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Abstract. We consider the random interlacements process with intensity u on Z
d,

d ≥ 5 (call it Iu), built from a Poisson point process on the space of doubly infinite
nearest neighbor trajectories on Z

d. For k ≥ 3 we want to determine the minimal
number of trajectories from the point process that is needed to link together k
points in Iu. Let

n(k, d) := ⌈
d

2
(k − 1)⌉ − (k − 2).

We prove that almost surely given any k points x1, ..., xk ∈ Iu, there is a sequence
of n(k, d) trajectories γ1, ..., γn(k,d) from the underlying Poisson point process such

that the union of their traces
⋃n(k,d)

i=1 Tr(γi) is a connected set containing x1, . . . , xk.
Moreover we show that this result is sharp, i.e. that a.s. one can find x1, ..., xk ∈ Iu

that cannot be linked together by n(k, d)− 1 trajectories.

1. Introduction

The random interlacement set is the trace left by a Poisson point process on
the space of doubly infinite nearest neighbor trajectories modulo time shift on Z

d.
The intensity measure of the Poisson process is given by uν, where u > 0 and ν
is a measure on the space of doubly infinite trajectories which was constructed by
Sznitman (2010), see (2.9) below. This measure essentially makes the trajectories
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in the Poisson point process look like double sided simple random walk paths. The
interlacement set is a site percolation model that exhibits polynomially decaying
infinite-range dependence which sometimes complicates analysis.

One of the motivations for introducing the random interlacements model was to
use it as a tool for the study of the behavior of simple random walks on large but
finite graphs. For instance, random interlacements describe the local picture left
by the trace of a simple random walk on a discrete torus or a discrete cylinder,
see Windisch (2008) and Sznitman (2009b) respectively. Recent works that have
used random interlacements to obtain results about simple random walks on large
graphs are for example Sznitman (2009c,a) and Teixeira and Windisch (2011).

It is known that the interlacement set is always a connected set, see Corollary
(2.3) in Sznitman (2010). Recently, in Ráth and Sapozhnikov (2010) and Procaccia
and Tykesson (2011) a stronger result was shown: given any two points x and y in
the interlacement set, one can find a path between x and y using the trace of at most
⌈d/2⌉ trajectories. The proofs in Ráth and Sapozhnikov (2010) and Procaccia and
Tykesson (2011) are very different; in Procaccia and Tykesson (2011) the concept
of stochastic dimension from Benjamini et al. (2004) is used, while in Ráth and
Sapozhnikov (2010) the approach of the problem is based on estimating capacities
of random sets constructed using random walks.

The result we present in this paper completes these works, giving a full picture of
how a finite number of points are connected together within the interlacement set.
Fix k ≥ 2, and d ≥ 5, given a realization Iu of the random interlacement of intensity
u constructed from the Poisson point process ωu on the space of doubly infinite
trajectories (see the next section for formal definition), a.s. for any sequence of
points x1, ..., xk ∈ Iu, there is a sequence of n(k, d) trajectories γ1, . . . , γn(k,d) ∈ ωu

such that

(a)
⋃n(k,d)

i=1 Tr(γn(k.d)) is a connected set (where Tr denote the trace or image

of a doubly infinite trajectory γ : Z → Z
d),

(b) xj ∈
⋃n(k,d)

i=1 Tr(γn(k.d)) ∀j ∈ [1, k].

In addition, this result is sharp: of course the n(k, d) trajectories are not always
needed to link the k points (e.g. x1, . . . , xk might all lie on the trace of a common
trajectory) but with probability one, there exist y1, ..., yk ∈ Iu such that there are
no sequences of n(k, d) − 1 trajectories satisfying the two conditions (a) and (b)
above.

This result and its proof give detailed geometric information about the random
interlacement process and thus on the local structure of a simple random-walk on a
torus or a cylinder: this tells us that in order to connect together three trajectories
A, B, and C together in the random interlacement by using a minimal number of
extra trajectories, the best strategy when d is even is linking A to B and B to C
, whereas when d is odd one can use one trajectory less by connecting A, B and
C using a three-branch star scheme. To link 4 points or more, the best strategy
can always be obtained by combining the strategy for 2 and 3 points. Our result
somehow completes the information given by the recent paper of Černý and Popov
(2012), which provides sharp estimates for the ratio between the graph distance
and the Euclidean distance in the interlacement process.
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The main results from Ráth and Sapozhnikov (2010) and Procaccia and Tykesson
(2011) correspond to the case k = 2. The proof of the upper bound for n(k, d)
pushes the techniques developed in Ráth and Sapozhnikov (2010) further, while
the proof of the lower bound uses a more novel approach based on diagrammatic
sums. Replacing multi-index sums by diagrams to make computations tractable is
an idea that is first due to Feynman (see e.g. Feynman (1949)). This method has
since been used a lot in mathematical physics in both rigorous and non-rigorous
fashion. A prototypical example of extensive rigorous use of diagrammatic sums is
the theory of Lace Expansion developed by Brydges and Spencer (see Slade (2006)).

We conclude this section by stating the convention for the use of constants
throughout the paper: The letters c, c′, C, C′ etc. denote finite positive constants
which are allowed to depend only on the dimension d and the intensity u. Their
values might change from line to line. Numbered constants ci are finite positive,
and supposed to be the same inside a certain neighborhood (for example a proof).
They are defined where they first appear. Dependence of additional quantities will
be indicated, for example c(δ) denotes a constant that might depend on d, u and
δ.

In the next section we give a rigorous definition of the random interlacement
process and state our result in full detail.

2. Notation and results

2.1. Definition and construction of random interlacements. We consider the tra-
jectory spaces W and W+ of doubly infinite and infinite transient nearest neighbor
trajectories in Z

d (and W ,W+ the usual sigma algebras associated to them):

W := {γ : Z → Z
d; |γ(n)− γ(n+1)| = 1, ∀n ∈ Z; |{n; γ(n) = y}| < ∞, ∀y ∈ Z

d},

W+ := {γ : N → Z
d; |γ(n)−γ(n+1)| = 1, ∀n ∈ Z; |{n; γ(n) = y}| < ∞, ∀y ∈ Z

d},

where we use the convention that N includes 0. For γ ∈ W , we define the trace of
γ, Tr(γ) = {γ(n), n ∈ Z}. For trajectories γ, γ′ ∈ W , we write γ ∼ γ′ if for some
k ∈ Z we have γ(·) = γ′(· + k). The space of trajectories in W modulo time shift
will be denoted by W ∗ and is defined as follows:

W ∗ := W/ ∼ .

As the trace is invariant modulo time-shift we can naturally extend the notion of
trace to W ∗.

For K ⊂ Z
d and γ ∈ W+, we let HK(γ), H̃K(γ) and TK(γ) denote the entrance

time, hitting time and exit time of K by γ:

HK(γ) := inf{n ≥ 0 : γ(n) ∈ K}, (2.1)

H̃K(γ) := inf{n ≥ 1 : γ(n) ∈ K}, (2.2)

TK(γ) := inf{n ≥ 0 : γ(n) /∈ K}. (2.3)

For x ∈ Z
d, set Hx := H{x}. Let Px be the law on W+ which corresponds to

a simple (i.e. nearest-neighbor symmetric) random walk on Z
d started at x. For

K ⊂ Z
d, let PK

x be the law of simple random walk started at x conditioned on the
event that the walk does not hit K:

PK
x [·] := Px[·|H̃K = ∞].
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For a finite K ⊂ Z
d, we define the equilibrium measure

eK(x) :=

{

Px[H̃K = ∞], x ∈ K
0, x /∈ K.

(2.4)

The capacity of a finite set K ⊂ Z
d is defined as

cap(K) :=
∑

x∈Zd

eK(x). (2.5)

and the normalized equilibrium measure of K is given by

ẽK(·) := eK(·)/ cap(K). (2.6)

For x, y ∈ Z
d we let |x− y| := ‖x− y‖1 denote the l1 distance (which corresponds

to the graph distance on Z
d) between x and y. The following bounds of hitting-

probabilities are well-known, see Theorem 4.3.1 in Lawler and Limic (2010). For
any x, y ∈ Z

d with x 6= y,

c|x− y|−(d−2) ≤ Px[H̃y < ∞] ≤ c′|x− y|−(d−2). (2.7)

We are now ready to introduce a Poisson point process on W ∗ ×R+. For K ⊂ Z
d,

let

WK := {γ ∈ W : γ(Z) ∩K 6= ∅}.

Let π∗ be the projection from W to W ∗ and let W ∗
K := π∗(WK) be the set of

trajectories in W ∗ that enter K. We denote by QK the finite measure on WK such
that for A,B ∈ W+ and x ∈ Z

d,

QK [(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B] = PK
x [A]eK(x)Px[B]. (2.8)

We let the measure ν be the unique σ-finite measure such that

1W∗

K
ν = π∗ ◦QK , for all finite K ⊂ Z

d. (2.9)

Sznitman proved the existence and uniqueness of ν in Theorem 1.1 of Sznitman
(2010). We introduce the space of locally finite point measures in W ∗ × R+:

Ω :=

{

ω =

∞
∑

i=1

δ(γi,ui); γi ∈ W ∗, ui > 0,

ω(W ∗
K × [0, u]) < ∞, for every finite K ⊂ Z

d and u > 0

}

,

(2.10)

as well as the space of locally finite point measures on W ∗:

Ω̃ :=

{

σ =
∞
∑

i=1

δγi
; γi ∈ W ∗, σ(W ∗

K) < ∞, for every finite K ⊂ Z
d

}

. (2.11)

For 0 ≤ u′ ≤ u the map ωu′,u from Ω into Ω̃ is defined as

ωu′,u :=
∞
∑

i=1

δγi
1{u′ < ui ≤ u}, for ω =

∞
∑

i=1

δ(γi,ui) ∈ Ω. (2.12)

If u′ = 0, we use the short-hand notation ωu. For convenience reasons we often
improperly consider ωu as a set of trajectories instead of a point measure.

On Ω we consider P, the law of a Poisson point process with intensity measure
ν(dγ)dx (see Equation (1.42) in Sznitman (2010) for a characterization of P). It is

easy to see that under P, the point process ωu,u′ is a Poisson point process on Ω̃
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with intensity measure (u− u′)ν(dw∗). Given σ ∈ Ω̃, the set of points in Z
d that is

visited by at least one trajectory in σ is denoted by

I(σ) :=
⋃

γ∈σ

Tr(γ). (2.13)

For 0 ≤ u′ ≤ u, we define the random interlacement set between intensities u′ and
u as

Iu′,u := I(ωu′,u). (2.14)

In case u′ = 0, we use the short-hand notation Iu. For a point process σ on Ω or
Ω̃ we let σ|A denote the restriction of σ to A ⊂ W ∗.

When needed we will identify trajectory γ ∈ W ∗, with a canonical element of its
equivalence class (γn)n≥0.

2.2. Main result. We say that the sequence of trajectories (γi)ni=1 connects the se-
quence of points (xi)

k
i=1 if the union of their traces (or images) includes a connected

subset that contains x1, ..., xk. We say that (γi)ni=1 connects strictly (xi)
k
i=1 if it

connects it and there is no strict subsequence of (γi)ni=1 that does. Note that if a
sequence of trajectories connects points, one can extract from it a subsequence that
connects them strictly.

Theorem 2.1. For every k ≥ 2, for every u > 0, and for P−almost every realiza-
tion of the Poisson process ωu, the two following properties are satisfied:

(i) Given a sequence of k points (xi)
k
i=1 in (Iu)k, it is possible to find a sequence

(γi)
n(k,d)
i=1 in (ωu)

n(k,d) that connects it.
(ii) It is possible to find (xi)

k
i=1 in (Iu)k such that there exists no sequence

(γi)
n(k,d)−1
i=1 ∈ (ωu)

n(k,d)−1 that connects it.

Remark 2.2. The result is restricted to d ≥ 5 but this is not in fact a true restriction.
Indeed if d = 3 or 4 the trace of each trajectory in ωu intersect the trace of all the
others, so that Theorem 2.1 trivially holds with n(k, 3) = n(k, 4) = k.

The proofs of (i) and (ii) are quite independent and are found in Section 3 and
Section 4 respectively. In what follows we say that a sequence of points (xi)

k
i=1 is

n-connected (in (Iu)) if (i) occurs with n(k, d) replaced by n.

3. Proof of (i) of Theorem 2.1

As will be seen later in this section, in order to prove that n(k, d) trajectories
are sufficient to connect k points, it is essentially sufficient to prove this in the case
k = 2 and k = 3. The case k = 2 having been proved in Ráth and Sapozhnikov
(2010) and Procaccia and Tykesson (2011), we can focus on the case k = 3.

The first step is to reformulate the result.

Proposition 3.1. Let d ≥ 5 and suppose x1, x2, x3 ∈ Z
d. Let X1, X2 and X3 be

three independent simple random walks on Z
d with starting points x1, x2 and x3

respectively. Consider also a random interlacement process ωu independent of X1,
X2 and X3.

For any choice of x1, x2 and x3 and for every u > 0, almost surely one can find
d − 4 trajectories (γi)d−4

i=1 in (ωu)
d−4 such that the union of the traces of the γis

forms a connected subset that intersects the traces of X1, X2 and X3.
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We also need a similar result for the case of two trajectories, which is proved in
Ráth and Sapozhnikov (2010, Section 4) with a slightly different formulation. The
reader can check that Proposition 3.2 can also be proved using the same line of
proof (simplified) that for Proposition 3.1.

Proposition 3.2. Let d ≥ 5 and suppose x1, x2 ∈ Z
d. Let X1, X2 be two indepen-

dent simple random walks on Z
d with starting points x1, x2 respectively. Consider

also a random interlacement process ωu which is independent of the walks X1 and
X2.

For every choice of x1 and x2 and for every u > 0, almost surely one can find

⌈d/2⌉ − 2 trajectories (γi)
⌈d/2⌉−2
i=1 in (ωu)

⌈d/2⌉−2 such that the union of the traces
of the γis forms a connected subset that intersects the traces of X1 and X2.

Remark 3.3. Notice that when d is even, Proposition 3.1 can easily be deduced
from Proposition 3.2. Hence in what follows, we will only care about the case d
odd.

Proof of Theorem 2.1 (i) from Proposition 3.1 and 3.2: The first step of the proof
is to reformulate the conclusion of Theorem 2.1 into a statement that is easier to
prove, see (3.1) below. For this purpose, we need to introduce some definition.

Let x1, . . . , xk in Z
d. We say that the sequence of points (x1, . . . , xk) is well

behaved for ωu, and we will write WB, if each point of the sequence belongs to the
interlacement set and if there exists a sequence 0 < t1 < · · · < tk ≤ u such that for
all i there exists (γi, ti) ∈ ω with xi ∈ γi.

An equivalent formulation of (i) from Theorem 2.1 is

For all k and for all (xi)
k
i=1 ∈ (Zd)k we have that

P
[

∃(γi)
n(k,d)
i=1 , (γi)

n(k,d)
i=1 connects (xi)

k
i=1 | (xi)

k
i=1 WB

]

= 1,
(3.1)

or alternatively

For all k, P
[

∀(xi)
k
i=1, (xi)

k
i=1 WB ⇒ ∃(γi)

n(k,d)
i=1 , (γi)

n(k,d)
i=1 connects (xi)

k
i=1

]

= 1.

(3.2)
Indeed clearly, if (i) of Theorem 2.1 holds, so does (3.1). We prove the other implica-
tion by contradiction: if (i) from Theorem 2.1 is violated, with positive probability
one can find k points in Iu that cannot be connected by n(k, d) trajectories in ωu.
As these points are in Iu, one can by definition find a sequence (γi)ki=1 of trajecto-
ries in ωu such that xi ∈ γi for all i. If all the γi are distinct, a.s. after an eventual
reordering of the sequence we get that (x1, . . . , xk) is well behaved so that (3.1)
cannot hold. On the other hand, if there are repetitions in (γi)ki=1, one extracts a

well behaved subsequence (x′
i)

k′

i=1 of (xi)
k
i=1 by deleting the points xi for which

∃j < i, γi = γj , (3.3)

and reordering the remaining subsequence. Then if (3.1) holds then one can a.s.

connect (x′
i)

k′

i=1 with n(k′, d) trajectories. Then using the definition (3.3) one can
link all the points (xi)

k
i=1 together with n(k′, d) + (k − k′) ≤ n(k, d) trajectories

(just by using the γj corresponding to the k′ − k remaining points if necessary

in addition to the trajectories that connect (x′
i)

k′

i=1) which yields a contradiction.
Hence we can focus on proving (3.1).
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We want to use Proposition 3.1 and hence our task is to isolate (using condition-
ing) some mutually independent random walks and a random interlacement process
independent of them from the larger process we have.

Let τ0 := 0 and for i = 1, ..., k let recursively

τi := min{s > τi−1 | xi ∈ Is}. (3.4)

Note that by definition of ωu, in ωτi−1,τi, with probability one, there exists a unique

trajectory γi which has xi in its trace.
Furthermore, by the strong Markov property for Poisson processes, the law of

γi is independent of that of τi (and the trajectories (γi)ki=1 are independent) and
if we parametrize the oriented trajectory γi as (γi

n)n∈Z such that 0 is the first time
that γi visits xi is 0, then from the definition of the random interlacement process
(recall (2.8)),

(γi
n)n≥0 is a simple random walk on Z

d started at xi. (3.5)

Set T := maxi∈[1,k] τi. The event {(xi)
k
i=1 is well behaved} is equal to {T ≤ u}, and

up to an event of probability 0, it coincides with {T < u}. Note that conditioned
on T , the process ωT ,u is independent of T and of the γis. We now deal with the
cases k odd and k even separately.

Case k = 2p+ 1 is odd

Setting X i := (γi
n)n≥0, and using conditional independence of ωT ,u, we can

apply Proposition 3.1 and for every j = 1, ..., p find a sequence of (d−4) trajectories

(γi)
k+j(d−4)
i=k+(j−1)(d−4)+1 in ωT ,u that connects together the traces of X2j−1, X2j and

X2j+1.

One can then conclude by observing that k + p(d − 4) = n(k, d) for k odd and

that (γi)
k+p(d−4)
i=1 is a set of trajectories in ωu that connects (xi)

k
i=1.

Case k = 2p is even

We use Proposition 3.1 for i = 1, ..., p−1 to connect together X1, . . . , X2p−1 and
Proposition 3.2 to connect X2p−1 and X2p with the trajectories

(γi)
k+(p−1)(d−4)+⌈d/2⌉−2
i=k+(p−1)(d−4)+1 from ωT ,u, and conclude in a similar manner.

�

Before the proof of Proposition 3.1 for d odd, (in what follows we always consider
that d is odd) we must introduce additional notation in order to reformulate the
statement. Introduce the number

kd := ⌈d/2⌉ − 2 =
d− 3

2
. (3.6)

For a finite set A ⊂ Z
d and σ ∈ Ω̃, let NA(σ) be the number of trajectories in

σ that intersect A. Let γ1, ..., γNA(σ) be the trajectories from σ that intersect A,
parameterized so that γi

0 ∈ A and γi
n /∈ A for all n < 0 and all i ∈ {1, ..., NA(σ)}.

For σ ∈ Ω̃, A ⊂ Z
d and R ∈ Z+ we define the random set of vertices Ψ(σ,A,R) as

Ψ(σ,A,R) =

NA(σ)
⋃

i=1

(

{γi(t) : 1 ≤ t ≤ R2/8} ∩B(γi(0), R/2)
)

(3.7)



512 Hubert Lacoin and Johan Tykesson

Definition 3.4. Let r, R ∈ R+ ∪ {∞} with r < R. For σ ∈ Ω̃, let σR be the
restriction of σ to the trajectories that intersect B(R). Let σr,R be the restriction
of σR to the set of trajectories that do not intersect B(r).

Observe that σr and σr,R are supported on disjoint sets of trajectories and that

σ = σr + σr,∞. (3.8)

Let (σ(i,j))1≤i≤4, 1≤j≤kd
in Ω̃ be a family of i.i.d. random interlacement processes

with parameter ū := u/4kd defined by

σ(i,j) := ωū((i−1)kd+(j−1)),ū((i−1)kd+j), (3.9)

and let (X i)3i=1 be three independent simple random walks starting from x1, x2 and
x3 respectively. Given R, let T i(B(R)) be the first exit time of X i from B(R) and
Yi := (Y i,R

n )n≥0 = (X i
n+T i(B(R)))n≥0 (and Y i = X i when R = ∞). We call P the

probability measure governing all these processes.

We define sequences of random subsets of Zd. For 0 ≤ r < R ≤ ∞, and i = 1, 2, 3
set

A
(1)
i (r, R) = A

(1)
i (R) :=

{

Y i,R
n : 1 ≤ n ≤ R2/8

}

∩B(Y i
0 , R/2), 1 ≤ i ≤ 3. (3.10)

Then recursively, for 2 ≤ j ≤ kd and with r, R, i as above, define

A
(j)
i (r, R) := Ψ

(

σ(i,j)
r,∞ , A

(j−1)
i (r, R), R

)

= Ψ
(

σ
(i,j)
r,jR, A

(j−1)
i (r, R), R

)

. (3.11)

We simply write A
(j)
i when r = 0 and R = ∞.

x1

r

R

R/2

Figure 3.1. This figure shows how A
(1)
1 (r, R) is created from a

simple random walk started at x1. The set A
(1)
1 (r, R) consists of

the solid thick lines.

Note that by construction if y ∈ A
(j)
i (r, R) then there exists a sequence of kd− 1

trajectories in Iu linking it to the trace of X i. Thus to prove Proposition 3.1, it is
in fact sufficient to prove (recall that 2(kd − 1) + 1 = d− 4),
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r

x1

R/2

R/2

Figure 3.2. This figure shows how, given A
(1)
1 (r, R) from Fig-

ure (3.1), the set A
(2)
1 (r, R) is created using trajectories from

σ(1,2)(r,∞). Here A
(2)
1 (r, R) is given by the solid thick lines, and

A
(1)
1 (r, R) is represented by the thin dotted lines.

Lemma 3.5. With probability one, one can find γ ∈ σ(4,1) that connects A
(kd)
1 ,

A
(kd)
2 and A

(1)
3 together.

Inspired by Ráth and Sapozhnikov (2010), we prove Lemma 3.5 by combining
Borel’s Lemma and

Lemma 3.6. Let d ≥ 5 be odd and let x1, x2, x3 ∈ Z
d. Let R and r be integers,

such that R > max(|x1|, |x2|, |x3|). There exist constants c(u, d) > 0, R0(u, d) < ∞
and ε(u, d) > 0, such that for any r and R with R > R0 and εR ≥ rd−2,

P
[

∃γ ∈ σ
(4,1)
r,2R : γ connects A

(kd)
1 (r, R), A

(kd)
2 (r, R), and A

(1)
3 (r, R)

]

≥ c. (3.12)

We prove Lemma 3.6 by using a method based on the control of the capacity of

the sets A
(j)
i (r, R) at the end of the section.

Proof of Lemma 3.5 from Lemma 3.6: For real numbers r < R such that
x1, x2, x3 ∈ B(R), set

D(r, R) := {∃γ ∈ σ(4,1) : γ connects A
(kd)
1 (r, R), A

(kd)
2 (r, R), and A

(1)
3 (r, R)}.

(3.13)
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We choose ǫ so that Lemma (3.6) applies. Let r0 = max(|x1|, |x2|, |x3|) and

R0 = ǫ−1rd−2
0 . For k ≥ 1, we define recursively

rk = dR2
k−1 and Rk = ǫ−1rd−2

k . (3.14)

We write Dk = Dk(X
1, X2, X3) (reasons for underlining only the dependence in X i

will become clear later) for D(rk, Rk) and write ιk for 1Dk
, the indicator function

of Dk. We want to show that

P [Dk occurs for infinitely many values of k] = 1, (3.15)

which implies Lemma 3.5.

We will be done using Borel’s Lemma (it is cited as in Lemma 4.12 in Ráth and
Sapozhnikov (2010)) if we can show that there is some c such that for all k ≥ 1 we
have almost surely

P[Dk|ι1, ..., ιk−1] ≥ c. (3.16)

Let Ik := (ιi)
k
i=1. Then Ik is measurable with respect to the σ-algebra generated

by the following random objects: ({X i
n : 1 ≤ n ≤ TB(Rk−1) + R2

k−1/8})i≤3 and

(σ
(i,j)
Rk−1(1+kd)

)i≤4,j≤kd
.

On the other hand, the event Dk depends on (σ(i,j))i≤4,j≤kd
only through

(σ
(i,j)
rk,∞)i≤4,j≤kd

. Since Rk−1(1+kd) < rk, the point measures (σ
(i,j)
Rk−1(1+kd)

)i≤4,j≤kd

and (σ
(i,j)
rk,∞)i≤4,j≤kd

are independent.

Let X̃ i be defined by X̃ i
n = X i

n+B(Rk−1)+R2
k−1

/8. By the strong Markov property,

conditionally on X̃ i
0, X̃

i is independent of X i (and its law is the one of a simple
random walk). Furthermore, as Rk−1 + R2

k−1/8 < rk, Dk depends on X i only

through X̃ i.
Thus by conditional independence

P[Dk | Ik, (X̃
i
0)

3
i=1] = P[Dk(X̃

1, X̃2, X̃3)] | (X̃ i
0)

3
i=1] ≥ c, (3.17)

where the last inequality follows from Lemma 3.6, with (x1, x2, x3) replaced by

(X̃ i
0)

3
i=1.

�

We can now focus on the proof of Lemma 3.6. Before starting we cite results
from Ráth and Sapozhnikov (2010) that give estimates on the capacities of the sets

A
(j)
i (r, R).

Lemma 3.7. Ráth and Sapozhnikov (2010, Lemmata 4.7, 4.8) Let d ≥ 5 and let
j be a positive integer. There exist constants Cj = Cj(u, d) and ǫj = ǫj(u, d) such
that for any positive integers r and R with rd−2 ≤ ǫjR and if x1, x2, x3 ∈ B(R), we
have

E[cap(A
(j)
i (r, R))] ≥ CjR

min(d−2,2j). (3.18)

Moreover, under the same condition there exist positive finite constants cj=cj(u, d),
such that,

E[cap(A
(j)
i (r, R))] ≤ cjR

min(d−2,2j), (3.19)

and

E[cap(A
(j)
i (r, R))2] ≤ cjR

2min(d−2,2j). (3.20)
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As a consequence (using Chebychev inequality and changing the value of cj if
needed),

P[cap(A
(j)
i (r, R)) ≥ cjR

min(d−2,2j)] ≥ cj. (3.21)

Proof of Lemma 3.6: We choose the constants ǫs from Lemma 3.7 and assume that
r and R are such that Lemma 3.7 applies. We consider the two following events

E1 := {∃γ ∈ σ
(4,1)
2R : γ connects A

(kd)
1 (r, R), A

(kd)
2 (r, R), and A

(1)
3 (r, R)},

E2 := {∃γ ∈ σ(4,1)
r : γ intersects A

(1)
3 (r, R)}.

(3.22)

Note that

{∃γ ∈ σ
(4,1)
r,2R : γ connects A

(kd)
1 (r, R), A

(kd)
2 (r, R), and A

(1)
3 (r, R)} ⊃ E1 \ E2.

(3.23)
Let P(4,1) denote the law of σ(4,1). Our main task is to prove that there exists a
universal constant c such that

P(4,1)[E1] ≥ 1− exp(−cR4−2d cap(A
(kd)
1 (r, R)) cap(A

(kd)
2 (r, R)) cap(A

(1)
3 (r, R))),

(3.24)
and

P(4,1)[E2] ≤ u cap(A
(1)
3 (r, R))(r/(R − r))d−2. (3.25)

According to (3.21) (and independence), choosing c small enough one has with
positive probability larger than c

cap(A
(kd)
1 (r, R)) ≥ cR2kd ,

cap(A
(kd)
2 (r, R)) ≥ cR2kd ,

cap(A
(1)
3 (r, R)) ≥ cR2.

(3.26)

Hence (3.24), (3.25) and (3.19) imply (recall that 2kd = d− 3) that

P [E1] ≥ c(1− exp(−c4)) and P [E2] ≤ P [E1] /2, (3.27)

provided that R is large enough. This together with (3.23) is enough to conclude.

From now on, we write A1, A2 and A3 for A
(kd)
1 (r, R), A

(kd)
2 (r, R) and A

(1)
3 (r, R).

In order to prove (3.24) and (3.25) one considers the following construction of
σ(1,4)|W∗

A3

:

• Let N be a Poisson variable of mean ū cap(A3).
• Conditionally on N , let (γi)Ni=1 be a sequence of independent (and inde-
pendent of N ) of N doubly-infinite trajectory with distribution π∗ ◦ Q̄A3

,
where Q̄A3

(·) = QA3
(·)/QA3

(WA3
) is the renormalized version of the mea-

sure defined in (2.8).

Note that from this construction one has

P(4,1)[E1 | N ] = 1− [1− Q̄A3
(γ hits A1 and A2)]

N ,

P(4,1)[E2 | N ] = 1− [1− Q̄A3
(γ hits B(r))]N ,

(3.28)

where (γn)n∈Z is a trajectory distributed according to Q̄A3
. Let Px be the law of

the simple random walk Y starting from x and T1 and T2 the hitting times of A1
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and A2 respectively. From the definition of Q̄A3
we have

Q̄A3
(γ hits A1 and A2) ≥ Q̄A3

(∃n2 ≥ n1 ≥ 0, γn1
∈ A1, γn2

∈ A2)

≥ min
x∈A3

Px(T1 ≤ T2 < ∞). (3.29)

Moreover using the strong Markov property and the identity

Px[T1 < ∞] =
∑

z∈A1

g(x, z)eA1
(z), (3.30)

we get

Px(T1 ≤ T2 < ∞) ≥

(

∑

z∈A1

g(x, z)eA1
(z)

)(

inf
y∈A1

∑

z∈A2

g(y, z)eA2
(z)

)

≥

(

min
y,z∈B((kd+1)R)

g(y, z)

)2
(

∑

z∈A1

eA1
(z)

)(

∑

z∈A2

eA2
(z)

)

≥ cR4−2d cap(A1) cap(A2), (3.31)

(to get the last inequality recall (2.5) and (2.7)). Hence

Q̄A3
(γ hits A1 and A2) ≥ cR4−2d cap(A1) cap(A2). (3.32)

Together with the first line of (3.28) and averaging with respect to N , this proves
(3.24).

Let us now get (3.25). We note that π∗ ◦ Q̄A3
is invariant under change of

orientation of the trajectories (see Theorem 1.1 of Sznitman (2010)) so that if

T̃ := max{n|γn ∈ A3}, then (γn)n≥0 and (γT̃−n)n≥0 have the same law. Hence

Q̄A3
(γ hits B(r)) ≤ 2Q̄A3

((γn)n≥0 hits B(r)) . (3.33)

Moreover (recall (3.30))

Q̄A3
((γn)n≥0 hits B(r)) ≤ max

|x|≥R/2
Px(HBr

< ∞)

= max
|x|≥R/2

∑

z∈A1

g(x, z)eB(r)(z) ≤ C(r/(R − r))d−2. (3.34)

All of this combined gives

Q̄A3
(γ hits B(r)) ≤ C(r/(R − r))2−d. (3.35)

Combining with (3.28) and averaging with respect to N gives

P(4,1)[E2] ≤ u cap(A3)(r/(R − r))2−d. (3.36)

�

4. Proof of (ii) in Theorem 2.1

The aim of this Section is to prove that if one selects k points very distant from
each other in the random interlacement, they are really unlikely to be connected
by less than n(k, d) trajectories (together with a quantitative upper-bound on the
probability).
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Proposition 4.1. Given ε > 0, for any x1, . . . , xk ∈ Z
d and for any n < n(k, d)

one has

P[(xi)
k
i=1 is n-connected ] ≤ C(d, k, ε)max

i6=j
|xi − xj |

−1+ε. (4.1)

Whereas it is quite intuitive that Proposition 4.1 implies the second half of
Theorem 2.1, the proof is not completely straight-forward so we write it in full
detail.

Proof of Theorem 2.1 (ii) from Proposition 4.1: Set n < n(k, d). For i = 1, . . . , k
denote by Bi

R the Euclidean ball of center ieRe1 (with e1 = (1, 0, . . . , 0) ∈ Z
d) and

of radius R. We want to show that the probability of the event

AR :=

{

∃(xi)
k
i=1 ∈

k
∏

i=1

Bi
R, (xi)

k
i=1 is not n-connected , ∀i ∈ [1, k], xi ∈ Iu

}

.

(4.2)

tends to one when R tends to infinity, so that P
[

⋃

R≥1 AR

]

= 1 (which implies

Theorem 2.1 (ii)). According to Proposition 4.1, using a union bound, one has for
R large enough

P[E1
R] := P

[

∃(xi)
k
i=1 ∈

k
∏

i=1

Bi
R, (xi)

k
i=1 is n-connected

]

≤ CRkde−R/2. (4.3)

Moreover from the definition of random interlacements (in particular of the measure
ν in equation (2.9)) we have

P[E2
R] := P

[

∃i ∈ [1, k], Iu ∩Bi
R = ∅

]

≤ ke−u cap(BR
1 ) ≤ ke−cRd−2

. (4.4)

Hence we conclude that the probability of AR ⊂ (E1
R ∪ E2

R)
c tends to one as

R → ∞. �

We prove Proposition 4.1 by induction on k. The strategy that we use is the
following: first we encode the way the k points are connected by some tree scheme
T . This is done in Proposition 4.2. Then we bound from above the probability
that k points are connected together using a given scheme by a diagrammatic sum
(Lemma 4.4). Finally we prove an upper-bound on this sum (Proposition 4.5). For
some tree-schemes the multi-index sum given by Lemma 4.4 is infinite and those are
to be treated separately. However they are easily dealt with by using the induction
hypothesis.

Proposition 4.2. Assume there is a sequence of distinct trajectories (γi)ni=1 (γi 6=
γj for i 6= j) that connects strictly (xi)

k
i=1.

Then one can construct:

(a) a sequence (yi)
m
i=1 ∈ (Zd)m, with m = n+ k − 1 and yi = xi for i ≤ k,

(b) a tree T with m labeled vertices A1, . . . , Am, and m−1 oriented edges whose
set we call E,

(c) a function t : E → {1, . . . , n}, that to each edge associates a type,

that satisfies the following properties:

(i) The set of oriented edges that share the same label forms an (oriented) path
in the tree.
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(ii) For all indices i ≤ k, all the edges connected to the vertex Ai (ignoring
their orientation) are all of the same type (hence those vertices have at
most degree 2). For i ≥ k + 1 the edges connected to the vertex Ai are of
two different types (exactly).

(iii) If Aa1
Aa2

. . . Aal
, l ≥ 2 is the path of vertices linked by edges of type h and

(γh
n)n∈Z is a time parametrization of γh, then there exists a non-decreasing

sequence b1, . . . , bl in Z such that γbi = yai
for all i ∈ [1, l].

Given (T , E , t) satisfying (i) − (ii) we say that (xi)
k
i=1 is connected with

scheme (T , E , t) (or T to simplify notation), if there exists (yi)
m
i=k+1 in (Zd)m−k,

(γi)ni=1 ∈ (ωu)
n, γi 6= γj for i 6= j, such that (iii) holds. Furthermore if this holds

with (yi)
m
i=k+1 fixed, we say that (xi)

k
i=1 is connected with scheme (T , E , t) using

(yi)
m
i=k+1.

Remark 4.3. Remark that we allow repetition in the sequence y1, . . . , ym and that
the choice of the tree may not be unique. Moreover it can easily be checked by
the reader that if a sequence of points is connected with scheme (T , E , t), then the
sequence is n-connected. An example for the construction of T together with the
type function is given in figure 4.3.

γ1

γ2

γ3

γ4

x1
x2 x3

y4
y5 y6

1
2

3 3

4

A1 A2 A3

A4

A5

A6

Figure 4.3. Examples of the process of tree creation when k = 3
and n1 = 4. On the left, the n1 oriented trajectories are repre-
sented together with the xs and the points of intersection of the
trajectories. On the right this is encoded in the corresponding tree.

Proof : We prove the statement by induction on k. If k = 2 and x1 and x2 are
strictly connected by (γi)ni=1, then it is possible (changing the order of the γi if
necessary) to find (yi)3≤i≤n+1 such that yi ∈ γi−2 ∩ γi−1 and x1 ∈ γ1, x2 ∈ γn.
Then the tree T is just the paths A1A3A4 . . . An+1A2 and the edge AiAi+1 has
type i − 1 (A1A3 is of type 1 and An+1A2 is of type n). Orientation of the edges
can then be chosen to satisfy (iii).

For k ≥ 3, we remark that if (γi)
n
i=1 strictly connects (xi)

k
i=1, then it connects

(xi)
k−1
i=1 . Thus one can find a subsequence of trajectories that strictly connects

(xi)
k−1
i=1 . Hence after reordering of the indices, one may assume that (γi)

n′

i=1 for

n′ ≤ n strictly connects (xi)
k−1
i=1 .
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Using the induction hypothesis one can find a tree T ′ with k + n′ − 2 vertices
(Ai)i∈[1,n′+k−1]\{k} and a sequence of Zd vertices (yi)i∈[0,n′+k−1]\{k}, that satisfies
(i)− (iii) (the label k is not used here for a reason that will become clear soon).

Assume for the rest of the proof that n′ < n (the case n′ = n is treated briefly at
the end). Note that since (γi)

n
i=1 strictly connects (xi)

k
i=1, one can find yn′+k in the

trace of one of the trajectories (γi)i≤n′ (without loss of generality we can assume
it belongs to Tr(γn′)), such that yn′+k and xk are strictly connected by (γi)

k
i=n′+1.

We are now ready to construct the tree T . First we construct a path

An′+kAn′+k+1 . . . An+k+1Ak

composed of n − n′ edges of different types (n′ + 1 to n), just as one did for the
k = 2 case.

Then one plugs An′+k into the old tree T ′ as follows. Let Aa1
, . . . , Aal

, l ≥ 2 be
the path of vertices linked by edges of type n′. By (iii) of the induction hypothesis,

there exists a non-decreasing sequence in Z, b1, . . . , bl such that γn′

bi
= yai

for all

i ∈ [1, l]. By definition yn′+k = γn′

b for some b ∈ Z.
One then constructs T from T ′ by adding a new edge of type n2 to include

Ak+n2
in the tree in the following manner.

(a) if b ≤ b1, one adds an edge Ak+n′Aa1
(and the path An′+kAn′+k+1 . . .

. . . An+k−1Ak previously constructed),
(b) if b ∈ (bi, bi+1] then one replaces the edge Aai

Aai+1
by two edges Aai

An2+k

and An2+kAai+1
,

(c) if b > bl then one adds an edge Aal
An2+k.

When n′ = n the procedure is exactly the same except that yn′+k is replaced by
xk (and An′+k by Ak) and that only the second stage is needed (the paths to be
plugged is only the single point Ak in this case). We let the reader check that
assumptions (i)− (iii) are satisfied by T . �

According to Proposition 4.2, one has

{(xi)
k
i=1 is n-connected } = ∪T ∈Tn

{(xi)
k
i=1 is connected with scheme T }, (4.5)

where Tn denotes the (finite) set of all schemes T with less than n+ k− 1 vertices.
Thus, to prove Proposition 4.1, we only need to prove that for every T ∈ Tn,

P
[

(xi)
k
i=1 is connected with scheme T

]

≤ Cmax
i6=j

|xi − xj |
−1+ε. (4.6)

For this purpose we will use the following Lemma that estimates the l.h.s. of
(4.6).

Lemma 4.4. Let E denote the set of edges of T , a tree with n + k − 1 vertices.
Then

P
[

(xi)
k
i=1 is connected with scheme T

]

≤ C
∑

(yi)
n+k−1

i=k+1
∈(Zd)n−1

∏

AiAj∈E

(|yi − yj |+ 1)2−d. (4.7)
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Proof : By a simple union bound it is sufficient to prove that

P
[

x1, . . . , xk are connected with scheme T using (yi)
m
i=k+1

]

≤ C
∏

AiAj∈E

(|yi − yj |+ 1)2−d. (4.8)

We prove equation (4.8) in two steps. First we show that given subsets E1, . . . , En

of W ∗ with finite ν-measure, one has

P[∃(γi)ni=1 ∈ (ωu)
n, ∀i 6= j, γi 6= γj, ∀i, γi ∈ Ei] ≤ un

n
∏

i=1

ν(Ei). (4.9)

Indeed let ωdt = ωt,t+dt denote infinitesimal division of the Poisson process. One
has

P[∃(γi)ni=1 ∈ (ωu)
n, ∀i 6= j, γi 6= γj , ∀i, γi ∈ Ei]

≤

∫

{(ti)ni=1
∈[0,u]n | ∀i6=j ti 6=tj}

P[∀i ∈ [1, n] ωdti ∩ Ei 6= ∅]. (4.10)

Indeed the integral in the second line is the expected value of the number of n-tuple
of distinct trajectories (γi)ni=1 that satisfies γi ∈ Ei for all i = 1, . . . , n. From the
definition of a Poisson point process and indepence of the increments ωdti this is
equal to

∫

{(ti)ni=1
∈[0,u]n | ∀i6=j ti 6=tj}

n
∏

i=1

ν(Ei)dti = un
n
∏

i=1

ν(Ei). (4.11)

Secondly we show that for any choice of points (zi)
m
i=1 one has

ν({γ : γ visits z1, z2, . . . , zm in that order }) ≤ Cm

m−1
∏

i=1

1

(|zi+1 − zi|+ 1)d−2
.

(4.12)
Parameterizing γ = (γn)n≥0 so that 0 is the first time of visit of z1 and using the
definition of ν given by (2.8)-(2.9) one has

ν({γ : γ visits z1, z2, . . . , zm in that order })

= P0(H̃0 = ∞)Pz1(∃n2 ≤ n3 ≤ · · · ≤ nm, ∀i ∈ [2,m], Xni
= zi)

= P0(H̃0 = ∞)

m−1
∏

i=1

Pzi(Hzi+1
< ∞), (4.13)

where the last inequality follows by multiple application of the Markov property at
the successive stopping times Hzi . Then (4.12) is deduced by using (2.7).

Combining (4.12) with (4.9) used for the events Ei := {γi visits successively yai
1

. . . , yai
m
} where Aai

1
Aai

2
. . . Aai

m
are the paths corresponding to oriented edges of

type i in T we get (4.8).
�

Our problem is that for some schemes in Tn, the r.h.s of (4.7) diverges. Therefore,
we must first identify which are the bad trees for which that happens and prove
(4.6) for them without using (4.7). Afterwards, we use the following proposition
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that gives an upper bound for the r.h.s. of (4.7) for the good trees, and allows us
to conclude.

Proposition 4.5. Given a labeled tree T with k leafs A1, . . . , Ak and m nodes
Ak+1, . . . , Ak+m and edges E, we associate to each edge a length l(e) ∈ [0, d).
Suppose that the lengths of the edges are such that:

(i) The total length of the tree l(T ) =
∑

e∈E l(e) is strictly smaller than d(k−1).
(ii) The length of any (strict) subtree containing at least k1 of the original leafs

Ai is at least d(k1 − 1).

Then for any ε > 0 there exists a constant Cε such that, for every x1, . . . , xk
∑

(yi)
k+m
i=k+1

∈(Zd)m

∏

AiAj∈E

(|yi−yj|+1)l(AiAj)−d ≤ Cε max
i6=j

|xi−xj |
d(k−1)−l(T )+ε. (4.14)

where we use the convention that yi = xi for i ≤ k.

The proof is postponed to the end of the section.

Proof of Proposition 4.1: The statement is proved by induction on k. The case
k = 2 can easily be proved using Proposition 4.5. In that case, the tree is a
segment of n edges in series linking to leaves. So we only need to focus on the
induction step. It is necessary to prove (4.6) for all trees with k + n− 1 vertices.

First consider the trees where there exists i ≤ k such that Ai is not a leaf (after
permutation of the indices we can consider that A1 is not a leaf). In that case A1

has degree two and the tree T can be split into two trees, each of them linking
k1 and k2 of the Ais together, and using respectively n1 and n2 types of edges
respectively, with k1 + k2 = k + 1 and n1 + n2 = n+ 1 (recall that the two edges
getting out of A1 are of the same type).

As n < n(k, d), one has either n1 < n(k1, d) or n2 < n(k2, d). Suppose without
loss of generality that n1 < n(k1, d). In that case a subset of k1 < k vertices
is connected by n1 < n(k1, d) trajectories (see Remark 4.3) and one can use the
induction hypothesis to get (4.6). In the rest of the proof we consider only trees
for which all the Ais, i ≤ k are leafs.

A connected subgraph of T which is a tree and whose leafs are leafs of T is said
to be a proper subtree of T . We consider now the trees T with k + n− 1 vertices
that have a proper subtree with k1 vertices and that uses only edges of n1 different
types with n1 < n(k1, d). Then according to Remark 4.3, a subset of k1 < k vertices
is connected by n1 < n(k1, d) trajectories and again one can prove (4.6) using the
induction hypothesis.

Now suppose that T is a tree for which all subtrees with k1 < k vertices use at
least n(k1, d) type of edges. To each edge of the tree, we associate an edge-length
2, and apply Proposition 4.5 to conclude. Assumption (i) of the proposition is
satisfied since n < n(k, d) and the total number of edges n + k − 2 is given by
Proposition 4.2. Assumption (ii) is satisfied because of our assumption on proper
subtrees, indeed the reader can check that if a proper subtree with k1 vertices uses
n1 type of edges, it must have at least n1 + k1 − 2 edges: this is because vertices in
the tree have degree at most 4 and that on vertices of degree 3 two of the incident
edges have the same type, and on vertices of degree 4, one has two pairs of incident
edges with the same type (by (ii) of Proposition 4.2). �
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Proof of Proposition 4.5: We perform the proof by induction on k. When k = 2, it
is easy to show that the sum is equal to

O(|x1 − x2|
l(T )−d(log |x1 − x2|)

#{edges of length 0})

where l(T ) is the length of the tree.

When k ≥ 3 our strategy is to bound the r.h.s of (4.14) by sums corresponding
to trees with k − 1 vertices and then conclude by using the induction hypothesis.

We remark that if T includes two edges e and e′ linked to a common vertex of
degree two, one can replace it by a unique edge of length l(e′)+ l(e)+ δ (see Figure
4.4). Indeed as long as l(e′) + l(e) < d we have
∑

y∈Zd

(|x− y|+ 1)l(e)−d(|y − z|+ 1)l(e
′)−d = O((1 + |x− z|)l(e)+l(e′)+δ−d). (4.15)

So if one calls T1 the tree obtained after this change (relabeling the vertices of
T1 from A1, . . . , Ak+m−1, calling E1 the corresponding edge set and for simplicity
denote by l the length of the edges on the new tree) one get that there exists a
constant C such that

∑

(yi)
k+m
i=k+1

∈(Zd)m

∏

AiAj∈E

(|yi − yj|+ 1)l(AiAj)−d

≤ C
∑

(yi)
k+m−1

i=k+1
∈(Zd)m

∏

AiAj∈E1

(|yi − yj |+ 1)l(AiAj)−d. (4.16)

Note that adding the δ is only necessary if one of the edges has length zero in
order to avoid having a log term. Also note that one can choose the δ small enough
so that after this transformation l(T1) ≤ d(k − 1). In particular, this implies that
all the edges are still of length smaller than d.

Then after having reduced all consecutive edge in this manner we obtain (what
we call the first stage of the reduction) a tree T ′ with k+m′ vertices (m′ ≤ m) and
k leaves, no vertices of degree 2, and satisfying

∑

(yi)
k+m
i=k+1

∈(Zd)m

∏

AiAj∈E

(|yi − yj|+ 1)l(AiAj)−d

≤ C
∑

(yi)
k+m′

i=k+1
∈(Zd)m

∏

AiAj∈E′

(|yi − yj |+ 1)l(AiAj)−d. (4.17)

We can chose the δ small enough so that l(T1) ≤ l(T ) + ε/2.

After the first stage of the reduction, it is possible to find in T ′ two leafs at graph
distance 2 of each another (i.e. separated by only two edges): say without loss of
generality that Ak and Ak−1 are linked to Ak+1 with edges AkAk+1 and Ak+1Ak−1

of length l1 resp. l2. We consider the inequality

(xk − yk+1)
l1−d(xk−1 − yk+1)

l2−d ≤ (xk − yk+1)
l1+l2−2d + (xk−1 − yk+1)

l1+l2−2d.
(4.18)

Let T ′′
1 and T ′′

2 be trees with k − 1 leafs, obtained by replacing the edges e and
e′ in T ′ by a unique edge e′′ of length l1 + l2 − d ≥ 0 linking Ak+1 and Ak resp.
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A
A

B

l1

l1

l2

l2 l1 + l2 + δ

l1 + l2 − d

Figure 4.4. Illustration of the two stages of the tree reduction procedure

Ak+1 and Ak−1 and deleting the vertex left alone (Ak−1 resp. Ak). Indeed using
(4.18) one gets that

∑

(yi)
k+m′

i=k+1
∈(Zd)m′

∏

AiAj∈E′

(|yi − yj |+ 1)l(AiAj)−d

≤
∑

(yi)
k+m′

i=k+1
∈(Zd)m′

∏

AiAj∈E′′

1

(|yi − yj |+ 1)l(AiAj)−d

+
∑

(yi)
k+m′

i=k+1
∈(Zd)m′

∏

AiAj∈E′′

1

(|yi − yj |+ 1)l(AiAj)−d. (4.19)

where E′′
1 and E′′

2 denote the edge sets of T ′′
1 and T ′′

2 respectively.
Note that for i = 1, 2, l(T ′′

i ) = l(T ′)− d ≤ l(T )− d+ ε/2 so that condition (i) is
satisfied if ε is small enough (the new tree has one less leaf). Note that any proper
subtree of T ′′ that does not contain e′′ is also a proper subtree of T ′ and any proper
subtree τ of T ′′ that contains e′′ can be associated to a subtree τ ′ of T ′ by replacing
e′′ by e and e′ (the inverse of the above transformation) such that l(τ ′) = l(τ) + d
and τ ′ has one more leaf than τ . Hence if condition (ii) is satisfied for T ′ it is also
satisfied for T ′′ so that one can apply the induction hypothesis (with ε/2) on the
trees T ′′

1 and T ′′
2 to conclude.

�
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