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Abstract. We study a one-dimensional random walk among random conductances,
with unbounded jumps. Assuming the ergodicity of the collection of conductances
and a few other technical conditions (uniform ellipticity and polynomial bounds
on the tails of the jumps) we prove a quenched conditional invariance principle for
the random walk, under the condition that it remains positive until time n. As
a corollary of this result, we study the effect of conditioning the random walk to
exceed level n before returning to 0 as n → ∞.

1. Introduction and results

In this paper, we study one-dimensional random walks among random conduc-
tances, with unbounded jumps. This is the continuation of the paper Gallesco and
Popov, 2012, where we proved a uniform quenched invariance principle for this
model, where “uniform” refers to the starting position of the walk (i.e., one obtains
the same estimates on the speed of convergence as long as this position lies in a
certain interval around the origin). Here, our main results concern the (quenched)
limiting law of the trajectory of the random walk (Xn, n = 0, 1, 2, . . .) starting from
the origin up to time n, under condition that it remains positive at the moments
1, . . . , n. In Theorem 1.1 we prove that, after suitable rescaling, for a.e. environ-
ment it converges to the Brownian meander process, which is, roughly speaking, a
Brownian motion conditioned on staying positive up to some finite time, and the
main result of the paper Gallesco and Popov, 2012 will be an important tool for
prooving Theorem 1.1.

This kind of problem was extensively studied for the case of space-homogeneous
random walk, i.e., when one can write Xn = ξ1 + · · ·+ ξn, where the ξi-s are i.i.d.
random variables. These random variables are usually assumed to have expectation

Received by the editors October 27, 2012; accepted March 24, 2013.

2010 Mathematics Subject Classification. 60J10, 60K37.

Key words and phrases. Ergodic environment, unbounded jumps, Brownian meander, 3-

dimensional Bessel process, hitting probabilities, crossing time, uniform CLT.

253

http://alea.impa.br/english/index_v10.htm


254 Christophe Gallesco and Serguei Popov

0, and to possess some (nice) tail properties. Among the first papers on the subject
we mention Belkin, 1972 and Iglehart, 1974, where the convergence of the rescaled
trajectory to the Brownian meander was proved. Afterwards, finer results (such
as local limit theorems, convergence to other processes if the original walk is in
the domain of attraction of some stable Lévy process, etc.) for space-homogeneous
random walks were obtained, see e.g. Bertoin and Doney, 1994; Caravenna, 2005;
Caravenna and Chaumont, 2008; Vatutin and Wachtel, 2009 and references therein.
Also, it is worth noting that in the paper Bolthausen, 1976 the approach of Iglehart,
1974 was substantially simplified by taking advantage of the homogeneity of the
random walk; however, since in our case the random walk is not space-homogeneous,
we rather use methods similar to those of Iglehart, 1974.

Also, as mentioned in Gallesco and Popov, 2012, another motivation for this
work came from Knudsen billiards in random tubes, see Comets and Popov, 2012;
Comets et al., 2009, 2010a,b. We refer to Section 1 of Gallesco and Popov, 2012
for the discussion on the relationship of the present model to random billiards.

Now, we define the model formally. For x, y ∈ Z, we denote by ωx,y = ωy,x

the conductance between x and y. Define θzωx,y = ωx+z,y+z, for all z ∈ Z. Note
that, by Condition K below, the vectors ωx,· are elements of the Polish space ℓ2(Z).
We assume that (ωx,·)x∈Z is a stationary ergodic (with respect to the family of
shifts θ) sequence of random vectors; P stands for the law of this sequence. The
collection of all conductances ω = (ωx,y, x, y ∈ Z) is called the environment. For
all x ∈ Z, define Cx =

∑

y ωx,y. Given that Cx < ∞ for all x ∈ Z (which is always

so by Condition K below), the random walk X in random environment ω is defined
through its transition probabilities

pω(x, y) =
ωx,y

Cx
;

that is, if Pxω is the quenched law of the random walk starting from x, we have

P
x
ω[X0 = x] = 1, P

x
ω[Xk+1 = z | Xk = y] = pω(y, z).

Clearly, this random walk is reversible with the reversible measure (Cx, x ∈ Z).
Also, we denote by E

x
ω the quenched expectation for the process starting from x.

When the random walk starts from 0, we use shortened notations Pω, Eω.
In order to prove our results, we need to make two technical assumptions on the

environment:

Condition E. There exists κ > 0 such that, P-a.s., ω0,1 ≥ κ.

Condition K. There exist constants K,β > 0 such that P-a.s., ω0,y ≤ K
1+y3+β , for

all y ≥ 0.
For future reference, note that combining Conditions E and K we have that there

exists κ̂ > 0 such that P-a.s.,

κ̂ ≤
∑

y∈Z

ω0,y ≤ κ̂−1. (1.1)

We decided to formulate Condition E this way because, due to the fact that this
work was motivated by random billiards, the main challenge was to deal with the
long-range jumps. It is plausible that Condition E could be relaxed to some extent;
however, for the sake of cleaner presentation of the argument, we prefer not trying
to deal with both long-range jumps and the lack of nearest-neighbor ellipticity.
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Next, for all n ≥ 1, we define the continuous map Zn = (Zn(t), t ∈ R+) as
the natural polygonal interpolation of the map k/n 7→ σ−1n−1/2Xk (with σ from
Theorem 1.1 in Gallesco and Popov, 2012). In other words,

σ
√
nZn

t = X⌊nt⌋ + (nt− ⌊nt⌋)X⌊nt⌋+1

with ⌊·⌋ the integer part. Also, we denote by W the standard Brownian motion.
Now, let τ̂ = inf{k ≥ 1 : Xk ∈ (−∞, 0]} and Λn = {τ̂ > n} = {Xk >

0 for all k = 1, . . . , n}. Consider the conditional quenched probability measure
Qn

ω[ · ] = Pω[ · | Λn], for all n ≥ 1. For each n, the random map Zn induces a
probability measure µn

ω on (C[0, 1],B1), where B1 is the Borel σ-algebra on C[0, 1]
with the supremum norm: for any A ∈ B1,

µn
ω(A) = Qn

ω[Z
n ∈ A].

Let us next recall the formal definition of the Brownian meander W+. For this, let
W be a standard Brownian motion and define τ1 = sup{s ∈ [0, 1] : W (s) = 0} and
∆1 = 1− τ1. Then,

W+(s) = ∆
−1/2
1 |W (τ1 + s∆1)|, 0 ≤ s ≤ 1.

Now, we are ready to formulate the quenched invariance principle for the random
walk conditioned to stay positive, which is the main result of this paper:

Theorem 1.1. Under Conditions E and K, we have that, P-a.s., µn
ω tends weakly

to PW+ as n → ∞, where PW+ is the law of the Brownian meander W+ on C[0, 1].

As a corollary of Theorem 1.1, we obtain a limit theorem for the process condi-
tioned on crossing a large interval. Define τ̂n = inf{k ≥ 0 : Xk ∈ [n,∞)} and Λ′

n =

{τ̂n < τ̂}. We also define Tn = inf{t > 0 : Zn2

t = σ−1} and the stopped process

Y n
· = Zn2

·∧Tn
. Denoting by B3 the three-dimensional Bessel process (we recall that

B3 is the radial part of a 3-dimensional Brownian motion, that is, if (W1,W2,W3) is

a three-dimensional Brownian motion, we have B3(t) =
√

W 2
1 (t) +W 2

2 (t) +W 2
3 (t))

and by ̺1 = inf{t > 0 : B3 = σ−1}, we have

Corollary 1.2. Assume Conditions E and K. We have that, P-a.s., under the law
Pω[ · | Λ′

n], the couple (Y n, Tn) converges in law to (B3(· ∧ ̺1), ̺1) as n → ∞.

In the next section, we prove some auxiliary results which are necessary for the
proof of Theorem 1.1. Then, in Section 3, we give the proof of Theorem 1.1. Finally,
in Section 4, we give the proof of Corollary 1.2.

We will denote by K1, K2, . . . the “global” constants, that is, those that are
used all along the paper and by γ1, γ2, . . . the “local” constants, that is, those
that are used only in the subsection in which they appear for the first time. For
the local constants, we restart the numeration in the beginning of each subsection.

Besides, to simplify notations, if x is not integer, Pxω must be understood as P
⌊x⌋
ω .

2. Auxiliary results

In this section, we will prove some technical results that will be needed later to
prove Theorem 1.1. Let us introduce the following notations. If A ⊂ Z,

τA = inf{n ≥ 0 : Xn ∈ A} and τ+A = inf{n ≥ 1 : Xn ∈ A}. (2.1)
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Whenever A = {x}, x ∈ Z, we write τx (respectively, τ+x ) instead of τ{x} (respec-

tively, τ+{x}).

2.1. Auxiliary environments. From some fixed environment ω, we are going to in-
troduce three derived environments denoted by ω(1), ω(2) and ω(3) which will be
important tools for the proofs of the lemmas in the rest of this section.

Fix two disjoint intervals B = (−∞, 0] and E = [N,∞) of Z. For some realiza-
tion ω of the environment, consider the new environment ω(1) obtained from ω by
deleting all the conductances ωx,y if x and y belong to (B \{0})∪E. The reversible

measure (up to a constant factor) on this new environment ω(1) is given by

C
(1)
0 = C0,

C(1)
x = Cx, if x /∈ B ∪ E,

C(1)
x =

∑

y/∈(B\{0})∪E

ωx,y, otherwise.

Now, we define C
(1)
B =

∑

x∈B C
(1)
x and for all x ∈ B, πB(x) = C

(1)
x /C

(1)
B . Observe

that by Conditions E and K, C
(1)
B is positive and finite P-a.s. Hence πB is P-a.s.

a probability measure on B. In the same way we define πE on E. For the sake of
simplicity we denote P

B
ω(1) (respectively, PE

ω(1)) instead of PπB

ω(1) (respectively, PπE

ω(1))

for the random walk on ω(1) starting with initial distribution πB (respectively, πE).
The same convention will be adopted for environments ω(2) and ω(3) defined below.

From the environment ω(1), we now construct a new environment ω(2) by setting
if x > 0, y > 0,

ω
(2)
x,0 =

∑

y∈B

ω(1)
x,y, ω

(2)
0,0 =

∑

y∈B

ω
(1)
y,0, ω(2)

x,y = ω(1)
x,y

and ω
(2)
x,y = 0 otherwise. Defining the reversible measure associated to ω(2) as

C
(2)
x =

∑

y∈Z
ω
(2)
x,y, for x ∈ Z, observe in particular that C

(2)
0 = C

(1)
B and C

(2)
x = C

(1)
x

for x > 0.
From the environment ω(1), we finally create a last environment ω(3) by setting

if x ∈ (0, N),

ω
(3)
x,N =

∑

y∈E

ω(1)
x,y, ω

(3)
x,0 =

∑

y∈B

ω(1)
x,y.

Then, let

ω
(3)
N,0 =

∑

y∈E

ω
(1)
y,0, ω

(3)
0,0 =

∑

y∈B

ω
(1)
y,0.

For x ∈ (0, N) and y ∈ (0, N) we just set ω
(3)
x,y = ω

(1)
x,y and ω

(3)
x,y = 0 in all other

cases. We define the reversible measure associated to ω(3) as C
(3)
x =

∑

y∈Z
ω
(3)
x,y, for

x ∈ Z. Observe in particular that C
(3)
0 = C

(1)
B , C

(3)
N = C

(1)
E and C

(3)
x = C

(1)
x for

x ∈ (0, N).

2.2. Crossing probabilities and estimates on the conditional exit distribution. Fix
ε > 0, n ∈ N such that ε

√
n ≥ 1 and take N = ⌊ε√n⌋ (N is from section 2.1).

Then define the event Aε,n = {τE < τ+B } (B and E are from section 2.1). For an
arbitrary positive integer M define IM = [N,N +M ].
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Lemma 2.1. For all η > 0 there exists M > 0 such that P-a.s.,

Pω[XτE ∈ IM | Aε,n] ≥ 1− η, for all n such that N > 1.

Proof. The proof of this lemma is very similar to the proof of Proposition 2.3
of Gallesco and Popov, 2012. Here, we just give the first steps of the proof and
then indicate the exact place where it matches with the proof of Proposition 2.3
of Gallesco and Popov, 2012. First, we write

Pω[XτE ∈ IM | Aε,n] = 1− Pω[XτE /∈ IM | Aε,n]

= 1−
∑

y>N+M

Pω[XτE = y | Aε,n]. (2.2)

By definition of ω(1) (cf. section 2.1), we can couple the random walks in environ-
ments ω and ω(1) to show that Pω(1) [XτE = y | Aε,n] = Pω[XτE = y | Aε,n]. Then,

by construction of ω(2), we can couple the random walks in environments ω(1) and
ω(2) to show that Pω(2) [XτE = y | Aε,n] = P

B
ω(1) [XτE = y | Aε,n]. Thus, we obtain

Pω(2) [XτE = y | Aε,n] = P
B
ω(1) [XτE = y | Aε,n] =

∑

x∈B

πB(x)P
x
ω(1) [XτE = y | Aε,n]

=
∑

x∈B

πB(x)P
x
ω(1) [XτE = y | Aε,n]

≥ πB(0)Pω(1) [XτE = y | Aε,n]

=
C0

C
(1)
B

Pω[XτE = y | Aε,n].

By (2.2) we obtain

Pω[XτE ∈ IM | Aε,n] ≥ 1− C
(1)
B

C0

∑

y>N+M

Pω(2) [XτE = y | Aε,n].

Note that, by Condition K and (1.1), C
(1)
B /C0 ≤ γ1 for some constant γ1. The terms

Pω(2) [XτE = y | Aε,n] can be treated in the same way as the terms Pxω[XτE = y | AE ]
of equation (2.6) in Gallesco and Popov, 2012. In particular, following the reasoning
anteceding equation (2.9) in Gallesco and Popov, 2012, we can show that

Pω(2) [XτE = y | Aε,n] =
C

(1)
y P

y
ω(2) [τ0 < τ+E ]

C
(1)
E P

E
ω(2) [τ0 < τ+E ]

.

Then, the numerator and denominator of the above equation can be treated by
using the same techniques as those used to treat (2.9) in Gallesco and Popov,
2012. �

Lemma 2.2. There exists a positive constant K1 such that, P-a.s., Pω[Aε,n] ≥
K1N

−1 for all n such that N > 1.

Proof. Recall that Pω[Aε,n] = Pω[τE < τ+B ]. We can couple the random walks in

environments ω and ω(1) (cf. section 2.1) to show that Pω[τE < τ+B ] = Pω(1) [τE <

τ+B ].
Let us denote by Γz′,z′′ the set of finite paths (z′, z1, . . . , zk, z′′) such that zi /∈

B ∪ E ∪ {z′, z′′} for all i = 1, . . . , k. Let γ = (z′, z1, . . . , zk, z′′) ∈ Γz′,z′′ and define

P
z′

ω(1) [γ] := P
z′

ω(1) [X1 = z1, . . . , Xk = zk, Xk+1 = z′′].
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By reversibility we obtain

Pω(1) [τE < τ+B ] =
∑

z∈E

∑

γ∈Γ0,z

Pω(1) [γ]

=
∑

z∈E

∑

γ∈Γz,0

C
(1)
z

C0
P
z
ω(1) [γ]

=
C

(1)
E

C0

∑

z∈E

πE(z)
∑

γ∈Γz,0

P
z
ω(1) [γ]

=
C

(1)
E

C0
P
E
ω(1) [τB < τ+E , XτB = 0]. (2.3)

Now, define B′ = (−∞, 1]. We have

P
E
ω(1) [τB < τ+E , XτB = 0]

= P
E
ω(1) [τB < τ+E , τB′ < τ+E , XτB = 0]

= P
E
ω(1) [τB′ < τ+E ]PEω(1) [τB < τ+E , XτB = 0 | τB′ < τ+E ]

≥ P
E
ω(1) [τB < τ+E ]PEω(1) [τB < τ+E , XτB = 0 | τB′ < τ+E ]. (2.4)

Let us treat the term P
E
ω(1) [τB < τ+E ]. By definition of ω(3) (cf. section 2.1), we can

couple the random walks in environments ω(1) and ω(3) to show that P
E
ω(1) [τB <

τ+E ] = P
N
ω(3) [τ0 < τ+N ]. We obtain

C
(1)
E P

E
ω(1) [τB < τ+E ] = C

(1)
E P

N
ω(3) [τ0 < τ+N ] = C

(3)
N P

N
ω(3) [τ0 < τ+N ] = Ceff(1, N) (2.5)

where Ceff(1, N) is the effective conductance between the points 1 and N of the
electrical network associated to ω(3) (cf. Doyle and Snell, 1984, section 3.4). Using
Condition E, we obtain

Ceff(1, N) ≥
(

N−1
∑

i=1

ω−1
i,i+1

)−1

≥ κ

N − 1
.

Therefore, there exists a constant γ1 such that, whenever N > 1

C
(1)
E P

E
ω(1) [τB′ < τ+E ] ≥ γ1

N
. (2.6)

Let us treat the term P
E
ω(1) [τB < τ+E , XτB = 0 | τB′ < τ+E ]. We have by the Markov

property

P
E
ω(1) [τB < τ+E , XτB = 0 | τB′ < τ+E ]

=
∑

y∈{0,1}
P
E
ω(1) [τB < τ+E , XτB = 0, XτB′ = y | τB′ < τ+E ]

=
∑

y∈{0,1}
P
E
ω(1) [τB < τ+E , XτB = 0, | XτB′ = y, τB′ < τ+E ]PEω(1) [XτB′ = y | τB′ < τ+E ]

=
∑

y∈{0,1}
P
y
ω[τB < τE , XτB = 0]PEω(1) [XτB′ = y | τB′ < τ+E ]

≥ min
y∈{0,1}

P
y
ω[τB < τE , XτB = 0]
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≥ P
1
ω[X1 = 0].

By Condition E and (1.1), this last probability is bounded from below by the
constant κκ̂. Thus, combining this last result with (2.3), (2.4), (2.6) and, since by
(1.1) we have C0 ≤ κ̂−1, it follows that P-a.s.,

Pω[Aε,n] ≥
γ1κκ̂

2

N
.

This concludes the proof of Lemma 2.2. �

Lemma 2.3. There exists a positive constant K2 such that we have, P-a.s.,

Eω[τ
+
B ∧ τE ] ≤ K2N

for all n such that N > 1.

Proof. First notice that by construction of ω(1) (cf. section 2.1), we can couple the
random walks in environments ω and ω(1) to show that Eω[τ

+
B ∧τE ] = Eω(1) [τ+B ∧τE ].

Hence, we obtain

E
B
ω(1) [τ

+
B ∧ τE ] =

∑

y∈B

πB(y)E
y
ω(1) [τ

+
B ∧ τE ]

= πB(0)E
0
ω(1) [τ

+
B ∧ τE ] +

∑

y∈B\{0}
πB(y)E

y
ω(1) [τ

+
B ∧ τE ]

≥ πB(0)Eω[τ
+
B ∧ τE ].

Therefore, we obtain

Eω[τ
+
B ∧ τE ] ≤

E
B
ω(1) [τ

+
B ∧ τE ]

πB(0)
. (2.7)

Then, observe that

E
B
ω(1) [τ

+
B ∧ τE ] = Eω(3) [τ+0 ∧ τN ]. (2.8)

We are going to bound the right-hand side term of (2.8) from above. Before this,
we make a brief digression to study the invariant measure of a particular process
of interest.

Consider the following particle system in continuous time on the interval [0, N ]
of Z. Suppose that we have injection (according to some Poisson process) and ab-
sorption of particles at states 0 and N . Once injected, particles move according

to transition rates given by qx,y = ω
(3)
x,y/C

(3)
x , for (x, y) ∈ {0, . . . , N}2, until they

reach 0 or N . We suppose that injections at 0 and N happen accordingly to inde-

pendent Poisson processes with rates respectively λ0 = C
(3)
0 and λN = C

(3)
N . We are

interested in the continuous time Markov process
(

η(t) = ((η0(t), . . . , ηN (t)), t ≥ 0
)

with state space Ω = Z
{0,...,N}
+ where ηi(t) represents the number of particles in

i at time t. Hereafter, for (i, j) ∈ {0, . . . , N}2, we will use the symbol ηi,j to de-
note the configuration obtained from η by moving a particle from site i to site j,
i.e., if for example i < j, ηi,j = (η0, . . . , ηi − 1, . . . , ηj + 1, . . . , ηN ). We also define
ηi,+ = (η0, . . . , ηi+1, . . . , ηN ) and ηi,− = (η0, . . . , ηi−1, . . . , ηN ) for i ∈ {0, . . . , N}.
The generator of this process defined by its action on functions f : Ω → R is given
by

Lf(η) = λ0(f(η
0,+)− f(η)) +

N
∑

i=0

ηiqi,0(f(η
i,−)− f(η))
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+

N−1
∑

i=1

N−1
∑

j=1

ηjqj,i(f(η
j,i)− f(η))

+ λN (f(ηN,+)− f(η)) +
N
∑

i=0

ηiqi,N (f(ηi,−)− f(η)). (2.9)

Let µ =
⊗N

i=1 µi be the product measure of laws µi where for each i ∈ {0, . . . , N},
µi is a Poisson law with parameter C

(3)
i . We can check that for any configurations

η, η′ ∈ Ω,
L(η, η′)µ(η) = L(η′, η)µ(η′) (2.10)

where L(η, η′) is the transition rate from the configuration η to η′, i.e., L(η, η′) =
Lf(η) with f(η) = δη,η′ . This implies that the probability measure µ is reversible
and invariant for the Markov process η.

Now, consider the model above with injection at rate λ0 and absorption at 0
and only absorption (without injection) at N . Such a system can be considered
as a M/G/∞ queue where the customers arrive according to a Poisson process of
rate λ0 and the service time law is that of the lifetime of a particle in the interval
[0, N ]. Thus, the expected service time of a customer, denoted by E[T ], equals
Eω(3) [τ+0 ∧ τN ]. By Little’s formula (see e.g. Section 5.2 of Cooper, 1981) we have

E[T ] =
E[R]

λ0

where E[R] is the mean number of particles in the queue in the stationary regime.
By a coupling argument, we can see that the distribution of the number of cus-
tomers in the system in the stationary regime is stochastically dominated by the
distribution of the total number of particles in the interval [0, N ] in the stationary
regime for the particle system with both injection and absorption of particles at
states 0 and N . It is not difficult to see that this last distribution is µ0 ⋆ · · · ⋆ µN

(here ⋆ is the convolution product of measures). Therefore, combining the foregoing
observations, we obtain

Eω(3) [τ+0 ∧ τN ] = E[T ] =
E[R]

λ0
≤ 1

λ0

∑

x∈Z

xµ0 ⋆ · · · ⋆ µN (x) =
1

C
(3)
0

N
∑

x=0

C(3)
x . (2.11)

Finally, by (2.7), (2.8) and (2.11) we obtain

Eω[τ
+
B ∧ τE ] ≤

1

C
(3)
0 πB(0)

N
∑

x=0

C(3)
x .

By Conditions E and K, it holds that there exists a positive constant K2 such that
P-a.s.,

Eω[τ
+
B ∧ τE ] ≤ K2N.

This concludes the proof of Lemma 2.3. �

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. To simplify notations, we consider σ = 1.
Our strategy to prove Theorem 1.1 is to use Theorems 3.6 and 3.10 of Durrett, 1978
(which are restated here as Theorems 3.1 and 3.2). These theorems give equivalent
conditions for the tightness and convergence of finite dimensional distributions of
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the conditioned processes Zn that are easier to verify in our case. In Durrett, 1978,
these theorems are stated in a quite general form that can be simplified here. Also,
since in our problem all the processes considered have continuous trajectories, we
will transpose these theorems on C[0, 1] (instead of D[0, 1], the Skorokhod space):

Theorem 3.1. The sequence of measures (µn
ω, n ≥ 1) is tight if and only if

lim
x→∞

lim sup
n→∞

Pω[Z
n
1 > x | Λn] = 0 and (3.1)

lim
t→0

lim sup
n→∞

Pω[Z
n
t > h | Λn] = 0 for each h > 0. (3.2)

We recall that the measures µn
ω are defined in the introduction. Now, let us

define the following conditions:

(i) if xn → x, then (P
xn

√
n

ω [Zn
· ∈ ·], n ≥ 1) tends weakly to P x[W· ∈ ·] in

C[0, 1],

(ii) let xn ≥ 0, for all n ≥ 1, then limn→∞ P
xn

√
n

ω [Zn
s > 0, s ≤ tn] = P x[Ws >

0, s ≤ t], whenever xn → x and tn → t > 0.

Theorem 3.2. Suppose (i)-(ii) hold and (µn
ω, n ≥ 1) is tight. Then, (µn

ω , n ≥ 1)
tends wealky to W+ if and only if

lim
h→0

lim inf
n→∞

Pω[Z
n
t > h | Λn] = 1 for all t > 0. (3.3)

In our case, condition (i) is an immediate consequence of the quenched Uniform
CLT (cf. Theorem 1.2 of Gallesco and Popov, 2012) which in the rest of this paper
will be referred as UCLT. For condition (ii), let ε > 0, we have for all n large enough

P
xn

√
n

ω [Zn
s > 0, s ≤ t+ ε] ≤ P

xn
√
n

ω [Zn
s > 0, s ≤ tn] ≤ P

xn
√
n

ω [Zn
s > 0, s ≤ t− ε].

Thus, condition (ii) follows from the UCLT and the continuity in t of P x[Ws >
0, s ≤ t]. Our next step is to obtain the weak limit of the sequence (Pω[Z

n
1 ∈ · |

Λn], n ≥ 1). This is the object of Proposition 3.3. Then, we obtain the weak limit
of (Pω[Z

n
t ∈ · | Λn], n ≥ 1) for all t ∈ (0, 1). This is done in Proposition 3.4. In the

last step, we check that (3.1), (3.2), and (3.3) hold to end the proof of Theorem 1.1.

At this point, let us recall some notations of Section 2.2. Fix ε > 0 and define
N = ⌊ε√n⌋. Let B = (−∞, 0] and E = [N,+∞). Then, define the event Aε,n =

{τE < τ+B }. For an arbitrary positive integer M define IM = [N,N +M ]. First, let
us prove

Proposition 3.3. We have P-a.s.,

lim
n→∞

Pω[Z
n
1 > x | Λn] = exp(−x2/2), for all x ≥ 0. (3.4)

Proof. For notational convenience, let us only treat the case x = 1. The general-
ization to any x ≥ 0 is straightforward. Fix ε ∈ (0, 1), δ ∈ (0, 1) and write

Pω[Xn >
√
n | Λn]

=
1

Pω[Λn]
Pω[Xn >

√
n,Aε,n,Λn]

=
1

Pω[Λn]

(

Pω[Xn >
√
n,Aε,n,Λn, XτE ∈ IM ]

+ Pω[Xn >
√
n,Aε,n,Λn, XτE /∈ IM ]

)
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=
1

Pω[Λn]

(

Pω[Xn >
√
n,Aε,n,Λn, XτE ∈ IM , τE > δn]

+ Pω[Xn >
√
n,Aε,n,Λn, XτE ∈ IM , τE ≤ δn]

+ Pω[Xn >
√
n,Aε,n,Λn, XτE /∈ IM ]

)

=
Pω[Aε,n]

Pω[Λn]

(

Pω[XτE ∈ IM | Aε,n]Pω[τE > δn | XτE ∈ IM , Aε,n]

× Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE > δn]

+ Pω[XτE ∈ IM | Aε,n]Pω[τE ≤ δn | XτE ∈ IM , Aε,n]

× Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn]

+ Pω[Xn >
√
n,Λn, XτE /∈ IM | Aε,n]

)

. (3.5)

Informally, the rest of the proof consists in using the decomposition (3.5) in order
to find good lower and upper bounds Ln and Un for Pω[Xn >

√
n | Λn] such that

Un/Ln → 1 as n → ∞. We start with the upper bound. Let us write

Pω[Xn >
√
n | Λn]

≤ Pω[Aε,n]

Pω[Λn]

(

Pω[XτE /∈ IM | Aε,n] + Pω[τE > δn | XτE ∈ IM , Aε,n]

+ Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn]

)

. (3.6)

Observe that we can bound the term Pω[XτE /∈ IM | Aε,n] from above using
Lemma 2.1: let η > 0, then we can choose M large enough in such a way that

Pω[XτE /∈ IM | Aε,n] ≤ η. (3.7)

Next, let us bound the other terms of the right-hand side of (3.6) from above. For
Pω[Aε,n]/Pω[Λn], we write

Pω[Λn] ≥ Pω[Λn, Aε,n, XτE ∈ IM , τE ≤ δn]

= Pω[Aε,n]Pω[XτE ∈ IM | Aε,n]Pω[τE ≤ δn | XτE ∈ IM , Aε,n]

× Pω[Λn | Aε,n, XτE ∈ IM , τE ≤ δn]. (3.8)

Hence,

Pω[Λn]

Pω[Aε,n]
≥ Pω[XτE ∈ IM | Aε,n]Pω[τE ≤ δn | XτE ∈ IM , Aε,n]

× Pω[Λn | Aε,n, XτE ∈ IM , τE ≤ δn].

Again, we use Lemma 2.1 to bound the term Pω[XτE ∈ IM | Aε,n] from below. For
the term Pω[τE ≤ δn | XτE ∈ IM , Aε,n] we write

Pω[τE ≤ δn | XτE ∈ IM , Aε,n] = 1− Pω[τE > δn | XτE ∈ IM , Aε,n] (3.9)

and

Pω[τE > δn | XτE ∈ IM , Aε,n] =
Pω[τE > δn,XτE ∈ IM , Aε,n]

Pω[XτE ∈ IM , Aε,n]

=
Pω[τE > δn,XτE ∈ IM , Aε,n]

Pω[XτE ∈ IM | Aε,n]Pω[Aε,n]
. (3.10)
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We first treat the numerator of (3.10). By Chebyshev’s inequality we obtain

Pω[τE > δn,XτE ∈ IM , Aε,n] ≤ Pω[τ
+
B ∧ τE > δn] ≤ Eω[τ

+
B ∧ τE ]

δn
.

Using (3.10) and Lemmas 2.3, 2.1 and 2.2 we obtain

Pω[τE > δn | XτE ∈ IM , Aε,n] ≤
K2N

2

K1δn(1− η)
. (3.11)

Then, we deal with the term Pω[Λn | Aε,n, XτE ∈ IM , τE ≤ δn]. By the Markov
property we obtain

Pω[Λn | Aε,n, XτE ∈ IM , τE ≤ δn]

=
1

Pω[Aε,n, XτE ∈ IM , τE ≤ δn]

∑

x∈IM

⌊δn⌋
∑

u=1

Pω[Λn | XτE = x, τE = u,Aε,n]

× Pω[XτE = x, τE = u,Aε,n]

≥ min
x∈IM

min
u≤⌊δn⌋

P
x
ω[Λn−u]

≥ min
x∈IM

P
x
ω[Λn]. (3.12)

Thus, by (3.8), (3.9), (3.10), (3.12) and Lemma 2.1, we have

Pω[Λn]

Pω[Aε,n]
≥ (1 − η)

(

1− K2N
2

K1δn(1− η)

)

min
x∈IM

P
x
ω[Λn]. (3.13)

To bound the term Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn] from above we

do the following. Let us denote by E the event {XτE ∈ IM , Aε,n, τE ≤ δn}. Since
Aε,n ∈ FτE the σ-field generated by X until the stopping time τE , we have by the
Markov property and the fact that δ < 1,

Pω[Xn >
√
n,Λn | E ] = 1

Pω[E ]
∑

x∈IM

⌊δn⌋
∑

u=1

Pω[Xn >
√
n,Λn | XτE = x, τE = u,Aε,n]

× Pω[XτE = x, τE = u,Aε,n]

≤ max
x∈IM

max
u≤⌊δn⌋

Pω[Xn >
√
n,Λn | XτE = x, τE = u,Aε,n]

= max
x∈IM

max
u≤⌊δn⌋

P
x
ω[Xn−u >

√
n,Xk > 0, 1 ≤ k ≤ n− u]

= max
x∈IM

max
u≤⌊δn⌋

P
x
ω[Xn−u >

√
n,Λn−u]. (3.14)

Now, fix δ′ ∈ (0, 1). Then, we use the following estimate for x ∈ IM and u ≤ ⌊δn⌋,

P
x
ω[Xn−u >

√
n,Λn−u]

≤ P
x
ω

[

({Xn−⌊δn⌋ > (1− δ′)
√
n} ∪ {|Xn−⌊δn⌋ −Xn−u| > δ′

√
n}) ∩ Λn−u

]

≤ P
x
ω

[({

Xn−⌊δn⌋ > (1− δ′)
√
n
}

∪
{

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| > δ′
√
n
})

∩ Λn−⌊δn⌋
]

.
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Hence, we obtain for all x ∈ IM that

max
u≤⌊δn⌋

P
x
ω[Xn−u >

√
n,Λn−u] ≤ P

x
ω[Xn−⌊δn⌋ > (1 − δ′)

√
n,Λn−⌊δn⌋]

+ P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| > δ′
√
n,Λn−⌊δn⌋

]

.

(3.15)

To sum up, using (3.7), (3.13), (3.11) and (3.15) we obtain that P-a.s.,

Pω[Xn >
√
n | Λn]

≤ (1− η)−1
(

1− K2N
2

K1δn(1− η)

)−1(

min
x∈IM

P
x
ω[Λn]

)−1

×
( K2N

2

K1δn(1− η)
+ η + max

x∈IM
P
x
ω[Xn−⌊δn⌋ > (1− δ′)

√
n,Λn−⌊δn⌋]

+ max
x∈IM

P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| > δ′
√
n,Λn−⌊δn⌋

])

. (3.16)

Our goal is now to calculate the lim sup as n → ∞ of both sides of (3.16). Let
us first compute lim supn→∞(Pxω[Λn])

−1 for x ∈ IM . We have by definition of Zn

P
x
ω[Λn] = P

x
ω[Xm > 0, 0 ≤ m ≤ n] = P

x
ω

[

Zn
t > 0, t ∈ [0, 1]

]

.

Thus, by the UCLT, we have

lim
n→∞

P
x
ω

[

Zn
t > 0, t ∈ [0, 1]

]

= P ε
[

min
0≤t≤1

W (t) > 0
]

with W a standard Brownian motion. Using the reflexion principle (see Chap. III,
Prop. 3.7 in Revuz and Yor, 1999), we obtain

P ε
[

min
0≤t≤1

W (t) > 0
]

= P 0[|W (1)| < ε] =

∫ ε

−ε

1√
2π

e−
x2

2 dx.

So, we obtain

lim
n→∞

min
x∈IM

(Pxω[Λn])
−1 =

(

∫ ε

−ε

1√
2π

e−
x2

2 dx
)−1

=
( 2ε√

2π
+ o(ε)

)−1

(3.17)

as ε → 0.
Now, let us bound lim supn→∞ P

x
ω[Xn−⌊δn⌋ > (1 − δ′)

√
n,Λn−⌊δn⌋] from above.

We have

P
x
ω[Xn−⌊δn⌋ > (1− δ′)

√
n,Λn−⌊δn⌋]

≤ P
x
ω

[

Xn−⌊δn⌋ > (1− δ′)
√

n− ⌊δn⌋,Λn−⌊δn⌋
]

= P
x
ω

[

Z
n−⌊δn⌋
1 > (1− δ′), Zn−⌊δn⌋

t > 0, t ∈ [0, 1]
]

.

As δ < 1 and x ∈ IM , we have by the UCLT,

lim
n→∞

P
x
ω

[

Z
n−⌊δn⌋
1 > (1− δ′), Zn−⌊δn⌋

t > 0, t ∈ [0, 1]
]

= P
ε√
1−δ

[

W (1) > (1− δ′), min
0≤t≤1

W (t) > 0
]

.
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Abbreviate ε′ := ε(1−δ)−
1
2 and let us compute P ε′

[

W (1) > (1−δ′), min
0≤t≤1

W (t) > 0
]

for sufficiently small ε. By the reflexion principle for Brownian motion, we have

P ε′
[

W (1) > (1− δ′), min
0≤t≤1

W (t) > 0
]

= P ε′
[

W (1) > (1− δ′)
]

− P ε′
[

W (1) < −(1− δ′)
]

= P
[

W (1) > 1− (δ′ + ε′)
]

− P
[

W (1) < −1 + (δ′ − ε′))
]

=
1√
2π

∫ 1−(δ′−ε′)

1−(δ′+ε′)
e−

x2

2 dx.

Therefore, we obtain, as ε → 0

lim sup
n→∞

max
x∈IM

P
x
ω[Xn−⌊δn⌋ > (1− δ′)

√
n,Λn−⌊δn⌋]

≤ 1√
2π

∫ 1−(δ′−ε′)

1−(δ′+ε′)
e−

x2

2 dx =
2ε

√

2π(1− δ)
e−

1
2 + o(ε). (3.18)

Then, let us bound lim supn→∞ P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋−Xn−u| > δ′
√
n,Λn−⌊δn⌋

]

from

above in (3.16) for x ∈ IM . First, observe that

P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| ≥ δ′
√
n,Λn−⌊δn⌋

]

≤ P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| ≥ δ′
√
n
]

and

P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| ≥ δ′
√
n
]

= P
x
ω

[

max
n−⌊δn⌋≤k≤n

|Xk −Xn−⌊δn⌋| ≥ δ′
√
n
]

≤ P
x
ω

[

max
n−⌊δn⌋≤k≤n

(Xk − min
n−⌊δn⌋≤l≤k

Xl) ≥ δ′
√
n
]

+ P
x
ω

[

min
n−⌊δn⌋≤k≤n

(Xk − max
n−⌊δn⌋≤l≤k

Xl) ≤ −δ′
√
n
]

≤ P
x
ω

[

max
1−δ≤t≤1

(Zn
t − min

1−δ≤s≤t
Zn
s ) ≥ δ′

]

+ P
x
ω

[

min
1−δ≤t≤1

(Zn
t − max

1−δ≤s≤t
Zn
s ) ≤ −δ′

]

.

Using the UCLT, we obtain

lim
n→∞

P
x
ω

[

max
1−δ≤t≤1

(Zn
t − min

1−δ≤s≤t
Zn
s ) ≥ δ′

]

= P ε
[

max
1−δ≤t≤1

(

W (t)− min
1−δ≤s≤t

W (s)
)

≥ δ′
]

(3.19)

and

lim
n→∞

P
x
ω

[

min
1−δ≤t≤1

(Zn
t − max

1−δ≤s≤t
Zn
s ) ≤ −δ′

]

= P ε
[

min
1−δ≤t≤1

(

W (t)− max
1−δ≤s≤t

W (s)
)

≤ −δ′
]

. (3.20)

Observe that the right-hand sides of (3.19) and (3.20) are equal since (−W ) is
a Brownian motion. Thus, let us compute for example P ε[max1−δ≤t≤1(W (t) −
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min1−δ≤s≤t W (s)) ≥ δ′]. First, by the Markov property and since the event is
invariant by space shifts, we have

P ε
[

max
1−δ≤t≤1

(

W (t)− min
1−δ≤s≤t

W (s)
)

≥ δ′
]

= P
[

max
0≤t≤δ

(

W (t)− min
0≤s≤t

W (s)
)

≥ δ′
]

.

By Lévy’s Theorem (cf. Revuz and Yor, 1999, Chapter VI, Theorem 2.3), we have

P
[

max
0≤t≤δ

(

W (t)− min
0≤s≤t

W (s)
)

≥ δ′
]

= P
[

max
0≤t≤δ

|W (t)| ≥ δ′
]

.

Then, by the reflexion principle, we have

P
[

max
0≤t≤δ

|W (t)| ≥ δ′
]

≤ 2P
[

max
0≤t≤δ

W (t) ≥ δ′
]

= 4P [W (δ) ≥ δ′].

Using an estimate on the tail of the Gaussian law (cf. Mörters and Peres, 2010,
Appendix II, Lemma 3.1) we obtain

P
[

max
0≤t≤δ

|W (t)| ≥ δ′
]

≤ 4
√
δ

δ′
√
2π

exp
{

− (δ′)2

2δ

}

.

Thus, we find

lim sup
n→∞

max
x∈IM

P
x
ω

[

max
u≤⌊δn⌋

|Xn−⌊δn⌋ −Xn−u| >δ′
√
n,Λn−⌊δn⌋

]

≤ 8
√
δ

δ′
√
2π

exp
{

− (δ′)2

2δ

}

. (3.21)

Finally, combining (3.16), (3.17), (3.18) and (3.21), we obtain

lim sup
n→∞

Pω[Xn >
√
n | Λn]

≤ (1− η)−1
(

1− K2ε
2

K1δ(1− η)

)−1( 2ε√
2π

+ o(ε)
)−1

×
( K2ε

2

K1δ(1− η)
+ η +

2ε
√

2π(1− δ)
e−

1
2 + o(ε) +

8
√
δ

δ′
√
2π

exp
{

− (δ′)2

2δ

})

. (3.22)

Next, let us bound the quantity Pω[Xn >
√
n | Λn] from below. Using (3.5), we

write

Pω[Xn >
√
n | Λn] ≥

Pω[Aε,n]

Pω[Λn]
Pω[XτE ∈ IM | Aε,n]Pω[τE ≤ δn | XτE ∈ IM , Aε,n]

× Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn]. (3.23)

As we have already treated the terms Pω[τE ≤ δn | XτE ∈ IM , Aε,n] and Pω[XτE ∈
IM | Aε,n] in (3.9) and Lemma 2.1 respectively, we just need to bound the terms
Pω[Aε,n]/Pω[Λn] and Pω[Xn >

√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn] from below.

Let us start with the term Pω[Aε,n]/Pω[Λn]. Observe that

Pω[Λn] = Pω[Λn, τE ≤ δn] + Pω[Λn, τE > δn]

= Pω[Λn, Aε,n, τE ≤ δn] + Pω[Λn, Aε,n, τE > δn] + Pω[Λn, A
c
ε,n, τE > δn]

≤ Pω[Λn, Aε,n, τE ≤ δn] + Pω[Λn, Aε,n, τE > δn] + Pω[Λn, A
c
ε,n]

≤ Pω[Λn, Aε,n, τE ≤ δn,XτE ∈ IM ] + Pω[Λn, Aε,n, τE > δn,XτE ∈ IM ]

+ 2Pω[XτE /∈ IM , Aε,n] + Pω[Λn, A
c
ε,n]
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≤ Pω[Aε,n]
[

Pω[Λn | Aε,n, τE ≤ δn,XτE ∈ IM ] + 2Pω[XτE /∈ IM | Aε,n]

+ Pω[τE > δn | XτE ∈ IM , Aε,n] +
Pω[Λn, A

c
ε,n]

Pω[Aε,n]

]

. (3.24)

From the first equality in (3.12) we obtain

Pω[Λn | Aε,n, XτE ∈ IM , τE ≤ δn] ≤ max
x∈IM

max
u≤⌊δn⌋

P
x
ω[Λn−u]

≤ max
x∈IM

P
x
ω[Λn−⌊δn⌋]. (3.25)

Now, let us treat the term Pω[Λn, A
c
ε,n]. First, observe that by definition of Aε,n

we have

Pω[Λn, A
c
ε,n] ≤ Pω[τ

+
B ∧ τE > n].

Then, by Chebyshev’s inequality we obtain

Pω[τ
+
B ∧ τE > n] ≤ Eω[τ

+
B ∧ τE ]

n
.

By Lemma 2.3, we obtain

Pω[τ
+
B ∧ τE > n] ≤ K2N

n
. (3.26)

Thus, by (3.11), (3.24), (3.25), (3.26) and Lemmas 2.1 and 2.2 we obtain

Pω[Aε,n]

Pω[Λn]
≥

(

max
x∈IM

P
x
ω[Λn−⌊δn⌋] + 2η +

K2N
2

K1δn(1− η)
+

K2N
2

K1n

)−1

. (3.27)

Let us find a lower bound for Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn] in

(3.23). Since Aε,n ∈ FτE we have by the Markov property,

Pω[Xn >
√
n,Λn | XτE ∈ IM , Aε,n, τE ≤ δn]

≥ min
x∈IM

min
u≤⌊δn⌋

Pω[Xn >
√
n,Λn | XτE = x, τE = u,Aε,n]

= min
x∈IM

min
u≤⌊δn⌋

P
x
ω[Xn−u >

√
n,Xk > 0, 1 ≤ k ≤ n− u]

= min
x∈IM

min
u≤⌊δn⌋

P
x
ω[Xn−u >

√
n,Λn−u]. (3.28)

For x ∈ IM and u ≤ ⌊δn⌋ we write

P
x
ω[Xn−u >

√
n,Λn−u]

≥ P
x
ω[Xn > (1 + δ′)

√
n, |Xn −Xn−u| ≤ δ′

√
n,Λn−u]

≥ P
x
ω

[

Xn > (1 + δ′)
√
n, max

u≤⌊δn⌋
|Xn −Xn−u| ≤ δ′

√
n,Λn−u

]

≥ P
x
ω

[

Xn > (1 + δ′)
√
n, max

u≤⌊δn⌋
|Xn −Xn−u| ≤ δ′

√
n,Λn

]

≥ P
x
ω[Xn > (1 + δ′)

√
n,Λn]− P

x
ω

[

max
u≤⌊δn⌋

|Xn −Xn−u| > δ′
√
n
]

. (3.29)

To sum up, by (3.23), (3.27), (3.29), (3.9), (3.11) and Lemma 2.1 we obtain that
P-a.s.,
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Pω[Xn >
√
n | Λn] ≥ (1− η)

(

1− K2N
2

K1δn(1− η)

)

×
(

max
x∈IM

P
x
ω[Λn−⌊δn⌋] + 2η +

K2N
2

K1δn(1− η)
+

K2N
2

K1n

)−1

×
(

min
x∈IM

P
x
ω[Xn > (1 + δ′)

√
n,Λn]

− max
x∈IM

P
x
ω

[

max
u≤⌊δn⌋

|Xn −Xn−u| > δ′
√
n
])

. (3.30)

Let us now compute lim infn→∞ of both sides of (3.30). First, by (3.17) we have

lim
n→∞

max
x∈IM

P
x
ω[Λn−⌊δn⌋] =

2ε
√

2π(1− δ)
+ o(ε) (3.31)

as ε → 0. Then, by the UCLT and after some elementary computations similar to
those which led to (3.18) and (3.21) we obtain

lim
n→∞

min
x∈IM

P
x
ω[Xn > (1 + δ′)

√
n,Λn] =

1√
2π

∫ 1+(δ′+ε)

1+(δ′−ε)

e−
x2

2 dx

=
2ε√
2π

e−
1
2 + o(ε) (3.32)

as ε → 0, and

lim sup
n→∞

max
x∈IM

P
x
ω

[

max
u≤⌊δn⌋

|Xn −Xn−u| > δ′
√
n
]

≤ 8
√
δ

δ′
√
2π

exp
{

− (δ′)2

2δ

}

. (3.33)

Thus, combining (3.30) with (3.31), (3.32) and (3.33) leads to

lim inf
n→∞

Pω[Xn >
√
n | Λn] ≥ (1− η)

(

1− K2ε
2

K1δ(1− η)

)

×
( 2ε
√

2π(1− δ)
+ o(ε) + 2η +

K2ε
2

K1δ(1− η)
+

K2ε
2

K1

)−1

×
( 2ε√

2π
e−

1
2 + o(ε)− 8

√
δ

δ′
√
2π

exp
{

− (δ′)2

2δ

})

. (3.34)

Now take η = ε2, δ = ε
1
2 and δ′ = ε

1
8 and let ε → 0 in (3.22) and (3.34) to

prove (3.4). �

The next step is to show the weak convergence of (Pω[Z
n
t ∈ · | Λn], n ≥ 1) for all

t ∈ (0, 1). We start by recalling the transition density function from (0, 0) to (t, y)
of the Brownian meander (see Iglehart, 1974):

q(t, y) = t−
3
2 y exp

(

− y2

2t

)

Ñ(y(1− t)−
1
2 ) (3.35)

for y > 0, 0 < t ≤ 1, where

Ñ(x) =

√

2

π

∫ x

0

e−
u2

2 du

for x ≥ 0. We will prove the following
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Proposition 3.4. We have P-a.s., for all x ≥ 0 and 0 < t < 1,

lim
n→∞

Pω[Z
n
t ≤ x | Λn] =

∫ x

0

q(t, y)dy. (3.36)

Proof. First notice the following. For all ε̃ > 0 we have

Pω

[

Zn
⌊nt⌋
n

≤ x− ε̃ | Λn

]

≤ Pω

[

Zn
⌊nt⌋
n

≤ x− ε̃,
∣

∣

∣
Zn

⌊nt⌋+1
n

− Zn
⌊nt⌋
n

∣

∣

∣
≤ ε̃ | Λn

]

+ Pω

[∣

∣

∣
Zn

⌊nt⌋+1
n

− Zn
⌊nt⌋
n

∣

∣

∣
> ε̃ | Λn

]

≤ Pω[Z
n
t ≤ x | Λn] + Pω[Λn]

−1
Pω[|X⌊nt⌋+1 −X⌊nt⌋| > ε̃

√
n]. (3.37)

By (3.13), (3.17), Lemma 2.2 and Condition K, the second term of (3.37) tends to 0
as n → ∞. Hence, assuming that the following limits exist, we deduce that

lim
n→∞

Pω

[

Zn
⌊nt⌋
n

≤ x− ε̃ | Λn

]

≤ lim
n→∞

Pω[Z
n
t ≤ x | Λn]

≤ lim
n→∞

Pω

[

Zn
⌊nt⌋
n

≤ x+ ε̃ | Λn

]

(3.38)

for all ε̃ > 0. Now, suppose that we have for all x ≥ 0 and 0 < t < 1,

lim
n→∞

Pω

[

Zn
⌊nt⌋
n

≤ x | Λn

]

=

∫ x

0

q(t, y)dy. (3.39)

Combining (3.38) and (3.39), we obtain (3.36) since the limit distribution q(t, x) is
absolutely continuous. Our goal is now to show (3.39). For this, observe that

Pω

[

Zn
⌊nt⌋
n

≤ x | Λn

]

=
1

Pω[Λn]

∫ xn1/2

⌊nt⌋1/2

0

Pω[Z
⌊nt⌋
1 ∈ dy,Λ⌊nt⌋, Xk > 0, ⌊nt⌋ < k ≤ n]

=
Pω[Λ⌊nt⌋]

Pω[Λn]

∫ xn1/2

⌊nt⌋1/2

0

P
y
√

⌊nt⌋
ω

[

Zn
s > 0, 0 ≤ s ≤ 1− ⌊nt⌋

n

]

Pω[Z
⌊nt⌋
1 ∈ dy | Λ⌊nt⌋].

(3.40)

By (3.13), (3.27), (3.17), and (3.31) we have

lim
n→∞

Pω[Λ⌊nt⌋]

Pω[Λn]
= t−

1
2 . (3.41)

Using part (v) of the UCLT and Dini’s theorem on uniform convergence of non-
decreasing sequences of continuous functions, we obtain

lim
n→∞

P
z
√

⌊nt⌋
ω

[

Zn
s > 0, 0 ≤ s ≤ 1− ⌊nt⌋

n

]

= P z
[

min
s∈[0,1−t]

Ws > 0
]

= P [|W1−t| < z] = Ñ
(

z
( t

1− t

)
1
2
)

uniformly in z on every compact set of R+. By Proposition 3.3, we have

lim
n→∞

Pω[Z
⌊nt⌋
1 ≤ x | Λ⌊nt⌋] =

∫ x

0

y e−
y2

2 dy.

Now, applying Lemma 2.18 of Iglehart, 1974 to (3.40), we obtain
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lim
n→∞

Pω[Z
n
t ≤ x | Λn] = lim

n→∞
Pω

[

Zn
⌊nt⌋
n

≤ x | Λn

]

=

∫ xt−
1
2

0

t−
1
2 Ñ

(

y
( t

1− t

)
1
2
)

ye−
y2

2 dy.

Finally, make the change of variables u = t
1
2 y to obtain the desired result. �

We can now use Propositions 3.3 and 3.4 to easily check that (3.1), (3.2) and
(3.3) of Theorems 3.1 and 3.2 are satisfied. This ends the proof of Theorem 1.1. �

4. Proof of Corollary 1.2

In this last part, for the sake of brevity, we will use the same notation for a real
number x and its integer part ⌊x⌋. The interpretation of the notation should be
clear by the context where it is used. We also suppose without loss of generality
that σ = 1. Let us first introduce some spaces needed in the proof of Corollary 1.2.

For any l > 0, let C0([0, l]) the space of continuous functions f from [0, l] into R

such that f(0) = 0. We endow this space with the metric

d(f, g) = sup
x∈[0,l]

|f(x)− g(x)|

and the Borel sigma-field on C0([0, l]) corresponding to the metric d.
Then, let C0(R+) the space of continuous functions f : R+ → R such that

f(0) = 0. We endow this space with the metric

d(f, g) =

∞
∑

n=1

2−n+1 min{1, sup
x∈[0,n]

|f(x)− g(x)|}

and the Borel sigma-field on C0(R+) corresponding to the metric d. Next, let G
be the set of functions of C0(R+) for which there exists x0 (depending on f) such
that f(x0) = 1. Let us also define the set H as the set of functions of C0(R+) such
that there exists x1 = x1(f) = min{s > 0 : f(s) = 1} and f(x) = 1 for all x ≥ x1;
observe that G and H are closed subsets of C0(R+). We define the continuous
map Ψ : G → H by

Ψ(f)(x) =

{

f(x) for x ≤ x1,
1 for x > x1.

Now, Corollary 1.2 can be restated as follows: under the conditions of Theorem 1.1,
we have P-a.s., for all measurable A ⊂ H such that P [B3(· ∧ ̺1) ∈ ∂A] = 0 and all
a ≥ 0,

lim
n→∞

Pω[Y
n ∈ A, Tn ≤ a | Λ′

n] = P [B3(· ∧ ̺1) ∈ A, ̺1 ≤ a]. (4.1)

Before proving this last statement, let us start by denoting R = {Y n ∈ A}. We will
bound the term Pω[R, Tn ≤ a | Λ′

n] from above and below, for sufficiently large n.
We start with the upper bound. Let M > 0 be an integer and IM = [n, n+M ].

We obtain

Pω[R, Tn ≤ a | Λ′
n] =

1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n]
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=
1

Pω[Λ′
n]

(

Pω[R, Tn ≤ a,Λ′
n, Xτ̂n ∈ IM ]

+ Pω[R, Tn ≤ a,Λ′
n, Xτ̂n /∈ IM ]

)

≤ 1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n, Xτ̂n ∈ IM ] + Pω[Xτ̂n /∈ IM | Λ′
n]

(4.2)

for all sufficiently large n. The second term of the right-hand side of (4.2) can be
treated easily. Indeed, by the same method we used to prove Lemma 2.1, we can
show that, P-a.s., for all η > 0, there exists M > 0 such that

Pω[Xτ̂n /∈ IM | Λ′
n] ≤ η (4.3)

for all n ≥ 1. Let c > 2a and observe that R ∩ {Tn ≤ a} ∈ Fτ̂n , where Fτ̂n is the
sigma-field generated by X until time τ̂n. For the first term of the right-hand side
of (4.2), we have by the Markov property

1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n, Xτ̂n ∈ IM ]

=

M
∑

u=0

1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n, Xτ̂n = n+ u]

=
M
∑

u=0

P
n+u
ω [Λ(c−a)n2 ]

Pω[Λ′
n]P

n+u
ω [Λ(c−a)n2 ]

Pω[R, Tn ≤ a,Λ′
n, Xτ̂n = n+ u]

≤
M
∑

u=0

1

Pω[Λ′
n]P

n+u
ω [Λ(c−a)n2 ]

Pω[R, Tn ≤ a,Λ(c−a)n2, Xτ̂n = n+ u].

Next, let us define the event E = {X1 > 0, . . . , Xτ̂n > 0, . . . , Xτ̂n+(c−a)n2 > 0}.
Using the Markov property, we can write

Pω[E] ≤
M
∑

v=0

Pω[X1 > 0, . . . , Xτ̂n = n+ v, . . . , Xτ̂n+(c−a)n2 > 0] + Pω[Xτ̂n /∈ IM ,Λ′
n]

=

M
∑

v=0

Pω[Λ
′
n, Xτ̂n = n+ v]Pn+v

ω [Λ(c−a)n2 ] + Pω[Xτ̂n /∈ IM | Λ′
n]Pω[Λ

′
n].

But, by the UCLT, we have for all ε > 0 that uniformly in v ∈ [0,M ] and u ∈ [0,M ],
∣

∣

∣
P
n+v
ω [Λ(c−a)n2 ]− P

n+u
ω [Λ(c−a)n2 ]

∣

∣

∣
≤ ε (4.4)

for all n sufficiently large. Therefore, we obtain for all u ∈ [0,M ],

P
n+u
ω [Λ(c−a)n2 ]Pω[Λ

′
n] ≥ Pω[E]− (ε+ η)Pω[Λ

′
n] (4.5)

for all n sufficiently large. Now, let us bound the first term of the right-hand side
of (4.5) from below. Fix some δ > 0. We write

Pω[E] ≥ Pω[E, τ̂n ≤ (a+ δ)n2]

≥ Pω[Λ((c+δ)n2+3), τ̂n ≤ (a+ δ)n2]

≥ Pω[Λ((c+δ)n2+3)]Pω[τ̂n ≤ (a+ δ)n2 | Λ((c+δ)n2+3)]. (4.6)
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Finally, by (4.2), (4.3), (4.5) and (4.6) we obtain P-a.s.,

Pω[R, Tn ≤ a | Λ′
n]

≤ (Pω[Λ((c+δ)n2+3)])
−1

Pω[Λ(c−a)n2 ]Pω[R, Tn ≤ a | Λ(c−a)n2 ]

Pω[τ̂n ≤ (a+ δ)n2 | Λ((c+δ)n2+3)]− (ε+ η)Pω[Λ′
n](Pω[Λ((c+δ)n2+3)))−1

+ η

(4.7)

for all sufficiently large n.
We now estimate the term Pω[R, Tn ≤ a | Λ′

n] from below. Let us write

Pω[R, Tn ≤ a | Λ′
n] =

1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n]

≥ 1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n, Xτ̂n ∈ IM ]. (4.8)

Then, we have by the Markov property

1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n, Xτ̂n ∈ IM ]

=
M
∑

u=0

1

Pω[Λ′
n]
Pω[R, Tn ≤ a,Λ′

n, Xτ̂n = n+ u]

=

M
∑

u=0

P
n+u
ω [Λ(c−a)n2 ]

Pω[Λ′
n]P

n+u
ω [Λ(c−a)n2 ]

Pω[R, Tn ≤ a,Λ′
n, Xτ̂n = n+ u]

≥
M
∑

u=0

1

Pω[Λ′
n]P

n+u
ω [Λ(c−a)n2 ]

Pω[R, Tn ≤ a,Λcn2, Xτ̂n = n+ u]. (4.9)

Again using the Markov property, we can write

Pω[E] ≥
M
∑

v=0

Pω[X1 > 0, . . . , Xτ̂n = n+ v, . . . , Xτ̂n+(c−a)n2 > 0]

≥
M
∑

v=0

Pω[Λ
′
n, Xτ̂n = n+ v]Pn+v

ω [Λ(c−a)n2 ].

Using (4.4), we obtain for all u ∈ [0,M ],

P
n+u
ω [Λ(c−a)n2 ]Pω[Λ

′
n] ≤ Pω[E] + εPω[Λ

′
n] (4.10)

for all sufficiently large n. Then, as τ̂n ≥ 1, we have

Pω[E] ≤ Pω[Λ(c−a)n2 ]. (4.11)

Finally, by (4.8), (4.9), (4.10) and (4.11), we obtain P-a.s.,

Pω[R, Tn ≤ a | Λ′
n] ≥

(Pω[Λ(c−a)n2])−1
Pω[Λcn2 ]Pω[R, Tn ≤ a | Λcn2 ]

1 + εPω[Λ′
n](Pω[Λ(c−a)n2])−1

(4.12)

for all sufficiently large n.
Our intention is now to take the lim sup as n → ∞ in (4.7). Before this, observe

that by (3.13), (3.27), (3.17) and (3.31) we have for ε ≤ 1,

lim
n→∞

Pω[Λ(c−a)n2 ]

Pω[Λ((c+δ)n2+3)]
=

√

c+ δ

c− a
, (4.13)
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lim sup
n→∞

Pω[Λ
′
n]

Pω[Λ((c+δ)n2+3)]
≤ lim sup

n→∞

Pω[Aε,n2 ]

Pω[Λ((c+δ)n2+3)]
≤ γ1

√
c+ δ (4.14)

for some constant γ1. By the usual scaling, from the Brownian meander W+ on
[0, 1] it is possible to define the Brownian meander W+

t on any finite interval [0, t]:
W+

t (·) :=
√
tW+(·/t). Thus, Theorem 1.1 implies that

lim
n→∞

Pω[τ̂n ≤ (a+ δ)n2 | Λ((c+δ)n2+3)] = P
[

sup
0≤s≤(a+δ)

W+
c+δ(s) ≥ 1

]

. (4.15)

Denoting by Ua the measurable set of functions f in H such that f(a) = 1 and
by πl the projection map from C0(R+) onto C0([0, l]), we have

Pω[R, Tn ≤ a | Λ(c−a)n2 ] = Pω[Z
n2

·∧Tn
∈ A ∩ Ua | Λ(c−a)n2 ]

= Pω[Z
n2 ∈ Ψ−1(A ∩ Ua) | Λ(c−a)n2 ]

= Pω[Z
n2

·∧(c−a) ∈ πc−a(Ψ
−1(A ∩ Ua)) | Λ(c−a)n2].

The next step is to show that

lim
n→∞

Pω[Z
n2

·∧(c−a) ∈ πc−a(Ψ
−1(A ∩ Ua)) | Λ(c−a)n2 ]

= P [W+
c−a ∈ πc−a(Ψ

−1(A ∩ Ua))], (4.16)

where W+
c−a is the Brownian meander on [0, c − a]. As the law of the Brownian

meander on [0, c− a] is absolutely continuous with respect to the law of the three
dimensional Bessel processB3 on [0, c−a] (see Imhof, 1984 section 4), to prove (4.16)
we will show that

P [B3(· ∧ c− a) ∈ ∂{πc−a(Ψ
−1(A ∩ Ua))}] = 0. (4.17)

Observe that, as πc−a is a projection, we have

P [B3(· ∧ c− a) ∈ ∂{πc−a(Ψ
−1(A ∩ Ua))}]

≤ P [B3(· ∧ c− a) ∈ πc−a∂{Ψ−1(A ∩ Ua)}] = P [B3 ∈ ∂{Ψ−1(A ∩ Ua)}].
Now, as Ψ is a continuous map, we have

P [B3 ∈ ∂{Ψ−1(A ∩ Ua)}] ≤ P [B3 ∈ Ψ−1(∂{A ∩ Ua})]
≤ P [B3 ∈ Ψ−1(∂A ∪ ∂Ua)]

≤ P [B3(· ∧ ̺1) ∈ ∂A] + P [̺1 = a]. (4.18)

By hypothesis, P [B3(· ∧ ̺1) ∈ ∂A] = 0. As the law of ̺1 is absolutely continuous
with respect to the Lebesgue measure (see Imhof, 1984 Theorem 4), we also have
P [̺1 = a] = 0. This proves (4.16).

Then, we want to take the lim inf as n → ∞ in (4.12). Before this, notice that

lim
n→∞

Pω[Λcn2 ]

Pω[Λ(c−a)n2]
=

√

c− a

c
, (4.19)

lim sup
n→∞

Pω[Λ
′
n]

Pω[Λ(c−a)n2]
≤ γ2

√
c− a (4.20)

for some constant γ2. By the same argument we used to prove (4.16), we have

lim
n→∞

Pω[R, Tn ≤ a | Λcn2 ] = P [W+
c ∈ πc(Ψ

−1(A ∩ Ua))] (4.21)
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whereW+
c is the Brownian meander on [0, c]. Then, define Vl = {W+

l ∈ πl(Ψ
−1(A∩

Ua))} for l ∈ {c − a, c}. Combining (4.13), (4.14), (4.15), (4.16), (4.19), (4.20)
and (4.21) we see that

P [Vc]
√

c−a
c

1 + γ2ε
√
c− a

≤ lim inf
n→∞

Pω[R, Tn ≤ a | Λ′
n] ≤ lim sup

n→∞
Pω[R, Tn ≤ a | Λ′

n]

≤
P [Vc−a]

√

c+δ
c−a

P [sup0≤s≤(a+δ) W
+
c+δ(s) ≥ 1]− γ1(ε+ η)

√
c+ δ

+ η. (4.22)

Now, take ε = η = c−1 and δ =
√
c and let c tend to infinity. Since

P [W+
l ∈ πl(Ψ

−1(A ∩ Ua))] = P [W+
l (· ∧ a) ∈ πa(Ψ

−1(A ∩ Ua))],

we have by Lemma 11-1 of Biane and Yor, 1988

lim
c→∞

P [Vl] = P [B3( · ∧ ̺1) ∈ A, ̺1 ≤ a]

for l ∈ {c− a, c}.
The last thing we have to check to obtain (4.1) is that

lim
c→∞

P
[

sup
0≤s≤(a+δ)

W+
c+δ(s) < 1

]

= 0. (4.23)

First, we start by noting that by scaling property

P
[

sup
0≤s≤(a+δ)

W+
c+δ(s) < 1

]

= P
[

(c+ δ)
1
2 sup
0≤s≤(a+δ)

W+
( s

c+ δ

)

< 1
]

= P
[

sup
0≤s≤ a+δ

c+δ

W+(s) < (c+ δ)−
1
2

]

≤ P
[

W+
(a+ δ

c+ δ

)

≤ (c+ δ)−
1
2

]

where W+ is a Brownian meander on [0, 1]. This last term is easily computable
using the transition density function from (0, 0) ofW+ given in (3.35). Let u = a+δ

c+δ ,

P
[

W+
(a+ δ

c+ δ

)

≤ (c+ δ)−
1
2

]

=

∫ (c+δ)−
1
2

0

u− 3
2x exp

(

− x2

2u

)

Ñ(x(1 − u)−
1
2 )dx

Let us make the change of variable y = (c + δ)
1
2 x in the right-hand side integral.

Then, we obtain

P
[

W+
(a+ δ

c+ δ

)

≤ (c+ δ)−
1
2

]

=

∫ 1

0

(c+ δ)
1
2

(a+ δ)
3
2

y exp
(

− y2

2(a+ δ)

)

Ñ(y(c− a)−
1
2 )dy.

Now, making the change of variable z = (c− a)
1
2u in the following integral

Ñ(y(c− a)−
1
2 ) =

√

2

π

∫ y(c−a)−
1
2

0

exp
(

− u2

2

)

du,

we obtain

P
[

W+
(a+ δ

c+ δ

)

≤ (c+ δ)−
1
2

]

=
( c+ δ

c− a

)
1
2 1

(a+ δ)
3
2

∫ 1

0

∫ y

0

y exp
(

− y2

2(a+ δ)

)

exp
(

− z2

2(c− a)

)

dz dy
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≤
( c+ δ

c− a

)
1
2 1

(a+ δ)
3
2

∫ 1

0

∫ y

0

y dz dy

=
1

3

( c+ δ

c− a

)
1
2 1

(a+ δ)
3
2

. (4.24)

Taking δ =
√
c and letting c → ∞ in (4.24), we obtain (4.23). This concludes the

proof of (4.1). �
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