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Abstract. We study the freely infinitely divisible distributions that appear as the
laws of free subordinators. This is the free analog of classically infinitely divisible
distributions supported on [0,∞), called the free regular measures. We prove that
the class of free regular measures is closed under the free multiplicative convolution,
tth boolean power for 0 ≤ t ≤ 1, tth free multiplicative power for t ≥ 1 and weak
convergence. In addition, we show that a symmetric distribution is freely infinitely
divisible if and only if its square can be represented as the free multiplicative con-
volution of a free Poisson and a free regular measure. This gives two new explicit
examples of distributions which are infinitely divisible with respect to both classi-
cal and free convolutions: χ2(1) and F (1, 1). Another consequence is that the free
commutator operation preserves free infinite divisibility.

1. Introduction

A one dimensional subordinator (Xt)t≥0 is a Lévy process whose increments are
always nonnegative. The marginal distributions (µt)t≥0 of a subordinator (Xt)t≥0

are infinitely divisible and their Lévy-Khintchine representations have regular forms
for any t ≥ 0:

C∗
µt
(z) := log

(∫

R

eizxµt(dx)

)
= itη′z + t

∫

(0,∞)

(eizx − 1)ν(dx), (1.1)
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where the drift term η′ satisfies η′ ≥ 0 and the Lévy measure ν satisfies
∫
(0,∞)

(1 ∧
x)ν(dx) < ∞ and ν((−∞, 0]) = 0. Poisson processes, positive stable processes and
Gamma processes are typical examples. Subordinators have been broadly studied,
see for example, Bertoin (1999) and Sato (1999). For applications in financial mod-
eling, see Cont and Tankov (2004). A matrix valued extension has been considered
in Barndorff-Nielsen and Perez-Abreu (2008).

A crucial property is that the class of infinitely divisible distributions with reg-
ular Lévy-Khintchine representations is closed under ∗-convolution powers, where
∗ denotes classical convolution. Namely, a ∗-infinitely divisible distribution µ has
a regular Lévy-Khintchine representation if and only if µt = µ∗t is concentrated on
[0,∞) for all t > 0. See for details Theorem 24.11 in p.146 of the book by Sato
(1999).

In free probability theory, free convolution or ⊞-convolution was introduced by
Voiculescu (1986) in order to describe the sum of free random variables. The
main analytic tool for the study of free convolution is the so-called Voiculescu’s R-
transform or free cumulant transform, denoted here by C⊞

µ (z). The basic property
of the free cumulant transform is that it linearizes free convolution:

C⊞

µ⊞ρ(z) = C⊞

µ (z) + C⊞

ρ (z).

Similarly to the classical case, one can define free Lévy processes and free infinite
divisibility with respect to free convolution. One obtains the corresponding Lévy-
Khintchine representation for the free cumulant transform. This representation
is also given in terms of a characteristic triplet (η, a, ν) that satisfies the same
properties as in the classical case. This produces a bijection Λ, first introduced
by Bercovici and Pata (1999), between classically and freely infinitely divisible
distributions.

In this context, we can also define the free counterpart of laws of subordina-
tors, that is ρt = Λ(µt), where µt has the regular form (1.1). The free cu-
mulant transforms (see Barndorff-Nielsen and Thorbjornsen (2006)) of the laws
(ρt)t≥0 = (ρ⊞t)t≥0 have the free regular representations

C⊞

ρt
(z) = tη′z + t

∫

R

(
1

1− zx
− 1

)
ν (dx) , z ∈ C−, (1.2)

where (η′, ν) is the pair of (1.1) with the same conditions: η′ ≥ 0,
∫
(0,∞)

(1 ∧
x)ν(dx) < ∞ and ν((−∞, 0]) = 0. It is readily seen that this class is closed under
the convolution ⊞.

Let us note here an important difference between classically and freely infinitely
divisible distributions on the cone [0,∞). Any classically infinitely divisible distri-
bution µ supported on [0,∞) satisfies that µt = µ∗t is concentrated on [0,∞) for
all time t > 0, and thus has a regular representation. However, there exists a freely
infinitely divisible distribution µ on [0,∞) such that µt = µ⊞t is not supported on
[0,∞) for all time t > 0. For example, the semicircle distribution with mean 2 and
variance 1. If we construct a free Lévy process from this distribution, the laws µt

for t ≥ 1 concentrate on [0,∞) but do not for 0 < t < 1, see Sakuma (2011) for
more details. Thus, in this sense the correct counterpart of the class of ∗-infinitely
divisible distributions supported on [0,∞) is the class of free regular measures.

The main purpose of this paper is to show strong closure properties of the class
of free regular measures under different convolutions as well as several important
consequences. More specifically, we prove that the class of free regular measures is
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closed not only under free additive convolution ⊞ but also under free multiplicative
convolution ⊠ and boolean convolution powers.

As a first important consequence, we characterize the laws of free subordinators
in terms of free regularity. More precisely, (Zt)t≥0 is a free Lévy process such that
the distribution of Zt − Zs has non-negative support if and only if the law Z1 is
free regular.

As a second important consequence, if X and Y are two free independent random
variables with free regular distributions, then X1/2Y X1/2 also follows a free regular
distribution, which is not true in the classical case. See Example 11.3 in Chapter 2
of the book by Steutel and Van Harn (2004).

Other results and the organization of this paper are as follows. First, we state
the main theorems in Section 2. In Section 3 we review some basic theory of non-
commutative probability. We recall free additive and multiplicative convolutions
and the analytic tools to calculate them. We state basic results on free infinite di-
visibility such as Lévy-Khintchine representations and the Bercovici-Pata bijection
Λ. Also, we explain boolean additive convolution and recall the boolean-to-free
Bercovici-Pata bijection B. Section 4 is devoted to the description of different
characterizations of free regular measures. In Section 5 we derive, using the charac-
terizations of Section 3, closure properties as explained in Theorem 2.1. In Section
6 we essentially prove Theorem 2.2 below, which in particular shows that the square
of a symmetric freely infinitely divisible distribution is freely infinitely divisible. We
partially show that, for selfadjoint operators, the free infinite divisibility is preserved
under the free commutator operation. This fact is fully proved in Appendix with
combinatorial techniques. Finally, in Section 7 we gather examples using results of
previous sections and present open problems regarding these examples. At the end
of paper, we give an appendix where combinatorial interpretation of Theorem 2.2
is discussed. It contributes to study free commutators.

2. Main results

Let M be the class of all Borel probability measures on the real line R and
let M+ be the subclass of M consisting of probability measures with support on
R+ = [0,∞). Also, for two probability measures µ, ν ∈ M, we denote by µ ∗ ν,
µ⊞ ν and µ ⊎ ν the classical, free and boolean additive convolutions, respectively.
When ν ∈ M+ we denote by µ ⊠ ν the free multiplicative convolution. They will
be defined precisely in Section 3.

Let I∗ be the class of all classically infinitely divisible distributions and I⊞ be
the class of all freely infinitely divisible distributions. An important subclass of I∗

is the class of infinitely divisible measures supported on R+, that is, I
∗∩M+. This

class has regular Lévy-Khintchine representations.
Free regular measures are the free analogue of I∗ ∩ M+. More precisely, let

I⊞r+ := Λ(I∗ ∩ M+), where Λ : I∗ → I⊞ is the Bercovici-Pata bijection, which is

defined in Section 3. This class I⊞r+ was first considered in Pérez-Abreu and Sakuma
(2012) in connection to free multiplicative mixtures of the Wigner distribution. It is
remarkable that I⊞r+ ⊂ I⊞ ∩M+ but I⊞r+ 6= I⊞ ∩M+; the Bercovici-Pata bijection
can send measures with support larger than R+ to measures concentrated on [0,∞).

The main results are as follows. First, we will see that I⊞r+ describes the dis-
tributions of free Lévy processes (see Biane (1998)) with positive increments, that
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we will call free subordinators. For free Lévy processes, contrary to the classical,
boolean and monotone cases, the positivity of the marginal distribution at time
t = 1 does not imply the positivity of all increments.

Second, I⊞r+ behaves well with respect to various operations in non-commutative
probability. More specifically, we are able to prove the following.

Theorem 2.1. Let µ, ν be free regular measures and let σ be a freely infinitely
divisible distribution. Then the following properties hold.

(1) µ⊠ ν is free regular.
(2) µ⊠t is free regular for t ≥ 1.
(3) µ⊎t is free regular for 0 ≤ t ≤ 1.
(4) µ⊠ σ is freely infinitely divisible.

Of particular interest is the fact that I⊞r+ is closed under free multiplicative
convolution. It was proved by Belinschi and Nica (2008) that the boolean-to-free
Bercovici-Pata bijection B is a homomorphism with respect to free multiplicative
convolution. This suggested strongly that free infinite divisibility was preserved
under free multiplicative convolution. Surprisingly, this is not true, even if we
restrict to measures in M+. Therefore, I⊞r+ is a natural class to consider, since it
solves this apparent flaw.

The final result shows that if a symmetric random variable X has a distribution
in I⊞, so does the square X2. This result is quite surprising since it has no analog
in the classical world. We describe this result precisely below. For p ≥ 0, let µp

denote the probability measure on [0,∞) induced by the map x 7→ |x|p.
Theorem 2.2. Let µ be a symmetric measure and m be the free Poisson law with

density 1
2π

√
4−x
x .

(1) If µ is ⊞-infinitely divisible, then there is a free regular measure σ such that
µ2 = m ⊠ σ. In particular, µ2 ∈ I⊞r+. Conversely, if σ is free regular, then

Sym
(
(m⊠ σ)1/2

)
is ⊞-infinitely divisible distribution, where Sym(ν) is the

symmetrization of ν ∈ M+: Sym(ν)(dx) := 1
2 (ν(dx) + ν(−dx)).

(2) If µ is a compound free Poisson with rate λ and jump distribution ν, then σ
from (1) is also a compound free Poisson with rate λ and jump distribution ν2.

As a consequence we find two new explicit examples of measures which are
infinitely divisible in both free and classical senses : χ2(1) and F (1, 1). To the
best of our knowledge, apart from these two examples, there are only three known
measures with this property: the normal law, the Cauchy distribution and the free
1/2 stable law.

Secondly, we get as a byproduct that the free commutator of freely infinitely
divisible measures is also infinitely divisible.

3. Preliminaries

3.1. Analytic tools for free convolutions. Following Voiculescu et al. (1992), we re-
call that a pair (A, ϕ) is called a W ∗-probability space if A is a von Neumann
algebra and ϕ is a normal faithful trace. A family of unital von Neumann subalge-
bras {Ai}i∈I ⊂ A is said to be free if ϕ(a1 · · ·an) = 0 whenever ϕ(aj) = 0, aj ∈ Aij ,
and i1 6= i2, i2 6= i3, ..., in−1 6= in. A self-adjoint operator X is said to be affiliated
with A if f(X) ∈ A for any bounded Borel function f on R. In this case it is also
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said that X is a (non-commutative) random variable. Given a self-adjoint operator
X affiliated with A, the distribution of X is the unique measure µX in M satisfying

ϕ(f(X)) =

∫

R

f(x)µX(dx)

for every Borel bounded function f on R. If {Ai}i∈I is a family of free unital von
Neumann subalgebras and Xi is a random variable affiliated with Ai for each i ∈ I,
then the random variables {Xi}i∈I are said to be free.

Let C+ and C− denote the upper and lower half-planes, respectively. The Cauchy
transform of a probability measure µ on R is defined, for z ∈ C\R, by

Gµ(z) =

∫

R

1

z − x
µ (dx) .

It is well known that Gµ : C+ → C− is analytic and that Gµ determines uniquely
the measure µ. The reciprocal Cauchy transform is the function Fµ : C+ → C+

defined by Fµ (z) = 1/Gµ(z). It was proved in Bercovici and Voiculescu (1993) that
there are positive numbers α and M such that Fµ has a right compositional inverse
F−1
µ defined on the region

Γα,M := {z ∈ C; |ℜ(z)| < αℑ(z), ℑ(z) > M} .
The Voiculescu transform of µ is defined by

φµ(z) = F−1
µ (z)− z

on any region of the form Γα,M where F−1
µ is defined, see Bercovici and Voiculescu

(1993). The free cumulant transform is a variant of φµ defined as

C⊞

µ (z) = zφµ

(
1

z

)
= zF−1

µ

(
1

z

)
− 1,

for z ∈ Dµ := {z ∈ C− : z−1 ∈ Γα,M}, see Barndorff-Nielsen and Thorbjornsen
(2006).

The free additive convolution µ1 ⊞ µ2 of two probability measures µ1, µ2 on
R is defined so that φµ1⊞µ2

(z) = φµ1
(z) + φµ2

(z), or equivalently, C⊞

µ1⊞µ2
(z) =

C⊞
µ1
(z) + C⊞

µ2
(z) for z ∈ Dµ1

∩Dµ2
. The measure µ1 ⊞ µ2 is the distribution of the

sum X1 +X2 of two free random variables X1 and X2 having distributions µ1 and
µ2 respectively.

The free multiplicative convolution µ1 ⊠ µ2 of probability measures µ1, µ2 ∈ M,
one of them in M+, say µ1 ∈ M+, is defined as the distribution of µ

X
1/2
1

X2X
1/2
1

where X1 ≥ 0, X2 are free, self-adjoint elements such that µXi = µi. The element

X
1/2
1 X2X

1/2
1 is self-adjoint and its distribution depends only on µ1 and µ2. The

operation ⊠ on M+ is associative and commutative.
The next result was proved in Bercovici and Voiculescu (1993).

Proposition 3.1. Let µ ∈ M+ such that µ({0}) < 1. The function Ψµ(z) =∫∞
0

zx
1−zxµ(dx) defined in C\R+ is univalent in the left-plane iC+ and Ψµ(iC+) is

a region contained in the circle with diameter (µ({0})−1, 0). Moreover, Ψµ(iC+)∩
R = (µ({0})− 1, 0).

Let µ ∈ M+ and χµ : Ψµ(iC+) → iC+ be the inverse function of Ψµ. The
S-transform of µ is the function

Sµ(z) = χ(z)
1 + z

z
. (3.1)
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The S-transform is an analytic tool for computing free multiplicative convolutions.
When the measure µ is symmetric or has compact support and vanishing mean the
inverse of Ψ is not unique, but there are two possible choices. One can still define an
S-transform as in Equation (3.1) by choosing any of these inverses. The following
was first shown by Voiculescu (1987) for measures in M+ with bounded support,
and then extended to: measures in M+ with unbounded support by Bercovici and
Voiculescu (1993); measures in M with compact support by Raj Rao and Speicher
(2007); symmetric measures by Arizmendi and Pérez-Abreu (2009).

Proposition 3.2. Let µ1 ∈ M+ and µ2 a probability measure in M+ or symmetric,
with µi 6= δ0, i = 1, 2. Then µ1⊠ µ2 6= δ0 and

Sµ1⊠µ2
(z) = Sµ1

(z)Sµ2
(z)

in the common domain containing (−ε, 0) for small ε > 0. Moreover, (µ1⊠ µ2)({0})
= max{µ1({0}), µ2({0})}.

Using this S-transform it was proved in Arizmendi and Pérez-Abreu (2009) that,
for a µ ∈ M+ and ν a symmetric probability measure, the following relation holds:

(µ⊠ ν)2 = µ⊠ µ⊠ ν2 (3.2)

where, for a measure µ, we denote by µ2 the measure induced by the push-forward
t → t2.

3.2. Free infinite divisibility.

Definition 3.3. Let µ be a probability measure in R. We say that µ is freely (or
⊞- for short) infinitely divisible, if for all n, there exists a probability measure
µn such that

µ = µn ⊞ µn ⊞ ....⊞ µn︸ ︷︷ ︸
n times

. (3.3)

We denote by I⊞ the class of such measures.

For µ ∈ I⊞, a free convolution semigroup (µ⊞t)t≥0 can always be defined so that

C⊞

µ⊞t(z) = tC⊞
µ (z).

Now, recall that a probability measure µ is classically infinitely divisible if and
only if its classical cumulant transform C∗

µ(u) := log
(∫

R
eiuxµ(dx)

)
has the Lévy-

Khintchine representation

C∗
µ(u) = iηu− 1

2
au2 +

∫

R

(eiut − 1− iut1[−1,1] (t))ν (dt) , u ∈ R, (3.4)

where η ∈ R, a ≥ 0 and ν is a Lévy measure on R, that is,
∫
R
min(1, t2)ν(dt) < ∞

and ν({0}) = 0. If this representation exists, the triplet (η, a, ν) is unique and is
called the classical characteristic triplet of µ.

A ⊞-infinitely divisible measure has a free analogue of the Lévy-Khintchine rep-
resentation (see Barndorff-Nielsen and Thorbjornsen (2006)).

Proposition 3.4. A probability measure µ on R is ⊞-infinitely divisible if and only
if there are η ∈ R, a ≥ 0 and a Lévy measure ν on R such that

C⊞

µ (z) = ηz + az2 +

∫

R

(
1

1− zt
− 1− tz1[−1,1] (t)

)
ν (dt) , z ∈ C−. (3.5)

The triplet (η, a, ν) is unique and is called the free characteristic triplet of µ.
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The expressions (3.4) and (3.5) give a natural bijection between I∗ and I⊞. This
bijection was introduced by Bercovici and Pata (1999) in their studies of domains
of attraction in free probability. Explicitly, this bijection is given as follows.

Definition 3.5. By the Bercovici-Pata bijection we mean the mapping Λ :
I∗ → I⊞ that sends the measure µ in I∗ with classical characteristic triplet (η, a, ν)
to the measure Λ(µ) in I⊞ with free characteristic triplet (η, a, ν).

The map Λ(µ) is both a homomorphism in the sense that Λ(µ∗ν) = Λ(µ)⊞Λ(ν),
and a homeomorphism with respect to weak convergence.

Another type of Lévy-Khintchine representation in terms of φµ is sometimes

more useful than the free cumulant case: for µ ∈ I⊞, there exists a unique γµ ∈ R

and a finite non-negative measure τµ on R such that

φµ(z) = γµ +

∫

R

1 + xz

z − x
τµ(dx).

Finally let us mention very well known ⊞-infinitely divisible measures that we
will use often in this paper. The first one is the standard Wigner semicircle law w
with density

1

2π
(4− x2)1/2dx, −2 < x < 2.

The second is the Marchenko-Pastur lawm, also known as free Poisson, with density

1

2π
x−1/2(4− x)1/2dx, 0 < x < 4.

3.3. Boolean convolutions. The additive boolean convolution µ ⊎ ν of probability
measures on R was introduced in Speicher and Woroudi (1997). It is characterized
by Kµ⊎ν(z) = Kµ(z) +Kν(z), where

Kµ(z) = z − Fµ(z),

which is called the energy function and is defined by Speicher and Woroudi (1997).
Any probability measure is infinitely divisible with respect to the boolean convolu-
tion and a kind of Lévy-Khintchine representation is written as

Kµ(z) = γµ +

∫

R

1 + xz

z − x
ηµ(dx),

where γµ ∈ R and ηµ is a finite non-negative measure (see Speicher and Woroudi
(1997)). A boolean convolution semigroup (µ⊎t)t≥0 can always be defined for any
probability measure µ ∈ M. Moreover, if µ ∈ M+ then µ⊎t ∈ M+ for all t > 0.
The Bercovici-Pata bijection B from the boolean convolution to the free one can
be defined in the same way as for Λ, by the relation Kµ = φB(µ). The reader is
referred to Bercovici and Pata (1999) for the definition of B in terms of domains of
attraction.

Similarly to Λ, B is a homomorphism between (M,⊎) and (I⊞,⊞), in the sense
that B(µ ⊎ ν) = B(µ) ⊞ B(ν). Also, B is a homeomorphism with respect to weak
convergence.



278 Arizmendi et al.

4. Free regular measures

Let us consider a probability measure σ ∈ I⊞ whose Lévy measure ν of (3.5)
satisfies

∫
R+

min(1, t)ν(dt) < ∞. Then the Lévy-Khintchine representation reduces

to

C⊞
σ (z) = η′z +

∫

R

(
1

1− zt
− 1

)
ν (dt) , z ∈ C−, (4.1)

where η′ ∈ R. The measure σ is said to be a free regular infinitely divisible (or
free regular, for short) distribution if η′ ≥ 0 and ν ((−∞, 0]) = 0. The most
typical example is some compound free Poisson distributions. If the drift term η′

is zero and the Lévy measure ν is λρ for some λ > 0 and a probability measure ρ
on R, then we call σ a compound free Poisson distribution with rate λ and
jump distribution ρ. To clarify these parameters, we denote σ = π(λ, ρ).

Remark 4.1. 1) The Marchenko-Pastur law m is a compound free Poisson with rate
1 and jump distribution δ1.

2) The compound free Poisson π(1, ν) coincides with the free multiplicationm⊠ν.

This section is devoted to clarify several characterizations of free regular mea-
sures, some of which can be inferred from results of Benaych-Georges (2010); Hasebe
(2010); Pérez-Abreu and Sakuma (2012) and Sakuma (2011), as we recollect in the
following theorem. The final characterization uses free Lévy processes which we
will describe in details.

Theorem 4.2. The following conditions for µ ∈ M are equivalent:

(i) µ is free regular.
(ii) µ ∈ Λ(M+ ∩ I∗).
(iii) µ ∈ B(M+).
(iv) µ⊞t ∈ M+ for any t > 0.
(v) µ is ⊞-infinitely divisible, τµ(−∞, 0) = 0 and φµ(−0) ≥ 0, where τµ is the

measure appearing in the representation of the Voiculescu transform.
(vi) There exists a free subordinator Xt such that X1 is distributed as µ.

4.1. Characterizations (ii)–(v). The equivalence between (i) and (ii) is clear from
the Lévy-Khintchine representation. However, we remark again that not all non-
negative ⊞-infinitely divisible distributions are free regular; a typical example of a
measure in I⊞ ∩M+ but not in I⊞r+ is w+, a semicircle distribution with mean 2
and variance 1.

In a similar fashion, one can prove the equivalence between (i) and (iii). This
can be seen from the boolean Lévy-Khintchine representation of µ ∈ M+ in terms
of Kµ, see Proposition 2.5 of Hasebe (2010) for the details.

The equivalence between (i) and (iv) was proved by Benaych-Georges (2010) as
the following lemma, see also Sakuma (2011).

Lemma 4.3. A probability measure µ is in I⊞r+, if and only if µ⊞t ∈ M+ for all
t > 0.

The equivalence between (i) and (v) is proved as follows. For a measure ν we
denote by a(ν) the left extremity of ν: a(ν) = min{x : x ∈ supp ν}.
Proposition 4.4. Let µ be a ⊞-infinitely divisible distribution. Then µ is free
regular if and only if a(τµ) ≥ 0 and φµ(−0) ≥ 0.
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Proof : Denote by B the Bercovici-Pata bijection from boolean to free convolutions:
z−Fµ(z) = φB(µ)(z). Let us denote by z−Fµ(z) = γµ+

∫
R

1+xz
z−x ηµ(dx) the boolean

Lévy–Khintchine representation. As proved in Proposition 2.5 of Hasebe (2010)
supp µ ⊂ [0,∞) if and only if supp ηµ ⊂ [0,∞) and Fµ(−0) ≤ 0. By definition, ν is
free regular if and only if B−1(ν) is supported on [0,∞), yielding the conclusion. �

As we saw, µ ∈ I⊞∩M+ does not imply µ ∈ I⊞r+. However, if µ has a singularity
at 0, such an implication is possible. We need a lemma to prove it.

Lemma 4.5. Let µ be a ⊞-infinitely divisible distribution with a(µ) > −∞. Then
a(τµ) ≥ Fµ(a(µ) − 0).

Proof : Since Fµ is strictly increasing in (−∞, a(µ)), one can define F−1
µ in an open

set of C containing (−∞, Fµ(a(µ)−0)). This gives an analytic continuation of F−1
µ

to C\[Fµ(a(µ)− 0),∞). Therefore, τµ is supported on [Fµ(a(µ)− 0),∞). �

Theorem 4.6. Let µ be a ⊞-infinitely divisible measure supported on [0,∞) sat-
isfying either of the following conditions: (i) µ({0}) > 0; (ii) µ({0}) = 0 and∫ 1

0
µ(dx)

x = ∞. Then µ is free regular.

Proof : By assumption, Fµ(−0) = 0. Lemma 4.5 implies that a(τµ) ≥ 0. Taking the
limit z ր 0 in the identity φµ(Fµ(z)) = z − Fµ(z), one concludes that φµ(−0) = 0.
Therefore, µ is free regular from Proposition 4.4. �

4.2. Free subordinators and free regular measures. A particularly important family
of real-valued processes with independent increments is that of Lévy processes; see
Bertoin (2002); Sato (1999). Let us recall the definition of a Lévy process. A
continuous-time process {Xt}t≥0 with values in R is called a Lévy process if

(1) Its sample paths are right-continuous and have left limits at every time point
t.

(2) For all 0 ≤ t1 < · · · < tn, the random variables Xt1 , Xt2 −Xt1 , · · · , Xtn −Xtn−1

are independent.
(3) For all 0 ≤ s ≤ t, the increments Xt − Xs and Xt−s − X0 have the same

distribution.
(4) For any s ≥ 0, Xs+t → Xs in probability, as t → 0, i.e. the distribution of

Xs+t −Xs converges weakly to δ0, as t → 0.

We assume that X0 = 0. Now, if we denote by µt the distribution of Xt, then these
measures satisfy the property

µs+t = µs ∗ µt (4.2)

for any s, t ≥ 0. The relation between infinitely divisible distributions and Lévy
processes can be stated in the following proposition.

Proposition 4.7. If {Xt}t≥0 is a Lévy process, then for each t > 0 the random
variable Xt has an infinitely divisible distribution. Conversely, if µ is an infinitely
divisible distribution then there is a Lévy process such that X1 has distribution µ.

A subordinator is a real-valued Lévy process with non-decreasing path. This
class has been broadly studied; see Bertoin (2002); Cont and Tankov (2004); Sato
(1999).

Proposition 4.8. Let {Xt}t≥0 be a Lévy process. The process Xt is a subordinator
if and only if the distribution of X1 is supported on the positive real line.
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Now, following Biane (1998), we define a process with free additive increments
to be a map t 7→ Xt from R+ to the set of self-adjoint elements affiliated to some
W ∗-probability space (A,ϕ) such that, for any 0 ≤ t1 < · · · < tn, the elements
Xt1 , Xt2 − Xt1 , · · · , Xtn − Xtn−1

are free. We also require the weak continuity of
the distributions. However, we do not require an analog of property (1) of a classical
Lévy process since there is no sample path in the W ∗-probability setting.

To define a free (additive) Lévy process, we need stationarity. As Biane pro-
posed, there are two natural classes which deserve to be called free Lévy processes,
depending on whether we ask for time homogeneity of the distributions of the in-
crements or of the transition probabilities. Here, we will use the former since in
this case the distributions of a process form a semi-group for the free additive
convolution.

Definition 4.9. A free additive Lévy process is a map t 7→ Xt from R+ to the set
of self-adjoint elements affiliated to some W ∗-probability space (A,ϕ), such that:

(1) For all t1 < · · · < tn , the elements Xt1 , Xt2 −Xt1 , · · · , Xtn −Xtn−1
are free.

(2) For all 0 ≤ s ≤ t the increments Xt − Xs and Xt−s − X0 have the same
distribution.

(3) For any s ≥ 0 in, Xs+t → Xs in probability, as t → 0, i.e. the distribution of
Xs+t −Xs converges weakly to δ0, as t → 0.

We also assume that X0 = 0.

If we denote by µt the distribution of Xt, these measures satisfy the analog of
(4.2):

µs+t = µs ⊞ µt

for s, t ≥ 0.

Definition 4.10. A free additive Lévy process Xt is called a free subordinator if
for all 0 < s < t the increment Xt −Xs is positive.

We state the analog of Proposition 4.8 which clarifies the role of free regular
measures in terms of free Lévy processes: they correspond to free subordinators.

Proposition 4.11. Let Xt be a free additive Lévy process. The process Xt is a
free subordinator if and only if the distribution of X1 is free regular.

Proof : If Xt is a free subordinator, it is clear that the distribution µ1 of X1 is
free regular since Xt − X0 = Xt is positive and then the distribution µt = µ⊞t

1 is
supported on R+. Lemma 4.3 allows us to conclude.

Conversely, suppose that the distribution µ = µ1 of X1 is free regular. We want
to see that Xt −Xs is positive. Since Xt is a free Lévy process it is stationary and
then Xt − Xs has the same distribution as Xt−s, which is µ⊞(t−s) and then, by
Lemma 4.3, supported on R+, i.e. Xt−s positive. �

5. Closure properties

The following property was proved by Belinschi and Nica (2008). For µ ∈ M
and ν ∈ M+,

B(µ ⊠ ν) = B(µ)⊠ B(ν). (5.1)

This suggested strongly that if µ and ν are ⊞-infinitely divisible then µ ⊠ ν is
also ⊞-infinitely divisible. However, this is not true in general, even if both µ and
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ν belong to M+ or µ = ν. The following counterexample was given by Sakuma
(2011).

Proposition 5.1. Let w+ be the Wigner distribution with density

w2,1(x) =
1

2π

√
4− (x − 2)2 · 1[0,4](x)dx.

Then w+ ⊠ w+ is not ⊞-infinitely divisible.

It is not a coincidence that in this counterexample w+ is not free regular. Indeed,
if either ν or µ is free regular the problem is fixed.

Proposition 5.2. Let µ ∈ I⊞r+ and ν ∈ I⊞, then µ⊠ ν is freely infinitely divisible.

Moreover if ν ∈ I⊞r+ then µ⊠ ν ∈ I⊞r+.

Proof : If µ ∈ I⊞r+ then µ = B(µ0) for some µ0 ∈ M+. Similarly if ν ∈ I⊞ then
µ = B(ν0) for some ν0 ∈ M. Then µ0 ⊠ ν0 is a well defined probability measure
and Equation (5.1) gives µ⊠ ν = B(µ0 ⊠ ν0) ∈ I⊞.

Now, if ν ∈ I⊞r+ then ν0 ∈ M+ and then µ0 ⊠ ν0 ∈ M+. Therefore µ ⊠ ν =

B(µ0 ⊠ ν0) ∈ I⊞r+ since B sends positive measures to free regular ones. �

Remark 5.3. As a consequence we answer a question in Pérez-Abreu and Sakuma
(2012): If µ is free regular then µ⊠ µ is also free regular.

Remark 5.4. The previous proposition raises a question on a relation between the
free subordinators associated to ν, µ and ν ⊠ µ. Let Da be the dilation operator
defined by

∫
R
f(x)(Daµ)(dx) =

∫
R
f(ax)µ(dx) for any bounded continuous function

f and measure µ. Equivalently, if a random variable X follows a distribution µ,
Daµ is the distribution of aX . For µ, ν ∈ I⊞r+, the identity

D1/t(µ
⊞t

⊠ ν⊞t) = (µ⊠ ν)⊞t, t ≥ 0 (5.2)

was essentially proved in Belinschi and Nica (2008, Proposition 3.5). This can be in-
terpreted as follows in terms of processes. Let Xt and Yt be free subordinators with

X1 ∼ µ and Y1 ∼ ν, which are free between them. Then the process 1
tX

1/2
t YtX

1/2
t

is distributed as a free subordinator Zt such that Z1 ∼ µ⊠ ν.

It is clear from Proposition 5.2 that if µ is in I⊞r+ then µ⊠n also belongs to I⊞r+,

for n ∈ N. Furthermore, this is also true for t ≥ 1, µ⊠t ∈ I⊞r+, when t is not
necessarily an integer, as we state in following proposition.

Proposition 5.5. If µ ∈ I⊞r+, then for all s ≥ 1, µ⊠s ∈ I⊞r+.

Proof : By Lemma 4.3, it is enough to see that (µ⊠s)⊞t ∈ M+ for all t > 0. For
this, we use the following identity, essentially proved in Belinschi and Nica (2008,
Proposition 3.5):

Dts−1((µ⊠s)⊞t) = (µ⊞t)⊠s. (5.3)

Now, since µ is free regular, µ⊞t ∈ M+ and then (µ⊞t)⊠s ∈ M+. Therefore, the
RHS of Equation (5.3) defines a probability measure with positive support and then
(µ⊠s)⊞t ∈ M+, as desired. �

Also, boolean powers less than one preserve free regularity.

Proposition 5.6. If µ ∈ I⊞r+, then µ⊎t ∈ I⊞r+ for 0 ≤ t ≤ 1.
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Proof : It is shown in Arizmendi and Hasebe (2011b) that if µ is ⊞-infinitely divis-
ible then, for 0 < t < 1,

B((µ⊞(1−t))⊎t/(1−t)) = µ⊎t.

Since µ is free regular, µ⊞(1−t) has a positive support and then, since the boolean
convolution of measures in M+ stays in M+, we see that (µ⊞(1−t))⊎t/(1−t) ∈ M+.
On the other hand B sends positive measures to free regular measures (see Theorem
4.2(iii)). �

Finally we show that I⊞r+ is closed under weak convergence.

Proposition 5.7. Let (µn)n>0 be a sequence of measures in I⊞r+, weakly converge-

ing to a probability measure µ. Then µ is also in I⊞r+.

Proof : For each n ∈ N, we can write µn = B(νn) for some νn in M+ from Theorem
4.2. Since B is a homeomorphism, νn weakly converge to a probability measure
ν ∈ M+, and its holds that µ = B(ν). Hence µ ∈ I⊞r+, as desired. �

6. Squares of random variables with symmetric distributions in I⊞

We will prove Theorem 2.2 in this section. Given a probability measure µ, we
recall that µp for p ≥ 0 denotes the probability measure in M+ induced by the
map x 7→ |x|p. For a measure λ on R we denote by Sym(λ) the symmetric measure
1
2 (λ(dx) + λ(−dx)).

We quote a result from Pérez-Abreu and Sakuma (2012, Theorem 12).

Theorem 6.1. A symmetric probability measure µ is ⊞-infinitely divisible if and
only if there is a free regular distribution σ such that C⊞

µ (z) = C⊞
σ (z2). Moreover,

the free characteristic triplets (0, aµ, νµ) of µ and (ησ, 0, νσ) of σ are related as

follows: νµ = Sym(ν
1/2
σ ) (or equivalently νσ = ν2µ ), aµ = ησ.

The following proposition implies that the square of a symmetric measure which
is ⊞-infinitely divisible is also ⊞-infinitely divisible. A similar result is proved for
the rectangular free convolution of Benaych-Georges (2010).

Proposition 6.2. Let µ be a ⊞-infinitely divisible symmetric measure. Then there
exists a free regular measure σ such that µ2 = m ⊠ σ, that is, µ2 is the compound
free Poisson with rate 1 and jump distribution σ. Conversely, if σ is free regular,
then Sym

(
(m⊠ σ)1/2

)
is ⊞-infinitely divisible.

Proof : We prove that the following are equivalent:
(a) µ2 = m⊠ σ,
(b) C⊞

µ (z) = C⊞
σ (z2).

Indeed, if µ2 = m⊠σ, then Sµ2(z) = Sm(z)Sσ(z) =
1

1+zSσ(z). Combined with the

relation Sµ2(z) = z
1+zSµ(z)

2, this implies zSσ(z) = (zSµ(z))
2. Since the inverse of

zSλ(z) is equal to C⊞
λ for a probability measure λ, we conclude that (C⊞

σ )−1(z) =

((C⊞
µ )−1(z))2, which is equivalent to (b). Clearly the converse is also true. The

desired result immediately follows from the above equivalence and Theorem 6.1. �

This completes the proof of Theorem 2.2(1). The result (2) for compound free
Poissons is a consequence of Theorem 6.1.

Now the following result of Pérez-Abreu and Sakuma (2012, Theorem 22) follows
as a consequence of Theorem 2.2.
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Theorem 6.3. Let σ ∈ M+ and w be the standard semicircle law. Then σ⊠σ ∈ I⊞r+
if and only if µ = w ⊠ σ ∈ I⊞.

Remark 6.4. It is not true that the square of a symmetric infinitely divisible distri-
bution in the classical sense is also infinitely divisible. For instance, if N1 and N2

are independent Poissons then N1 −N2 is also infinitely divisible and (N1 −N2)
2

is not infinitely divisible since it is supported on {0, 1, 4, 9, 25...}. (See Steutel and
Van Harn (2004, pp. 51.))

There are two interesting consequences of Proposition 6.2. First, Proposition 6.2
allows us to identify some non trivial free regular measures which are in I∗ ∩ I⊞:
χ2 and F (1, 1). This will be explained in Example 7.1.

The second consequence is on the commutator of two free even elements, which
was pointed out to us by Speicher.1 See A.2 in the Appendix for the definition of
even elements. In this case, an even element simply means that its distribution is
symmetric.

Corollary 6.5. Let a1, a2 be free, self-adjoint and even elements whose distribu-
tions µ1, µ2 are ⊞-infinitely divisible. Then the distribution of the free commutator
µ12µ2 := µi(a1a2−a2a1) is also ⊞-infinitely divisible.

Remark 6.6. If a1, a2 are free, even and self-adjoint, the distribution of the anti-
commutator µa1a2+a2a1

is the same as µi(a1a2−a2a1), as proved by Nica and Speicher
(1998).

Proof : It was proved by Nica and Speicher (1998) that µ12µ2 is also symmetric
and satisfies

((µ12µ2)
⊞1/2)2 = µ2

1 ⊠ µ2
2. (6.1)

Since, for i = 1, 2, the distribution µi is symmetric and belongs to I⊞, by Proposi-
tion 6.2, we have the representation µ2

i = m ⊠ σi, for some σi free regular. Then

((µ12µ1)
⊞1/2)2 = m ⊠ σ with σ = m ⊠ σ1 ⊠ σ2. Now, by Theorem 5.2, σ is

free regular and then (µ12µ2)
⊞1/2 is ⊞-infinitely divisible. The desired result now

follows. �

When we restrict µ1 to the standard semicircle law, we obtain the analog of
Theorem 6.3 for the free commutator.

Corollary 6.7. Let σ be a symmetric measure and w be the standard semicircle
law. Then σ2 ∈ I⊞r+ if and only if µ = w�σ ∈ I⊞.

Proof : It is well known that the w2 = m and then we get from Equation (6.1) that
((w2σ)⊞1/2)2 = m⊠ σ2. The result now follows from Proposition 6.2. �

Moreover, Nica and Speicher reduced the problem of calculating the cumulants
of the free commutator to symmetric measures. A further analysis of this reduction
in combination with Corollary 6.5 enables us to omit the assumption of evenness.

Theorem 6.8. Let a1 and a2 be free and self-adjoint elements, and let µ1 := µa1

and µ2 := µa2
be ⊞-infinitely divisible distributions. Then the distribution of the

free commutator µ12µ2 := µi(a1a2−a2a1) is also ⊞-infinitely divisible.

The proof uses combinatorial tools and will be given in the Appendix.

1Free commutators have received less attention and not that much is known on this operation.
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Remark 6.9 (Polynomials on free variables). So far we have proved that if a1, a2, a3
are free even random variables whose distributions are ⊞-infinitely divisible, then
i(aiaj − ajai), aiaj + ajai and a2i also have ⊞-infinitely divisible distributions
(for the free commutator, the assumption of evenness is not needed). Combin-
ing these results one can easily see that the following polynomials are also ⊞-
infinitely divisible: a21 + a22 + a2a1 + a1a2, i(a1a

2
2 − a2a

2
1), a

4
1 + a42 − a22a

2
1 − a21a

2
2,

a1a
2
2a1 + a2a

2
1a2 + a1a2a1a2 + a2a1a2a1, a1a

2
2a1 + a2a

2
1a2 − a1a2a1a2 − a2a1a2a1,

a1a2a3 + a2a1a3 + a3a1a2 + a3a2a1, etc. Therefore, it is natural to ask for which
polynomials free infinite divisibility is preserved.

7. Examples, conjectures and future problems

In this section, we gather some examples related to our results. From these
examples, we also present open problems.

As a first example we use Theorem 2.2 to identify measures in I∗ ∩ I⊞r+.

Example 7.1. The following are measures which are both classically and freely
infinitely divisible.

(1) Let χ2 be a chi-squared with 1 degree of freedom with density

f(x) :=
1√
2πx

e−x/2, x > 0.

It is well known that χ2 is infinitely divisible in the classical sense. It was proved
in Belinschi et al. (2011) that a symmetric Gaussian Z is ⊞-infinitely divisible.
Hence, by Theorem 2.2, Z2 is free regular. Z2 ∼ χ2 and then χ2 ∈ I∗ ∩ I⊞r+

(2) Let F (1, n) be an F -distribution with density

f(x) :=
1

B(1/2, n/2)

1

(nx)1/2

(
1 +

x

n

)−(1+n)/2

, x > 0.

F (1, n) is classically infinitely divisible, as can be seen in Ismail and Kelker
(1979). On the other hand F (1, n) is the square of a t-student with n degrees
of freedom t(n). In particular t(1) is the Cauchy distribution, hence by Theorem
2.2, F (1, 1) belongs to I∗ ∩ I⊞r+.

Remark 7.2. Numeric computations of free cumulants have shown that the chi-
squared with 2 degrees of freedom is not freely infinitely divisible. However, the free
infinite divisibility of t-student with n degrees of freedom is still an open question.

Next, we give some examples of free regular measure from known distributions
in non-commutative probability.

Example 7.3. (1) Free one-sided stable distributions with non-negative drifts.
These distributions are found by Biane in Appendix in Bercovici and Pata
(1999).

(2) The square of a symmetric ⊞-stable law. By Theorem 2.2 it is free regular, and
moreover, by the results of Arizmendi and Pérez-Abreu (2009) we can identify
the Lévy measure σ of Theorem 2.2 with a ⊞-stable law. Indeed, any symmetric
stable measure has the representation w⊠ ν 1

1+t
and then by Equation (3.2) the

square is w2
⊠ ν 1

1+t
⊠ ν 1

1+t
= m⊠ ν 1

1+2t
.
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(3) Free multiplicative, free additive and boolean powers of the free Poisson m. In
particular, for t ≥ 1 the free Bessel laws m⊠t

⊠ m⊞s studied in Banica et al.
(2011) are free regular.

(4) The free Meixner laws, which are introduced by Saitoh and Yoshida (2001) and
Anshelevich (2003), whose Lévy measures are given by

νa,b,c(dx) = c

√
4b− (x − a)2

πx2
1a−2

√
b<x<a+2

√
b(x)dx.

If a − 2
√
b ≥ 0, then the Lévy measure is concentrated on [0,∞) and∫

R
min(1, |x|)νa,b,c(dx) < ∞. Thus, if the drift term is non-negative, then it

will be free regular. This case includes the free gamma laws, which come from
interpretation by orthogonal polynomials not the Bercovici-Pata bijection.

(5) The beta distribution B(1 − a, 1 + a) (0 < a < 1) has the density

pa(x) =
sin(πa)

πa
x−a(1− x)a, 0 < x < 1.

B(1 − a, 1 + a) is ⊞-infinitely divisible if and only if 1
2 ≤ a < 1 as shown in

Arizmendi and Hasebe (2011a). Moreover, B(1 − a, 1 + a) is free regular for
1
2 ≤ a < 1 since

∫ 1

0
pa(x)

x dx = ∞ (see Theorem 4.6). We note that B(12 ,
3
2 )

coincides with the Marchenko-Pastur law up to scaling.

Example 7.4. Let w be the standard semicircle law. Then w2 and w4 are both free
regular. It is well known that w2 = m, which is free regular. From Arizmendi et al.
(2010), if bs is the symmetric beta (1/2, 3/2) distribution, bs is freely infinitely
divisible and then, by Theorem 2.2, (bs)

2 is free regular.
The symmetric beta distribution bs has density

bs(dx) =
1

2π
|x|−1/2

(2 − |x|)1/2dx, |x| < 2.

Clearly m2n (bs) = m4n(w) and then (bs)
2 = w4. Also since w4 = m2 = (bs)

2, w4

is free regular.

Remark 7.5. It is not known if wn is ⊞-infinitely divisible for the other positive
integers n = 3, 5, 6, 7, 8, · · · . In classical case, any positive integer power of the
standard Gaussian is ∗-infinitely divisible as shown in Bondesson (1992, Theorem
7.3.6).

One may ask if the example w+ is an exception but the following example shows
that there are a lot of measures in I⊞ ∩M+ which are not I⊞r+. We also mention
here that a quarter-circle distribution is not ⊞-infinitely divisible.

Example 7.6. (1) We present a method to construct freely infinitely divisible mea-
sures with positive support, but not free regular. Let µ 6= δ0 be ⊞-infinitely di-
visible with compact support, say [−a, b]. Then µ1 := µ⊞δa has support [0, b+a]
and µ2 := µ ⊞ δ−b has support [−(a + b), 0]. Both µ1 and µ̃2(dx) := µ2(−dx)
are in I⊞ ∩M+, but either µ1 or µ̃2 must not be free regular.

Indeed suppose that µ1 is free regular, then µ1 = Λ(ν1) for some ν1 ∈
M+ with unbounded positive support, say [c,∞). Now, recall that Λ is a
homomorphism, so that µ2 = Λ(ν1 ∗ δ−a−b) but since the support of ν is [b,∞)

then the support of ˜ν1 ∗ δ−a−b is (−∞, a+b−c] and intersects R−, which means
that µ̃2 is not free regular. In particular, if µ is symmetric, any shift of µ is not
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free regular. Easy explicit examples can also be obtained from µ a free regular
measure, for instance from (3), (4) and (5) of Example 7.3.

(2) Let aα be the monotone α-stable law characterized by Faα(z) = (zα+eiαπ)1/α,

where the powers zα and z1/α are respectively defined as eα log z and e
1
α log z in

C\[0,∞). The function log is not the principal value, but is defined so that
Im(log z) ∈ (0, 2π). If α ∈ [ 12 , 1), this measure is ⊞-infinitely divisible and
supported on [0,∞) (see Arizmendi and Hasebe (2011a); Biane (1998)). How-
ever this measure is not free regular, since the Voiculescu transform φaα(z) =
(zα − eiαπ)1/α − z is not analytic in C\[0,∞). In this case the support of the
Lévy measure is [−1,∞).

(3) Let σ > 0. Suppose q be the quarter-circle distribution, that is, it has density

fq(x) =

{
1

πσ2

√
4σ2 − x2 (x ∈ [0, 2σ]),

0 (otherwise).

It is not freely infinitely divisible for any σ > 0. We can find it by the following
proposition of free kurtosis.

Proposition 7.7. If µ is freely infinitely divisible then the free kurtosis kurt⊞(µ)
of µ is positive, that is,

kurt⊞(µ) =
m̃4(µ)

(m̃2(µ))2
− 2 > 0,

where m̃2(µ), m̃4(µ) are 2nd and 4th moments around mean.

For more detail of free kurtosis, see p.171 in Arizmendi and Pérez-Abreu
(2010). Here we can obtain moments of q as follows:

m1(q) =
8σ

3π
, m2(q) = σ2, m3(q) =

26σ3

15π
, m4(q) = 2σ4.

Therefore, (
2− 212

33π4

)

(
1− 26

32π2

)2 − 2 < 0

for any σ > 0. In fact, this amount is around −0.0233443.

Recall from Proposition 5.1 that w+⊠w+ is not freely infinitely divisible. There-
fore, we have the following conjecture.

Conjecture 7.8. If µ ∈ M+ is ⊞-infinitely divisible, then µ ⊠ µ is ⊞-infinitely
divisible if and only if µ is free regular.

Example 7.9 (free commutators). (1) Let σs and σt be two symmetric free stable
distributions of index s and t, respectively. Then by Corollary 6.5 the free
commutator σs�σt is ⊞-infinitely divisible. For the case t = s = 2 (the Wigner
semicircle distribution) the density of w�w is given by Nica and Speicher (1998)

f(t) =

√
3

2π | t |

(
3t2 + 1

9h(t)
− h(t)

)
, | t |≤

√
(11 + 5

√
5)/2, (7.1)

where

h(t) =
3

√
18t2 + 1

27
+

√
t2(1 + 11t2 − t4)

27
.
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(2) Let w be the standard semicircle law and let ν 1
1+2s

be a positive free stable

law, for some s > 0. If we denote ν̂ 1
1+2s

= Sym(ν
1/2

1
1+2s

) then µ := w�ν̂ 1
1+2s

is a

symmetric free stable distribution with index 2
1+2s . Indeed, by Equation (6.1),

µ satisfies

(µ⊞1/2)2 = ((w�ν̂ 1
1+2s

)⊞1/2)2 = w2
⊠ ν 1

1+2s
= m⊠ ν 1

1+2s
.

From Equation (3.2) and results in Arizmendi and Pérez-Abreu (2009) we see
that m ⊠ ν 1

1+2s
= (w ⊠ ν 1

1+s
)2. This means that µ⊞1/2 = w ⊠ ν 1

1+s
which is

a symmetric free stable distribution with index 2
1+2s . The case s = 1/2 was

treated in Nica and Speicher (1998, Example 1.14).
(3) Assume that b is a symmetric Bernoulli distribution 1

2 (δ−1 + δ1). Let µ, ν be
symmetric distributions. Then the free commutator µ�ν is 2-⊞-divisible, but
when µ = ν we can identify (µ�µ)⊞1/2. Indeed, by Eq. (6.1), (µ�µ)⊞1/2 =√
µ2 ⊠ µ2. On the other hand, by Equation (3.2), (µ2

⊠ b)2 = µ2
⊠ µ2. Hence

(µ2
⊠ b)⊞2 = µ�µ.
When µ = w a strange thing happens: w2 = m, and m ⊠ b is a compound

free Poisson with rate 1 and jump distribution b, see Remark 4.1. This implies
that w�w = m⊞ m̃, where m̃ is defined by m̃(B) = m(−B). It is a free sym-
metrization of the Poisson distribution (not to be confused with the symmetric
beta of Example 7.4). As pointed out in Nica and Speicher (1998), this gives
another derivation of the density of w�w given in Equation (7.1).

(4) For the free Poisson with mean 1, the free commutator becomes m�m = (m⊠

m⊠ b)⊞2, the compound free Poisson with rate 2 and jump distribution m⊠ b.
Indeed, if we define m̂ := m ⊠ b, we have that m�m = m̂�m̂ since the even
free cumulants of m̂ are all one, the same as those of m, and since the free
commutator of measures depends only on the even cumulants of the measures;
see Nica and Speicher (1998, Theorem 1.2). By Equation (3.2) we have m̂2 =
m⊠m, and therefore by Equation (6.1), we have

((m�m)⊞1/2)2 = m⊠m⊠m⊠m.

Again using Equation (3.2) we see that m⊠m⊠m⊠m = (m⊠m⊠ b)2. The
claim then follows.

Appendix A. Combinatorial approach

In this appendix we prove Theorem 6.8, using combinatorial tools. We also give
a combinatorial proof of Theorem 2.2 which was proved with analytic tools. We
decided not to include them in the main section of this article not only because they
are more involved but also since, in principle, these proofs are only valid when the
existence of moments is assumed. However, we believe that a reader who is more
acquainted with the combinatorial approach may find them more illuminating.

A.1. Free cumulants. A measure µ has all moments if mk(µ) =
∫
R
tkµ(dt) < ∞,

for each even integer k ≥ 1. Probability measures with compact support have all
moments.

The free cumulants (κn) were introduced by Voiculescu (1986) as an analogue
of classical cumulants, and were developed more by Speicher (1994) in his combi-
natorial approach to free probability theory. We refer the reader to the book of
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Nica and R. Speicher (2006) for a nice introduction to this combinatorial approach.
Let µ be a probability measure with compact support, then the cumulants are the
coefficients κn = κn(µ) in the series expansion

C⊞

µ (z) =
∑∞

n=1
κn(µ)z

n.

For a sequence (tn)n≥1 and a partition π = {V1, ..., Vr} ∈ NC(n) we denote tπ :=
t|V1| · · ·κ|Vr |.

The relation between the free cumulants and the moments is described by the
lattice of non-crossing partitions NC(n), namely,

mn(µ) =
∑

π∈NC(n)

κπ(µ). (A.1)

Since free cumulants are just the coefficients of the series expansion of C⊞
µ (z), they

linearize free convolution:

κn(µ1 ⊞ µ2) = κn(µ1) + κn(µ2).

A compound free Poisson µ with rate λ and jump distribution ν can be charac-
terized as

κn(µ) = λmn(ν).

In particular, if µ is of the form m ⊠ σ for a probability measure σ on R, then
κn(m⊠ σ) = mn(σ).

Compound free Poissons are⊞-infinitely divisible, and moreover, any⊞-infinitely
divisible probability measure is a weak limit of compound free Poissons.

A.2. Even elements. When µ has all moments, being symmetric is equivalent to
having vanishing odd moments, that is m2k+1(µ) =

∫
R
t2k+1µ(dt) = 0. On the other

hand µ2 has moments mk(µ
2) = m2k(µ).

An element x ∈ (A, ϕ) is said to be even if the only non vanishing moments are
even, i.e. ϕ(x2k+1) = 0. Even elements correspond to symmetric distributions. It
is clear by the moment-cumulant formula (A.1) that x ∈ A is even if and only if the
only non-vanishing free cumulants are even. In this case we call (αn := κ2n(x))n≥1

the determining sequence of x.
The next proposition gives a formula for the cumulants of the square of an even

element in terms of the cumulants of this element and can be found in Nica and
R. Speicher (2006, Proposition 11.25)

Proposition A.1. Let x ∈ A be an even element and let (αn = κ2n(x))n≥1 be the
determining sequence of x. Then the cumulants of x2 are given as follows:

κn(x
2) =

∑

π∈NC(n)

απ .

Now we are able to prove the main result of this section.

Proposition A.2. Let µ be symmetric distribution with all moments. If µ is freely
infinitely divisible, then µ2 is a compound free Poisson π(λ, ρ) with ρ ∈ I⊞r+. If
moreover µ is itself a compound free Poisson π(λ, ν), then ρ is also a compound
free Poisson ρ = π(λ, ν2).
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Proof : Let x be an even element with distribution µ and suppose that µ is a
symmetric compound free Poisson with rate λ and jump distribution ν and let
ρ = π(λ, ν2) be a compound free Poisson with rate λ and jump distribution ν2.
Then the determining sequence of x is

αn = κ2n(x) = λm2n(ν) = λmn(ν
2) = κn(ρ).

By Proposition A.1 we have that

κn(x
2) =

∑

π∈NC(n)

απ =
∑

π∈NC(n)

κπ(ρ) = mn(ρ)

and hence the distribution µ of x2 is a compound free Poisson with rate 1 and jump
distribution ρ.

More generally if µ ∈ I⊞ is symmetric, then µ can be approximated by compound
free Poissons which are symmetric, say µ = limn→∞ µn. By the previous case for
each n > 0, µ2

n = m⊠ νn for some νn compound free Poisson, which is free regular.
Since µ2

n → µ2 and νn → ν for some ν, then µ = m ⊠ ν. The measure ν is free
regular since I⊞r+ is closed under the convergence in distribution. �

Finally, we use similar arguments to prove Theorem 6.8 on free commutators.

Proof of Theorem 6.8: By an approximation similar to Proposition A.2, it is enough
to consider µ1 and µ2 compound free Poissons. Let µ1�µ2 be the free commutator
and κn(µi) = λimn(νi) the free cumulants of µi, for i = 1, 2. It is clear that
m2n(νi) = m2n(Sym(νi)) and m2n+1(Sym(νi)) = 0. Now, by Theorem 1.2 in
Nica and Speicher (1998), the free cumulants of µ1�µ2 only depend on the even
free cumulants of µ1 and µ2, and therefore we can change µi by the symmetric
compound Poisson with Lévy measure Sym(νi). Thus by Corollary 6.5 µ1�µ2 is
⊞-infinitely divisible as desired. �
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