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Abstract. Let α ≥ 0 and let X , Y be Itô processes

dXt = φt dBt + ψt dt, dYt = ζt dBt + ξt dt

such that X0 = x, Y0 = y, |φ| ≥ |ζ| and αψ ≥ |ξ|. We determine the best universal
constant Uα(x, y) such that

P
(

sup
t
Yt ≥ 0

)

≤ ||X+||1 + Uα(x, y).

As an application, we compute, for any t ∈ [0, 1] and β ∈ R, the number

L(x, y, t) = inf{||X+||1 : P(Y ∗ ≥ β) ≥ t}.
We also study these problems for a wider class of α-subordinated semimartingales
and establish a related estimate for smooth functions on Euclidean domains.

1. Introduction

The purpose of this paper is to provide a wide family of sharp estimates for
certain class of Itô processes and, more generally, for the class of semimartingales
satisfying the so-called α-subordination relation. To describe our motivation, it
is convenient to start with the setting of Itô processes. Suppose that (Ω,F ,P) is
a complete probability space, filtered by a nondecreasing right-continuous family
(Ft)t≥0 of sub-σ-fields of F . As usual, we assume that F0 contains all the sets A
satisfying P(A) = 0. Let B = (Bt)t≥0 be an adapted Brownian motion starting
from 0 and let X = (Xt)t≥0, Y = (Yt)t≥0 be Itô processes with respect to B (cf.
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Ikeda and Watanabe (1989)):

Xt = X0 +

∫ t

0+

φs dBs +

∫ t

0+

ψs ds,

Yt = Y0 +

∫ t

0+

ζs dBs +

∫ t

0+

ξs ds, t ≥ 0.

(1.1)

Here (φt)t≥0, (ψt)t≥0, (ζt)t≥0, (ξt)t≥0 are predictable processes which satisfy the
usual assumptions

P

(
∫ t

0+

|φs|2 ds <∞ and

∫ t

0+

|ψs| ds <∞ for all t > 0

)

= 1,

P

(
∫ t

0+

|ζs|2 ds <∞ and

∫ t

0+

|ξs| ds <∞ for all t > 0

)

= 1.

Roughly speaking, our problem can be formulated as follows: suppose that X0

dominates Y0, φ dominates ζ and ψ dominates ξ; what can be said about the sizes
of X and Y ?

This question is very general and its various versions and modifications have
been investigated intensively in the literature. For instance, the whole class of the
so-called comparison theorems falls into scope of this subject: see Yamada (1973),
Ikeda and Watanabe (1977, 1989), Le Gall (1983) and references therein. The
direction of our research is closely related to the problem which appeared for the
first time in the work of Burkholder (1993). He showed that if X is a nonnegative
submartingale and we have the domination X0 ≥ |Y0|, |φs| ≥ |ζs| and ψs ≥ |ξs| for
all s, then

λP(|Y |∗ ≥ λ) ≤ 3||X ||1, λ > 0,

and

||Y ||p ≤ max{(p− 1)−1, 2p− 1}||X ||p, 1 < p <∞.

Here we have used the notation |X |∗ = supt≥0 |Xt| for the two-sided maximal func-
tion of X and ||X ||p = supt ||Xt||p for the p-th moment of X , p ≥ 1. Furthermore,
Burkholder proved that both inequalities above are sharp. These results were gen-
eralized in Choi (1997, 1998), who showed that if α ∈ [0, 1] is a fixed number, X is
a nonnegative submartingale and, in addition,

|X0| ≥ |Y0|, |φs| ≥ |ζs| and αψs ≥ |ξs| for all s, (1.2)

then we have the weak-type bound

λP(|Y |∗ ≥ λ) ≤ (α+ 2)||X ||1, λ > 0,

and the moment estimate

||Y ||p ≤ max{(p− 1)−1, (α+ 1)p− 1}||X ||p, 1 < p <∞.

Again, the constants α+2 and max{(p− 1)−1, (α+1)p− 1} are optimal. A related
problem, in which there is no assumption on the sign ofX , was studied by Hammack
(1996). He proved that if (1.2) holds for some α ∈ [0, 1], then we have the sharp
estimate

λP(|Y |∗ ≥ λ) ≤ 4||X+||1 − 2EX0 ≤ 6||X ||1, λ > 0, (1.3)

and that the norm inequalities fail to hold (here, as above, ||X+||1 =supt≥0 ||X+
t ||1).

The case α > 1 was studied by Osȩkowski (2011).
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We will deal with a version of the weak-type estimate for one-sided maximal
function Y ∗ = supt≥0 Yt, which is very close to the problem of the so-called optimal
control of semimartingales (see Section 4 below for the detailed description and
references to related results). In fact, we will work in a much wider setting. For
any real-valued semimartingalesX and Y , we say that Y is differentially subordinate
to X , if the process ([X,X ]t − [Y, Y ]t)t≥0 is nondecreasing and nonnegative as a
function of t (see Bañuelos and Wang (1995) or Wang (1995)). Here [X,X ] denotes
the quadratic variance process of X , see e.g. Dellacherie and Meyer (1982). This
type of domination implies many interesting inequalities if X and Y are martingales
or local martingales, see Wang (1995). In fact, throughout the paper we use a
slightly different notion of differential subordination: namely, this domination will
only mean that the process ([X,X ]t− [Y, Y ]t)t≥0 is nondecreasing (i.e., it may take
negative values).

In the semimartingale setting, the domination must be strengthened so that it
imposes some control on the finite variation parts. We will work under the assump-
tion of α-strong differential subordination (α-subordination in short), introduced
by Wang (1995) in the particular case α = 1, and by Osȩkowski (2009) for general
α ≥ 0. The definition is the following. Let X be an adapted submartingale, Y be
adapted semimartingale and write Doob-Meyer decompositions

X = X0 +M +A, Y = Y0 +N +B, (1.4)

whereM , N are local martingale parts, and A, B are finite variation processes (M ,
N , A and B are assumed to vanish at 0). In general the decompositions may not
be unique; however, we assume that A is predictable and this determines the first
of them. Let α be a fixed nonnegative number. We say that Y is α-subordinate
to X , if Y is differentially subordinate to X and there is a decomposition (1.4) for
Y such that the process (αAt − |B|t)t≥0 is nondecreasing as a function of t. Here
|B|t denotes the total variation of B on the interval [0, t]. Two observations are
in order: first in the setting of Itô processes described in (1.1), if |φs| ≥ |ζs| and
αψs ≥ |ξs| for all s, then, obviously, Y is α-subordinate to X . Second, the above
domination extends to the case when Y takes values in a certain separable Hilbert
space H (which can be assumed to be ℓ2): one applies the Doob-Meyer decompo-
sition for each coordinate of Y and then rewrites the definition of α-subordination
with [Y, Y ] =

∑∞

j=1[Y
j , Y j ] and |B| = ∑∞

j=1 |Bj |.
We turn to the formulation of our main result. Let U and (U+

α )α≥0 be the
functions introduced in Sections 2 and 3.

Theorem 1.1. Suppose that X is a submartingale starting from x and Y is a
semimartingale starting from y. Moreover, assume that Y is α-subordinate to X.

(i) If α ∈ [0, 1], then

P(Y ∗ ≥ 0) ≤ ||X+||1 + Uα(x, y). (1.5)

(ii) If α ≥ 0 and X is nonnegative, then

P(Y ∗ ≥ 0) ≤ ||X+||1 + U+
α (x, y). (1.6)

The inequalities (1.5) and (1.6) are sharp, even for the class of Itô processes (1.1).
More precisely, for any (x, y) ∈ R

2 (respectively, (x, y) ∈ [0,∞) × R) and any
c < U(x, y) (resp., c < U+

α (x, y)), there is an appropriate pair of Itô processes X,
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Y starting from x, y, satisfying (1.2), and for which

P(Y ∗ ≥ 0) > ||X+||1 + c.

A few words about the organization of the paper are in order. In Section 2,
we show the first part of the above theorem: that is, we establish the inequality
(1.5) and prove its sharpness. Section 3 is devoted to the proof of Theorem 1.1
for nonnegative X . The final part of the paper contains applications of our main
result. In particular, we study there the optimal control problem as well as certain
related estimates for smooth functions given on connected domains of Rn.

2. Proof of Theorem 1.1 for general submartingales

2.1. Special functions. We start our analysis by defining the function U appearing
in the statement of Theorem 1.1. Consider the following subsets of R2:

D1 = {(x, y) : x ≤ 0, y ≥ x},
D2 = {(x, y) : x > 0, y ≥ −x},
D3 = {(x, y) : y < x ≤ 0, x+ y + 4 ≤ 0},
D4 = {(x, y) : y < −x < 0, y − x+ 4 ≤ 0},
D5 = R

2 \ (D1 ∪D2 ∪D3 ∪D4)

(see Figure 2.1 below). Let U : R2 → R be given by

U(x, y) =































1 if (x, y) ∈ D1,

1− x if (x, y) ∈ D2,

2x/(x+ y) if (x, y) ∈ D3,

2x/(x− y)− x if (x, y) ∈ D4,
1
16 (y

2 − x2) + 1
2 (y − x) + 1 if (x, y) ∈ D5.

Let us study the properties of this function. We begin with the following straight-
forward lemma.

Lemma 2.1. (i) For any x ∈ R, the function U(x, ·) : y 7→ U(x, y) is convex and
increasing on the interval Ix = {y : (x, y) ∈ D3 ∪D4 ∪D5}.

(ii) For any (x, y) ∈ R
2 we have the double inequality

1− x+ ≥ U(x, y) ≥ 1D1∪D2
(x, y)− x+. (2.1)

Proof : (i) It is easy to check that the partial derivative Uy is continuous on D3 ∪
D4 ∪D5 and hence the function U(x, ·) is of class C1 on Ix. Furthermore, it is not
difficult to see that Uyy(x, y) ≥ 0 whenever (x, y) lies in the interior of D3, D4 or
D5. It remains to observe that

lim
y→−∞

U(x, y) = −x+, (2.2)

which is also an immediate consequence of the definition of U .
(ii) The majorization is obvious for (x, y) ∈ D1 ∪D2, and for the other domains,

it follows at once from continuity of U , the monotonicity of U(x, ·) and (2.2). �

The key property of U is described in the following lemma.
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Lemma 2.2. For any x, y, k ∈ R, introduce the function Gx,y,k : R → R by
Gx,y,k(t) = U(x+ t, y + kt). Then, for any |k| ≤ 1, the function Gx,y,k is concave
and nonincreasing on R.

Proof : It suffices to verify the concavity property. Indeed, if we establish it, the
monotonicity of Gx,y,k follows directly from the equality limt→−∞G′

x,y,k(t+) = 0

(which is evident from the very definition). Therefore, we will be done if we prove
that G′′

x,y,k(t) ≤ 0 whenever (x + t, y + kt) lies in the interior of one of the sets

Di, and that G′
x,y,k(t−) ≥ G′

x,y,k(t+) for remaining t. Because of the equality

Gx,y,k(t+ s) = Gx+t,y+kt,k(s), it is enough to check the above conditions for t = 0.
Now, when (x, y) lies in the interior of D1 or D2, then G′′

x,y,k(0) = 0. If (x, y)
belongs to Do

3, the interior of D3, then

G′′
x,y,k(0) =

4(k + 1)(k − 1)x

(x+ y)3
+

4(k + 1)(x− y)

(x+ y)3
≤ 0.

Similarly, if (x, y) ∈ Do
4, we derive that

G′′
x,y,k(0) =

4(1− k)(x + y)

(x − y)3
+

4(k − 1)(k + 1)x

(x− y)3
≤ 0. (2.3)

Finally, when (x, y) lies in the interior of D5, then G′′
x,y,k(0) = (1 − k2)/8 ≤ 0.

Next, we turn to the verification of the inequalities for the one-sided derivatives
at the points lying on the boundaries of Di. First, if (x, y) ∈ ∂D1, then the
inequality G′

x,y,k(0−) = 0 and G′
x,y,k(0+) ≤ 0 (where the latter follows, for ex-

ample, from (2.1)). A similar argument works for the boundary of D2: there we
have G′

x,y,k(0−) ≥ −1 = G′
x,y,k(0+) (again, see (2.1)). If (x, y) ∈ ∂D3 ∩ ∂D5 or

(x, y) ∈ ∂D4 ∩ ∂D5, then the derivatives match: G′
x,y,k(0−) = G′

x,y,k(0+). Finally,

when (x, y) ∈ ∂D3 ∩ ∂D4, then x = 0 and y ≤ −4; we compute that

G′
x,y,k(0−) =

2

y
, G′

x,y,k(0+) = −2

y
− 1,

so the inequality G′
x,y,k(0−) ≥ G′

x,y,k(0+) holds true. The proof is complete. �

2.2. Proof of (1.5). Since α-subordination implies α′-subordination for α < α′,
it suffices to establish the inequality in the less stringent case α = 1. We start
with the following well-known fact, see e.g. Dellacherie and Meyer (1982). For any
semimartingale X there exists a unique continuous local martingale part Xc of X
satisfying

[X,X ]t = |X0|2 + [Xc, Xc]t +
∑

0<s≤t

|∆Xs|2

for all t ≥ 0 (here ∆Xs = Xs −Xs− is the jump of X at time s > 0). Furthermore,
we have [Xc, Xc] = [X,X ]c, the pathwise continuous part of [X,X ]. In our further
considerations, we will need Lemma 1 from Wang (1995), which can be stated as
follows.

Lemma 2.3. If X and Y are semimartingales, then Y is differentially subordinate
to X if and only if Y c is differentially subordinate to Xc and for any s > 0 we have
|∆Ys| ≤ |∆Xs|.

Now it is convenient to split the reasoning into a few parts.



396 Adam Osȩkowski

Step 1. Convergence of X and Y . Of course, we may restrict ourselves to X
satisfying ||X+||1 < ∞, since otherwise there is nothing to prove. By Doob’s
convergence theorem, this assumption implies that the limit X∞ = limt→∞Xt

exists almost surely. In addition, it turns out that the semimartingale Y also
converges with probability 1 to a certain random variable, say Y∞. To show this,
we need some auxiliary notation. Suppose that f : [0,∞) → R is a given right-
continuous function with limits from the left. By Cauchy’s criterion,

the limit limt→∞ f(t) exists if and only if Cε(f) <∞ for all ε > 0,

where Cε(f) is the number of ε-escapes of f . The counting function Cε(·) is given
as follows: put Cε(f) = 0 and ν0(f) = ∞ if the set {t ≥ 0 : |f(t) − f(0)| ≥ ε} is
empty. If this is not the case, let ν0(f) = inf{t ≥ 0 : |f(t)− f(0)| ≥ ε}. Now, if the
set {t > ν0(f) : |f(t) − f(ν0(f))| ≥ ε} is empty, put Cε(f) = 1 and ν1(f) = ∞. If
nonempty, continue as above. If νj(f) is not defined by this induction, i.e., there is
a nonnegative i < j such that νi(f) = ∞, set νj(f) = ∞. Then Cε(f) ≤ j if and
only if νj(f) = ∞.

Consider an ℓ2-valued process Y, which for t ∈ [νn(Y ), νn+1(Y )) is given by

Yt = (Yν0(Y ) − Y0, Yν1(Y ) − Yν0(Y ), Yν2(Y ) − Yν1(Y ), . . . , Yt − Yνn(Y ), 0, 0, . . .).

Obviously, since Y is α-subordinate to X , so is Y. In addition, we have |Y0| = 0 ≤
|X0|. Therefore, by (1.3) (which holds true also for vector valued processes Y , see
Hammack (1996) and Osȩkowski (2011)),

P(νn−1(Y ) <∞) ≤ P(|Y|∗ ≥ √
nε) ≤

(

4||X+||1 − 2EX0

)

/(
√
nε).

Since the right-hand side converges to 0 as n→ ∞, we obtain

P(Cε(Y ) = ∞) = P(νn(Y ) <∞ for all n) = 0,

as desired.

Step 2. A reduction. We will replace the inequality (1.5) by its certain non-
maximal version. Introduce the stopping time τ = inf{t : |Xt|+ Yt ≥ 0}, where, as
usual, inf ∅ = ∞. Since

{Y ∗ ≥ 0} ⊆ {(Xτ , Yτ ) ∈ D1 ∪D2},
it suffices to establish the bound

P((Xτ , Yτ ) ∈ D1 ∪D2) ≤ ||X+||1 + U(x, y). (2.4)

Note that here we have used the previous step: the random variable Yτ makes sense
on the set {τ = ∞}.

Step 3. A mollification argument. Let ε, δ ∈ (0, 1) be fixed numbers and suppose
that g : R

2 → [0,∞) is a C∞ function, supported on the unit ball of R
2 and

satisfying
∫

R2 g = 1. For any α ≥ 0, we introduce the function U δ : R2 → R by the
convolution

U δ(x, y) =

∫

[−1,1]2
U(x+ δu, y − 2δ + δv)g(u, v)dudv

(note that we subtract 2δ on the second coordinate: this will guarantee the inequal-
ity (2.8) below). Of course, this function is of class C∞ and inherits the properties
studied in Lemma 2.2: it is nonincreasing along the lines of slope k ∈ [−1, 1]:

U δ
x(x, y) + k|U δ

y (x, y)| ≤ 0, (x, y) ∈ R
2, (2.5)
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and concave along the lines of slope k ∈ [−1, 1]:

U δ
xx(x, y)± 2U δ

xy(x, y)k + U δ
yy(x, y)k

2 ≤ 0, (x, y) ∈ R
2. (2.6)

The second condition has two important consequences. First, it implies that U δ

is superharmonic (simply put k = ±1 and add both estimates). Furthermore, it
yields that for all (x, y) ∈ R

2 and any h, k ∈ R, we have

U δ
xx(x, y)h

2 + 2U δ
xy(x, y)hk + U δ

yy(x, y)k
2 ≤ c(x, y)(h2 − k2), (2.7)

where

c(x, y) =
U δ
xx(x, y)− U δ

yy(x, y)

2
.

Indeed, (2.7) can be rewritten in the form

[

U δ
xx(x, y) + U δ

yy(x, y)
]

(h2 + k2) + 4U δ
xy(x, y)hk ≤ 0,

which is true in view of (2.6):

4U δ
xy(x, y)hk ≤ 2|U δ

xy(x, y)|(h2 + k2) ≤ −
[

U δ
xx(x, y) + U δ

yy(x, y)
]

(h2 + k2).

On the other hand, as we have already observed in the proof of Lemma 2.1, the
function Uy is continuous on D3∪D4∪D5. Therefore, the integration by parts and
Lemma 2.1 (i) yield

U δ
yy(x, y) =

∫

[−1,1]2
Uyy(x+ δu, y − 2δ + δv)g(u, v)dudv ≥ 0 (2.8)

for (x, y) ∈ D3 ∪D4 ∪D5. Thus, for all such (x, y),

c(x, y) =
U δ
xx(x, y) + U δ

yy(x, y)

2
− U δ

yy(x, y) ≤ 0. (2.9)

Step 4. The proof of (2.4). Let M , N , A, B be the local martingale and finite
variation parts of X and Y , coming from the Doob-Meyer decomposition (1.4). It
follows from the general theory of stochastic integration that the process

(
∫ t

0+

U δ
x(Xs−, Ys−)dMs +

∫ t

0+

U δ
y (Xs−, Ys−)dNs

)

t≥0

is a local martingale. Let (σn)n≥0 denote the corresponding localizing sequence of
stopping times. Since the function U δ is of class C∞, we are allowed to apply Itô’s
formula to

(

U δ(Xσn∧τ∧t, Yσn∧τ∧t)
)

t≥0
(recall the stopping time τ given in Step 2

above). We obtain

U δ(Xσn∧τ∧t, Yσn∧τ∧t) = U δ(x, y) + I1 + I2 + I3/2 + I4, (2.10)
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where

I1 =

∫ σn∧τ∧t

0+

U δ
x(Xs−, Ys−)dMs +

∫ σn∧τ∧t

0+

U δ
y (Xs−, Ys−)dNs,

I2 =

∫ σn∧τ∧t

0+

U δ
x(Xs−, Ys−)dAs +

∫ σn∧τ∧t

0+

U δ
y (Xs−, Ys−)dBs,

I3 =

∫ σn∧τ∧t

0+

U δ
xx(Xs−, Ys−)d[X,X ]cs

+ 2

∫ σn∧τ∧t

0+

U δ
xy(Xs−, Ys−)d[X,Y ]cs +

∫ σn∧τ∧t

0+

U δ
yy(Xs−, Ys−)d[Y, Y ]cs,

I4 =
∑

0<s≤σn∧τ∧t

[

U δ(Xs, Ys)− U δ(Xs−, Ys−)−
〈

∇U δ(Xs−, Ys−), (∆Xs,∆Ys)
〉

]

The term I1 is a martingale (as a function of t), so EI1 = 0. By the 1-subordination
of Y to X and (2.5), we have

I2 ≤
∫ σn∧τ∧t

0+

U δ
x(Xs−, Ys−)dAs +

∫ σn∧τ∧t

0+

∣

∣U δ
y (Xs−, Ys−)

∣

∣ d|B|s

≤
∫ σn∧τ∧t

0+

[

U δ
x(Xs−, Ys−) +

∣

∣U δ
y (Xs−, Ys−)

∣

∣

]

dAs ≤ 0.

The term I3 is also nonpositive, which is a consequence of (2.7). To see this, let

0 ≤ s0 < s1 ≤ t. For any j ≥ 0, let (ηji )1≤i≤ij be a sequence of nondecreasing finite

stopping times with ηj0 = s0, η
j
ij
= s1 such that limj→∞ max1≤i≤ij−1 |ηji+1−ηji | = 0.

Keeping j fixed, we apply, for each i = 0, 1, 2, . . . , ij, the inequality (2.7) to

x = Xs0−, y = Ys0− and h = hji = Xc
ηj

i+1
∧τ∧σn

−Xc
ηj

i
∧τ∧σn

, k = kji = Y c
ηj

i+1
∧τ∧σn

−
Y c
ηj

i
∧τ∧σn

. Summing the obtained ij + 1 inequalities and letting j → ∞ yields

U δ
xx(Xs0−, Ys0−)[X

c, Xc]σn∧τ∧s1
σn∧τ∧s0 + 2U δ

xy(Xs0−, Ys0−)[X
c, Y c]σn∧τ∧s1

σn∧τ∧s0

+ U δ
yy(Xs0−, Ys0−)[Y

c, Y c]σn∧τ∧s1
σn∧τ∧s0

≤ c(Xs0−, Ys0−)
(

[Xc, Xc]σn∧τ∧s1
σn∧τ∧s0 − [Y c, Y c]σn∧τ∧s1

σn∧τ∧s0

)

,

where we have used the notation [S, T ]s1s0 = [S, T ]s1 − [S, T ]s0 . The latter expression
is nonpositive: if s0 > τ ∧ σn, then it is equal to 0, while for s0 ≤ τ ∧ σn we
have c(Xs0−, Ys0−) ≤ 0 in view of (2.9), and it suffices to use the differential
subordination of Y c to Xc. Finally, I4 ≤ 0 because of the concavity of the function
U δ along the lines of slope k ∈ [−1, 1] and the fact that |∆Ys| ≤ |∆Xs|, in virtue
of the differential subordination. Consequently, combining all the above facts with
(2.10) and taking expectation of both sides yields

EU δ(Xσn∧τ∧t, Yσn∧τ∧t) ≤ EU δ(x, y) = U δ(x, y).

However, the process (X+
t )t≥0 is a submartingale, and thus, by Doob’s optional

sampling theorem, EX+
σn∧τ∧t ≤ EX+

t ≤ ||X+||1. Therefore, adding EX+
σn∧τ∧t to

both sides of the preceding estimate gives

E

[

U δ(Xσn∧τ∧t, Yσn∧τ∧t) +X+
σn∧τ∧t

]

≤ ||X+||1 + U δ(x, y).
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It is clear from (2.1) and the definition of U δ, that the expression in the square
brackets above is bounded from below by a certain universal constant. Furthermore,
U δ → U pointwise as δ → 0, since U is continuous. Consequently, letting δ → 0
gives, by Fatou’s lemma,

E

[

U(Xσn∧τ∧t, Yσn∧τ∧t) +X+
σn∧τ∧t

]

≤ ||X+||1 + U(x, y).

Next, we let n→ ∞ and then t→ ∞; applying Fatou’s lemma again, we obtain

E

[

U(Xτ , Yτ ) +X+
τ

]

≤ ||X+||1 + U(x, y)

and hence, by (2.1), we obtain (2.4). This completes the proof.

2.3. Sharpness for discrete-time processes. We will use the following procedure.
First we will exhibit appropriate examples in the discrete-time setting, and then,
using a simple embedding into the Brownian motion, we will prove that the bound
is optimal for the class of Itô processes (1.1).

Since α-subordination implies α′-subordination for α′ > α and the bound (1.5)
does not depend on α, it suffices to show its sharpness for α = 0. Consider the
discrete-time Markov family (fn, gn)n≥0 with the transition function uniquely de-
termined by the following conditions.

(a) The state (x, y) ∈ D1, x < 0, leads to (0, y − x) or to (2x, x + y); each
possibility has probability 1/2. The states of the form (0, y), y ≥ 0, are absorbing.

(b) The state (x, y) ∈ D2 leads to (0, x+ y) or to (2x, y−x); each possibility has
probability 1/2.

(c) The state (x, y) ∈ D3 leads to (0, y + x) with probability (x − y)/(x+ y) or
to ((x + y)/2, (x+ y)/2) with probability −2x/(x+ y).

(d) The state (x, y) ∈ D4 leads to (0, y − x) with probability (−x − y)/(x − y)
or to ((x− y)/2, (y − x)/2) with probability 2x/(x− y).

(e) The state (x, y) ∈ D5 leads to ((x−y)/2, (y−x)/2) with probability 1+(x+
y)/4 or to ((x − y)/2− 2, (y − x)/2− 2) with probability −(x+ y)/4.

For the reader’s convenience, we have decided to illustrate the transition function
on Figure 2.1 below.

Now suppose that the pair (f, g) satisfies P((f0, g0) = (x, y)) = 1 for some given
(x, y) ∈ R

2. It is easy to check that in fact, both processes f , g are martingales
and for any n ≥ 1 we have dfn = εndgn, where εn ∈ {−1, 1} is a predictable sign
(that is, εn is measurable with respect to the σ-algebra generated by f and g up
to time n− 1). In addition, it is obvious that both f , g converge almost surely; let
f∞, g∞ denote the corresponding limits. Consider two functions P, M : R2 → R,
defined by

P (x, y) = P(g∞ ≥ 0|(f0, g0) = (x, y)) and M(x, y) = sup
n≥0

E(f+
n |(f0, g0) = (x, y)).

We will prove that P (x, y)−M(x, y) = U(x, y); this will clearly give the sharpness
in the discrete-time case. Let us consider several cases separately.

Case 1. Suppose that (f, g) starts from (x, y) ∈ D1. Then, by (a), the martingale
f is nonpositive and g converges almost surely to y − x ≥ 0. In consequence, we
have P (x, y) = 1, M(x, y) = 0 and hence P (x, y)−M(x, y) = U(x, y).
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Figure 2.1. The evolution of the above Markov family, α ∈ [0, 1]:
the behavior of the points from the domains D1−D5. The halflines
∂D1 ∩ ∂D2 and ∂D3 ∩ ∂D4 are absorbing.

Case 2. If (f0, g0) ∈ D2, the analysis is similar to that from the previous case.
The condition (b) implies that f is a nonnegative martingale and g converges almost
surely to x + y ≥ 0. Therefore, we have P (x, y) = 1, M(x, y) = x and P (x, y) −
M(x, y) = U(x, y).

Case 3. Assume that the starting point (x, y) lies in D3. By (c), at the first step
the pair either moves to (0, x+y) and stays there forever, or jumps to ((x+y)/2, (x+
y)/2) and we are in the position studied in Case 1. Consequently, we derive that g
reaches 0 with probability P (x, y) = −2x/(x+ y); furthermore, M(x, y) = 0, since
f is nonpositive. This yields P (x, y)−M(x, y) = U(x, y).

Case 4. If (f, g) starts from D4, we argue as in the previous case. By (d), at the
first step the pair (f, g) goes to (0, y − x) (with probability (−x− y)/(x− y)) and
stops, or moves to the half-line {(x,−x) : x > 0} (with probability 2x/(x− y)) and
then it evolves as in the Case 2 above. Therefore, we have P (x, y) = 2x/(x − y)
and M(x, y) = x, so P (x, y)−M(x, y) = U(x, y).

Case 5. Finally, assume that (f0, g0) ≡ (x, y) ∈ D5. Then, by (e), the pair (f, g)
goes either to ((x − y)/2, (y − x)/2) (and then we apply Case 2) or to the point
((x− y)/2− 2, (y − x)/2 − 2) and then we use Case 3. Hence,

P (x, y) =

(

1 +
x+ y

4

)

· 1− x+ y

4
· 2 ·

(

x−y
2 − 2

)

(

x−y
2 − 2

)

+
(

y−x
2 − 2

) = 1 +
x2 − y2

16
.

On the other hand, we have

Ef+
0 ≤ Ef+

1 =

(

1 +
x+ y

4

)

· x− y

2
=
x− y

2
+
x2 − y2

8
.

However, we easily check that for n ≥ 2, the variable fn has the same sign as f1.
This implies that the above expression is equal to M(x, y) and thus the difference
P (x, y)−M(x, y) is equal to U(x, y).

2.4. Sharpness of (1.5) for Itô processes of the form (1.1). Fix the starting point
(x, y) ∈ R

2. We know that the corresponding pair (f, g), constructed in the previous
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subsection, is a martingale. Thus, using the classical embedding theorems, there is a
nondecreasing sequence (τn)n≥0 of stopping times converging to τ∞ (with τ∞ <∞
almost surely) satisfying τ0 ≡ 0 and such that the sequence (x + Bτn)n≥0 has the
same distribution as (fn)n≥0. Define

Xt = x+

∫ t

0

1[0,τ∞)(s)dBs.

Furthermore, as we have observed above, for any n ≥ 1 we have dgn = εndfn, where
εn ∈ {−1, 1} is predictable. Therefore, if we put

Yt = y +

∫ t

0

ζsdBs,

where ζs = εn for s ∈ [τn−1, τn) and ζs = 0 for s ∈ [τ∞,∞), then (Xτn , Yτn)n≥0

has the same distribution as (fn, gn)n≥0. The processes X , Y are of the form (1.1)
and the integrands satisfy the required conditions. It remains to observe that

P(Y ∗ ≥ 0)− ||X+||1 = P(g∞ ≥ 0)− ||f+||1 = U(x, y).

The sharpness follows.

3. Proof of Theorem 1.1 for nonnegative submartingales

3.1. Special functions. Here the situation is much more complicated. For a positive
α, introduce the auxiliary parameter

γ = γ(α) =
2(1 + α)2

2α+ 1
(3.1)

and consider the following subsets of [0,∞)× R:

D1 = {(x, y) : x+ y ≥ 0},
D2 = {(x, y) : x+ y < 0, y + γ > x/(2α+ 1)},
D3 = {(x, y) : y + γ ≤ x/(2α+ 1), y > x− 2(1 + α)},
D4 = ([0,∞)× R) \ (D1 ∪D2 ∪D3)

(see Figure 3.2 below). Define

U+
α (x, y) =



























1− x if (x, y) ∈ D1,

1
γ ((1 − γ)x+ y + γ)

(

x+y
γ + 1

)1/(2α+1)

if (x, y) ∈ D2,

−
(

α
α+1

)2α/(2α+1)

x
(

x−y
γ − 1

)1/(2α+1)

if (x, y) ∈ D3,

2x/(x− y)− x if (x, y) ∈ D4.

Here is the analogue of Lemma 2.1.

Lemma 3.1. (i) For any x ∈ R, the function U+
α (x, ·) : y 7→ U+

α (x, y) is convex
and increasing on the interval Ix = (−∞,−x].

(ii) For any (x, y) ∈ R
2 we have the double inequality

1− x ≥ U+
α (x, y) ≥ 1D1

(x, y)− x. (3.2)

The proof of this lemma goes along the same lines as that of Lemma 2.1, so we
leave the details to the reader. The next statement concerns the key monotonicity
and concavity properties of U+

α .
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Lemma 3.2. For any x, y, k ∈ R and α ≥ 0, let G = Gx,y,α,k : [−x,∞) → R be
given by G(t) = U+

α (x+ t, y + kt).
(i) For any (x, y) ∈ [0,∞)× R and |k| ≤ 1, the function Gx,y,α,k is concave.
(ii) For any (x, y) ∈ [0,∞)×R and |k| ≤ α, the function Gx,y,α,k is nonincreas-

ing.

Proof : (i) We argue as in the proof of Lemma 2.2. The inequality G′′
x,y,α,k(0) ≤ 0

is obvious in the interior of D1, and has already been established in the interior of
D4 (see (2.3)). If (x, y) belongs to Do

2, we derive that

G′′
x,y,α,k(0) =

2(k + 1)

γ3(2α+ 1)

(

x+ y

γ
+ 1

)1/(2α+1)−2

×

×
[

(1− γ + k)(x+ y + γ)− α(k + 1)

2α+ 1

(

(1− γ)x+ y + γ
)

]

and it suffices to show that the expression in the square brackets is nonpositive.
However, we have y + γ ≥ x/(2α + 1) (by the definition of D2) and 1 − γ + k ≤
α(k + 1)/(2α+ 1), so the expression is not larger than

(1 − γ + k)

(

x+
x

2α+ 1

)

− α(k + 1)

2α+ 1

(

(1− γ)x+
x

2α+ 1

)

=
2α+ 2

2α+ 1
x

[

1− γ + k +
α2(k + 1)

2α+ 1

]

.

It remains to observe that the above term, considered as a function of k, attains
its maximum for k = 1, and the maximum equals 0. Finally, when (x, y) ∈ Do

3, we
compute that

G′′
x,y,α,k(0) =

2

2α+ 1

(

α

α+ 1

)2α/(2α+1) (
1− k

γ2

)(

x− y

γ
− 1

)1/(2α+1)−2

×

×
[

−x+ y + γ +
α(1− k)x

2α+ 1

]

and the expression in the square brackets is nonpositive. Indeed, y+γ ≤ x/(2α+1),
so the expression does not exceed

−αx(k + 1)

2α+ 1
≤ 0.

It remains to establish the appropriate inequalities between one-sided derivatives
of Gx,y,α,±1. If (x, y) ∈ ∂D1, x > 0, then the estimate G′

x,y,α,k(0−) ≥ G′
x,y,α,k(0+)

follows directly from (3.2) (the right derivative is −1, and the left is at least −1).
For remaining points at the common boundaries, the derivatives match.

(ii) Since Uα is continuous, we must show G′
x,y,α,k(0) ≤ 0 for (x, y) lying in the

interior of D1, D2, D3 or D4. This is obvious if (x, y) ∈ Do
1. For remaining (x, y),

we note that U+
αy ≥ 0 and hence

G′
x,y,α,k(0) ≤ G′

x,y,α,α(0).

The derivative on the right-hand side equals

− α+ 1

2α+ 1
γ−1/(2α+1)(x+ y + γ)1/(2α+1)−1x ≤ 0
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if (x, y) ∈ Do
2, and

−γ−1/(2α+1)

(

α+ 1

α
(x− y − γ)

)1/(2α+1)−1 [
α+ 1

2α+ 1
x+

(

x

2α+ 1
− (y + γ)

)]

≤ 0

for (x, y) ∈ Do
3. Finally, if (x, y) belongs to the interior of D4, we compute that

G′
x,y,α,α(0) =

2x(α − 1) + 2(x− y)

(x− y)2
− 1.

By the definition of D4, we have x − y ∈ (2(1 + α),∞]. We keep this difference
fixed, and maximize the above expression over x (which lies in (0, (x− y)/2), again
by the definition of D4). If α ≤ 1, then

2x(α− 1) + 2(x− y)

(x− y)2
− 1 ≤ 2(x− y)

(x − y)2
− 1 ≤ 1

1 + α
− 1 ≤ 0.

On the other hand, for α > 1, we may write

2x(α− 1) + 2(x− y)

(x − y)2
− 1 ≤ (x − y)(α− 1) + 2(x− y)

(x− y)2
− 1 =

1 + α

x− y
− 1 ≤ −1

2
.

This completes the proof. �

3.2. Proof of (1.6). The reasoning is the same as in the general case, so we will be
brief. We restrict ourselves to X satisfying ||X ||1 < ∞, which implies the almost
sure convergence of X and Y . Introduce the stopping time τ = inf{t ≥ 0 : Xt+Yt ≥
0} and note that it suffices to prove that

P(Xτ + Yτ ≥ 0) ≤ ||X ||1 + U+
α (x, y).

To accomplish this, we make use of the mollified function

U δ+
α (x, y) =

∫

[−1,1]2
U+
α (x+ δ + δu, y − 3δ + δv)g(u, v)dudv,

where g : R2 → [0,∞) is a smoothing kernel. Now we repeat, essentially word by
word, the argumentation appearing in the proof of (1.5).

3.3. Sharpness, the discrete-time case. Here the calculations will be much more in-
volved. In contrast with the previous section, the optimality of U+

α will be obtained
asymptotically, i.e., in the limit. Let δ be a small positive number and consider the
Markov family on the state space [0,∞)×R, determined by the following conditions.

(a) The state (x, y) ∈ D1, x > 0, leads to (0, x + y) or to (2x, y − x); each
possibility has probability 1/2. The states (0, y), y ≥ 0, are absorbing.

(b) The state (0, y) with y ∈ (−γ, 0) leads to (2δ/(α+ 1), y + 2αδ/(α+ 1)).

(c) The state (x, y) ∈ D2, x > 0, leads to (0, y + x) with probability

(2α+ 1)y − x+ 2(α+ 1)2

(2α+ 1)(x+ y) + 2(α+ 1)2

or to the point
(

2α+ 1

2(α+ 1)
(x+ y) + α+ 1,

x+ y

2(α+ 1)
− α− 1

)

∈ ∂D2 ∩ ∂D3

with probability
2(α+ 1)x

(2α+ 1)(x+ y) + 2(α+ 1)2
.
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(d) The state (x, y) ∈ D3 leads to (0, y − x) with probability

x− (2α+ 1)y − 2(1 + α)2 + 2αδ

(2α+ 1)(x− y)− 2(1 + α)2 + 2αδ
,

or to the point
(

(2α+ 1)(x− y)− 2(1 + α)2 + 2αδ

2α
,
x− y − 2(1 + α)2 + 2αδ

2α

)

with probability
2αx

(2α+ 1)(x− y)− 2(1 + α)2 + 2αδ
.

(e) The state (x, y) ∈ D4 leads to (0, y− x) with probability (−x− y)/(x− y) or
to ((x − y)/2, (y − x)/2) with probability 2x/(x− y).

Figure 3.2. The transity function of the above Markov process.
The part of the y-axis which lies outside D2 is absorbing. A state
lying in the interior of D2 leads either to the y-axis, or to the
common boundary of D2 and D3. Hovever, a state from D3 leads
either to the y-axis, or slightly above the set ∂D2 ∩ ∂D3.

We would like to stress here that f, g are not martingales: this is due to (b) (how-
ever, the remaining moves are of martingale type). In analogy with the previous
section, we introduce the functions P , M by

P (x, y) = P(g∞ ≥ 0|(f0, g0) = (x, y)), M(x, y) = sup
n

E
[

fn|(f0, g0) = (x, y)
]

.

Observe that the functions P and M do depend on δ; for notational simplicity, we
will not indicate this dependence. Consider two cases:

Case 1: (x, y) ∈ D1 ∪ D4. We repeat the analysis presented in the general
setting. For these starting points, the process (f, g) is a martingale, soM(x, y) = x;
in addition, P (x, y) = 1 for (x, y) ∈ D1 and P (x, y) = 2x/(x − y) for (x, y) ∈ D4.
Thus, P (x, y)−M(x, y) = U+

α (x, y).
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Case 2: (x, y) ∈ D2 ∪D3. This is the main technical part. For x ≥ 0 and y ∈ R,
let

B(y) = P (0, y) and C(x) = P

(

x,
x

2α+ 1
− γ

)

.

Note that the point, to which P is applied above, belongs to ∂D2 ∩ ∂D3 (at least
when x ≤ α+1). Suppose that x ∈ (0, α+1). By (d) and the fact that P (0, y) = 0
for y ≤ −γ,

C(x) =
δ

δ + x
· P

(

0,
x

2α+ 1
− γ − x

)

+
x

x+ δ
P

(

x+ δ,
x

2α+ 1
− γ + δ

)

=
x

x+ δ
P

(

x+ δ,
x

2α+ 1
− γ + δ

)

.

Now, if
(

x+ δ, x
2α+1 − γ + δ

)

∈ D1, then

C(x) =
x

x+ δ
. (3.3)

On the other hand, if the point belongs to D2, we apply (c):

P

(

x+ δ,
x

2α+ 1
− γ + δ

)

=
αδ

(α+ 1)x+ (2α+ 1)δ
B

(

(2α+ 2)x

2α+ 1
− γ + 2δ

)

+
(α+ 1)(x+ δ)

(α+ 1)x+ (2α+ 1)δ)
C

(

x+
2α+ 1

α+ 1
δ

)

and combine it with the preceding identity to obtain

C(x) =
αδx

(

(α + 1)x+ (2α+ 1)δ
)

(x+ δ)
B

(

(2α+ 2)x

2α+ 1
− γ + 2δ

)

+
(α+ 1)x

(α+ 1)x+ (2α+ 1)δ)
C

(

x+
2α+ 1

α+ 1
δ

)

.

(3.4)

Similarly, since (2α+ 2)x/(2α+ 1)− γ ∈ (−γ, 0), the condition (b) implies

B

(

(2α+ 2)x

2α+ 1
− γ

)

= P

(

2δ

α+ 1
,
(2α+ 2)x

2α+ 1
− γ +

2αδ

α+ 1

)

.

If the point at which P is evaluated belongs to D1, then

B

(

(2α+ 2)x

2α+ 1
− γ

)

= 1. (3.5)

On the other hand, if this point belongs toD2 (it is easy to see that this is equivalent

to
(

x+ δ, x
2α+1 − γ + δ

)

∈ D2), we may use (c) to get

B

(

(2α+ 2)x

2α+ 1
− γ

)

=
(α + 1)x+ (2α− 1)δ

(α + 1)x+ (2α+ 1)δ
B

(

(2α+ 2)x

2α+ 1
− γ + 2δ

)

2δ

(α+ 1)x+ (2α+ 1)δ
C

(

x+
2α+ 1

α+ 1
δ

)

.

(3.6)
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Nowmultiply (3.6) by α and add it to (3.4). After some tedious, but straightforward
calculations, we obtain

C(x) + αB

(

2α+ 2

2α+ 1
x− γ

)

=
(α + 1)x+ 2αδ

(α+ 1)x+ (2α+ 1)δ

[

C

(

x+
2α+ 1

α+ 1
δ

)

+ αB

(

2α+ 2

2α+ 1
x− γ + 2δ

)]

− αδ2

((α + 1)x+ (2α+ 1)δ)(x + δ)
B

(

2α+ 2

2α+ 1
x− γ + 2δ

)

.

The function B is bounded by 1, so the second term above is of order O(δ2). Now
we will use induction. Let n be a positive integer such that

x+
(2α+ 1)(n− 1)δ

α+ 1
< α+ 1 ≤ x+

(2α+ 1)nδ

α+ 1
. (3.7)

Let us apply the preceding estimate for x, x + (2α + 1)δ/(α + 1), . . ., x + (2α +
1)(n− 2)δ/(α+ 1). We cannot use this estimate for x+ (2α+ 1)(n− 1)δ/(α+ 1),
since the corresponding points arising from (b) and (d) do not belong to D2, but
to D1; nevertheless, then we obtain (compare the expressions below to (3.3) and
(3.5))

C

(

x+
(2α+ 1)(n− 1)δ

α+ 1

)

+ αB

(

2α+ 2

2α+ 1
x+ 2(n− 1)δ

)

=
x+ (2α+1)(n−1)δ

α+1

x+ (2α+1)(n−1)δ
α+1 + δ

+ α

=
(α+ 1)((α+ 1)x+ (2α+ 1)(n− 1)δ + 2αδ

(α+ 1)x+ (2α+ 1)nδ
+O(δ2).

(3.8)

Combining the above n inequalities, we get

C(x)+αB

(

2α+ 2

2α+ 1
x− γ

)

= ηn,δ + (α+ 1)

n−1
∏

k=0

(

(α+ 1)x+ (2α+ 1)kδ + 2αδ

(α+ 1)x+ (2α+ 1)(k + 1)δ

)

,

(3.9)

where ηn,δ denotes the corresponding error term of order O(nδ2). Next, we let
δ → 0 (and hence n→ ∞, in view of (3.7)). Then ηn,δ → 0 and

n−1
∏

k=0

(

(α + 1)x+ (2α+ 1)kδ + 2αδ

(α+ 1)x+ (2α+ 1)(k + 1)δ

)

=

n−1
∏

k=0

(

1− δ

(α+ 1)x+ (2α+ 1)(k + 1)δ

)

∼ exp

[

−
n−1
∑

k=0

δ

(α+ 1)x+ (2α+ 1)(k + 1)δ

]

→ exp

[

−
∫ b

0

1

(α+ 1)x+ (2α+ 1)t
dt

]

,

where b = (α + 1 − x)(α + 1)/(2α + 1) and the notation A ∼ B means that the
ratio A/B tends to 1 as δ → 0. Computing the above integral, we obtain that the
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product converges to (x/(α+ 1))1/(2α+1). Plugging all the above facts to (3.9), we
see that

C(x) + αB

(

2α+ 2

2α+ 1
x− γ

)

=

(

x

α+ 1

)1/(2α+1)

(1 + α) +O(δ). (3.10)

Similarly, if we multiply (3.6) by −1/2 and add it to (3.4), and combine it with the
corresponding version of (3.8), we get

C(x) − 1

2
B

(

2α+ 2

2α+ 1
x− γ

)

=
(α+ 1)x− δ

(α+ 1)x+ (2α+ 1)δ

[

C

(

x+
2α+ 1

α+ 1
δ

)

− 1

2
B

(

2α+ 2

2α+ 1
x− γ + 2δ

)]

− αδ2

((α + 1)x+ (2α+ 1)δ)(x + δ)
B

(

2α+ 2

2α+ 1
x− γ + 2δ

)

.

By induction, for n satisfying (3.7), we obtain

C(x)−1

2
B

(

2α+ 2

2α+ 1
x− γ

)

= ηn,δ +
n−1
∏

k=0

(

(α+ 1)x+ (2α+ 1)kδ − δ

(α+ 1)x+ (2α+ 1)(k + 1)δ

)

×
[

C

(

x+
2α+ 1

α+ 1
nδ

)

+αB

(

2α+ 2

2α+ 1
x− γ + 2nδ

)]

= ηn,δ +
1

2

n−1
∏

k=0

(

(α+ 1)x+ (2α+ 1)kδ − δ

(α+ 1)x+ (2α+ 1)(k + 1)δ

)

.

Carrying out similar calculations, we verify that for δ → 0, the product above
converges to (x/(α+ 1))(2α+2)/(2α+1) and hence

C(x) − 1

2
B

(

2α+ 2

2α+ 1
x− γ

)

=
1

2

(

x

α+ 1

)(2α+2)/(2α+1)

+O(δ). (3.11)

Combining this identity with (3.10), we finally obtain that for x ∈ (0, α+ 1),

P

(

0,
2α+ 2

2α+ 1
x− γ

)

= B

(

2α+ 2

2α+ 1
x− γ

)

=

(

x

α+ 1

)1/(2α+1)
2(1 + α)2 − x

(2α+ 1)(α+ 1)
+O(δ)

(3.12)

and

P

(

x,
x

2α+ 1
− γ

)

= C(x) =

(

x

α+ 1

)1/(2α+1)
(1 + α)2 + αx

(2α+ 1)(α+ 1)
+O(δ). (3.13)

To compute the corresponding values of the function M , we repeat, word by word,
the above reasoning. We let

B(y) =M(0, y) and C(x) =M

(

x,
x

2α+ 1
− γ

)

.
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The only difference lies in the equations (3.3) and (3.5): this time, if n satisfies
(3.7), the corresponding equalities read

C

(

x+
(2α+ 1)nδ

α+ 1

)

= x+
(2α+ 1)nδ

α+ 1
, B

(

2α+ 2

2α+ 1
x− γ + 2nδ

)

= 0.

Therefore, the analogues of (3.10) and (3.11) are

C(x) + αB

(

2α+ 2

2α+ 1
x− γ

)

=

(

x

α+ 1

)1/(2α+1)

(1 + α) +O(δ).

and

C(x) − 1

2
B

(

2α+ 2

2α+ 1
x− γ

)

=

(

x

α+ 1

)(2α+2)/(2α+1)

(1 + α) +O(δ).

Using these identities, we derive the corresponding values of M and obtain that

P

(

x,
x

2α+ 1
− γ

)

−M

(

x,
x

2α+ 1
− γ

)

= Uα

(

x,
x

2α+ 1
− γ

)

+O(δ)

and

P

(

0,
2α+ 2

2α+ 1
x− γ

)

−M

(

0,
2α+ 2

2α+ 1
x− γ

)

= Uα

(

0,
2α+ 2

2α+ 1
x− γ

)

+O(δ).

This gives the optimality of the constant Uα on D2 ∩ {y = 0} and on the common
boundary of D2 and D3. For the remaining states from D2 ∪ D3, we use (c) and
(d). Indeed, suppose that (x, y) ∈ D2. Then, using the optimality we have just
established,

P (x, y)−M(x, y) =
(2α+ 1)y − x+ 2(α+ 1)2

(2α+ 1)(x+ y) + 2(α+ 1)2
(Uα(0, x+ y) +O(δ))

+
2(α+ 1)x

(2α+ 1)(x+ y) + 2(α+ 1)2
×

×
[

Uα

(

2α+ 1

2(α+ 1)
(x + y) + α+ 1,

x+ y

2(α+ 1)
− α− 1

)

+O(δ)

]

= Uα(x, y) +O(δ).

The points from D3 are dealt with in a similar manner.

3.4. Sharpness, the continuous-time case. Let (x, y) be a fixed starting point. To
show the optimality of the constant U+

α (x, y), one can embed the examples from the
previous subsection into a pair of appropriate submartingales. It is also possible to
define the corresponding pair (X,Y ) directly. Let us briefly explain this. Fix δ > 0
and let B be a standard Brownian motion, starting from 0. Suppose, for example,
that (x, y) ∈ D2, x > 0. Let us present the continuous-time version of the pair
(f, g). Put τ0 ≡ 0. The first move is described by (c), so define

τ1 = inf

{

t > 0 : x+Bt ∈
{

0,
2α+ 1

2(α+ 1)
(x + y) + α+ 1

}}

(3.14)

and (φs, ψs, ζs, ξs) = (1, 0,−1, 0) for s ∈ [0, τ1).
Next, we deal with the second step. If x+Bτ1 = 0, we follow (b): to embed this

move, we put τ2 = τ1+2δ/(α+1) and (φs, ψs, ζs, ξs) = (0, 1, 0, α) for s ∈ [τ1, τ2). If
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x+Bτ1 is equal to the second expression in (3.14), we must construct the continuous
version of the step described in (d). This is straightforward: we set

τ2 = inf

{

t > τ1 : x+Bt ∈
{

0,
(2α+ 1)(x− y)− 2(1 + α)2 + 2αδ

2α

}}

and (φs, ψs, ζs, ξs) = (1, 0, 1, 0) for s ∈ [τ1, τ2). Proceeding in such a way, we obtain
the predictable quadruple (φ, ψ, ζ, ξ) and the sequence (τn)n≥0 of stopping times
such that the corresponding Itô processes (1.1) satisfy

(

(Xτn , Yτn)
)

n≥0
has the same distribution as (f, g).

All that is left is to observe that

P(Y ∗ ≥ 0)− ||X ||1 = P(g∗ ≥ 0)− ||f+||1,
and the right-hand side can be made arbitrarily close to U+

α (x, y), by the appropri-
ate choice of δ.

4. Applications

4.1. One-sided weak-type inequalities for α-subordinated processes. As the first ap-
plication, we present the proof of the one-sided version of the inequality (1.3).

Theorem 4.1. Assume that X is a submartingale and Y is a semimartingale which
α-subordinate to X, α ∈ [0, 1]. If |Y0| ≤ |X0|, then for any λ > 0 we have

λP(Y ∗ ≥ λ) ≤ 4||X+||1 − 2EX0 ≤ 6||X ||1. (4.1)

The first inequality is sharp.

Proof : Of course, the claim follows immediately from Hammack’s result (1.3), but
it is instructive to see how this bound can be deduced from (1.5). Fix a positive
number λ and observe that 4Y/λ is α-subordinate to 4X/λ, so

P(Y ∗ ≥ λ) = P

((

4Y

λ
− 4

)∗

≥ 0

)

≤ 4

λ
||X+||1 + EU

(

4X0

λ
,
4(Y0 − λ)

λ

)

.

By Lemma 2.1 (i) and Lemma 2.2 (i), we have

Uα

(

4X0

λ
,
4(Y0 − λ)

λ

)

≤ Uα

(

4X0

λ
,
4(|X0| − λ)

λ

)

= −2X0

λ

This yields (4.1). To see that the bound is sharp, let X be a Brownian motion
started at −λ/2 and stopped at 0. Put Yt = λ + Xt for t ≥ 0; then Y is α-
subordinate to X , |Y0| = |X0|, P(Y ∗ ≥ λ) = 1, ||X+||1 = 0 and −2EX0 = λ, so
both sides of (4.1) are equal. �

When X is assumed to be nonnegative, we have an even nicer statement. Recall
the parameter γ(α) given by (3.1).

Theorem 4.2. Assume that X is a nonnegative submartingale and Y is α-subor-
dinate to X. If |Y0| ≤ |X0|, then for any λ > 0 we have

λP(Y ∗ ≥ λ) ≤ γ(α)||X ||1. (4.2)

The inequality is sharp.
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Proof of Theorem 4.2: We argue as previously. Fix λ > 0 and note that by (1.6),

P(Y ∗ ≥ λ) = P

((

γ(α)Y

λ
− γ(α)

)∗

≥ 0

)

≤ γ(α)||X ||1
λ

+ EU+
α

(

γ(α)X0

λ
,
γ(α)Y0
λ

− γ(α)

)

.

It suffices to observe that by Lemma 3.2 and the inequality |Y0| ≤ |X0|, we have

U+
α

(

γ(α)X0

λ
,
γ(α)Y0
λ

− γ(α)

)

≤ U+
α (0,−γ(α)) = 0.

Hence, (4.2) follows. To prove that this bound is sharp, we will use the examples
from the previous section. Fix β ∈ (0, γ) and ε ∈ (0, U+

α (0,−β)). There is a pair
(X,Y ) of Itô processes of the form (1.1) for which (1.2) holds, X0 = 0, Y0 = −β
and

P(Y ∗ ≥ 0)− ||X ||1 ≥ U+
α (0,−β)− ε ≥ 0.

Then Y + β is α-subordinate to X and

βP((Y + β)∗ ≥ β) ≥ β||X ||1,
which implies that the best constant must be at least β. Letting β → γ(α) yields
the sharpness. �

4.2. On optimal control of semimartingales. The second application we discuss here
concerns the so-called optimal control of semimartingales. Let X = X0+M +A be
a real-valued semimartingale and let H , K be real predictable processes. Assume

that H , K are bounded or, more generally, that
∫ t

0 |Hs|2d[M,M ]s,
∫ t

0 Ksd|A|s are
finite almost surely for all t ≥ 0. Controlling X by the pair (H,K) gives the
right-continuous semimartingale Y given by the stochastic integral

Yt = H0X0 +

∫ t

0+

Hs dMs +

∫ t

0+

Ks dAs, t ≥ 0.

Let β be a fixed real number and suppose that the goal is to find a pair (H,K) in
some given class of predictable processes such that

P(Ys ≥ β for some s ≥ 0) = 1. (4.3)

The example X ≡ 0 shows that this is not always possible. The following theorem
gives a necessary condition for the existence of such a pair in the case when X is a
martingale (see Burkholder (1984, 1991)).

Theorem 4.3. Let a, b, x, β ∈ R with a ≤ 0 and b ≥ 1. Suppose that X is a
martingale with X0 ≡ x and H is a predictable process taking values in [a, b] and
such that H0 ≡ 1. If (4.3) holds, then

||X ||1 ≥ |x| ∨
[

(a+ b− 2)x+ 2β

b− a

]

.

The inequality is sharp.

Next, fix t ∈ [0, 1] and suppose that (4.3) is replaced by the less stringent condi-
tion

P(Ys ≥ β for some s ≥ 0) ≥ t. (4.4)

Then we have the following version of Theorem 4.3, proved by Choi (1988).
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Theorem 4.4. Let x, β ∈ R, t ∈ [0, 1] and assume that X is a martingale starting
from x. Let H be a predictable process satisfying −1 ≤ H(ω) ≤ 1 and H0 ≡ 1. If
(4.4) holds true, then

||X ||1 ≥ |x| ∨
{

β − x− [β+(β − 2x)+(1− t)]1/2
}

.

The equality can hold.

Our contribution in this direction concerns the case when X is a submartingale.
Furthermore, we allow H0 to be any number from [−1, 1]. We start with the result
for general submartingales.

Theorem 4.5. Let x, β ∈ R, α ∈ [0, 1], t ∈ [0, 1] and assume that X is a sub-
martingale starting from x. Let H, K be predictable processes taking values in
[−1, 1] and [−α, α], respectively. If (4.4) holds true, then

||X+||1 ≥ x+ ∨
{

β − 2x− −
√

β+(β − 2|x|)+(1− t)

2

}

. (4.5)

The inequality is sharp.

Proof : First let us exclude the trivial cases. If β ≤ 2|x| or t ≤ 2|x|/β, then the
inequality (4.5) is equivalent to ||X+||1 ≥ x+, which is obvious. Hence we assume
that the two estimates are not true. Pick C ∈ (0, 4/β] and apply (1.5) to the pair
CX , C(Y − β). We obtain

||X+||1 =
||CX+||1

C
≥ P(C(Y − β)∗ ≥ 0)− U(Cx,C(H0x− β))

C

≥ P(Y ∗ ≥ β)− U(Cx,C(|x| − β))

C

since H0x ≤ |x| and the function U(x, ·) is nondecreasing. Because β > 2|x| and
C < 4/β, we have (Cx,C(|x|−β)) ∈ D5 and hence, using the bound P(Y ∗ ≥ β) ≥ t,
we get

||X+||1 ≥ t− 1

C
− C

16

(

(|x| − β)2 − x2
)

+
1

2
(x− |x|+ β) .

The right-hand side, as a function of C, attains its maximum for

C = 4

√

1− t

β(β − 2|x|) ∈ (0, 4/β).

The maximum is equal to the expression in the parentheses appearing in (4.5).
To show the sharpness, we will exploit Theorem 4.4 above. Fix the parameters

x, β ∈ R, t ∈ [0, 1]. By Choi’s result, there is a martingale pair (X,Y ), starting from
(|x|, |x|), such that Y is the integral, with respect to X , of a certain predictable
process taking values in [−1, 1], for which (4.4) holds and

||X ||1 = |x| ∨
{

β − |x| − [β+(β − 2|x|)+(1− t)]1/2
}

.

It remains to observe that

||X+||1 =
1

2
(x + ||X ||1) = x+ ∨

{

β − 2x− −
√

β+(β − 2|x|)+(1 − t)

2

}

and we are done. �
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In the nonnegative case, we have the following statement, which is proved exactly
in the same manner as above. We omit the details.

Theorem 4.6. Let x, α ≥ 0, β ∈ R, t ∈ [0, 1] and assume that X is a nonnegative
submartingale starting from x. Let H, K be predictable processes taking values in
[−1, 1] and [−α, α], respectively. If (4.4) holds true, then

||X ||1 ≥ sup
C>0

t− U+
α (Cx,C(x − β))

C
. (4.6)

Unfortunately, there does not seem to be an explicit formula for the right hand
side. Nonetheless, if βt ≤ 2x, then it is easy to check that the supremum equals x.

4.3. Inequalities for smooth functions. As another application of Theorem 1.1, we
present a weak-type estimate for α-subordinate smooth functions on Euclidean
domains. Suppose that Ω is an open, connected subset of R

n, n being a fixed
positive integer, such that 0 ∈ Ω. Let Ω be a connected bounded subdomain of Ω
with 0 ∈ Ω and ∂Ω ⊂ Ω. Denote by µ the harmonic measure on ∂Ω with respect to
0. Consider two real-valued C2 functions u, v on Ω. Following Burkholder (1989),
we say that v is differentially subordinate to u if

|∇v(x)| ≤ |∇u(x)| for x ∈ Ω.

For example, if u, v are harmonic functions satisfying Cauchy-Riemann equations,
then this condition is satisfied. Furthermore, for α ≥ 0, the function v is α-
subordinate to u if it is differentially subordinate to u and, in addition,

|∆v(x)| ≤ α|∆u(x)| for x ∈ Ω

(see Burkholder (1994) and Choi (1996)). The inequalities comparing the sizes
of u and v under the assumption of this type of subordination were studied by a
number of authors, see e.g. Bañuelos and Wang (1995, 2000), Burkholder (1989,
1994), Choi (1996), Janakiraman (2004), Osȩkowski (2009, 2011) and Suh (2005).
Our contribution in this direction is described in the following result.

Theorem 4.7. Suppose that u is subharmonic and v is α-subordinate to u.
(i) If α ∈ [0, 1], then

sup
λ>0

λµ(v(x) ≥ λ) ≤
∫

∂Ω

u(x)+dµ(x) + U(u(0), v(0)). (4.7)

(ii) If α ≥ 0 and u is nonnegative, then

sup
λ>0

λµ(v(x) ≥ λ) ≤
∫

∂Ω

u(x)dµ(x) + U+
α (u(0), v(0)). (4.8)

Proof : Consider n-dimensional Brownian motion W starting from 0 and let τ de-
note the exit time of Ω: τ = inf{t :Wt /∈ Ω}. Introduce the processes

X = (Xt)t≥0 = (u(Wτ∧t))t≥0, Y = (Yt)t≥0 = (v(Wτ∧t))t≥0.

By Itô’s formula, for any t ≥ 0 we have

Xt = u(0) +

∫ t

0

∇u(Wτ∧s)dWs +
1

2

∫ t

0

∆u(Wτ∧s)ds = X0 +Mt +At,

Yt = v(0) +

∫ t

0

∇v(Wτ∧s)dWs +
1

2

∫ t

0

∆v(Wτ∧s)ds = Y0 +Nt +Bt.
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Since

[M,M ]t − [N,N ]t = |u(0)|2 − |v(0)|2 +
∫ t

0

(

|∇u(Wτ∧s)|2 − |∇v(Wτ∧s)|2
)

ds

and

αAt − |B|t =
1

2

∫ t

0

(α∆u(Wτ∧s)− |∆v(Wτ∧s)|) ds,

we see that α-subordination of the functions u and v implies that Y is α-subordinate
to X . Furthermore, X is a submartingale, we have µ(v(x) ≥ λ) ≤ P(Y ∗ ≥ λ) and
||X+||1 =

∫

∂Ω u(x)
+dµ(x). Therefore, (1.5) implies (4.7) and (1.6) implies (4.8).

This completes the proof. �

In a similar manner, one can establish the appropriate versions of Theorems 4.1,
4.2, 4.5 and 4.6; of course, the analogue of the condition (4.4) is

µ({x ∈ ∂Ω : v(x) ≥ β}) ≥ t.

The details are left to the reader.
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