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A limit theorem to a time-fractional diffusion
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Abstract. We prove a limit theorem for an integral functional of a Markov process.
The Markovian dynamics is characterized by a linear Boltzmann equation modeling
a one-dimensional test particle of mass λ−1 ≫ 1 in an external periodic potential
and undergoing collisions with a background gas of particles with mass one. The
object of our limit theorem is the time integral of the force exerted on the test
particle by the potential, and we consider this quantity in the limit that λ tends
to zero for time intervals on the scale λ−1. Under appropriate rescaling, the total
drift in momentum generated by the potential converges to a Brownian motion
time-changed by the local time at zero of an Ornstein-Uhlenbeck process.

1. Introduction

1.1. Model and results. Consider the family λ ∈ R+ of Markov processes

(X
(λ)
t , P

(λ)
t ) ∈ R2 whose densities Ψt,λ(x, p) obey the forward Kolmogorov equation

d

dt
Ψt,λ(x, p) = − p

∂

∂x
Ψt,λ(x, p) +

dV

dx

(

x
) ∂

∂p
Ψt,λ(x, p)

+

∫

R

dp′
(

Jλ(p′, p)Ψt,λ(x, p′) − Jλ(p, p′)Ψt,λ(x, p)
)

, (1.1)

where V (x) = V (x + 1) ≥ 0 is continuously differentiable, and the jump kernel
Jλ(p, p′) has the form

Jλ(p′, p) :=
(1 + λ)

64

∣

∣p′ − p
∣

∣e−
1
2

(

1−λ
2 p′− 1+λ

2 p

)2

. (1.2)

The values Jλ(p′, p) correspond to the rate density of jumps from (x, p′) to (x, p).
The Kolmogorov equation above is an idealized description of the phase space
density for a test particle in dimension one that feels a spatially periodic force
− dV

dx
(x) and receives elastic collisions with particles from a gas. The jump rates

Jλ agree with the one-dimensional case of equation (8.118) from Spohn (1991) in
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which the mass of a single reservoir particle is set to one, the temperature of the

gas is set to one, the spatial density of the gas is set to 1
32 (2π)

1
2 , and the mass of

the test particle is λ−1.
We will subsequently suppress the λ-dependence of the dynamics by removing

the superscript for the process: (Xt, Pt). The cumulative drift in the particle’s
momentum up to time t ∈ R+ due to the periodic force field has the form −Dt for

Dt :=

∫ t

0

dr
dV

dx
(Xr).

The momentum at time t can be written in the form Pt = P0−Dt +Jt, where Jt is
the sum of all the momentum jumps resulting from collisions with the gas. To state
our main result contained in Thm. 1.1 below, let us define the limiting processes.
Define p ∈ R to be the process with p0 = 0 and satisfying the Langevin equation

dpt = −1

2
ptdt + dB′

t, (1.3)

where B′ is a standard Brownian motion. The solution p is referred to as the
Ornstein-Uhlenbeck process (1930). Moreover, let the process l denote the local
time at zero for the process p. Recall that the local time at a point a ∈ R over the

interval [0, t] is formally given by the expression:
∫ t

0
drδa(pr).

In Clark and Dubois (2011) it was shown that λ
1
2 P ·

λ
converges in law as λ → 0

to p over any finite time interval [0, T ] and that the expectation of sup0≤t≤T |λ 1
4 D t

λ
|

is uniformly bounded for all λ < 1. Theorem 1.1 extends this result to a limit law

for λ
1
4 D ·

λ
which is joint with that of λ

1
2 P ·

λ
. The rescaled momentum drift λ

1
4 D ·

λ

converges to a diffusion process time-changed by the local time of the Ornstein-
Uhlenbeck process p that λ

1
2 P ·

λ
limits to. The diffusion constant κ ∈ R+ in the

statement of Thm. 1.1 is formally given by a Green-Kubo form that is remarked
upon in Sect. 1.2.

Theorem 1.1. Assume that V (x) is continuously differentiable and that the initial
distribution for the particle µ has finite moments in momentum:

∫

R2 dµ(x, p)|p|m <

∞ for m ≥ 1. In the limit λ → 0, there is convergence in law of the process pair
(

λ
1
2 P t

λ
, λ

1
4 D t

λ

)

L
=⇒

(

pt,
√

κBlt

)

, t ∈ [0, T ],

for a constant κ > 0, and where l is the local time at zero of p, and B is a copy
of Brownian motion independent of p. The convergence is with respect to the Sko-
rokhod metric.

Theorem 1.1 implies that the contribution Jt to the momentum generated by

collisions has higher order than the forcing part Dt. In particular, λ
1
2 J ·

λ
converges

to the Ornstein-Uhlenbeck process as λ → 0. In the conjecture below, we give a
more refined statement for the limiting law of the full momentum λ

1
2 P ·

λ
for small

λ that takes into account the perturbative contribution of the forcing term λ
1
2 D t

λ
.

In this approximation, the contribution of the periodic force is given by a diffusive
pulse that the momentum feels when it returns to the region around the value zero.
The p in the statement of the conjecture should be thought of as the limit in law
of the collision contribution λ

1
2 J ·

λ
.
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Conjecture 1.2. Take the assumptions of Thm. 1.1, and let F : C([0, T ]) → C be
bounded and smooth with respect to the supremum norm. Define the process pt,λ as

pt,λ := pt +
√

κλ
1
4

(

Blr − 1

2

∫ t

0

dre−
1
2 (t−r)Blr

)

, (1.4)

where p, B, l, and κ > 0 are defined as in Thm. 1.1. Then the law of the process

λ
1
2 P ·

λ
is close to the law of p·,λ for λ ≪ 1 in the sense that

E
[

F
(

λ
1
2 P ·

λ

)]

= E
[

F
(

p·,λ
)]

+ O(λ
1
2 ).

Note that if pt,λ is replaced by pt,0 = pt in the expectation above, then the error can

at best be O(λ
1
4 ).

1.2. Discussion. Theorem 1.1 characterizes the limiting law for the integral func-
tional of the Markov process St = (Xt, Pt) given by

Dt =

∫ t

0

drg(Sr), g(x, p) =
dV

dx
(x), (1.5)

for time scales t ∝ λ−1 and normalization factor λ
1
4 . The underlying law of the

process St depends on the parameter λ through the jump rate kernel Jλ. Since
the potential V (x) has period one, it is convenient to view St as having state space
Σ := T×R, where T := [0, 1) is identified with the unit torus, rather than R2. The
process St ∈ Σ is ergodic to an equilibrium state given by the Maxwell-Boltzmann
distribution

Ψ∞,λ(x, p) :=
e−λH(x,p)

N(λ)
, (1.6)

where H(x, p) := 1
2p2 + V (x) and for a normalization constant N(λ) ∈ R+. Al-

though the ergodicity is exponential in nature, the rate of ergodicity decays as λ

goes to zero, and thus a limit theorem for a normalized version of D t
λ

does not fall

under the limit theory for integral functionals of an ergodic Markov process Ko-
morowski et al. (2012). This is also clear from the appropriate scaling factor for

D t
λ

being λ
1
4 rather the λ

1
2 . Heuristics for this scaling were given in Clark and

Dubois (2011, Sect. 1.2.2), and the smaller exponent for the scaling is driven by

the fact that dV
dx

(Xr) is typically oscillating with high frequency (∝ λ− 1
2 ) around

zero for most of the time interval [0, T
λ
]. These oscillations in dV

dx
(Xr) occur as the

particle revolves around the torus with speed |Pr|, which is typically found on the

order λ− 1
2 . The fluctuations in Dt have a chance to accumulate primarily when

|λ 1
2 P t

λ
| dips down to “small” values, and this suggests that a non-trivial limit law

arising from a rescaled version of D t
λ

should be related to the local time at zero for

the limiting law of λ
1
2 P t

λ
.

As λ → 0 the jump rates approach the form J0(p, p′) = j(p − p′) for

j(p) :=
1

64
|p|e− 1

8p2

, (1.7)

which describe an unbiased random walk in momentum. Thus the process St be-
haves more like a null-recurrent Markov process for small λ. This idea breaks down
at time scales ∝ λ−1 where a first-order contribution to Jλ(p, p′) around λ = 0
generates the frictional drag to smaller momenta seen in the linear drift term of the
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Langevin equation (1.3) defining pt. The diffusion constant κ ∈ R+ in Thm. 1.1 is
formally given by the Green-Kubo expression

κ = 2

∫

[0, 1]×R

dxdp
dV

dx
(x)R(0)(

dV

dx
)(x, p), (1.8)

where R(0) =
∫ ∞

0
drerL0 is the reduced resolvent of the backwards generator L0

formally acting on differentiable F ∈ L∞(Σ) as

(L0F )(x, p) = p
∂

∂x
F (x, p)− dV

dx

(

x
) ∂

∂p
F (x, p) +

∫

R

dp′j(p′)
(

F (x, p + p′)−F (x, p)
)

.

The null-recurrent behavior for the process St = (Xt, Pt) emerging as λ → 0
at short time scales and the relaxation behavior that takes place on time scales
∝ λ−1 are both apparent in the limiting law

√
κBlt ; the diffusion constant κ ∈ R+

is defined in terms of the jump rates (1.7) which correspond to an unbiased random
walk, and on the other hand, the local time process lt is defined in terms of the
Ornstein-Uhlenbeck process which has exponential relaxation (in the correct norm)

to the Maxwell-Boltzmann distribution ( 1
2π

)
1
2 e−

1
2 q2

.

1.2.1. The limiting processes. As before we let l denote the local time of the
Ornstein-Uhlenbeck process p and B denote a standard Brownian motion inde-
pendent of p. Recall that the local time process l(a) for a point a ∈ R is the a.s.
continuous increasing process formally given by

l
(a)
t =

∫ t

0

drδa(pr).

For each realization of the process p over the interval [0, t], l
(a)
t is the density of

time that the path for p spends at a, and thus
∫

R
dal

(a)
t = t. For the case a = 0, we

neglect the superscript for l(a). The values of l stay fixed over the time intervals in
which p moves away from the origin, and thus, in a sense, l makes its increases over
the set of times such that pt = 0, which has Hausdorff dimension 1

2 . The fractional

diffusion process
√

κBl, appearing as the λ → 0 limit in law of λ
1
4 D ·

λ
in Thm. 1.1,

has its fluctuations constrained to those times in which l increases. Clearly,
√

κBl is
not Markovian since the amount of time that the process

√
κBl has held its current

value, i.e., the excursion time of p from zero, is correlated with the amount time
that it is likely to remain fixed at that value. The probability densities ρt : R → R+

of
√

κBlt satisfy the Volterra-type integro-differential equation

ρt(q) = ρ0(q) +
κ

2(2π)
1
2

∫ t

0

dr
(∆qρr)(q)

(

1 − e−
1
2 (t−r)

)
1
2

, ρ0(q) := δ0(q). (1.9)

The non-Markovian nature of the processes
√

κBl is visible in the convolution form
appearing in (1.9). The master equation above is similar to the master equation for
a Brownian motion with diffusion constant κ ∈ R

+ time-changed by an independent
Mittag-Leffler process m(α) of index 0 < α < 1. Note that our limiting processes
do not satisfy any scale invariance because p does not and thus l does not. Some
further discussion of local time and related material is included in Appx. A.
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1.2.2. Related literature. The limit theory for integral (or summation) functionals
of Markov processes (respectively, chains) usually splits into several standard cat-
egories depending on whether the limiting procedure is of first- or second-order
and whether the Markov process is positive-recurrent or null-recurrent. Second-
order limit theorems for integral functionals of ergodic Markov processes are well-
understood (for instance Kipnis and Varadhan (1986), and see the book Komorowski
et al. (2012) for a broader discussion of the literature). In the null-recurrent case,
second-order limit theory for integral functionals is discussed in Touati (1987),
in Papanicolaou et al. (1977); Csáki and Salminen (1996) when the Markov pro-
cess is a diffusion, and in Chen (2000) for a Markov chain rather than a process.
The second-order theory is closely related to the limit theory for martingales by
a standard construction (1.10), which seems to have been introduced in Gordin
(1969) in the analogous case of a chain. Limit results for martingales with qua-
dratic variations that are additive functionals of null-recurrent Markov processes
can be found in Touati (1987); Höpfner and Löcherbach (2003). This literature
builds on and applies the limit theory for additive functionals of Markov processes
(see, for instance, Chen (1999); Csáki and Csörgő (1995) and for more recent re-
sults Löcherbach and Loukianova (2008); Loukianova and Loukianov (2008)), which
began with a paper by Darling and Kac (1957). The monograph Höpfner and
Löcherbach (2003) is a particularly useful reference on this subject, which, in ad-
dition to presenting new results, serves some purpose as a review.

The usual recipe for finding a martingale close to an integral functional
∫ t

0
drg(Sr)

of a Markov process is given by the following: if St is a Harris recurrent Markov
process and g is a function defined on its state space such that the reduced resol-
vent R of the backward evolution operating on g is “well-behaved” (e.g. lives in a
suitable Lp space), then

M̃ ′
t = (R g)(St) − (R g)(S0) +

∫ t

0

drg(Sr) (1.10)

is a martingale. The difference between
∫ t

0 drg(Sr) and M̃ ′
t is a pair of terms that

are comparatively small in many situations. For our model, it is not clear how
to obtain the necessary bounds on the reduced resolvent

(

R(λ) dV
dx

)

(s) in the limit
λ → 0 to exploit (1.10), and we use a variant of this martingale; see Lem. 4.1.
To build a martingale approximating Dt, we expand the state space from Σ to
Σ̃ = Σ × {0, 1} using a Nummelin splitting-type construction. The benefit of
viewing the process in the extended state space is that the trajectories for the
process St can be decomposed into a series of nearly i.i.d. parts corresponding to
time intervals [Rn, Rn+1), where Rn are associated with the return times to an

“atom” identified with the subset Σ × 1 ⊂ Σ̃. This allows the integral functional
Dt to be written as a sum of boundary terms plus a random sum of nearly i.i.d.
random variables.

The approach of this article differs from that suggested in Touati (1987) in that

we use Nummelin splitting techniques for the construction of the martingale M̃t

approximating the integral functional Dt. The former result begins with the mar-
tingale construction (1.10) defined in the original statistics and applies splitting
tools to study the additive functional associated with the predictable quadratic
variation process 〈M̃ ′〉. Our technical apparatus relies on inequalities for a gener-
alized resolvent (see Clark and Dubois (2011, Sect. 4) for the application) given
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by
(

U
(λ)
h g

)

(s) := E
(λ)
s

[

∫ ∞

0

dte−
R

t

0
drh(Sr)g(St)

]

,

where h : Σ → [0, 1] has compact support (4.2), and the evaluation is for a function
g = gλ that is closely related to the form

gλ(s) ≈
∣

∣

∣
E

(λ)
s

[

∫ ∞

0

dt t e−t dV

dx
(Xt)

]∣

∣

∣
. (1.11)

The function gλ(s) captures the averaging of the oscillations for dV
dx

(Xt) that occur

at high momentum |Pt| ≫ 1. The generalized resolvent
(

U
(λ)
h g

)

(s) may appear to

be a more difficult object to work than the reduced resolvent
(

R(λ) dV
dx

)

(s), however,
the generalized resolvent is an integral of positive values, and the reduced resolvent
is a seemingly delicate cancellation of quantities with opposite sign. Moreover, the
generalized resolvent can be understood in the λ ≪ 1 regime through intuition
about the expected amount of time that a random walker should linger in differ-
ent parts of phase space before returning to a neighborhood of the origin when
beginning from a phase space point s ∈ Σ.

We briefly discuss the history of these splitting techniques. For Markov chains
a technique for extending the dynamics from a state space Σ to Σ×{0, 1} in order
to embed an atom was developed independently in Nummelin (1978) and Athreya
and Ney (1978), and this is referred to as Nummelin splitting or merely splitting.
When it comes to the splitting of Markov processes, there are different schemes
offered in Höpfner and Löcherbach (2003) and Löcherbach and Loukianova (2008).
In Höpfner and Löcherbach (2003) the authors construct a sequence of split pro-
cesses which contain marginal processes that are arbitrarily close to the original
process. The construction in Löcherbach and Loukianova (2008) involves a larger
state space Σ× [0, 1]×Σ although an exact copy of the original process is embedded
as a marginal. The splitting construction that we employed in Clark and Dubois
(2011) and use in the current article is a truncated version of that in Löcherbach
and Loukianova (2008) although the split process that we consider is not Markov-
ian because of the truncation. The idea of applying splitting techniques to obtain
limit theorems for integral functionals of null-recurrent Markov processes was in-
troduced in Touati (1987) and has been developed further in other limit theory
in Chen (1999, 2000); Höpfner and Löcherbach (2003).

There are some basic differences that should be emphasized between our model
and models for the results mentioned above. The law for our underlying Markovian
process St is itself λ-dependent. This is not the case for the limit theorems discussed
above in which there is a single fixed Markovian dynamics, and a parameter λ only
appears in the length of the time intervals considered and in the scaling factors for
the variables of interest. This is why it is possible for us to get a limit law

√
κBlt

that has no scale invariance. The limit theorems for integral functionals
∫ t

0
drg(Sr)

of null-recurrent Markov processes considered in Touati (1987); Papanicolaou et al.
(1977); Csáki and Salminen (1996) assume that the “velocity function” g exists in
L1 with respect to the invariant measure of the process. This effectively means
that the null-recurrent process St spends most of the time in regions of phase space
where g(St) is “small”. In our case, the function g(x, p) = dV

dx
(x) has no explicit

decay as |p| → ∞, and we rely on the rapid oscillations of dV
dx

(Xr) that occur when
|Pr| ≫ 1. The dependence of g(x, p) on only the torus component x ∈ T is thus
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deceptive, and when time-averaging is properly taken into account as in (1.11),
g(x, p) behaves more like a function that decays with order |p|−2 for large |p|.

Our techniques could be used to prove analogous results for a related model
in Clark and Maes (2011). In that case, the limiting law for a rescaling of the pair
(Pt, Dt) (momentum and integral of the force) would have the form (

√
σB′,

√
κBl)

for some σ, κ > 0, where B′,B are independent copies of standard Brownian motion,
and l is the local time at zero for B′.

1.2.3. Comments on Conjecture 1.2. Conjecture 1.2 characterizes the perturbative
influence for λ ≪ 1 on the momentum of the particle when the periodic force is
turned on. The process pt,λ formally satisfies the Langevin equation

dpt,λ = −1

2
pt,λdt + dB′

t + λ
1
4
√

κ δ0

(

pt

)

dB′′
t , (1.12)

where p0,λ = 0, B′ and p are defined as in (1.3), and B′′ is a copy of standard

Brownian motion independent of B′. This makes the identification
∫ t

0 dB′′
r δ0(pr) ≡

Blr . Through equation (1.12), pt,λ has the appearance of what would be a first-
order approximation for λ ≪ 1 of a process p′t,λ satisfying the stochastic differential
equation

dp′t,λ = −1

2
p′t,λdt + dB′

t + λ
1
4
√

κ δ0

(

p′t,λ
)

dB′′
t .

However, this equation can not be made sensible.

1.3. Organization of the article. Section 2 contains the proof of Thm. 2.1, which

effectively makes the connection between the normalized momentum process λ
1
2 P ·

λ

and the local time l appearing in the limiting law for λ
1
4 D ·

λ
. Section 3 contains

a formulation of the “martingale problem” that determines the uniqueness of the
limiting law

(

p,
√

κBl

)

in the proof of Thm. 1.1. Section 4 outlines the construction
of a version of the process St = (Xt, Pt) in an enlarged state space. The proof of
Thm. 1.1 is in Sect. 5. Finally, the proofs for a few lemmas are postponed to Sect. 6,
and Appx. A contains some discussion of the limit process Bl. We will make the
assumptions of Thm. 1.1 throughout the text.

2. Convergence of a local time quantity

In this section we work to prove Thm. 2.1 below. In the statement of the theorem,
the process Lt is defined as

Lt := U−1

∫ t

0

drχ
(

H(Sr) ≤ l
)

,

where l := 1+2 supx V (x) and U ∈ R
+ is the Lebesgue measure of the set {H(s) ≤

l} ⊂ Σ. The process Lt is important because it is close on the relevant scale to the

bracket process 〈M̃〉t of a martingale M̃t approximating the cumulative drift Dt;

see Lem. 4.1 for the definition of M̃t.

Theorem 2.1. Let pt be the Ornstein-Uhlenbeck process and lt be its local time at
zero. As λ → 0 there is convergence in law

(

λ
1
2 P t

λ
, λ

1
2 L t

λ

) L
=⇒ (pt, lt), t ∈ [0, T ],
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where the convergence is with respect to the uniform metric. Moreover, for any
t ∈ R+

sup
λ<1

E
(λ)

[

λ
1
2 L t

λ

]

< ∞ and lim
λ→0

E
(λ)

[

λ
1
2 L t

λ

]

= E
[

lt
]

.

We begin by making some remarks on the local time process l. Appendix A

contains more information although without proofs. Define B̃t =
∫ t

0 drsgn(pr)dB
′
r,

where B′ is the Brownian motion driving the Langevin equation (1.3) and sgn :
R → {±1} is the sign function. The Tanaka-Meyer formula yields the local time at
zero for p as

lt = |pt| − |p0| − B̃t +
1

2

∫ t

0

dr|pr|. (2.1)

The above relation follows from the formal definition lt =
∫ t

0
drδ0(pr) and a formal

application of the Ito formula for the function |·| of the process p that has differential
dpt = − 1

2ptdt + dB′
t. In (2.1) l is the positive part of the drift for the diffusion

process p.
Theorem 2.1 states that a rescaling of the process Lt converges in law to the

local time lt. Since h(x, p) is compactly supported, it is not surprising that this
quantity would be related to the local time when considered on the appropriate
scale: λ

1
2 L t

λ
, λ ≪ 1. The strategy in the proof resembles Clark (2013, Thm. 3.1)

in which information related to the limiting behavior for the momentum process
Pt is found through a study of the semimartingale decomposition of the square

root energy process Qt := (2Ht)
1
2 =

(

P 2
t + 2V (Xt)

)
1
2 . Since the potential V (x) is

bounded, we have that λ
1
2 |P t

λ
| ≈ λ

1
2 Q t

λ
. The advantage of working with a function

of the Hamiltonian is that there is no drift between collisions. Let the processes
Mt, A+

t , and −A−
t be respectively the martingale, predictable increasing, and

predictable decreasing parts in the semimartingale decomposition of the process Qt.
The processes A±

t and the predictable quadratic variation 〈M〉t of the martingale
Mt have the forms

A±
t =

∫ t

0

drA±
λ (Sr) and 〈M〉t =

∫ t

0

drVλ(Sr), (2.2)

where A±
λ ,Vλ : Σ → R are defined below.

Also, since Lt is difficult to work with directly, our strategy is to approximate it
by A+

t . Notice that we can rewrite the components in the semimartingale decom-
position as

A+
t = Qt − Q0 − Mt + A−

t (2.3)

in analogy with the Tanaka-Meyer formula (2.1). We approach the term λ
1
2 A+

t
λ

through a study of the joint convergence of the terms

λ
1
2 Q t

λ

L
=⇒ |pt|, λ

1
2 M t

λ

L
=⇒ B̃t, λ

1
2 A−

t
λ

L
=⇒ 1

2

∫ t

0

dr|pr|.

Readers accustomed to the limit theory in Jacod and Shiryaev’s book (1987)
may find the appearance of the uniform metric rather than the Skorokhod metric
in the statement of Thm. 2.1 unusual. There is a result for the weak convergence of
martingales with respect to the uniform metric in Pollard (1984, Thm. VIII.2.13).
This limit theorem for martingales has a role in proving the convergence in law of
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λ
1
2 P t

λ
with respect to the uniform metric of Clark and Dubois (2011, Thm. 1.3).

Although λ
1
2 L t

λ
and equivalently λ

1
2 A+

t
λ

may seem to be converging to a “singular”

limit that would be awkward to treat with the uniform metric, the process λ
1
2 A+

t
λ

can be viewed through (2.3) as a sum of terms that are more clearly treatable in
the uniform metric.

The next lemma gives a limiting procedure in which the trajectories for l and B̃

in the Tanaka-Meyer formula (2.1) are determined by the trajectories for |p|.
Lemma 2.2. Let pt be the Ornstein-Uhlenbeck process. As ǫ → 0 the local time at
zero l satisfies

E

[

sup
0≤t≤T

∣

∣

∣
lt −

1

2ǫ

∫ t

0

dre−
|pr|

ǫ

∣

∣

∣

]

= O(ǫ
1
2 ).

Also, the Brownian motion B̃t in the Tanaka-Meyer formula (2.1) satisfies

E

[

sup
0≤t≤T

∣

∣

∣
B̃t − |pt| + |p0| − ǫe−

|pt|
ǫ − 1

2

∫ t

0

dr|pr |
(

1 − e−
|pr |

ǫ

)

+
1

2ǫ

∫ t

0

dre−
|pr|

ǫ

∣

∣

∣

]

=

O(ǫ
1
2 ).

Before proceeding to the proof of Thm. 2.1, we must recall some notation
from Clark and Dubois (2011). For n ∈ R

+ define the functions Aλ,Vλ,n :T×R → R

as

Aλ(x, p) :=

∫

R

dp′
(

2
1
2 H(x, p′)

1
2 − 2

1
2 H(x, p)

1
2

)

Jλ(p, p′),

Vλ,n(x, p) :=

∫

R

dp′
∣

∣2
1
2 H(x, p′)

1
2 − 2

1
2 H(x, p)

1
2

∣

∣

2nJλ(p, p′).

The function Vλ := Vλ,1 is related to the predictable quadratic variation of the mar-
tingale M through (2.2). We also denote the escape rates by Eλ(p) :=

∫

R
dp′Jλ(p, p′).

We define A±
λ (s) = max(±Aλ(s), 0) to be the positive and negative parts of Aλ.

Proposition 2.3 contains some useful inequalities regarding the functions A±
λ , Vλ,n,

and we do not include the proof, which is based on elementary inequalities and
calculus.

Proposition 2.3. There are constants c, C, Cn > 0 such that for λ < 1 the follow-
ing inequalities hold:

(1) For all (x, p) ∈ Σ, Vλ,n(x, p) ≤ Cn(1 + λ|p|)2n+1.

(2) For all (x, p) ∈ Σ, A+
λ (x, p) ≤ C

1+p2 .

(3) For λ− 3
8 ≤ |p| ≤ λ− 3

4 ,
∣

∣

∣
A−

λ (x, p) − 1

2
λ|p|

∣

∣

∣
≤ Cλ

5
4 |p| and

∣

∣

∣
Vλ(x, p) − 1

∣

∣

∣
≤ Cλ

1
2 .

(4) For |p| ≤ λ−1, A−
λ (x, p) ≤ Cλ|p|.

(5) For all (x, p) ∈ Σ,
∣

∣

∣

Aλ(x,p)
Eλ(p) + 2λ|p|

1+λ

∣

∣

∣
≤ C.

(6) For all p ∈ R, Eλ(p) ≤ 1
8(λ+1) (1 + Cλ|p|) and λ|p| ≤ CEλ(p).

(7) As λ → 0, we have
∫

Σ
dsA+

λ (s) = 1 + O(λ
1
2 ).

Lemmas 2.4 and 2.5 below characterize the typical energy behavior over the
time interval [0, T

λ
] for λ ≪ 1. In particular, Lem. 2.4 states that the energy
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H(Xt, Pt) = 1
2P 2

t + V (Xt) := Ht does not typically go above the scale λ−1, and
Lem. 2.5 states that the energy typically does not spend much time smaller than
λ−̺ for any 0 ≤ ̺ < 1. The proof for Lem. 2.5 is contained in Sect. 6 and Lem. 2.4
is from Clark and Dubois (2011, Lem. 3.2).

Lemma 2.4. For any n ∈ N, there exists a C > 0 such that

E
(λ)

[

sup
0≤r≤T

λ

(Hr)
n
2

]

≤ C
(T

λ

)
n
2

for all T > 0 and λ < 1.

Lemma 2.5. Define Tt = λ
∫ t

0
drχ(Hr ≤ ǫλ−̺) for 0 ≤ ̺ ≤ 1. For any fixed

T > 0, there is a C > 0 such that for small enough λ and all ǫ ∈ [λ̺, 1],

E
(λ)

[

TT
λ

]

≤ Cǫ
1
2 λ

1−̺
2 .

The following lemma is reminiscent of ratio limit theorems for additive func-
tionals of null-recurrent Markov processes since Lt and A+

t are time integrals of
Sr evaluating the velocity functions U−1χ(H(s) ≤ l) and A+(s), respectively. To
support this intuition, recall that the invariant measure for the Markov process St

“approaches” Lebesgue measure on Σ for small λ ∈ R+ and observe that

U−1

∫

Σ

dsχ(H(s) ≤ l) = 1 =

∫

Σ

dsA+
λ (s) + O(λ

1
2 ),

where the second equality is by Part (7) of Prop. 2.3. The proof of Lem. 2.6 is
placed in Sect. 6.

Lemma 2.6. As λ → 0,

E
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 L t

λ
− λ

1
2 A+

t
λ

∣

∣

∣

]

= O(λ
1
4 ).

Moreover, there is a C > 0 such that for λ < 1,

E
(λ)

[

λ
1
2 L T

λ

]

≤ C.

Proof of Thm. 2.1: By Clark and Dubois (2011, Thm. 1.3) the process λ
1
2 P ·

λ
con-

verges in law to the Ornstein-Uhlenbeck process p with respect to the uniform
metric. As a consequence of the limiting scheme in Lem. 2.2, the trajectories for
the first component of the limiting pair (p, l) determine the trajectories of the sec-
ond component through the absolute value |p|. It is sufficient for us to show that

(|λ 1
2 P ·

λ
|, λ

1
2 L ·

λ
) converges in law to the pair (|p|, l). Our approach will be to ap-

proximate the pair (|λ 1
2 P t

λ
|, λ

1
2 L t

λ
) by the pair (λ

1
2 Q t

λ
, λ

1
2 A+

t
λ

) in Part (i) below,

and then to apply an argument based on the Tanaka-Meyer formula to analyze

(λ
1
2 Q t

λ
, λ

1
2 A+

t
λ

) in Part (ii). All convergences in law in this proof are with respect

to the uniform metric.

(i). Showing that |λ 1
2 P t

λ
| is close to λ

1
2 Q t

λ
is easy since

∣

∣

(

p2+2V (x)
)

1
2 −|p|

∣

∣≤
(

2 sup
x

V (x)
)

1
2 and thus

∣

∣λ
1
2 Q t

λ
−λ

1
2 |P t

λ
|
∣

∣≤λ
1
2

(

2 sup
x

V (x)
)

1
2 .
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By Lem. 2.6, λ
1
2 L ·

λ
can be approximated by λ

1
2 A+

·
λ

for small λ, and the expectation

E(λ)
[

λ
1
2 L t

λ

]

is uniformly bounded for λ < 1. A consequence of Part (ii) will be

that λ
1
2 L ·

λ
converges in law to l as λ → 0. This implies convergence of the first

moment.

(ii). The process λ
1
2 |P ·

λ
| converges in law to |p| because | · | is a continuous map on

functions in L∞([0, T ]) with respect to the supremum norm and λ
1
2 P ·

λ
converges

in law to p by Clark and Dubois (2011, Thm. 1.3). With Part (i) it follows that

λ
1
2 Q ·

λ
converges in law to |p|. Our main work is to incorporate the component

λ
1
2 A+

·
λ

for the convergence in law of the pair (λ
1
2 Q ·

λ
, λ

1
2 A+

·
λ

).

For the process A+
t , we may write

A+
t = Qt − Q0 − Mt + A−

t . (2.4)

Now, we will begin the analysis of λ
1
2 A+

t
λ

through a study of the terms on the right

side of the above equation. By our assumptions on the initial distribution µ for
(X0, P0), the random variable λ

1
2 Q0 converges to zero in probability. We will show

that there is convergence in law

Y
(λ)
t =

(

λ
1
2 Q t

λ
, λ

1
2 M t

λ
, λ

1
2 A−

t
λ

) L
=⇒

(

|pt|, B̃t,
1

2

∫ t

0

dr|pr|
)

, (2.5)

where B̃ is the copy of Brownian motion in the Tanaka-Meyer formula (2.1). With

the identities (2.1) and (2.4), the above convergence implies that (λ
1
2 Q ·

λ
, λ

1
2 A+

·
λ
)

converges in law to (|p|, l). To prove the convergence (2.5), we will first show that

λ
1
2 A−

t
λ

can be approximated by 1
2

∫ t

0 drλ
1
2 Q r

λ
; see (I) below. It is then enough to

show functional convergence of the pair
(

λ
1
2 Q ·

λ
, λ

1
2 M ·

λ

)

because the map sending

q ∈ L∞([0, T ]) to the element 1
2

∫ ·

0 drqr ∈ L∞([0, T ]) is continuous with respect
to the supremum norm. A similar idea applies in the proof of the convergence

in law of
(

λ
1
2 Q ·

λ
, λ

1
2 M ·

λ

)

. It is clear from the statement of Lem. 2.2 that the

trajectories for |p| determine the trajectories for B̃, and the same relation emerges

between λ
1
2 Q ·

λ
and λ

1
2 M ·

λ
in the limit λ → 0. The main idea of the proof is to

reduce everything to the functional convergence of λ
1
2 Q ·

λ
to the absolute value of

the Ornstein-Uhlenbeck process |p|, which we know to occur by the observation
following (ii) above.

The analysis below will be split into the proof of statements (I)-(III) below. The

proofs of (II) and (III) work toward the convergence of the pair
(

λ
1
2 Q ·

λ
, λ

1
2 M ·

λ

)

.

(I). There is a C > 0 such that for all λ < 1,

E
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 A−

t
λ

− 1

2

∫ t

0

drλ
1
2 Q r

λ

∣

∣

∣

]

≤ Cλ
1
8 .

(II). The martingales m
(λ)
t,ǫ defined as

m
(λ)
t,ǫ := λ

1
2

∫ t
λ

0

dMr

(

1 − e−ǫ−1λ
1
2 Q

r−
)
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are close to λ
1
2 M t

λ
for small λ and ǫ in the sense that

E
(λ)

[

sup
0≤t≤T

∣

∣λ
1
2 M t

λ
− m

(λ)
t,ǫ

∣

∣

2] ≤ C
(

max(ǫ, λ)
)

1
2 (2.6)

for some C and all λ, ǫ < 1.
(III). For each fixed ǫ ∈ R+, there is convergence in law as λ → 0

(

λ
1
2 Q t

λ
, m

(λ)
t,ǫ

) L
=⇒

(

|pt|, mt,ǫ

)

,

for mt,ǫ :=
∫ t

0
dB̃r

(

1 − e−
|pr |

ǫ

)

.

The max(ǫ, λ) on the right side of the inequality (2.6) can be replaced with ǫ by
having a slightly more refined version of Lem. 2.5, which we do not require here.
By combining the results (II) and (III) with Lem. 2.2, which gives the convergence

as ǫ → 0 of (p,m·,ǫ) to (p, B̃) in the norm ‖ ·‖s = E
[

sup0≤t≤T | · |
]

, then a standard

argument, which we sketch below, shows that
(

λ
1
2 Q ·

λ
, λ

1
2 M ·

λ

)

converges in law to

(p, B̃). These statements can be summarized by the marked arrows in the diagram
below

(λ
1
2 Q t

λ
, m

(λ)
t,ǫ )

L
=⇒ (|pt|, mt,ǫ)





y
‖·‖s





y
‖·‖s

(λ
1
2 Q t

λ
, λ

1
2 M t

λ
) =⇒ (|pt|, B̃t)

,

where the convergence on the right side of the diagram is by Lem. 2.2, the top of the
diagram is by (III), and the convergence on the left side of the diagram is from (II)
and requires both ǫ and λ to be small. Let us sketch the proof of the convergence in
law at the bottom line of the diagram. By Pollard (1984, Cor. IV.2.9) it is enough
to show the convergence as λ → 0 of

∣

∣E
(λ)

[

F (λ
1
2 Q ·

λ
, λ

1
2 M ·

λ
)
]

− E
(λ)

[

F (|p|, B̃)
]∣

∣ (2.7)

to zero for functionals F : L∞([0, T ], R2) → R that are bounded and uniformly
continuous with respect to the supremum norm. By the triangle inequality, (2.7)
is smaller than

∣

∣E
(λ)

[

F (λ
1
2 Q ·

λ
, λ

1
2 M ·

λ
)
]

− E
(λ)

[

F (λ
1
2 Q ·

λ
, m

(λ)
·,ǫ )

]∣

∣

+
∣

∣E
(λ)

[

F (λ
1
2 Q ·

λ
, m

(λ)
·,ǫ )

]

− E
(λ)

[

F (|p|, m·,ǫ)
]∣

∣

+
∣

∣E
(λ)

[

F (|p|, m·,ǫ)
]

− E
(λ)

[

F (|p|, B̃)
]
∣

∣.

Since F is bounded and uniformly continuous, we can choose ǫ ∨ λ and ǫ to make
both the first and third terms small by (III) and Lem. 2.2, respectively. We can
then choose λ ∈ (0, ǫ] to make the second term arbitrarily small by the convergence
(II).

Next, we prove statements (I)-(III). The definition of constants Cn, C′
n > 0,

n ∈ N will reset in different parts of the analysis.

(I). By the remark (ii), it is sufficient to bound the difference between λ
1
2 A−

t
λ

and

1
2

∫ t

0 dr|λ 1
2 P r

λ
| for small λ. Conditioned on the event that sup0≤r≤T

λ
|Pr| ≤ λ− 3

4 for
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r ∈ [0, T
λ
], then

sup
0≤t≤T

∣

∣

∣
λ

1
2 A−

t
λ

− 1

2

∫ t

0

dr|λ 1
2 P r

λ
|
∣

∣

∣

≤ λ
1
8 C1

∫ T

0

drχ
(

|P r
λ
| ≤ λ− 3

8

)

+ λ
1
2

∫ T

0

drχ
(

|P r
λ
| ≥ λ− 3

8

)

∣

∣

∣
λ−1A−

λ

(

X r
λ
, P r

λ

)

− 1

2
|P r

λ
|
∣

∣

∣

≤ C1Tλ
1
8 + C2Tλ

3
4 sup

0≤r≤T
λ

|Pr|,

where C1 := 1
2 + sup

|p|≤λ
− 3

8
λ− 5

8A−
λ (x, p), and C1 is finite by Part (4) of Prop. 2.3.

The C2 > 0 in the second inequality is from Part (3) of Prop. 2.3.
The above implies the first inequality below:

E
(λ)

[

χ
(

sup
0≤r≤T

λ

|Pr | ≤ λ− 3
4

)

sup
0≤t≤T

∣

∣

∣
λ

1
2 A−

t
λ

− 1

2

∫ t

0

dr|λ 1
2 P r

λ
|
∣

∣

∣

]

≤ C1Tλ
1
8 + C2λ

3
4 E

(λ)
[

sup
0≤r≤T

λ

∣

∣Pr

∣

∣

]

≤ C1Tλ
1
8 + C22

− 1
2 Tλ

3
4 E

(λ)
[

sup
0≤r≤T

λ

Qr

]

≤ C1Tλ
1
8 + C′

2Tλ
1
4 ,

where the second and third inequalities follow from P 2
r ≤ Q2

r = 2Hr and by

Lem. 2.4, respectively. Moreover, for the event sup0≤r≤T
λ
|Pr | > λ− 3

4 , then

E
(λ)

[

χ
(

sup
0≤r≤T

λ

|Pr| > λ− 3
4

)

sup
0≤t≤T

∣

∣

∣
λ

1
2 A−

t
λ

− 1

2

∫ t

0

dr|λ 1
2 P r

λ
|
∣

∣

∣

]

≤ P
(λ)

[

sup
0≤r≤T

λ

|Pr| > λ− 3
4

]
1
2

E
(λ)

[∣

∣

∣

∫ T

0

dr
(

|λ 1
2 P r

λ
| + λ

1
2A−

λ (X r
λ
, P r

λ

)

)∣

∣

∣

2] 1
2

≤ C′
1λ

1
2 T

1
2 E

(λ)
[(

sup
0≤r≤T

λ

λ
1
2 |Pr|

)2] 1
2

E
(λ)

[

sup
0≤r≤T

λ

(

λ
1
2 + λ

1
2 |Pr| + λ

5
2 |Pr |2

)2
]

1
2

= O(λ
1
4 ).

The first inequality is Cauchy-Schwarz, and the second is Chebyshev’s for the first
term. For the second term in the second inequality, Parts (5) and (6) of Prop. 2.3
imply that there are C1, C

′
1 > 0 such that

|p| + A−
λ (x, p) ≤ |p| + 4λ|p|Eλ(p) + C1Eλ(p) ≤ C′

1(1 + |p| + λ2|p|2).

The expectations on the third line above are finite by Lem. 2.4 since |Pr| ≤ (2Hr)
1
2 .
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(II). The difference between λ
1
2 M t

λ
and m

(λ)
t,ǫ can be bounded by

E
(λ)

[

χ
(

sup
0≤r≤T

λ

|Pr| > λ− 3
4

)

sup
0≤t≤T

∣

∣

∣
λ

1
2 A−

t
λ

− 1

2

∫ t

0

dr|λ 1
2 P r

λ
|
∣

∣

∣

]

≤ P
(λ)

[

sup
0≤r≤T

λ

|Pr| > λ− 3
4

]
1
2

E
(λ)

[∣

∣

∣

∫ T

0

dr
(

|λ 1
2 P r

λ
| + λ

1
2A−

λ (X r
λ
, P r

λ

)

)∣

∣

∣

2] 1
2

≤ C′
1λ

1
2 T

1
2 E

(λ)
[(

sup
0≤r≤T

λ

λ
1
2 |Pr|

)2] 1
2

E
(λ)

[

sup
0≤r≤T

λ

(

λ
1
2 + λ

1
2 |Pr| + λ

5
2 |Pr |2

)2
]

1
2

= O(λ
1
4 ).

The first inequality is Doob’s, and the second equality uses that d
dt
〈M〉t = Vλ(St).

For ǫ ∈ [λ, 1] the right side is smaller than

E
(λ)

[

λ

∫ T
λ

0

drVλ(Sr)e
−2ǫ−1λ

1
2 Q

r−

]

≤ C1E
(λ)

[

TT
λ

]

+ T sup
|p|>ǫ

1
2 λ

− 1
2

Vλ(x, p)e−2
3
2 ǫ−1λ

1
2 H

1
2 (x,p)

≤ C1E
(λ)

[

TT
λ

]

+ C2T sup
|p|>ǫ

1
2 λ

− 1
2

(1 + λ|p|)e−2ǫ−1λ
1
2 |p|

≤ C′
1

(

max(ǫ, λ)
)

1
2 + 2C2Te−2ǫ

−1
2 = O

(

max(ǫ
1
2 , λ

1
2 )

)

,

where C1 := supλ<1 sup|p|≤λ−1 Vλ(x, p) and Tt = λ
∫ t

0 drχ(Hr ≤ ǫλ−1). The value

C1 is finite by Part (1) of Prop. 2.3. The second inequality uses Part (1) of Prop. 2.3

again and that |p| ≤ 2
1
2 H

1
2 (x, p) in the exponent. The C′

1 in the third inequality is
from Lem. 2.5.

(III). We will show that m
(λ)
t,ǫ becomes close in the norm ‖ · ‖s to Ft(λ

1
2 Q ·

λ
) as

λ → 0 for a function F : L∞([0, T ]) → L∞([0, T ]) that is continuous with respect

to the supremum norm. The convergence in law of the pair
(

λ
1
2 Q t

λ
, Ft(λ

1
2 Q ·

λ
)
)

is

then determined be the convergence of the first component.
For q ∈ L∞([0, T ]) we define Ft(q) as

Ft(q) := qt + ǫe−ǫ−1qt +
1

2

∫ t

0

drqr(1 − e−ǫ−1qr ) − 1

2ǫ

∫ t

0

dre−ǫ−1qr . (2.8)

F : L∞([0, T ]) is Lipschitz continuous with respect the supremum norm for a con-

stant that scales as ∝ ǫ−1 for small ǫ. Let m
(λ),′
t,ǫ := Ft(λ

1
2 Q ·

λ
). Notice that since

p0 = 0

Ft(|p|) = |pt| + ǫe−
|pt|

ǫ +
1

2

∫ t

0

dr|pr|
(

1 − e−
|pr|

ǫ

)

− 1

2ǫ

∫ t

0

dre−
|pr |

ǫ

=

∫ t

0

dB̃r

(

1 − e−
|pr |

ǫ

)

= mt,ǫ,

where the second equality is from dB̃t = d|pt| + 1
2 |pt|dt − dlt, the chain rule, and

that (d|pt|)2 = dt. By (i) and the convergence in law of λ
1
2 P t

λ
to pt by Clark and
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Dubois (2011, Thm. 1.3), there is convergence in law as λ → 0,

(

λ
1
2 Q t

λ
,m

(λ),′
t,ǫ )

L
=⇒ (|pt|,mt,ǫ).

The remainder of the proof will focus on showing that the difference between m
(λ)
t,ǫ

and m
(λ),′
t,ǫ converges to zero in the norm ‖ · ‖s as λ → 0. More precisely, we show

that ‖m(λ)
t,ǫ − m

(λ),′
t,ǫ ‖s is O(λ

1
8 ) for small λ.

By substituting dMr = dQr − dA+
r + dA−

r , the martingale m
(λ)
t,ǫ can be written

as

m
(λ)
t,ǫ = λ

1
2

∫ t
λ

0

(

dQr − dA+
r + dA−

r

)(

1 − e−ǫ−1λ
1
2 Qr−

)

.

It is sufficient to show that as λ → 0,

− λ
1
2

∫ t
λ

0

dA+
r

(

1 − e−ǫ−1λ
1
2 Q

r−
)

−→ 0, (2.9)

λ
1
2

∫ t
λ

0

dA−
r

(

1 − e−ǫ−1λ
1
2 Q

r−
)

− 1

2

∫ t

0

drλ
1
2 Q r

λ
(1 − e

−ǫ−1λ
1
2 Q r

λ ) −→ 0, (2.10)

λ
1
2

∫ t
λ

0

dQr

(

1 − e−ǫ−1λ
1
2 Q

r−
)

− λ
1
2 Q t

λ
− ǫe

−ǫ−1λ
1
2 Q t

λ +
1

2ǫ

∫ t

0

dre
−ǫ−1λ

1
2 Q r

λ −→ 0,

(2.11)

since the expressions sum up to m
(λ)
t,ǫ − m

(λ),′
t,ǫ .

Since dA+
t = dtA+

λ (Xt, Pt) the value (2.9) is bounded by

E
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2

∫ t
λ

0

dA+
r

(

1 − e−ǫ−1λ
1
2 Q

r−
)

∣

∣

∣

]

= λ
1
2 E

(λ)
[

∫ T
λ

0

drA+
λ (Xr, Pr)

(

1 − e−ǫ−1λ
1
2 Qr

)

]

≤ Cλ
1
2 E

(λ)
[

∫ T
λ

0

dr
1

1 + |Pr |2
(

1 − e−ǫ−1λ
1
2 Qr

)

]

≤ Cǫ−1λ− 3
8 E

(λ)
[

T′
T
λ

]

+ Cǫ−1
E

(λ)
[

T′′
T
λ

]

+ CTλ
1
4 = O(λ

1
8 ),

where T′
t := λ

∫ t

0
drχ(Hr ≤ λ− 3

8 ) and T′′
t := λ

∫ t

0
drχ(Hr ≤ λ− 3

4 ). The first
inequality is from Part (2) of Prop. 2.3. The second inequality splits the trajectory

into parts in which Hr ≤ λ− 3
8 , λ− 3

8 < Hr ≤ λ− 3
4 , and λ− 3

4 < Hr; uses that
1 − e−a ≤ a for a > 0; and uses that |Pr |2 ≥ Hr for Hr ≫ 1. By Lem. 2.5,

E(λ)
[

T′
T
λ

]

= O(λ
5
16 ) and E(λ)

[

T′′
T
λ

]

= O(λ
1
8 ). For the convergence (2.10), dA−

t =

dtA−
λ (Xt, Pt) and

E
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2

∫ t
λ

0

dA−
r

(

1 − e−ǫ−1λ
1
2 Q

r−
)

− λ
1
2
1

2

∫ t

0

drQ r
λ

(

1 − e
−ǫ−1λ

1
2 Q r

λ

)

∣

∣

∣

]

≤ E
(λ)

[

sup
0≤t≤T

∫ t

0

dr
∣

∣λ− 1
2A−

λ (X r
λ
, P r

λ
) − 1

2
λ

1
2 Q r

λ

∣

∣

]

.
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By adding and subtracting 1
2λ

1
2 |P r

λ
| in the integrand and applying the triangle

inequality, we are left with the terms
∣

∣

∣
λ− 1

2A−
λ (X r

λ
, P r

λ
) − 1

2
λ

1
2 |P r

λ
|
∣

∣

∣
and

∣

∣

∣

1

2
λ

1
2 |P r

λ
| − 1

2
λ

1
2 Q r

λ

∣

∣

∣
,

which are bounded by the analysis in Part (II) and at the beginning of Part (i),
respectively.

The convergence (2.11) requires more work. The terms λ
1
2

∫ t
λ

0
dQr and λ

1
2 Q t

λ
−

λ
1
2 Q0 are equal, and λ

1
2 Q0 is small, so we must bound

E
(λ)

[

sup
0≤t≤T

∣

∣

∣
ǫe

−ǫ−1λ
1
2 Q t

λ + λ
1
2

∫ t
λ

0

dQre
−ǫ−1λ

1
2 Q

r− − 1

2ǫ

∫ t
λ

0

dre
−ǫ−1λ

1
2 Q r

λ

∣

∣

∣

]

.

(2.12)

The difference would be zero by the Ito chain rule if λ
1
2 Q t

λ
were replaced by |pr|,

and the norm of the difference is essentially a measure of how close the chain rule
is to holding. We start with a Taylor expansion around each collision time tn. Let

∆Qr := Qr − Qr− , then ǫe
−ǫ−1λ

1
2 Q t

λ can be written as

ǫe
−ǫ−1λ

1
2 Q t

λ −ǫe−ǫ−1λ
1
2 Q0

=ǫ

N t
λ

∑

n=1

(

e−ǫ−1λ
1
2 Qtn − e

−ǫ−1λ
1
2 Q

t
−
n

)

= − λ
1
2

N t
λ

∑

n=1

∆Qtn
e
−ǫ−1λ

1
2 Q

t
−
n +

λ

2ǫ

N t
λ

∑

n=1

(

∆Qtn

)2
e
−ǫ−1λ

1
2 Q

t
−
n

− λ
3
2

2ǫ2

N t
λ

∑

n=1

∫ ∆Qtn

0

dw
(

∆Qtn
− w

)2
e
−ǫ−1λ

1
2 (Q

t
−
n

+w)

= − λ
1
2

∫ t
λ

0

dQre
−ǫ−1λ

1
2 Q

r− +
λ

2ǫ

∫ t
λ

0

(dQr)
2e−ǫ−1λ

1
2 Q

r− + Rλ,ǫ,t,

where Nt is the number of collisions up to time t, and Rλ,ǫ,t denotes the third term
between the two equalities. By the triangle inequality, the expectation (2.12) is
smaller than

ǫ + E
(λ)

[

sup
0≤t≤T

λ

∣

∣Rλ,ǫ,t

∣

∣

]

+ E
(λ)

[

sup
0≤t≤T

λ

∣

∣

∣

λ

2ǫ

∫ t

0

(

dr − (dQr)
2
)

e−ǫ−1λ
1
2 Q

r−

∣

∣

∣

]

,

(2.13)

where ǫ ∈ R+ bounds E(λ)
[

ǫe−ǫ−1λ
1
2 Q0

]

.
To bound the remainder term Rλ,ǫ,t in (2.13), we may write

E
(λ)

[

sup
0≤t≤T

λ

∣

∣Rλ,ǫ,t

∣

∣

]

≤ λ
3
2

6ǫ2
E

(λ)
[

N T
λ

∑

n=1

∣

∣∆Qtn

∣

∣

3
]

=
λ

3
2

6ǫ2
E

(λ)
[

∫ T
λ

0

drVλ, 3
2
(Xr, Pr)

]

≤ C1
λ

3
2

6ǫ2
E

(λ)
[

∫ T
λ

0

dr
(

1 + λQr

)4
]

≤ C′
1T

λ
1
2

ǫ2
= O(λ

1
2 ),
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where the first inequality is by Part (1) of Prop. 2.3, and the C′
1 > 0 in the second

inequality exists by bounding the moments of Qr = (2Hr)
1
2 over 0 ≤ r ≤ T

λ
using

Lem. 2.4.
By adding and subtracting

∫ t

0 drVλ(Xr, Pr) in the expression for the last term
in (2.13) and using the triangle inequality,

E
(λ)

[

sup
0≤t≤T

λ

∣

∣

∣

λ

2ǫ

∫ t

0

(

dr − (dQr)
2
)

e−ǫ−1λ
1
2 Q

r−

∣

∣

∣

]

≤ E
(λ)

[ λ

2ǫ

∫ T
λ

0

dr
∣

∣1 − Vλ(Xr, Pr)
∣

∣

]

+ E
(λ)

[

sup
0≤t≤T

λ

∣

∣

∣

λ

2ǫ

∫ t

0

(

drVλ(Xr, Pr) − (dQr)
2
)

e−ǫ−1λ
1
2 Q

r−

∣

∣

∣

]

.

The first term on the right side is smaller than

E
(λ)

[ λ

2ǫ

∫ T
λ

0

dr
∣

∣1 − Vλ(Xr, Pr)
∣

∣

]

≤C1
1

ǫ
E

(λ)
[

T′′
T
λ

]

+ C2
λ

1
2

ǫ

+ C3
λ

ǫ
E

(λ)
[

∫ T
λ

0

drχ
(

Qr ≥ λ− 3
4

)(

1 + λQr

)3
]

(2.14)

for some C1, C2, C3 > 0, where T′′
t = λ

∫ t

0 drχ
(

Qr ≤ λ− 3
8

)

, and the three terms

on the right correspond to the parts of the trajectory such that Qr ≤ λ− 3
8 , λ− 3

8 ≤
Qr ≤ λ− 3

4 , and λ− 3
4 ≤ Qr. For the first and third terms on the right side of (2.14),

we have applied Part (1) of Prop. 2.3. For the second term, we applied Part (3) of

Prop. 2.3. The first term is O(λ
1
8 ) by Lem. 2.5. For the last term on the right side

of (2.14), we can apply Cauchy-Schwarz and an analogous argument to that at the
end of Part (I).

Moreover, the expression
∫ t

0

(

drVλ(Xr, Pr)−(dQr)
2
)

e−ǫ−1λ
1
2 Q

r− is a martingale
with predictable quadratic variation

∫ t

0

drVλ,2(Xr, Pr)e
−2ǫ−1λ

1
2 Qr .

Hence, by Doob’s maximal inequality,

E
(λ)

[

sup
0≤t≤T

λ

∣

∣

∣

λ

2ǫ

∫ t

0

(

drVλ(Xr, Pr) − (dQr)
2
)

e−ǫ−1λ
1
2 Q

r−

∣

∣

∣

2] 1
2

≤ λ

ǫ
E

(λ)
[

∫ T
λ

0

drVλ,2(Xr, Pr)e
−2ǫ−1λ

1
2 Qr

]
1
2

≤ C1
λ

ǫ
E

(λ)
[

∫ T
λ

0

dr(1 + λQr)
5
]

1
2 ≤ C′

1

Tλ
1
2

ǫ
.

The second inequality holds for some C1 > 0 by Part (1) of Prop. 2.3 and |p| ≤
2

1
2 H

1
2 (x, p). Lem. 2.4 yields the third inequality for some C′

1 > 0.
�

3. The martingale problem

In the lemma below, we consider the class of process pairs (p, m) ∈ R2 such that
the first component is an Ornstein-Uhlenbeck process and the second component is
a continuous martingale. With the additional criterion that 〈m〉 is the local time of
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the process p at zero, Lem. 3.1 states that the law for the pair (p, m) is determined
uniquely as (p,Bl), where B is a standard Brownian motion independent of p. For
the process inverse s of l, we can immediately observe that the process Bt := mst

is
a Brown motion since it is a continuous martingale with quadratic variation t. Thus
the question concerns the independence of B from p. Lemma 3.1 is a formulation
of the martingale problem in the sense of Jacod and Shiryaev (1987). For example,
a standard Brownian motion is the unique continuous martingale m satisfying that
m2

t −t is a martingale. Our criterion could be formulated analogously by demanding
that

m2
t − lt

is a martingale. The proof of the lemma makes use of the fact that l almost surely
makes all of its movement on a set of times having measure zero. If we only needed
to show that

(

l, m
)

with the condition above necessarily has the law of (l,Bl) for
B independent of l, then we could apply the argument in Höpfner and Löcherbach
(2003, Thm. 4.21) since l is the process inverse of the one-sided Levy process s.
However, p contains information that l does not, so there is the logical possibility
that p and B are still dependent.

Lemma 3.1. Consider a process (p, m) ∈ R2 and let Ft be the filtration generated by
it. Let p be a copy of the Ornstein-Uhlenbeck process satisfying the Markov property
with respect to Ft and l be the local time of p at zero. Moreover, let m be continuous,
a martingale with respect to Ft, and have predictable quadratic variation satisfying
〈m〉 = l. It follows that (p, m) is equal in law to (p,Bl), where B is a standard
Brownian motion independent of p.

Proof : By definition the process p satisfies the Langevin equation dpt = − 1
2ptdt +

dB′
t for a standard Brownian motion B′. Since p satisfies the Markov property with

respect Ft, the Brownian motion B′ must also. We denote the right-continuous
process inverse of l by s. The time-changed martingale Bt = mst

is continuous and
has quadratic variation 〈B〉t = t and is thus a copy of Brownian motion. We will
construct a family of processes p(ǫ) such that

(I). p(ǫ) is independent of B for each ǫ > 0.

(II). As ǫ → 0, E
[

sup0≤t≤T

∣

∣p
(ǫ)
t − pt

∣

∣

]

= O(ǫ
1
2−δ) for any δ > 0.

The above statements imply that the processes B and p are independent. Since
l is the process inverse of s, mt = Blt . Thus (I) and (II) imply the result.

(I). First, we give definitions that are prerequisite to defining p(ǫ). If |p0| < ǫ let
the stopping times ςn, ς ′n be defined such that ς0 = ς ′0 = ς ′1 = 0 and

ς ′n = min{r ∈ (ςn−1,∞)
∣

∣ |pr| ≤
1

2
ǫ}, ςn = min{r ∈ (ς ′n,∞)

∣

∣ |pr| ≥ ǫ}.

Also let nt be the number of ςn up to time t. If |p0| ≥ ǫ then we use the same
recursive definition with ς0 = ς ′0 = 0. The intervals [ς ′n, ςn), n ≥ 0 and [ςn, ς ′n+1),
n ≥ 1 will be referred to as the incursions and excursions, respectively. Let τt be
the hitting time that

t = τt − ςnτt
+

nτt−1
∑

n=0

ς ′n+1 − ςn.

In other terms, τt is the first time that the total excursion time sums up to t.
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Define another copy of Brownian motion B(ǫ)

B
(ǫ)
t = B′

τt
− B′

ςnτt
+

nτt−1
∑

n=0

B′
ς′n+1

− B′
ςn

.

Define p(ǫ) and p̃(ǫ) to be the solutions of the Langevin equations

dp
(ǫ)
t = − 1

2
p
(ǫ)
t dt + dB

(ǫ)
t ,

dp̃
(ǫ)
t =χ

(

t ∈ ∪∞
n=0[ςn, ς ′n+1]

)(

− 1

2
p̃
(ǫ)
t dt + dB′

t

)

,

with p
(ǫ)
0 = p̃

(ǫ)
0 = p0. We will use the process p̃(ǫ) as an intermediary between p(ǫ)

and p in (II).
We claim that our construction makes the Brownian motion B(ǫ) independent

of B and thus p(ǫ) is also independent of B. Construct the stopping time γt and
the martingale m(ǫ) such that

t = γt − ς ′nγt
+

nγt−1
∑

n=1

ςn − ς ′n and m
(ǫ)
t = mγt

− mς′
nγt

+

nγt−1
∑

n=1

mςn
− mς′n

.

Analogously to τt, the above means that γt is the first time that the duration of
all the incursions sums up to t. The martingale m(ǫ) is a time-change of m with

mγt
= m

(ǫ)
t in which a portion of the pauses during which 〈m〉 = l remains constant

have been cut out. Since only pauses have been cut out, σ(m(ǫ)) contains all of
the information regarding B. However, the σ-algebras σ(B(ǫ)) and σ(m(ǫ)) are
independent. This follows since σ(B(ǫ)) has no information about the incursions–
including their durations, and vice versa for σ(m(ǫ)).

(II). By the triangle inequality,

E

[

sup
0≤t≤T

∣

∣p
(ǫ)
t − pt

∣

∣

]

≤ E

[

sup
0≤t≤T

∣

∣p
(ǫ)
t − p̃

(ǫ)
t

∣

∣

]

+ E

[

sup
0≤t≤T

∣

∣p̃
(ǫ)
t − pt

∣

∣

]

. (3.1)

We bound the first and second terms on the right side of (3.1) in (i) and (ii) below.
First we show that E

[

τT − T
]

= O(ǫ), which is used in both parts. A Riemann
over-sum using that 4n ≥ 2(n + 1) for n ≥ 1 gives the first inequality below.

E
[

τT − T
]

≤E
[

τT ∧ (2T )− T
]

+ 4T

∞
∑

n=1

P
[

τT ≥ 2nT
]

≤E
[

τT ∧ (2T )− T
]

+ 4T

∞
∑

n=1

(

sup
q∈R

Pq

[

τT ≥ 2T
]

)n

=E
[

τT ∧ (2T )− T
]

+ 4T
P0

[

τT > 2T
]

1 − P0

[

τT > 2T
] = O(ǫ). (3.2)

In order for the event τT > 2nT to occur, the random walker must fail to accumulate
a duration T of excursion time over n disjoint intervals of length 2T . Thus P

[

τT ≥
2nT

]

≤
(

supq∈R
Pq

[

τT ≥ 2T
])n

, as we have used in the second inequality. The

equality in (3.2) follows by summing the geometric series and since Pq

[

τT ≥ 2T
]

is
maximized for q = 0. The starting point q = 0 maximizes the probability that τT
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is large (e.g. ≥ 2T ) because the process must travel the furthest to attain a value
|pt| ≥ ǫ in which the excursion clock may begin to run.

To show the order equality (3.2), we show that P0

[

τT > 2T
]

and E
[

τT ∧(2T )−T
]

are O(ǫ). We first note that

P0

[

τT ≥ 2T
]

≤ P0

[

∫ 2T

0

drχ
(

|pr| ≤ ǫ
)

≥ T
]

≤ 1

T
E0

[

∫ 2T

0

drχ
(

|pr| ≤ ǫ
)

]

=
1

T

∫ 2T

0

dt

∫

[−ǫ,ǫ]

dq
e
− q2

2ωt

(2πωt)
1
2

= O(ǫ),

where ωt = 1 − e−
1
2 t. The first inequality uses that the event τT ≥ 2T implies

the event
∫ 2T

0
drχ

(

|pr| ≤ ǫ
)

≥ T since the incursions have |pr| ≤ ǫ. The second

inequality is Chebyshev’s, and the first equality uses that the density e
−

q2

2ωt

(2πωt)
1
2

is the

explicit solution to Ornstein-Uhlenbeck forward equation, i.e., Kramer’s equation,
starting from zero. The other term is similar:

E
[

τT ∧ (2T ) − T
]

≤ E

[

∫ 2T

0

drχ
(

|pr| ≤ ǫ
)

]

≤ E0

[

∫ 2T

0

drχ
(

|pr| ≤ ǫ
)

]

=

∫ 2T

0

dt

∫

[−ǫ,ǫ]

dq
e
− q2

2ωt

(2πωt)
1
2

= O(ǫ).

(i). Notice that p(ǫ) is a stochastic time-change of p̃(ǫ) with p
(ǫ)
t = p̃

(ǫ)
τt . Thus the

first term on the right side of (3.1) is smaller than

E

[

sup
0≤t≤T

∣

∣p
(ǫ)
t − p̃

(ǫ)
t

∣

∣

]

≤ E

[

sup
0≤r≤τT−T

0≤t≤T

∣

∣p
(ǫ)
t+r − p

(ǫ)
t

∣

∣

]

= E

[

E

[

sup
0≤r≤τT−T

0≤t≤T

∣

∣p
(ǫ)
t+r − p

(ǫ)
t

∣

∣

∣

∣

∣
τT − T

]]

= E

[

δτT−T (v)E
[

sup
0≤r≤v
0≤t≤T

∣

∣p
(ǫ)
t+r − p

(ǫ)
t

∣

∣

]]

≤ E

[

(1 − e−
1
2 (τT−T )) sup

0≤t≤τT

∣

∣p
(ǫ)
t

∣

∣

]

+ E

[

δτT−T (v)E
[

sup
0≤r≤v
0≤t≤T

∣

∣

∣

∫ t+r

t

dB(ǫ)
s e−

1
2 (t+r−s)

∣

∣

∣

]]

. (3.3)

The second equality follows from the independence of the process p(ǫ) and the
difference τT −T . For the last inequality, we have used the triangle inequality with
the explicit form in the first equality below:

p
(ǫ)
t+r − p

(ǫ)
t = (e−

1
2 r − 1)p

(ǫ)
t +

∫ t+r

t

dB(ǫ)
s e−

1
2 (r+t−s)

= (e−
1
2 r − 1)p

(ǫ)
t + B

(ǫ)
t+r − B

(ǫ)
t − 1

2

∫ t+r

t

ds
(

B
(ǫ)
t+s − B

(ǫ)
t

)

e−
1
2 (r+t−s).

(3.4)
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The second equality is Ito’s product rule. Note that for m ≥ 1

E

[

sup
0≤v≤r

∣

∣

∣

∫ t+v

t

dB(ǫ)
s e−

1
2 (t+r−s)

∣

∣

∣

2m]

≤2m
E

[

sup
0≤v≤r

∣

∣

∣
B

(ǫ)
t+v − B

(ǫ)
t

∣

∣

∣

2m]

≤2m
( 2m

2m − 1

)2m
E

[∣

∣

∣
B

(ǫ)
t+r − B

(ǫ)
t

∣

∣

∣

2m]

≤m!
( 4m

2m − 1

)2m
rm. (3.5)

The first inequality comes from rewriting
∫ t+v

t
dB

(ǫ)
s e−

1
2 (t+r−s) as in (3.4), apply-

ing the triangle inequality, and using that
∫ t+r

t
dse−

1
2 (t+r−s) ≤ 2. The second

inequality is Doob’s, and the last is a computation of the Gaussian moment.
For the first term on the right side of (3.3), we have the following routine in-

equalities using that E[τT − T ] ≤ Cǫ for some C > 0:

E

[

(1 − e−
1
2 (τT −T )) sup

0≤t≤τT

∣

∣p
(ǫ)
t

∣

∣

]

≤ E

[

(

1 − e−
1
2 (τT −T )

)2
]

1
2

E

[

sup
0≤t≤τT

∣

∣p
(ǫ)
t

∣

∣

2
]

1
2

≤ E
[(

τT − T ) ∧ 1
]

1
2
E

[

sup
0≤t≤τT

∣

∣p
(ǫ)
t

∣

∣

2
]

1
2

≤ Cǫ
1
2 E

[∣

∣p0

∣

∣

2] 1
2

+ Cǫ
1
2 E

[

sup
0≤t≤τT

∣

∣

∣

∫ t

0

dB(ǫ)
r e−

1
2 (t−r)

∣

∣

∣

2] 1
2

≤ Cǫ
1
2 E

[∣

∣p0

∣

∣

2] 1
2 + Cǫ

1
2 2E

[

τT

]
1
2 = O(ǫ

1
2 ).

The last inequality follows from the independence of τT and the Brownian motion
B(ǫ) and (3.5).

Now we bound the second term on the right side of (3.3). We have the following
relations for m ≥ 1:

E

[

sup
0≤r≤v
0≤t≤T

∣

∣

∣

∫ r

0

dB
(ǫ)
t+se

− 1
2 (r−s)

∣

∣

∣

]

= E

[

sup
0≤r≤v

0≤z+r≤T+v

∣

∣

∣

∫ z+r

z

dB(ǫ)
s e−

1
2 (z+r−s)

∣

∣

∣

]

≤ 2E

[

sup
0≤n≤⌊T+v

v
⌋

sup
0≤r≤v

∣

∣

∣

∫ nv+r

nv

dB(ǫ)
s e−

1
2 (nv+r−s)

∣

∣

∣

]

≤ 2E

[

⌊T+v
v

⌋
∑

n=0

sup
0≤r≤v

∣

∣

∣

∫ nv+r

nv

dB(ǫ)
s e−

1
2 (nv+r−s)

∣

∣

∣

2m]
1

2m

= 2

⌊

T + v

v

⌋
1

2m

E

[

sup
0≤r≤v

∣

∣

∣

∫ r

0

dB(ǫ)
s e−

1
2 (r−s)

∣

∣

∣

2m]
1

2m

≤ 2(m!)
1

2m
4m

2m − 1

⌊

T + v

v

⌋
1

2m

|v| 12

< 8m
1
2 |T + v| 1

2m |v|m−1
2m .

The second inequality is (supn an)2m ≤ ∑

n a2m
n followed by Jensen’s inequality, the

second equality is from the stationarity of the increments for B(ǫ), and the third
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inequality is from (3.5). With the above

E

[

δτT−T (v)E
[

sup
0≤r≤v
0≤t≤T

∣

∣

∣

∫ t+r

t

dB(ǫ)
s e−

1
2 (t+r−s)

∣

∣

∣

]]

≤ 8m
1
2 E

[

|τT |
1

2m |τT − T |m−1
2m

]

≤ 8m
1
2 E

[

τ
1

m+1

T

]

m+1
2m E

[

τT − T
]

m−1
2m

= O(ǫ
m−1
2m ),

where the second inequality is Holder’s. The value m can be picked large enough
to make the power of ǫ > 0 arbitrarily close to 1

2 .

(ii). Notice that p and p̃(ǫ) satisfy the equations

pt =e−
1
2 tp0 +

∫ t

0

dB′
re

− 1
2 (t−r) (3.6)

p̃
(ǫ)
t =e−

1
2 tp0 +

∫ t

0

dB′
rχ

(ǫ)
r e−

1
2 (t−r) +

1

2

∫ t

0

drp̃(ǫ)
r e−

1
2 (t−r)(1 − χ(ǫ)

r ), (3.7)

where χ
(ǫ)
r = χ

(

r ∈ ∪∞
n=0[ςn, ς ′n+1]

)

. The Ito product rule for the martingale
∫ t

0 dB′
r

(

1 − χ
(ǫ)
r

)

gives

∫ t

0

dB′
r

(

1 − χ(ǫ)
r

)

e−
1
2 (t−r) =

∫ t

0

dB′
r

(

1 − χ(ǫ)
r

)

− 1

2

∫ t

0

dre−
1
2 (t−r)

∫ r

0

dB′
s

(

1 − χ(ǫ)
s

)

.

(3.8)

Similarly to (3.5),

E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

dB′
r

(

1 − χ(ǫ)
r

)

e−
1
2 (t−r)

∣

∣

∣

2]

≤ 4E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

dB′
t

(

1 − χ
(ǫ)
t

)

∣

∣

∣

2]

≤ 16E

[∣

∣

∣

∫ T

0

dB′
t

(

1 − χ
(ǫ)
t

)

∣

∣

∣

2]

= 16E

[

∫ T

0

dt
(

1 − χ
(ǫ)
t

)

]

≤ 16E

[

∫ T

0

dtχ
(

|pt| < ǫ
)

]

≤ 16E0

[

∫ T

0

dtχ
(

|pt| < ǫ
)

]

=

∫ T

0

dt

∫

[−ǫ,ǫ]

dq
e
− q2

2ωt

(2πωt)
1
2

= O(ǫ). (3.9)

The first inequality is from (3.8) with the triangle inequality, and the second in-
equality is Doob’s. The fourth inequality uses that the initial value p0 = 0 will

maximize the expectation of the quantity
∫ T

0
dtχt

(

|pt| < ǫ
)

.
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Using (3.6) and (3.7) with the triangle inequality, we have the first inequality
below:

E
[

sup
0≤t≤T

∣

∣p̃
(ǫ)
t − pt

∣

∣

]

≤ E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

dB′
re

− 1
2 (t−r)(1 − χ(ǫ)

r )
∣

∣

∣

]

+ E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

drp̃(ǫ)
r e−

1
2 (t−r)(1 − χ(ǫ)

r )
∣

∣

∣

]

≤ O(ǫ
1
2 ) + E

[

sup
0≤t≤T

∣

∣p̃
(ǫ)
t

∣

∣

2
]

1
2

E

[(

∫ T

0

dt
(

1 − χ
(ǫ)
t

)

)2] 1
2

≤ O(ǫ
1
2 ) + T

1
2 E

[

sup
0≤t≤T

∣

∣pr

∣

∣

2
]

1
2

E

[

∫ T

0

dt
(

1 − χ
(ǫ)
t

)

]
1
2

= O(ǫ
1
2 ). (3.10)

The second inequality uses (3.9) for the first term and Holder’s equality twice for

the second term. The second inequality follows from the fact that p̃
(ǫ)
τt has the same

law as pt and τt ≥ t. In other words, p has the same law as a sped-up version of

p̃(ǫ). Finally, E

[

∫ T

0
dt

(

1 − χ
(ǫ)
t

)

]

= O(ǫ) by (3.9).

�

4. Nummelin splitting

We will now summarize the particular splitting structure defined in Clark and
Dubois (2011, Sect. 2), which extends the state space of the process. This con-
struction is contained in the first two components of the split process introduced
in Löcherbach and Loukianova (2008). The resulting process behaves nearly as
though the state space contains a recurrent atom. This has the advantage that the
life cycles between returns to the “atom” are nearly uncorrelated. To do this we
first introduce a resolvent chain embedded in the original process. We then split
the chain using the standard technique Athreya and Ney (1978); Nummelin (1978),
and we extend the resolvent chain to a non-Markovian process that contains an
embedded version of the original process.

Let em, m ∈ N be mean one exponential random variables that are independent
of each other and of the process St = (Xt, Pt) ∈ Σ. Define τn :=

∑n
m=1 em, and

by convention, we set τ0 = 0. The τn will be referred to as the partition times.
Define Nt to be the number of non-zero τn less than t, and the Markov chain
σn := (Xτn

, Pτn
) ∈ Σ, which is referred to as the resolvent chain. The transition

kernel Tλ for the resolvent chain, which acts on functions from the left and on
measures from the right, has the form

Tλ =

∫ ∞

0

dre−r+rLλ = (1 − Lλ)−1,

where Lλ is the backward Markov generator for the process. The resolvent chain has
the same invariant probability density (1.6) as the original process. By Nummelin

splitting, which we outline presently, the state space Σ is extended to Σ̃ = Σ×{0, 1}
in order to construct a chain (σ̃n) ∈ Σ̃ with a recurrent atom and such that the
statistics for (σn) are embedded in the first component of (σ̃n). For a Markov
chain, an atom is a subset of the state space such that the transition measure is
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independent of the element within the subset. The atom is recurrent if the event
of returning to the atom in the future has probability one.

A probability measure ν on Σ paired with a non-zero function h : Σ → [0, 1] are
said to satisfy the minorization condition with respect to Tλ if

Tλ(s1, ds2) ≥ h(s1)ν(ds2). (4.1)

By Part (1) of Clark and Dubois (2011, Prop. 2.3), there exists a u > 0 such that

h(s) = u
χ
(

H(s) ≤ l
)

U
and ν(ds) = ds

χ
(

H(s) ≤ l
)

U
, (4.2)

satisfy the minorization condition, where l = 1 + 2 supx V (x) and U > 0 is the
normalization constant of ν. The specific choice of h and ν satisfying (4.1) is not
important in this section although we will take them to be defined as in (4.2) for
future sections.

We define the following forward transition operator T̃λ, which sends the state
(s1, z1) ∈ Σ̃ to the infinitesimal region (ds2, z2) with measure:

T̃λ(s1, z1; ds2, z2) =



















1−h(s2)
1−h(s1)

(

Tλ − h ⊗ ν
)

(s1, ds2) z1 = z2 = 0,
h(s2)

1−h(s1)

(

Tλ − h ⊗ ν
)

(s1, ds2) z1 = 1 − z2 = 0,
(

1 − h(s2)
)

ν(ds2) z1 = 1 − z2 = 1,

h(s2)ν(ds2) z1 = z2 = 1.

Given a measure µ on Σ, we refer to its splitting µ̃ as the measure on Σ̃ given by

µ̃(ds, z) = χ(z = 0)
(

1 − h(s)
)

µ(ds) + χ(z = 1)h(s)µ(ds). (4.3)

In particular, the split chain is taken to have initial distribution given by the split-
ting of the initial distribution for the original (pre-split) chain. The invariant mea-

sure for the chain (σ̃n) is the splitting Ψ̃∞,λ of the Maxwell-Boltzmann distribution
defined in (1.6). The split chain is positive-recurrent for any λ > 0 since the original
process is positive-recurrent and, in fact, exponentially ergodic to Ψ∞,λ. The jump

rates from (s1, 1) are independent of s1 ∈ Σ, and thus the set Σ×1 ⊂ Σ̃ is an atom.
The atom is recurrent since the original chain is positive-recurrent with stationary
state Ψ∞,λ and Ψ̃∞,λ(Σ × 1) = Ψ∞,λ(h) > 0. Notice that according to the above
transition rates, the probability of the event z2 = 1 is h(s2) when given s1, s2, and
z1.

Using the law for the split chain σ̃n ∈ Σ̃ determined by the transition rates T̃λ

above, we may construct a split process (S̃t) ∈ Σ̃ and a sequence of times τ̃n with
the recipe below. The τ̃n should be thought of as the partition times τn embedded in
the split statistics although we temporarily denote them with the tilde to emphasize
their axiomatic role in the construction of the split process. Let τ̃n and S̃t = (St, Zt)
be such that

(1) 0 = τ̃0, τ̃n ≤ τ̃n+1, and τ̃n → ∞ almost surely.

(2) The chain (S̃τ̃n
) has the same law as (σ̃n).

(3) For t ∈ [τ̃n, τ̃n+1), then Zt = Zτ̃n
.

(4) Conditioned on the information known up to time τ̃n for S̃t, t ∈ [0, τ̃n]

and τ̃m, m ≤ n, and also the value S̃τ̃n+1, the law for the trajectories St,
t ∈ [τ̃n, τ̃n+1] (which includes the length τ̃n+1 − τ̃n) agrees with the law for
the original dynamics conditioned on knowing the values Sτ̃n

and Sτ̃n+1 .
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The marginal distribution for the first component St agrees with the original process
and the times τ̃n are independent mean one exponential random variables which
are independent of St. Of course the times τ̃n are not independent of the process
S̃t, and we emphasize that the increment τ̃n+1 − τ̃n is not necessarily exponential

given the state S̃τ̃n
. The process S̃t is not Markovian due to the conditioning in (4)

although the chain (S̃τ̃n
) is Markovian. By Löcherbach and Loukianova (2008) we

can construct a Markov process by including an extra component to the process: the
triple (St, Zt, Sτ(t)) ∈ Σ × {0, 1} × Σ is Markovian, where τ(t) is the first partition

time to occur after time t. We refer to the statistics of the split process by Ẽ(λ)

and P̃(λ) for expectations and probabilities, respectively. We will neglect the tilde
from the symbol τ̃n for the remainder of the text.

Note that once we have defined the split process S̃t, we can proceed to define the
life cycles. Let R′

m, m ≥ 1 be the time τñm
for ñm = min{n ∈ N

∣

∣

∑n
r=0 χ(Zτr

=
1) = m}. The random variable R′

m is the mth partition time corresponding to a
visit of the atom set Σ × 1, and we set R′

0 = 0 by convention. We define Rm to be
the partition time following R′

m. The mth life cycle is the time interval [Rm, Rm+1).
Successive life cycle trajectories over [Rn−1, Rn) and [Rn, Rn+1) are obviously not
independent since a.s. SR−

n
= SRn

. However, non-successive life cycles are pairwise

independent. When considering the random variables
∫ Rn+1

Rn
dr dV

dx
(Xr), the corre-

lations between successive terms can be removed by adding and subtracting certain
resolvent terms as seen in the summand in the lemma below.

Let Ñt be the number of R′
n to have occurred up to time t. Define F̃ ′

t to be the
filtration containing all information for the partition times τn and the split process
S̃t before time Rn+1 where t ∈ [R′

n, R′
n+1). Also define R(λ) as the reduced re-

solvent of the backward generator Lλ corresponding to the master equation (1.1).
The reduced resolvent formally satisfies R(λ) =

∫ ∞

0 drerLλ on elements g ∈ L∞(Σ)
with Ψ∞,λ(g) = 0. Notice that the martingale defined in the lemma below resem-
bles (1.10).

Lemma 4.1. Let the process M̃t be defined as

M̃t :=

Ñt
∑

n=1

(

∫ Rn+1

Rn

dr
dV

dx
(Xr) −

(

R(λ) dV

dx

)

(SRn
) +

(

R(λ) dV

dx

)

(SRn+1)
)

.

The process M̃t is a martingale with respect to the filtration F̃ ′
t. Moreover, the

predictable quadratic variation 〈M̃〉t has the form

〈M̃〉t =

Ñt
∑

n=1

υ̌λ

(

SRn

)

,

where υ̌λ : Σ → R+ is defined as

υ̌λ

(

s
)

:=2Ẽ
(λ)

δ̃s

[

∫ R1

0

dr
dV

dx
(Xr)

(

R(λ) dV

dx

)

(Sr)
]

+

∫

Σ

dν(s′)
(

(

R(λ) dV

dx

)

(s′)
)2

−
(

(

R(λ) dV

dx

)

(s)
)2

.

In the above, δ̃s is the splitting of the δ-distribution at s ∈ Σ; see (4.3).
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5. Proof of Thm. 1.1

Let us define (or recall) the following notations:

S̃t = (St, Zt): State of the split process at time t ∈ R+

τm ∈ R
+: mth partition time

Nt ∈ N : Number of non-zero partition times up to time t ∈ R+

Rm ∈ R+: Beginning time of the mth life cycle
Ñt ∈ N: Number of returns to the atom up to time t ∈ R+

Ft: Information up to time t ∈ R+ for the original process Sr and the τm

F̃t: Information up to time t ∈ R+ for the split process S̃t and the τm

F̃ ′
t: Information for S̃t and the τm before time Rn+1, where R′

n ≤ t < R′
n+1

Let the constant u ∈ R+, the function h : Σ → [0, 1], and measure ν̃ on Σ̃ be
defined as in Sect. 4. Define υλ > 0 as

υλ :=2Ẽ
(λ)
ν̃

[

∫ R1

0

dr
dV

dx
(Xr)

∫ R2

r

dr′
dV

dx
(Xr′)

]

=
2

∫

Σ dxdpe−λH(x,p) dV
dx

(x)
(

R(λ) dV
dx

)

(x, p)
∫

Σ
dxdpe−λH(x,p)h(x, p)

,

where the equality holds by Clark and Dubois (2011, Prop. 2.4). Notice that υλ

is formally equal to κ
u

for λ = 0 since the numerator is the formal Green-Kubo

expression (1.8) and the denominator is u =
∫

Σ dsh(s). The value υ0 > 0 is well-
defined by Lem. 5.1, which is from Clark and Dubois (2011, Lem. 5.2). Thus we
can give a rigorous definition for the diffusion constant κ ∈ R

+ as κ := u υ0.

Lemma 5.1. The value υλ ∈ R
+ is uniformly bounded for λ < 1, and υλ depends

continuously on the parameter λ.

The following proposition is from Clark and Dubois (2011, Prop. 2.5) and Clark

and Dubois (2011, Lem. 5.3). The martingale M̃t was defined in Lem. 4.1.

Proposition 5.2.

(1) For the split statistics, Ñt −
∑Nt

n=1 h(Sτn
) is a martingale with respect to

the filtration F̃t. For the original statistics,
∑Nt

n=1 h(Sτn
)−

∫ t

0
drh(Sr) is a

martingale with respect to Ft. In particular,

Ẽ
(λ)

[

Ñt

]

= E
(λ)

[

∫ t

0

drh(Sr)
]

.

(2) As λ → 0 the following asymptotics hold:

Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 〈M̃〉 t

λ
− λ

1
2 υλÑ t

λ

∣

∣

∣

]

= O(λ
1
4 ).

Also, for any t ≥ 0, the expectations are equal Ẽ(λ)
[

〈M̃〉t
]

= υλẼ(λ)
[

Ñt

]

.

The equality in Prop. 5.3 is from Clark and Dubois (2011, Prop. 2.3) and is
of a standard type for splitting constructions Nummelin (1978). It states that the
probability of the process being at the atom at time r ∈ R+, conditioned on r being
a partition time (i.e. Nr = Nr− + 1) and the entire past F̃r− , is given by the value

h(Sr). Note that the value Sr is a.s. contained in F̃r− since a collision will a.s. not
occur at the partition time r ∈ R+ and thus limvրr Sv = Sr.
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Proposition 5.3.

P̃
(λ)

[

Zr = 1
∣

∣ F̃r− , Nr − Nr− = 1
]

= h(Sr)

Our proof of Thm. 1.1 takes some inspiration from the proof of Höpfner and
Löcherbach (2003, Thm. 4.12) and relies heavily on Jacod and Shiryaev (1987).

[Proof of Thm. 1.1]

For the study of the pair (λ
1
2 P ·

λ
, λ

1
4 D ·

λ
), we will begin by embedding the pro-

cesses in the split statistics defined in Sect. 4. Let the martingale M̃ be defined as
in Lem. 4.1. In this proof, all convergences in law refer to the Skorokhod metric.

The following points hold regarding the processes λ
1
4 D ·

λ
and λ

1
4 M̃ ·

λ
:

(I). As λ → 0

Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
4 D t

λ
− λ

1
4 M̃ t

λ

∣

∣

∣

]

−→ 0.

(II). As λ → 0 the bracket process 〈M̃〉t satisfies

Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 〈M̃〉 t

λ
− κλ

1
2 L t

λ

∣

∣

∣

]

−→ 0,

where Lt = u−1
∫ t

0 drh(Xr , Pr).

(III). The martingale λ
1
4 M̃ t

λ
satisfies the Lindeberg condition

sup
0<λ≤1

P̃
(λ)

[

sup
1≤r≤Ñ T

λ

∣

∣

∣
M̃r − M̃r−

∣

∣

∣

2

>
ǫ

λ

]

−→ 0, as ǫ → 0.

Statements (I) and (III) have already been shown in the proof of Clark and Dubois
(2011, Thm. 1.2).

We will temporarily assume statement (II) and proceed with the main part

of the proof. By (I) we may work with the pair
(

λ
1
2 P ·

λ
, λ

1
4 M̃ ·

λ

)

rather than
(

λ
1
2 P ·

λ
, λ

1
4 D ·

λ

)

. By Thm. 2.1 and (II), there is convergence in law as λ → 0

(

λ
1
2 P t

λ
, λ

1
2 〈M̃〉 t

λ

) L
=⇒ (pt, κlt). (5.1)

It follows that the components λ
1
2 P ·

λ
and λ

1
2 〈M̃〉 ·

λ
are C-tight for λ < 1. By Jacod

and Shiryaev (1987, Thm. VI.4.13) the family of martingales λ
1
4 M̃ ·

λ
must also be

tight for λ < 1. The Lindeberg condition (III) and Jacod and Shiryaev (1987, Prop.
VI.3.26) guarantee that the family of martingales must be C-tight.

The triple T (λ) =
(

λ
1
2 P ·

λ
, λ

1
2 〈M̃〉 ·

λ
, λ

1
4 M̃ ·

λ

)

is C-tight for λ < 1 by Jacod and

Shiryaev (1987, Cor. VI.3.33) since all of the components are C-tight. By tightness,
we may consider a subsequence λn → 0 such that T (λn) converges in law to a limit
(p, v, m). The first two components p, v are respectively the Ornstein-Uhlenbeck
process and κ multiplied its the local time, i.e., v = κl, by (5.1). We will argue
that the third component m must be a continuous martingale with respect to the
filtration σ(pr, mr; 0 ≤ r ≤ t) such that 〈m〉 = κl. The continuity of m follows by the

C-tightness of λ
1
4 M̃ ·

λ
. The process m is a martingale with respect to σ(pr, mr; 0 ≤

r ≤ t) by Jacod and Shiryaev (1987, Prop. IX.1.17) since
(

λ
1
2
nP ·

λn
, λ

1
4
n M̃ ·

λn

)

is

adapted to the filtration F̃ (λn)
t := F̃ ′

t
λn

, the process λ
1
4
n M̃ ·

λn
is a martingale with
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respect to F̃ (λn)
t by Lem. 4.1, and the family of random variables λ

1
4 M̃ t

λ
for λ < 1

and t ∈ [0, T ] is uniformly square integrable. To see the uniform square integrability
notice

sup
0≤t≤T

Ẽ
(λ)

[(

λ
1
4 M̃ t

λ

)2]
= Ẽ

(λ)
[

λ
1
2 〈M̃〉T

λ

]

= υλẼ
(λ)

[

λ
1
2 ÑT

λ

]

= υλE
(λ)

[

λ
1
2

∫ T
λ

0

drh(Sr)
]

.

(5.2)

The second and third equalities are by Part (2) and Part (1) of Prop. 5.2, respec-
tively. The right side of (5.2) is uniformly bounded for λ < 1 by Thm. 2.1, and

thus supt∈[0,T ] supλ<1 Ẽ(λ)
[(

λ
1
4 M̃ t

λ

)2]
is finite. By Jacod and Shiryaev (1987, Cor.

VI.6.7) the convergence λ
1
4
n M̃ ·

λn

L
=⇒ m with the Lindeberg condition (III) implies

the joint convergence of the pair

(

λ
1
2
n 〈M̃〉 t

λn
, λ

1
4
n M̃ t

λn

)

L
=⇒ (〈m〉t, mt).

For the above, we have used that the difference between λ
1
2
n [M̃ ] t

λn
and λ

1
2
n 〈M̃〉 t

λn

is O(λ
1
4
n ). Thus 〈m〉 = κl.

We have now learned what we could from the martingale M̃ . By (I) we have

shown that
(

λ
1
2
n P ·

λn
, λ

1
4
n D ·

λn

)

, interpreted with respect to the original statistics,

converges in law to a pair (p, m) as n → ∞, where m is a continuous martingale
with respect to the filtration σ(pr, mr; 0 ≤ r ≤ t) and 〈m〉 = κl. If we establish that
p satisfies the Markov property with respect to the filtration σ(pr, mr; 0 ≤ r ≤ t),
then Lem. 3.1 states that the pair (p, m) must have the law of the process (p,

√
κBl)

for a copy of Brownian motion B independent of p. Since the pair
(

λ
1
2 P ·

λ
, λ

1
4 D ·

λ

)

is

tight for λ < 1, establishing the law (p,
√

κBl) as the unique possible subsequential

limit would imply the convergence in law of
(

λ
1
2 P ·

λ
, λ

1
4 D ·

λ

)

as λ → 0 to the process

(p,Bl).
To show that p satisfies the Markov property with respect to the filtration

σ(pr, mr; 0 ≤ r ≤ t), it is enough to show that the trajectory ps, s > t is in-
dependent of σ(mr; 0 ≤ r ≤ t) when given σ(pr; 0 ≤ r ≤ t) since the process
p satisfies the Markov property with respect to its own filtration. The triple
(

λ
1
2
nX ·

λn
, λ

1
2
n P ·

λn
, λ

1
4
n D ·

λn

)

converges to (0, p, m) since the variable X ∈ T = [0, 1)

is bounded. Moreover, σ
(

λ
1
2
n X r

λn
, λ

1
2
nP r

λn
; 0 ≤ r ≤ t

)

contains the information

in σ
(

λ
1
4
n D r

λn
; 0 ≤ r ≤ t

)

since Dt is defined as a function of the Markov pro-

cess (Xr, Pr) over 0 ≤ r ≤ t. Thus the path λ
1
2
n P s

λn
, s > t is independent of

σ
(

λ
1
4
n D r

λn
; 0 ≤ r ≤ t

)

when given σ
(

λ
1
2
n X r

λn
, λ

1
2
nP r

λn
; 0 ≤ r ≤ t

)

. This indepen-

dence carries over into the limit n → ∞, and thus ps for s > t is independent of
σ(mr; 0 ≤ r ≤ t) when given the information σ(pr; 0 ≤ r ≤ t).

The remainder of the proof is concerned with showing (II).
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(II) By the triangle inequality,

Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 〈M̃〉 t

λ
− κλ

1
2 L t

λ

∣

∣

∣

]

≤Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 〈M̃〉 t

λ
− υλλ

1
2 Ñ t

λ

∣

∣

∣

]

+ |υλ − κ

u
| Ẽ(λ)

[

λ
1
2 ÑT

λ

]

+
κ

u
Ẽ

(λ)
[

sup
0≤t≤T

∣

∣

∣
λ

1
2 Ñ t

λ
− λ

1
2

N t
λ

∑

n=1

h(Sτn
)
∣

∣

∣

]

+ κẼ
(λ)

[

sup
0≤t≤T

∣

∣

∣
u−1λ

1
2

N t
λ

∑

n=1

h(Sτn
) − λ

1
2 L t

λ

∣

∣

∣

]

, (5.3)

where Nt is the number of partition times up to time t ∈ R+. The first term on

the right is O(λ
1
4 ) by Part (2) of Lem. 5.2. The second term is bounded through

|υλ − κ

u
| Ẽ(λ)

[

λ
1
2 ÑT

λ

]

= |υλ − κ

u
|E(λ)

[

λ
1
2

∫ T
λ

0

drh(Sr)
]

−→ 0,

where we have used Part (1) of Prop. 5.2 for the equality. For convergence to zero,
we have used Thm. 2.1 to get a uniform constant bound for the expectation of

λ
1
2

∫ T
λ

0 drh(Sr) over λ < 1 and Lem 5.1, which gives that υλ → κ
u

as λ → 0.
For the third term in (5.3),

Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 Ñ t

λ
− λ

1
2

N t
λ

∑

n=1

h(Sτn
)
∣

∣

∣

]

≤ 2Ẽ
(λ)

[∣

∣

∣
λ

1
2 ÑT

λ
− λ

1
2

N T
λ

∑

n=1

h(Sτn
)
∣

∣

∣

2] 1
2

= 2λ
1
2 Ẽ

(λ)
[

N T
λ

∑

n=1

h(Sτn
) − h2(Sτn

)
]

1
2

≤ 2λ
1
2 E

(λ)
[

N T
λ

∑

n=1

h(Sτn
)
]

1
2

= 2λ
1
2 E

(λ)
[

∫ T
λ

0

drh(Sr)
]

1
2

. (5.4)

The first inequality uses Jensen’s inequality and Doob’s inequality since

Ñt −
Nt
∑

n=1

h(Sτn
) =

Nt
∑

n=1

χ(Zτn
= 1) − h(Sτn

)

is a martingale with respect F̃t by Prop. 5.2. The first equality in (5.4) follows

because the quadratic variation of the martingale is
∑t

n=1

(

χ(Zτn
= 1)−h(Sτn

)
)2

,
and

Ẽ
[(

χ(Zr = 1) − h(Sr)
)2 ∣

∣ F̃r− , Nr − Nr− = 1
]

= h(Sr) − h2(Sr),

by Prop. 5.3. For the second inequality, we discard h2(Sτn
), and go from the split

to the original statistics since the argument of the expectation is well-defined for
the original statistics. Finally, the last equality holds since the partition times τn

occur with Poisson rate one independently of the process St.
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The fourth term in (5.3) is similar to the third. The process u−1
∑Nt

n=1 h(Sτn
)−Lt

is well-defined in the original statistics and is a martingale with respect to the
filtration Ft by Prop. 5.2. With routine arguments

Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣

λ
1
2

u

N t
λ

∑

n=1

h(Sτn
) − λ

1
2 L t

λ

∣

∣

∣

]

= E
(λ)

[

sup
0≤t≤T

∣

∣

∣

λ
1
2

u

N t
λ

∑

n=1

h(Sτn
) − λ

1
2 L t

λ

∣

∣

∣

]

≤ 2E
(λ)

[
∣

∣

∣

λ
1
2

u

N T
λ

∑

n=1

h(Sτn
) − λ

1
2 L T

λ

∣

∣

∣

2] 1
2

=
λ

1
2

u
E

(λ)
[

∫ T
λ

0

drh2(Sr)
]

1
2

= O(λ
1
4 ).

The inequality uses Jensen’s and Doob’s inequalities. The second equality uses that

the predictable quadratic variation of u−1
∑Nt

n=1 h(Sτn
)−Lt is u−2

∫ t

0
drh2(Sr) since

the terms h(Sτn
) occur with Poisson rate one independently of the process St.

6. Miscellaneous proofs

Proof of Lem. 2.2: Define the martingale mt,ǫ :=
∫ t

0 dB̃r

(

1−e−
|pr|

ǫ

)

. The difference

between mt,ǫ and B̃t tends to zero as ǫ → 0 in the norm E
[

sup0≤t≤T

∣

∣ ·
∣

∣

]

since

E
[

sup
0≤t≤T

∣

∣B̃t − mt,ǫ

∣

∣

]

≤ E
[

sup
0≤t≤T

∣

∣B̃t − mt,ǫ

∣

∣

2] 1
2 ≤ 2E

[
∣

∣B̃T − mT,ǫ

∣

∣

2] 1
2

= 2E

[

∫ T

0

dre−2 |pr |
ǫ

]
1
2

= 2
(

∫ T

0

drE
[

e−2 |pr|
ǫ

]

)
1
2

≤ 2
(

∫ T

0

drE0

[

e−2 |pr |
ǫ

]

)
1
2

= 2
(

∫ T

0

dr

∫

R

dq
e−

1
2ωr

q2−2 |q|
ǫ

(2πωr)
1
2

)
1
2

= O(ǫ
1
2 ), (6.1)

where ωr := 1 − e−r. The first inequality is Jensen’s, the second is Doob’s, and

the first equality uses that e−2 |pr|
ǫ is derivative of the quadratic variation of the

martingale B̃r − mr,ǫ. The third inequality uses that E
[

e−2 |pr|
ǫ

]

is largest when p0

is initially zero. The third equality holds since e
− 1

2ωt
q2

(2πωt)
1
2

is the density for pt starting

with p0 = 0.
Moreover, mt,ǫ can be rewritten

mt,ǫ =

∫ t

0

dB̃r

(

1 − e−
|pr |

ǫ

)

=

∫ t

0

(

d|pt| +
1

2
dr|pr |

)(

1 − e−
|pr |

ǫ

)

=|pt| − |p0| + ǫe−
|pt|

ǫ

+
1

2

∫ t

0

dr|pr |
(

1 − e−
|pr |

ǫ

)

− 1

2ǫ

∫ t

0

dre−
|pr|

ǫ .

The second equality follows by the substitution dB̃t = d|pt| − 1
2dt|pt| − dlt (from

the Tanaka-Meyer formula (2.1)) and since dlt multiplied by (1 − e−
|pr |

ǫ ) is zero.
The chain rule and the fact that (d|pr|)2 = dr give the third equality. From

the convergence (6.1) it follows that the right side converges to B̃ in the norm
‖ · ‖s = E

[

sup0≤t≤T

∣

∣ ·
∣

∣

]

.
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As ǫ → 0
∥

∥

∥
ǫe−

|pt|
ǫ

∥

∥

∥

s

= O(ǫ) and
∥

∥

∥

∫ t

0

dr|pr|e−
|pr|

ǫ

∥

∥

∥

s

= O(ǫ),

where the later term follows by the same argument as in the right side of (6.1). In
conclusion,

B̃t = |pt| − |p0| +
1

2

∫ t

0

dr|pr| −
1

2ǫ

∫ t

0

dre−
|pr|

ǫ + O(ǫ
1
2 ),

where O(ǫ
1
2 ) refers to the norm ‖ · ‖s. By the Tanaka-Meyer formula, we have that

lt = lim
ǫ→0

1

2ǫ

∫ t

0

dre−
|pr|

ǫ ,

where the error in the limit is O(ǫ
1
2 ) in ‖ · ‖s.

�

Lemma 6.1 is a small technical point regarding the distribution for momentum
jumps conditioned to exit sets {p ∈ R | |p| ≥ b} for some b ∈ [0, λ−1] when λ ≪ 1.
We will not include the proof of Lem. 6.1, which follows from the exponential decay
found in the jump rates Jλ

(

p, p′
)

. We will apply Lem. 6.1 in the proof of Lem. 2.5
below.

Lemma 6.1. For each m ∈ N, the following inequality holds:

sup
λ<1

sup
|p|≤b≤λ−1

∫

|p′|≥b
dp′(|p′| − b)m Jλ

(

p, p′
)

∫

|p′|≥b
dp′Jλ

(

p, p′
) < ∞.

The proof of Lem. 2.5 relies on an application of the submartingale up-crossing

inequality to bound the number of the times that the process H
1
2
r , r ∈ [0, T

λ
] wanders

from below ǫ
1
2 λ− ̺

2 to above 2ǫ
1
2 λ− ̺

2 , which is closely related to the total time such

that Hr ≤ ǫλ−̺ over the interval r ∈ [0, T
λ
]. The process H

1
2
r behaves nearly

as a submartingale at low energies in the sense that a manageable perturbation

H
1
2
r + cλH

3
2
r , for large enough c > 0, is a submartingale at low energies. This

contrivance is not necessary for the λ = 0 case of the dynamics for which H
1
2
r is a

submartingale with the desired properties.

Proof of Lem. 2.5:
For b > 0 let γ be the minimum of the hitting time that Ht jumps above bλ−2 and
the final time T

λ
. We have the following inequalities:

E
(λ)

[

TT
λ

]

≤ TP
(λ)

[

sup
0≤r≤T

λ

Hr > bλ−2
]

+ E
(λ)

[

Tγ

]

≤ T
λ4

b2
E

(λ)
[(

sup
0≤r≤T

λ

Hr

)2]

+ E
(λ)

[

Tγ

]

≤ CT 3 λ2

b2
+ E

(λ)
[

Tγ

]

,

where the second inequality is Chebyshev’s and the C > 0 in the third is from
Lem. 2.4. With the restriction ǫ ≥ λ̺, the term following the last inequality decays

faster than ǫ
1
2 λ

1−̺
2 as λ → 0, so we can can focus our study to E(λ)

[

Tγ

]

. The
energy process Ht = H(Xt, Pt) behaves as a submartingale for time periods in
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which Ht ≤ b′λ−2 for small enough b′ > 0. More precisely there exists 0 ≤ b′ ≤ 1,
σ > 0 such that for all λ < 1 and all (x, p) with H(x, p) ≤ b′λ−2,

q
(λ)
1 (x, p) :=

d

dt
E

(λ)
(x,p)

[

Ht

]∣

∣

t=0
=

1

2

∫

R

dp′
(

(p′)2+ V (x) − p2 − V (x)
)

Jλ

(

p, p′)

=
1

2

∫

R

dp′
(

(p′)2 − p2
)

Jλ

(

p, p′) ≥ σ. (6.2)

From (6.2) we have that for all m ≥ 1, λ < 1, and H(x, p) ≤ b′λ−2,

q(λ)
m (x, p) =

∫

R

dp′
((1

2
(p′)2 + V (x)

)m

−
(1

2
p2 + V (x)

)m)

Jλ

(

p, p′)

≥ mσHm−1(x, p), (6.3)

where q
(λ)
m (x, p) := d

dt
E

(λ)
(x,p)

[

Hm
t

]∣

∣

t=0
. The inequality (6.3) follows from (6.2) since

f(y) = |y|m is convex, and thus

f(Y1) − f(Y0) ≥ (Y1 − Y0)f
′(Y0)

for Y1 := 1
2 (p′)2 + V (x) and Y0 := 1

2p2 + V (x).

Notice that the value q
(λ)
m (St) is the derivative of the predictable part of the

semimartingale decomposition of the process Hm
t . In other terms, the following is

a martingale:

Hm
t −

∫ t

0

drq(λ)
m (Sr).

In addition to the lower bounds in (6.3), there are upper bounds

q(λ)
m (x, p) ≤ σm

(

1 + Hm−1(x, p)
)

(6.4)

which hold for some constants σm and all λ < 1 and (x, p) with H(x, p) ≤ λ−2.
Using the above observations there is a useful submartingale that is “close” to

H
1
2
t . Let the value b > 0 defining the stopping time γ be set equal to the value

b′ > 0 chosen to ensure the condition (6.2). There exists a c > 0 such that for all
λ small enough,

κt = H
1
2
t + cλH

3
2
t

is a submartingale over the time interval t ∈ [0, γ]. To see that κt is a submartingale

up to time γ, first notice that the predictable component
∫ t

0 drq
(λ)
3
2

(Sr) in the semi-

martingale decomposition of H
3
2
t increases with rate greater than 3

2σH
1
2
t by (6.3).

Moreover, the predictable component of the semimartingale decomposition of H
1
2
t

is 2−
1
2

∫ t

0
drAλ(Xr, Pr), and the negative part of the function Aλ satisfies the in-

equality A−
λ (x, p) ≤ CλH

1
2 (x, p) for some C > 0 by Part (4) of Prop. 2.3 and the

elementary inequality |p| ≤ 2
1
2 H

1
2 (x, p). Thus we can choose c := 2

3
C
σ

to ensure

that κt is a submartingale over the specified time interval.
Set ς ′0 = ς0 = ς ′1 = 0, and define the stopping times ςn, ς ′n ≤ γ such that for

n ≥ 1,

ς ′n = min{r ∈ (ςn−1,∞)
∣

∣Hr ≤ ǫλ−̺}, ςn = min{r ∈ (ς ′n,∞)
∣

∣ Hr ≥ 4ǫλ−̺}.
The above definition assumes H0 < 4ǫλ−̺ and otherwise we should only take
ς ′0 = ς0 = 0. Let nγ be the number ς ′n’s less than γ. In other words, nγ is one more
than the number of up-crossings of Hr from λ−̺ to 4λ−̺ that have been completed
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by time γ. Let n′
γ be defined similarly as one plus the number of crossings of κt

from 3
2ǫ

1
2 λ− ̺

2 to 2ǫ
1
2 λ− ̺

2 . For λ < ( 1
2c

)
1

1−̺ we have both of the implications

Ht ≥ 4ǫλ−̺ =⇒ κt ≥ 2ǫ
1
2 λ− ̺

2 and Ht ≤ ǫλ−̺ =⇒ κt ≤
3

2
ǫ

1
2 λ− ̺

2 ,

and hence n′
γ ≥ nγ . The definitions give us the almost always inequality

Tt ≤ λ

nt
∑

n=1

ςn − ς ′n.

Next observe that

λ−1
E

(λ)
[

Tγ

]

≤ E
(λ)

[

nγ
∑

n=1

ςn − ς ′n

]

≤ E
(λ)

[

nγ

]

sup
n∈N

E
(λ)

[

ςn − ς ′n
∣

∣ n ≤ nγ

]

. (6.5)

With the above we have an upper bound in terms of the expectation for the number
of up-crossings nt and the expectation for the duration of a single up-crossing
ςn − ς ′n conditioned on the event n ≤ nt. By the observation above, E(λ)

[

nγ

]

≤
E(λ)

[

n′
γ

]

. By the submartingale up-crossing inequality Chung (2001), we have the
first inequality below:

E
(λ)

[

n′
γ

]

≤ E
(λ)

[

κγ

]

2ǫ
1
2 λ− ̺

2 − ǫ
1
2

3
2λ− ̺

2

= 2ǫ−
1
2 λ

̺
2 E

(λ)
[

H
1
2
γ + cλH

3
2
γ

]

≤ 2ǫ−
1
2 λ

̺
2

(

E
(λ)

[

Hγ

]
1
2 + cλE

[

H
3
2
γ

]

)

≤ 2ǫ−
1
2 λ

̺
2

(

E
(λ)

[

H0

]

+ λ−1Tσ1

)
1
2

+ 2cǫ−
1
2 λ1+ ̺

2

(

E
(λ)

[

H0

]

+ λ− 3
2+ ̺

2 T
3
2 σ 3

2

)

< 4ǫ−
1
2 σ

1
2
1 T

1
2 λ

̺−1
2 , (6.6)

where the last inequality is for λ small enough. The second inequality is Jensen’s,
and the third uses that γ ≤ T

λ
and the bound (6.4) for the derivatives of the

predictable components of the semimartingales Ht and H
3
2
t .

We now focus on the expectation of the incursions ςn − ς ′n. Whether or not the
event n ≤ nt occurred will be known at time ς ′n, so

sup
n∈N

E
(λ)

[

ςn − ς ′n
∣

∣ n ≤ nt

]

≤ sup
n∈N, ω∈Fς′n

E
(λ)

[

ςn − ς ′n
∣

∣Fς′n

]

= sup
H(s)≤λ−̺

E
(λ)
s

[

ς1
]

.

By (6.2)

σ E
(λ)
s

[

ς1
]

≤ E
(λ)
s

[

∫ ς1

0

drq
(λ)
1 (Xr, Pr)

]

= E
(λ)
s

[

Hς1 − H0

]

, (6.7)

where the equality holds by the optional sampling theorem since
∫ t

0
drq

(λ)
1 (Xr, Pr)

is the predictable part of the semimartingale decomposition for Ht − H0. This
application of the optional sampling theorem is legal since ς1 is almost surely finite,
and

E
(λ)
s [Hrχ(r < ς1)] ≤ λ− 1

2 P
(λ)
s [r < ς1] −→ 0 as r −→ ∞.
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Continuing with the right side of (6.7),

E
(λ)
s

[

Hς1 − H0

]

= E
(λ)
s

[

Hς
−
1
− H0

]

+
1

2
E

(λ)
s

[

P 2
ς1
− P 2

ς
−
1

]

≤ 4ǫλ−̺ + E
(λ)
s [∆2] = 4ǫλ−̺ + O(λ0) ≤ c′ǫλ−̺.

where ∆ := Pς1 − Pς
−
1

. For the first inequality, we have used that P 2
ς
−
1

≤ Hς
−
1

≤
ǫλ−̺, and the inequality (x + y)2 ≤ 2(x2 + y2). The last inequality holds for some

c′ > 0 by our restriction ǫ ≥ λ̺. The term E
(λ)
s [∆2] is uniformly bounded for λ < 1

since by nested conditional expectations E
(λ)
s [∆2] = E

(λ)
s [E(λ)[∆2 | Fς

−
1

, ς1]] and

E
(λ)[∆2 | Fς

−
1

, ς1] =

∫

H(X
ς
−
1

,p′)≥ǫλ−̺ dp′
(

p′ − Pς
−
1

)2Jλ

(

Pς
−
1

, p′
)

∫

H(X
ς
−
1

,p′)≥ǫλ−̺ dp′Jλ

(

Pς
−
1

, p′
)

≤ sup
λ<1

sup
H(x,p)≤ǫλ−̺

∫

H(x,p′)≥ǫλ−̺ dp′(p′ − p)2Jλ(p, p′)
∫

H(x,p′)≥ǫλ−̺ dp′Jλ(p, p′)
< ∞.

The equality relies on the strong Markov property since the distribution for ∆ is
independent of Fς

−
1

when given ς1 and Sς
−
1

. The last expression is finite by Lem. 6.1.

Putting our results for E(λ)
[

nγ

]

and supn∈N
E(λ)

[

ςn − ς ′n
∣

∣ n ≤ nγ

]

together,

E
(λ)

[

Tγ

]

≤ λE
(λ)

[

nγ

]

sup
n∈N

E
(λ)

[

ςn − ς ′n
∣

∣ n ≤ nγ

]

≤ 4c′ǫ
1
2 σ

1
2 T

1
2 λ

1−̺
2 .

This completes the proof.
�

The proof of Lem. 2.6 follows by a fairly standard argument for bounding the dif-
ference between two additive functionals using the splitting structure from Sect. 4.
Several results from Clark and Dubois (2011) from will be used in the proof.

Proof of Lem. 2.6: By Part (1) of Prop. 5.2, we have the equality uẼ(λ)
[

Ñt

]

=

Ẽ(λ)
[

Lt

]

. Moreover, we have the uniform bound

sup
λ<1

Ẽ
(λ)

[

λ
1
2 ÑT

λ

]

< ∞ (6.8)

by Clark and Dubois (2011, Lem. 3.3), and thus we also have that Ẽ(λ)
[

λ
1
2 L T

λ

]

is

uniformly bounded.

To show that λ
1
2 L t

λ
is close to λ

1
2 A+

t
λ

, we will consider the split dynamics. Going

to the split statistics in the first equality below, we have

E
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 L t

λ
− λ

1
2 A+

t
λ

∣

∣

∣

]

= Ẽ
(λ)

[

sup
0≤t≤T

∣

∣

∣
λ

1
2 L t

λ
− λ

1
2 A+

t
λ

∣

∣

∣

]

≤ λ
1
2 Ẽ

(λ)
[(

∫ R1

0

dr + sup
R1≤t≤T

λ

∫ RÑt+1

t

dr
)

gλ(Sr)
]

+ λ
1
2 Ẽ

(λ)
[

sup
0≤t≤T

λ

∣

∣

∣

Ñt
∑

n=1

∫ Rn+1

Rn

g′λ(Sr)
∣

∣

∣

]

, (6.9)
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where Rn is the beginning time of the n life cycle, Ñt is the number of R′
n that

have occurred up to time t, gλ := A+
λ + u−1h, and g′λ := A+

λ − u−1h.
The first term on the right side of (6.9) contains the boundary terms for the

partition of the integrals over the interval [0, T
λ
] using the life cycle times Rn. By

Part (2) of Prop. 2.3 and since h has compact support, gλ := A+
λ + u−1h satisfies

the conditions of Clark and Dubois (2011, Prop. 4.3). By Part (2) of Clark and
Dubois (2011, Prop. 4.3), there is a C > 0 such that the inequality below holds:

λ
1
2 Ẽ

(λ)
[

∫ R1

0

drgλ(Sr)
]

= λ
1
2

∫

Σ̃

dµ̃(x, p, z)Ẽ
(λ)
(x,p,z)

[

∫ R1

0

drgλ(Sr)
]

≤ Cλ
1
2

∫

Σ̃

dµ̃(x, p, z)
(

1 + log(1 + |p|)
)

= Cλ
1
2

∫

Σ

dµ(x, p)
(

1 + log(1 + |p|)
)

= O(λ
1
2 ),

where the measure µ̃ on Σ̃ is the splitting of the initial phase space measure µ;
see (4.3). The integral above is finite by our assumptions on the initial measure µ.

The other part of the first term on the right side of (6.9) is bounded through

λ
1
2 Ẽ

(λ)
[

sup
0≤n≤Ñ T

λ

∫ Rn+1

Rn

drgλ(Sr)
]

≤ λ
1
2 Ẽ

(λ)
[

Ñ T
λ

∑

n=1

(

∫ Rn+1

Rn

drgλ(Sr)
)2] 1

2

= λ
1
2 Ẽ

(λ)
[

Ñ T
λ

∑

n=1

Ẽ
(λ)

[(

∫ Rn+1

Rn

drgλ(Sr)
)2 ∣

∣

∣
F̃R′

n

]]
1
2

≤ C
1
2 λ

1
2 Ẽ

(λ)
[

ÑT
λ

]
1
2 = O(λ

1
4 ).

The first inequality uses that supn an ≤ (
∑

n a2
n)

1
2 for positive numbers an > 0

followed by Jensen’s inequality. The second inequality uses the strong Markov
property for the split chain σ̃m = Sτm

and that S̃Rn
has distribution ν̃ by F̃R′

n
by

Part (1) of Clark and Dubois (2011, Prop. 2.1).
For the second term on the right side of (6.9), the key observation is that

bλ :=Ẽ
(λ)

[

∫ Rn+1

Rn

drg′λ(Sr)
∣

∣

∣
F̃R′

n

]

= Ẽ
(λ)
ν̃

[

∫ R1

0

drg′λ(Sr)
]

=

∫

Σ dsΨ∞,λ(s)
(

A+
λ (s) − u−1h(s)

)

∫

Σ
dsΨ∞,λ(s)h(s)

=

∫

Σ dse−λH(s)
(

A+
λ (s) − u−1h(s)

)

∫

Σ
dse−λH(s)h(s)

is O(λ
1
2 ) for small λ. The first equality is by the strong Markov property for the

chain σ̃n = S̃τn
since S̃τn

has distribution ν̃ when conditioned on the information

F̃R′
n

by Part (1) of Clark and Dubois (2011, Prop. 2.1). The second equality is by
Part (2) of Clark and Dubois (2011, Prop. 2.4). The denominator of the rightmost
expression approaches

∫

Σ
dsh(s) = u, and the numerator is a difference of terms

which are 1 + O(λ
1
2 ). This follows since u−1

∫

Σ
dsh(s) = 1, by the approximation
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∫

Σ
dsA+

λ (s) = 1 + O(λ
1
2 ) in Part (7) of Prop. 2.3, and since inserting the factor

e−λH(s) in the integrals will perturb the values by O(λ
1
2 ).

With the above and the triangle inequality, the second term on the right side
of (6.9) is smaller than

|bλ|λ
1
2 Ẽ

(λ)
[

ÑT
λ

]

+ λ
1
2 Ẽ

(λ)
[

sup
0≤t≤T

λ

∣

∣

∣

⌊ 1
2 Ñt+

1
2 ⌋

∑

n=1

(

∫ R2n

R2n−1

drg′λ(Sr) − bλ

)∣

∣

∣

]

+ λ
1
2 Ẽ

(λ)
[

sup
0≤t≤T

λ

∣

∣

∣

⌊ 1
2 Ñt⌋
∑

n=1

(

∫ R2n+1

R2n

drg′λ(Sr) − bλ

)∣

∣

∣

]

.

The first term is O(λ
1
2 ) since |bλ| = O(λ

1
2 ) and λ

1
2 Ẽ(λ)

[

ÑT
λ

]

is bounded for λ < 1

by the remark (6.8). Moreover, the processes

⌊ 1
2 Ñt+

1
2 ⌋

∑

n=1

(

∫ R2n

R2n−1

drg′λ(Sr) − bλ

)

and

⌊ 1
2 Ñt⌋
∑

n=1

(

∫ R2n+1

R2n

drg′λ(Sr) − bλ

)

(6.10)

are martingales with respect to the filtration F̃ ′
t since non-sequential life cycles

are pairwise independent, which is why we split the original sum into even and odd
terms. We can apply standard arguments to bound the sums in (6.10), for instance:

λ
1
2 Ẽ

(λ)
[

sup
0≤t≤T

λ

∣

∣

∣

⌊ 1
2 Ñt+

1
2 ⌋

∑

n=1

∫ R2n

R2n−1

drg′λ(Sr) − bλ

∣

∣

∣

]

≤ 2λ
1
2 Ẽ

(λ)
[

⌊ 1
2 Ñt+

1
2 ⌋

∑

n=1

(

∫ R2n

R2n−1

drg′λ(Sr) − bλ

)2] 1
2

≤ λ
1
2 C

1
2 Ẽ

(λ)
[

ÑT
λ

]
1
2 = O(λ

1
4 ).

The first inequality is Jensen’s with the square function followed by Doob’s maximal
inequality, and the second follows analogously to previous discussion.

�
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Appendix A. The limiting diffusion process

A.1. Local time at the origin for an Ornstein-Uhlenbeck process. Let p be the
Ornstein-Uhlenbeck process satisfying the Langevin equation (1.3) and l be the
corresponding local time at zero. For a discussion of local time for continuous
semimartingales, we refer to Karatzas and Shreve (1988, Sect. 3.7), and for a list of
many formulae related to the local time of an Ornstein-Uhlenbeck process we refer
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to Borodin and Salminen (2002). As mentioned before the local time is formally

lt =
∫ t

0
drδ0(pr), and through a formal application of the Ito formula, it satisfies

lt = |pt| − |p0| −
∫ t

0

drsgn(pr)dBr +
1

2

∫ t

0

dr|pr|dr,

where sgn : R → {±1} is the sign function. The above is one of the Tanaka-Meyer
formulas. The process l is a continuous, increasing process satisfying lt → ∞ as
t → ∞ since p is a positive-recurrent process. The process inverse sr = inf{t ∈
R+

∣

∣ lt ≥ r} has independent, stationary increments and is thus an increasing Levy
processes. The flats of l correspond to excursions from the origin for p and jumps
for s.

We can give a closed expression for the Laplace transform E
[

e−γst
]

. The Laplace
transform has the form

E
[

e−γst
]

= e
− t

Gγ (0,0) , (A.1)

where Gγ is the Green function for the Ornstein-Uhlenbeck process. The densities
Qt : R → R+ for pt satisfy the forward equation

d

dt
Qt(p) =

1

2
Qt(p) +

1

2
p

∂

∂p
Qt(p) +

1

2

∂2

∂2p
Qt(p).

When Q0(p) = δ0(p), then Qt(p) has the explicit form

Qt(p) =
e
− p2

2ωt

(2πωt)
1
2

, ωt = 1 − e−
1
2 t. (A.2)

Notice that there is convergence to a variance one Gaussian in the limit that t → ∞.
The form (A.2) allows the Green’s function value Gγ(0, 0) to be computed through
the following:

Gγ(0, 0) =

∫ ∞

0

dte−γtQt(0) = (2π)−
1
2

∫ ∞

0

dt
e−γt

(

1 − e−
1
2 t

)
1
2

= (
2

π
)

1
2

∫ 1

0

du u2γ−1
(

1 − u
)− 1

2 = (
2

π
)

1
2 B

(

2γ,
1

2

)

= 2
1
2

Γ(2γ)

Γ(2γ + 1
2 )

,

where B and Γ are respectively the β-function and γ-functions, and we have made
the substitution u = e−

1
2 t, −2u−1du = dt for the third equality. Plugging our

results into (A.1), the moment-generating function of st is

E
[

e−γst
]

= e
−t2− 1

2
Γ(2γ+ 1

2
)

Γ(2γ) .

The Levy rate density R : R+ → R+ for st satisfies that

∫ ∞

0

dτ
(

1 − e−γτ
)

R(τ) = 2−
1
2
Γ(2γ + 1

2 )

Γ(2γ)
.
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The rates R(τ) = 4−1(2π)−
1
2 e−

1
4 τ

(

1 − e−
1
2 τ

)− 3
2 can be deduced by similar opera-

tions as above in reverse order since

2−
1
2
Γ(2γ + 1

2 )

Γ(2γ)
=

2γ

(2π)
1
2

B
(

2γ +
1

2
,
1

2

)

=
γ

(2π)
1
2

∫ ∞

0

dτe−γτ e−
1
4 τ

(

1 − e−
1
2 τ

)
1
2

=
1

4(2π)
1
2

∫ ∞

0

dτ
(

1 − e−γτ
) e−

1
4 τ

(

1 − e−
1
2 τ

)
3
2

.

A.2. A diffusion time-changed by lt. Now we consider the process Bl where B is
a Brownian motion with diffusion rate κ which is independent of the process l

discussed in the last section. Although Bl is non-Markovian, the triple (Bl, τ, η)
is Markovian, where τt := sℓt

− sℓt− is the total duration of the current excursion
(which requires some information from the future), and ηt := t−sℓt− is the amount
of time that has passed since the beginning of the excursion.

We can give a closed form for the joint density ρt(x, τ, η) for the triple (Blt , τt, ηt)
assuming that B0 has density ρ(x) and η0 = τ0 = 0. Let Ψr(t) be the probability
density at the value t ∈ R+ for the Levy process s at time r. The joint density
ρt(x, τ, η) for the triple (Blt , τt, ηt) has the closed form

ρt(x, τ, η) = χ(η ≤ τ ∧ t)R(τ)

∫ ∞

0

drΨr(t − η) (gr ∗ ρ)(x), gr(x) =
e−

x2

2rκ

(2πrκ)
1
2

,

where R : R+ → R+ is the rate function for the Levy process s. By integrating out
the τ, η variables, we obtain that the marginal density ρt(x) satisfies the Volterra-
type integro-differential equation of the form

ρt(x) = ρ0(x) +
κ

2

∫ t

0

dr
(2π)−

1
2

(

1 − e−
1
2 (t−r)

)
1
2

(∆ρr)(x). (A.3)

In the above, we have used that Ψs ∗ Ψt = Ψs+t and the explicit computation
∫ ∞

0

drΨr(t) = Qt(0) =
(2π)−

1
2

(

1 − e−
1
2 t

)
1
2

.

The above is analogous to the master equation for a Brownian motion time-
changed by a Mittag-Leffler process. The Mittag-Leffler process m(α) of index
0 < α < 1 is distributed as the process inverse of the one-sided stable law of index
α. The α = 1

2 case has the same law as the local time of a standard Brownian
motion. If B is a standard Brownian motion, then the densities for

√
κB

m
(α)
t

satisfy the equation

ρt(x) = ρ0(x) +
κ

2Γ(α)

∫ t

0

dr(t − r)α−1(∆ρr)(x),

which is equivalent to the fractional diffusion equation

∂α
t ρt = κ∆qρt,

where the fractional derivative ∂α
t acts as (∂α

t f)(t) = 1
Γ(1−α)

d
dt

∫ t

0 dr(t − r)−αf(r).

Processes satisfying these equations arise in the theory of continuous time random
walks Montroll and Weiss (1965); Meerschaert and Scheffler (2008) and the limit
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theory for martingales whose quadratic variations are driven by additive function-
als of null-recurrent Markov processes Touati (1987); Chen (2000); Höpfner and
Löcherbach (2003). The process Bm(α) has the scale invariance in law

B
m

(α)
t

L
= ǫ−

α
2 B

m
(α)
ǫt

.

A.3. Long-term behavior. Now we can look into the diffusive behavior for Blt in
the limit of large times t. Since the process is already a diffusion, this is just a
question of the convergence in probability for the normalized quadratic variation
t−1lst for s ∈ R

+ as t → ∞. However, we actually have a strong limit since

lim
t→∞

lst

t
= s lim

r→∞

r

sr

= s
(

∫ ∞

0

dτ τR(τ)
)−1

= s(2π)−
1
2 .

The first equality holds since l and s are process inverses of one another and tend
to infinity almost surely. The second equality is the strong law of large numbers
for the Levy process sr. The computation for the third equality is based on the
representation of the Laplace transform of st from the last section. The above
implies the convergence in law as λ → 0 given by

t−
1
2 Blst

L
=⇒ (2π)−

1
2 B′

s,

where B′ is a copy of standard Brownian motion.
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diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 44 (4), 771–786 (2008).
MR2446297.

M. M. Meerschaert and H.-P. Scheffler. Triangular array limits for continuous time
random walks. Stochastic Process. Appl. 118 (9), 1606–1633 (2008). MR2442372.

E. W. Montroll and G. H. Weiss. Random walks on lattices. II. J. Mathematical
Phys. 6, 167–181 (1965). MR0172344.

E. Nummelin. A splitting technique for Harris recurrent Markov chains. Z.
Wahrsch. Verw. Gebiete 43 (4), 309–318 (1978). MR0501353.

G. C. Papanicolaou, D. Stroock and S. R. S. Varadhan. Martingale approach to
some limit theorems. In Papers from the Duke Turbulence Conference (Duke
Univ., Durham, N.C., 1976), Paper No. 6, pages ii+120 pp. Duke Univ. Math.
Ser., Vol. III. Duke Univ., Durham, N.C. (1977). MR0461684.

D. Pollard. Convergence of stochastic processes. Springer Series in Statistics.
Springer-Verlag, New York (1984). ISBN 0-387-90990-7. MR762984.

H. Spohn. Large scale dynamics of interacting particles. Texts and Monographs in
Physics. Springer-Verlag, Berlin (1991). ISBN 978-3-642-84373-0. DOI: 10.1007/
978-3-642-84371-6.
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