i=0 Q
i(|h|), we have

sup
λ>0

λµ(h∗ > λ) ≤ ‖h‖1. (3.4)
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We will make use of the weak L2-space

L2,w := {f ∈ L1 : sup
λ>0

λ2µ{|f | ≥ λ} <∞}.

Recall (see for instance Ledoux and Talagrand (1991), section “notation”) that
there exists a norm ‖ · ‖2,w on L2,w that makes it a Banach space and which is

equivalent to the pseudo-norm (supλ>0 λ
2µ{|f | ≥ λ})1/2.

Then it follows from (3.4), that for every h ∈ L2,

((h2)∗)1/2 ∈ L2,w and ‖((h2)∗)1/2‖2,w ≤ ‖h‖2. (3.5)

We obtain

Lemma 3.1. Let f ∈ L2(Ω,F0,P). For every N ≥ 1 we have

(E0( max
1≤n≤N

S̄2
n(f)))1/2 ≤

√
N

∞
∑

i=0

((f2
i )∗)1/2 µ-a.s. (3.6)

In particular, if f satisfies the Hannan condition, then, by (3.5)

sup
N≥1

E0(max1≤n≤N S̄2
n(f))

N
<∞ µ-a.s.

Proof. Let N ≥ n ≥ 1. From (3.3) it follows that

|S̄n(f)| ≤
N−1
∑

i=0

max
1≤k≤N

|
k

∑

j=1

U jfi|.

Notice that for every i ≥ 0, the process (U jfi)j is a sequence of martingale incre-
ments. We will use the Doob maximal inequality conditionally, in particular we
will use

(

E0(max
n≤N

|S̄n(fi)|2)
)1/2 ≤ 2

[

E0(S̄
2
N (fi))

]1/2
.

For µ-a.e. x ∈ X and every i ≥ 0, (U jfi)j remains a sequence of martingale
increments under µx. Denoting by ‖ · ‖1,µx

the norm in L2(µx), it follows from the
Doob maximal inequality that

‖max
n≤N

|S̄n(f)|‖2,µx
≤

N−1
∑

i=0

‖ max
1≤n≤N

|S̄n(fi)|‖2,µx
≤ 2

N−1
∑

i=0

‖S̄N (fi)‖2,µx

hence

(

E0(max
n≤N

|S̄n(f)|2)
)1/2 ≤ 2

N−1
∑

i=0

[

E(S̄2
N (fi))

]1/2
= 2

N−1
∑

i=0

[

E(

N
∑

j=1

U jf2
i )

]1/2
=

= 2

N−1
∑

i=0

(

N
∑

j=1

Qjf2
i

)1/2 ≤ 2
√
N

∞
∑

i=0

((f2
i )∗)1/2.

Now, using (3.4) and (3.5), we see that
∑∞

i=0((f
2
i )∗)1/2 is in L2,w, which finishes

the proof. �

Proof of Theorem 2.3. By Hannan’s condition m =
∑

k≥0 P0(U
kf) is well de-

fined and Mn =
∑n

k=1 U
km is a martingale with stationary and ergodic increments.



112 Christophe Cuny and Dalibor Volný

Let r ≥ 1. We have

f =

r
∑

k=0

P0(U
kf) −

r
∑

k=1

(

E0(U
kf) − E−1(U

k−1f)
)

+ E−1(U
rf).

Hence, denoting m(r) =
∑r

k=0 P0(U
kf) and M

(r)
n =

∑n
l=1 U

lm(r), we obtain

Sn −Mn = M (r)
n −Mn − Un(

r
∑

k=1

E0(U
kf)) +

r
∑

k=1

E0(U
kf) +

n
∑

l=1

U l(E−1(U
rf))

and

Sn −Mn − E0(Sn) = (3.7)

= M (r)
n −Mn − [Un(

r
∑

k=1

E0(U
kf)) − E0(U

n(

r
∑

k=1

E0(U
kf))]+

+

n
∑

l=1

U l(E−1(U
rf)) − E0(

n
∑

l=1

U l(E−1(U
rf)))

By Doob maximal inequality, denoting h(r) := (m−m(r))2, we have

E0( max
1≤n≤N

(M (r)
n −Mn)2) ≤ 4

∑

1≤k≤N

Qkh(r) ≤ CN(h(r))∗ (3.8)

(recall that h∗ = supn≥1(1/n)
∑n−1

i=0 Q
i(|h|)).

Let K > 0. Denote Z(r) =
∑r

k=1 E0(U
kf) and Z

(r)
K = Z(r)1|Z(r)|>K

E0

(

max
1≤n≤N

∣

∣Un(
r

∑

k=1

E0(U
kf)) − E0(U

n(
r

∑

k=1

E0(U
kf))

∣

∣

2
)

≤ 4E0( max
1≤n≤N

|UnZ(r)|2) ≤ 4K2 + 4E0(

N
∑

n=1

|UnZ
(r)
K |2)

≤ 4K2 + 4

N
∑

n=1

Qn((Z
(r)
K )2) ≤ 4(K2 +N((Z

(r)
K )2)∗) (3.9)

To deal with the last term in (3.7), we apply Lemma 3.1 to E−1(U
rf), noticing

that in this case fi is replaced with P0(U
i
E−1(U

rf)) = P0(U
i+rf) = fi+r when

i ≥ 1 and for i = 0, P0(E−1(U
rf)) = 0). Hence

E0( max
1≤n≤N

|
n−1
∑

l=0

U l(E−1(U
rf)) − E0(

n−1
∑

l=0

U l(E−1(U
rf)))|2)

≤ N
∑

i≥r

((f2
i )∗)1/2. (3.10)

Combining (3.8), (3.9) and (3), we obtain that for every K > 0 and every r ∈ N,

lim sup
N→∞

E0(max1≤n≤N (S̄n −Mn)2)

N
≤ C(h(r))∗ + ((Z

(r)
K )2)∗ +

∑

i≥r

((f2
i )∗)1/2 µ-a.s.
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Now, ‖(((Z(r)
K )2)∗)1/2‖2,w ≤ C‖Z(r)

K ‖2 −→
K→∞

0. Hence there exists a sequence

(Kl) going to infinity such that

((Z
(r)
Kl

)2)∗ −→
l→∞

0 µ-a.s.

Hence

lim sup
N→∞

E0(max1≤n≤N (S̄n −Mn)2)

N
≤ C(h(r))∗ +

∑

i≥r

((f2
i )∗)1/2 <∞ µ-a.s.

The second term clearly goes to 0 µ-a.s., when r → ∞ (by Lemma 3.1), and the
first one goes to 0 µ-a.s. (along a subsequence) by (3.5). �

4. Markov Chains

In most of the literature, quenched limit theorems for stationary sequences use a
Markov Chain setting: the process is represented as a functional (f(Wn))n of a sta-
tionary and homogeneous Markov Chain (Wn); the limit theorem is said “quenched”
it it remains true for almost every starting point.

Every (strictly) stationary sequence of random variables admits a Markov Chain
representation. This has been observed by Wu and Woodroofe (2004), using an
idea from Rosenblatt (1971). A remark-survey on equivalent representations of
stationary processes can be found in Volný (2010). Here we show that the operator
Q introduced above leads to another Markov Chain representation of stationary
processes.

Before going to the proof, we want to emphasize that the construction below
makes use of a σ-algebra F ⊂ A such that F ⊂ θ−1(F). By taking F = A itself,
one obtains a Markov operator Q given by Qg = g ◦ θ, which leads to a trivial
representation of (f ◦ θn)n∈Z as a functional of a Markov chain, which is useless
here. Hence, the point is to use the construction below with a suitable F . Notice
that Proposition 4.1 applies to f ∈ L2(Ω,F ,P), in particular the process (f ◦θn)n∈Z

is adapted.
Let (X,A, µ) be a probability space and θ be an invertible bi-measurable trans-

formation of X preserving the measure µ.
Let F ⊂ A be a σ-algebra such that F ⊂ θ−1F . Denote E(·|F) the conditional

expectation with respect to F and define an operator Q on L∞(X,F , µ) by

Qh = E(h ◦ θ|F). (4.1)

Then Q is a positive contraction satisfying Q1 = 1 and it is the dual of a positive
contraction T of L1(X,F , µ), namely Tg = (E(g|F))◦θ−1. By Neveu (1970, Propo-
sition V.4.3), if X is a Polish space and A the σ-algebra of its Borel sets, there exists
a transition probability Q(x, dy) on X ×F such that for every h ∈ L∞(X,F , µ),

Qh =

∫

X

h(y)Q(·, dy).

Clearly, the transition probability Q preserves the measure µ, hence the canonical
Markov chain induced by Q, with initial distribution µ, may be extended to Z.

Now define a sequence of random variables (Wn)n∈Z defined from (X,A) to
(X,F) by Wn(x) = θn(x). Then we have
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Proposition 4.1. Let (X,A) be a Polish space with its Borel σ-algebra. Let µ
be a probability on A and θ be an invertible bi-measurable transformation of X
preserving the measure µ. Let F ⊂ A be a σ-algebra such that F ⊂ θ−1F . Then
(Wn)n∈Z is a Markov chain with state space (X,F), transition probability Q (given
by (4.1)) and stationary distribution µ. In particular, for every f ∈ L2(X,F , µ),
the process (f ◦ θn) is a functional of a stationary Markov chain.

Proof.

It suffices to show that for every n ≥ 1, and any ϕ0, . . . , ϕn bounded measurable
functions from R to R, we have

∫

X

ϕ0(W0) . . . ϕn(Wn)dµ =

∫

X

ϕ0(W0) . . . ϕn−1(Wn−1)Qϕn(Wn−1)dµ, (4.2)

the result for general blocks with possibly negative indices follows by stationarity.
By definition of (Wn), (4.2) holds for n = 1.

Assume that (4.2) holds for a given n ≥ 1. Let ϕ0, . . . , ϕn+1 be bounded F -
measurable functions from X to R. Using the definition of Q, (4.2) for our given
n, and stationarity, we obtain

∫

X

ϕ0(W0) . . . ϕn(Wn+1)dµ =

∫

X

ϕ0ϕ1 ◦ θ . . . ϕn+1 ◦ θn+1dµ

=

∫

X

ϕ0(θ
−n) . . . ϕn−1 ◦ θ−1ϕnϕn+1 ◦ θdµ =

∫

X

ϕ0(θ
−n) . . . ϕnQϕn+1dµ

=

∫

X

ϕ0 . . . ϕn ◦ θnQϕn ◦ θndµ =

∫

X

ϕ0(W0) . . . ϕn(Wn)Qϕn(Wn)dµ

which proves our result by induction. �
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