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Abstract. We present a coalescent process where three particles merge at each
coagulation step. Using a random walk representation, we prove duality with a
fragmentation process, whose fragmentation law we specify explicitly. Further-
more, we give a second construction of the coalescent in terms of random binary
forests and study asymptotic properties. Starting from N particles of unit mass,
we obtain under an appropriate rescaling when N tends to infinity a well-known
binary coalescent, the so-called standard additive coalescent.

1. Introduction

Generally speaking, a stochastic coalescent is a Markov process describing the
coagulation of particles characterized by their size only. The rate at which particles
merge depends just on the members involved. Conversely, fragmentation processes
describe a Markovian evolution of particles which split independently into new
particles (branching property). The goal of this paper is to study the stochastic
coalescent with ternary coagulation kernel

κ(r, s, t) = r + s+ t+ 3, r, s, t > 0,

to which we will simply refer to as ternary coalescent or ternary coalescent process.
Here, three particles of sizes (masses) r, s, t coagulate into a new particle of size
r + s + t at rate r + s + t + 3. Although at first glance, the kernel κ may look
somewhat arbitrary (for example, it is not scale invariant), the corresponding pro-
cess enjoys rather interesting properties. Similarly to the additive coalescent, that
is the coalescent where two particles with masses s, t merge at rate κ̃(s, t) = s+ t,
the state chain of the ternary coalescent admits different representations. In the
spirit of Bertoin (2001), we show how it can be obtained by looking at excursion
intervals of a one-dimensional conditioned random walk. As a by-product of our
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representation, we establish duality with a fragmentation process via time-reversal.
We stress that this is a unusual feature, because the branching property normally
fails when time is reversed in a coalescent process. Section 7 of Bertoin (2006a)
gives a brief overview over cases where such a duality relation has been proven. See
also Chapter 5.5 in the lecture notes of Pitman (2006) for further discussions.

Using the same construction, we study asymptotic properties of the ternary
coalescent starting from N particles of unit mass. Properly rescaled in space and
time, we observe in the limit N → ∞ the so-called standard additive coalescent,
which has been obtained by Evans and Pitman (1998) as the weak limit n → ∞ of
the (binary) additive coalescent, started at time −(1/2) lnn with n atoms of size
1/n. Here, the characterization of Bertoin (2000) of the dual fragmentation process
connected to the standard additive coalescent by time-reversal plays a pivotal role.
We emphasize that even though κ is a ternary coagulation kernel, we end up in the
limit with a binary coagulation process.

We also highlight a second construction of the ternary coalescent involving ran-
dom binary forests, following the ideas of Pitman (1999). In a final remark, we
point out that this representation could instead be used to work out our results.
Moreover, we outline a possible extension of the results to certain k-ary coalescent
processes.

The rest of this paper is organized as follows. In the first section, we describe the
semigroup of the ternary coalescent and derive some further properties. We finish
this part by computing the one-dimensional statistics for the underlying state chain
starting from an odd number of particles of unit mass. Its special form already hints
at a connection to hitting times of a one-dimensional nearest neighbor random walk,
which we elaborate in the next section. There we prove duality via time-reversal
with a fragmentation process, using an explicit construction of the coalescent in
terms of ladder epochs. In the third part, we turn our attention to random binary
trees and find a second interpretation of the ternary coalescent which is based on
random binary forests. Finally we use again the random walk representation to
study asymptotic properties of the coalescent in the last section.

2. Some basic properties

Throughout this text, let

N = {1, 2, . . .}, Z = {. . . ,−1, 0, 1, . . .}, Z+ = N ∪ {0}.

The coalescent process will take values in the space of decreasing numerical se-
quences with finitely many non-zero terms

S↓ = {s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0, sk = 0 for k sufficiently large} .

We may think of elements of a sequence s ∈ S↓ as (sizes of) atoms or particles and
simply identify s with its non-zero components. If we write s = (s1, . . . , sl), the
non-zero components of s are precisely given by s1, . . . , sl. If s = (s1, s2, . . .) ∈ S↓

and 1 ≤ i < j < k, we use the notation si⊕j⊕k for the sequence in S↓ obtained
from s by merging its ith, jth and kth terms, that is one removes si, sj , sk and
rearranges the remaining elements together with the sum si + sj + sk in decreasing
order.

Let us define the object of our interest. Recall the kernel κ from the introduction.
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Definition 2.1. The ternary coalescent with values in S↓ and kernel κ is a contin-

uous time Markov process X = (X (t), t ≥ 0) with state space S↓
′ for an appropriate

subset S↓
′ of S↓, and jump rates

q(s, ·) =
∑

1≤i<j<k, sk>0

κ(si, sj , sk)δsi⊕j⊕k .

This definition can be adapted in an obvious way to other coagulation kernels,
leading to different stochastic coalescent models, for example the additive coalescent
with kernel κ̃(s, t) = s+ t.

Before looking at concrete realizations, we collect in this section some basic prop-
erties which can be read off from the kernel κ and the very definition of jump-hold
processes of the above type. Denote by X = (X (t), t ≥ 0) the ternary coales-
cent, started from a finite configuration r = (r1, . . . , rN ) ∈ S↓, where N = 2n+ 1,
n ∈ Z+. We write M = r1 + . . . + rN for the total mass in the system. For every
k = 0, . . . , n+ 1, let Tk be the instant of the kth coagulation, with the convention
T0 = 0, Tn+1 = ∞. The state chain or skeleton chain X ′ of the coalescent process
is given by X ′

k = X (Tk), k = 0, . . . , n. We use the expression #(t) for the number
of particles at time t, whereas J(t) = max{k ∈ Z+ : Tk ≤ t} stands for the number
of jumps up to time t. Note that #(t) = N − 2J(t).

2.1. State chain and semigroup.

Proposition 2.2. In the preceding notation, the following holds true.

(1) The sequence ∆k = Tk − Tk−1, k = 1, . . . , n, of the waiting times between
two coagulations is a sequence of independent exponential variables with
respective parameters

α(k) =
1

2
(M +N + 2− 2k)(N + 1− 2k)(N − 2k).

In particular, the sequences {Tk}0≤k≤n and {X ′
k}0≤k≤n are independent.

(2) The sequence {X ′
k}0≤k≤n is a Markov chain with transition probabilities

P
(
X ′

l+1 = si⊕j⊕k | X ′
l = s

)
=

si + sj + sk + 3

α(l + 1)
,

where 0 ≤ l < n, 1 ≤ i < j < k ≤ N − 2l, and s = (s1, . . . , sN−2l) ∈ S↓ is a
generic finite configuration with total mass s1 + . . .+ sN−2l = M such that
P(X ′

l = s) > 0.

Proof : Let 0 ≤ l < n, and put L = N−2l. By construction, the time ∆l+1 between
the lth and the (l + 1)th coagulation given X ′

l = s = (s1, . . . , sL) is exponentially
distributed with parameter∑

1≤i<j<k≤L

(si + sj + sk + 3)

= 3

(
L

3

)
+

1

6

 L∑
i,j,k=1

(si + sj + sk)− 3
L∑

i=1

si − 3
L∑

i,j=1,
i 6=j

(2si + sj)


=

1

2
(M + L)(L− 1)(L− 2) = α(l + 1).



564 Erich Baur

Therefore, the waiting times {∆k}1≤k≤n do not depend on the states {X ′
k}1≤k≤n.

The rest follows from the construction of our process. �

We turn to a description of the semigroup. Recall that X starts from X (0) =
r = (r1, . . . , rN ). In the following, Γ denotes the Gamma function.

Proposition 2.3. In the notation above, consider a partition π of {1, . . . , N}
into N − 2l (non-empty) blocks B1, . . . , BN−2l, each of odd cardinality. Denote
by Λ′

π(N − 2l) the event that the N − 2l atoms of X ′
l result from the coagulation of

particles {ri : i ∈ Bj}, j = 1, . . . , N − 2l. Then, with rBj =
∑

i∈Bj
ri,

P (Λ′
π(N − 2l)) =

l!

α(1) · · ·α(l)

N−2l∏
j=1

Γ
(
(rBj + |Bj |+ 2)/2

)
(|Bj | − 1)!

Γ
(
(rBj + 3)/2

)
((|Bj | − 1)/2)!

.

Proof : The first coagulation involves three particles with labels in the block Bj

with probability∑
i<i′<i′′∈Bj

ri + ri′ + ri′′ + 3

α(1)
=

(rBj + |Bj |)(|Bj | − 1)(|Bj | − 2)

2α(1)
.

Now consider an arbitrary sequence (k1, . . . , kl) taking values in {1, . . . , N − 2l}
such that for every j = 1, . . . , N − 2l, |{i ≤ l : ki = j}| = (|Bj | − 1)/2. Using the
Markov property of X ′, we see that the probability that for all i = 1, . . . , l, the ith
coagulation affected only particles formed from initial particles with labels in Bki

equals

1

α(1) · · ·α(l)

N−2l∏
j=1

Γ
(
(rBj + |Bj |+ 2)/2

)
Γ
(
(rBj + 3)/2

) (|Bj | − 1)! .

Observe that the number of such sequences (k1, . . . , kl) is(
l

(|B1| − 1)/2, . . . , (|BN−2l| − 1)/2

)
=

l!

((|B1| − 1)/2)! · · · ((|BN−2l| − 1)/2)!
.

This proves the statement. �

In the setting of the proposition, denote by Λπ(t) the event that X (t) has N −2l
atoms, each resulting from the merging of {ri : i ∈ Bj}, j = 1, . . . , N − 2l. Since
the sequence of coagulation times and the skeleton chain X ′ are independent,

P (Λπ(t)) = P (Tl ≤ t < Tl+1, Λ
′
π(N − 2l)) = P (#(t) = N − 2l)P (Λ′

π(N − 2l)) .

In particular, the semigroup of X is described by the preceding proposition and the
distribution of the number of particles at time t, which is computed in the following
lemma.

Lemma 2.4. In the notation above, for l = 0, . . . , n and t ≥ 0,

P (#(t) = N − 2l) =
l+1∑
j=1

α(j)e−α(j)t

α(l + 1)

l+1∏
k=1,k 6=j

α(k)

α(k)− α(j)
.

Proof : We use

P (#(t) = N − 2l) = P (Tl+1 > t)− P (Tl > t) .



On a ternary coalescent process 565

Note that Tk is distributed according to
∑k

i=1 α(i)
−1

ei, where α(i) is as in the
statement of Proposition 2.2, and e1, e2, . . . is a sequence of independent stan-
dard exponential variables. As a general fact, a sum of k independent exponential
variables with pairwise distinct parameters α(i) > 0 follows the hypoexponential
distribution, that is the probability distribution with density

f(x) =
k∑

i=1

α(i)e−α(i)x
k∏

j=1,j 6=i

α(j)

α(j)− α(i)
.

Integrating the density and regrouping terms result in the statement of the lemma.
�

2.2. The monodisperse case. We turn to the situation where X (0) = r = (1, . . . , 1),
that is the coalescent process is started from the monodisperse configuration con-
sisting of N = 2n+1 atoms of unit mass. In this case, the total mass M equals N ,
so the rates α(i) simplify to

α(i) = (N + 1− i)(N + 1− 2i)(N − 2i). (2.1)

If s = (s1, . . . , sm) ∈ S↓ we denote by γ(s) the number of different m-tuples that
can be built from the elements si (recall that by our convention si > 0). To put
it into a formula, if {sli}1≤i≤p is a maximal family of pairwise disjoint non-zero
elements from the sequence s, and ki = |{j = 1, . . . ,m : sj = sli}|, we define

γ(s) =

(
m

k1, . . . , kp

)
.

In other words, the ranking map

rk :

∞∪
m=1

Nm −→ S↓

which orders (r1, . . . , rm) ∈ Nm decreasingly satisfies |rk−1(s)| = γ(s) for each
s 6= (0, . . .) ∈ S↓. As a corollary of Proposition 2.3, the one-dimensional statistics
for X ′ look as follows.

Corollary 2.5. Let 0 ≤ l ≤ n and s = (s1, . . . , sN−2l) ∈ S↓ with si ∈ N odd for all
i, and s1 + . . .+ sN−2l = N . Then, in the situation described above,

P (X ′
l = s) = γ(s)

N

N − 2l

(
N

l

)−1 N−2l∏
i=1

1

si

(
si

si+1
2

)
.

Proof : The starting configuration is given by (r1, . . . , rN ) with ri = 1 for each i.
Thus, if X ′

l has N −2l atoms of the sizes s1 ≥ . . . ≥ sN−2l, then there is a partition
π of {1, . . . , N} into N−2l blocks B1, . . . , BN−2l of cardinality |Bj | = sj , such that
the atoms of X ′

l evolved from merging the particles {ri : i ∈ Bj}. Denote this event
by Λ′

π(N − 2l). Since

α(1) · · ·α(l) = N !(N − 1)!

(N − l)!(N − 2l − 1)!
,

we obtain from Proposition 2.3 (note that here rBj = |Bj | = sj)

P (Λ′
π(N − 2l)) =

(N − 1− 2l)!

(N − 1)!

(
N

l

)−1 N−2l∏
i=1

(si − 1)!

(
si

si+1
2

)
.
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The number of such partitions π is given by

γ(s)

(N − 2l)!

(
N

s1, . . . , sN−2l

)
.

By multiplying the last two expressions together, we arrive at the stated expression.
�

As the reader may already check at this stage, X ′
l has the same distribution

as the decreasingly ranked sequence of N − 2l independent copies ξi of the first
hitting time of −1 of a simple random walk, conditioned on ξ1 + . . . + ξN−2l = N
(see Section 3.3 for a definition of these quantities). Indeed, if ξ(k) denotes the kth

order statistic of ξ1, . . . , ξN−2l, then for s = (s1, . . . , sN−2l) ∈ S↓

P
(
(ξ(N−2l), . . . , ξ(1)) = (s1, . . . , sN−2l) | ξ1 + . . .+ ξN−2l = N

)
= γ(s)P ((ξ1, . . . , ξN−2l) = (s1, . . . , sN−2l) | ξ1 + . . .+ ξN−2l = N) ,

and an application of Lemma 3.2 affirms that the last expression coincides with that
obtained in the corollary. The connection between random walks and the ternary
coalescent will become much clearer in the next section.

3. Duality with fragmentation via random walks

Our intention of this section is to prove duality of the ternary coalescent with a
fragmentation process. Let us begin with an informal description of such processes.

Conversely to the phenomenon of coagulation of particles, one often observes
in nature or science processes of fragmentation. In these systems, particles are
broken into smaller pieces as time passes. As an example, one may think of DNA
fragmentation in biology or fractures in geophysics. Just as for coalescent processes,
one needs to impose constraints on such systems to make them mathematically
tractable. First, one assumes that the process has no memory in the sense that
the future does only depend on the present state and not on the past. Second,
one supposes that a particle is entirely characterized by its size, that is by a real
number, and third, one requires the system to fulfill the branching property, which
means that particles split independently.

Naively, one might first guess that a coalescent process can always be turned into
a fragmentation process by reversing time. However, even though the memoryless
property is preserved under time reversal, the branching property is typically not
fulfilled. In fact, there are only few examples known where a duality relation holds
(see Bertoin (2006a) Section 7 for an overview).

In view of our informal characterization, it is natural to call a Markov process
with values in S↓ a ternary fragmentation process, if each particle splits at a certain
rate according to some dislocation law into three smaller pieces, where both the
rate and the dislocation law depend only on the particle size s, and the sizes of
the newly formed elements sum up to s. Ranked in decreasing order, these three
particles together with the ones that did not split form the next state of the process.
In particular, different particles split independently.

For our ternary coalescent starting from N = 2n+1 atoms of unit mass, we shall
prove
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Theorem 3.1. Reversing the coalescent chain {X ′
k}0≤k≤n in time results in the

state chain of the fragmentation process, whose dynamics are given in Proposi-
tion 3.4.

We will derive our result from an explicit construction of the skeleton chain X ′

in terms of (lengths of) excursion intervals of a conditioned random walk. This
representation will also be useful for studying asymptotic properties in the last
section.

3.1. From configurations to paths to mass partitions. We first show how subsets of
{0, 1, . . . , 2n} can be identified with certain paths of nearest neighbor walks on Z
of length 2n + 1. The excursion intervals above two consecutive (new) minima of
such paths partition the space Z/(2n + 1)Z into discrete arcs. Taking the ranked
sequence of their lengths, we obtain the main object of our interest.

To begin with, define the configuration space Cn to be the set of all subsets of
{0, . . . , 2n} which have cardinality less or equal to n. We often represent x ∈ Cn by
the vector (x(i))0≤i≤2n, where

x(i) =

{
1 , i ∈ x
0 , i /∈ x

.

Under this identification, we may regard x as a mass distribution. We use the
terminology that a site i is occupied by a mass if x(i) = 1 and vacant otherwise.
The number of occupied sites (the cardinality of the subset x) is denoted by

|x| = |{i ∈ {0, . . . , 2n} : x(i) = 1}| .

We identify a configuration x ∈ Cn with a path of a nearest neighbor walk of length
2n + 1 on Z in the following way. Starting from the origin at time zero, the walk
goes one step up if site 0 is occupied, i.e. x(0) = 1, and down otherwise, then
above if x(1) = 1, down if x(1) = 0 and so on, up to time 2n. More precisely, the
corresponding path S(x) is given by S(x)0 = 0 and for 1 ≤ j ≤ 2n+ 1,

S(x)j = 2

(
j−1∑
i=0

x(i)

)
− j.

Notice that by definition, S(x)2n+1 = 2(|x| − n) − 1. Clearly, the mapping
Cn 3 x 7→ S(x) is one-to-one.

As we show next, the excursion intervals of such a path provide us with an
element ϕ1(x) in the space of cyclically ordered partitions of Z/(2n + 1)Z into
discrete arcs,

P◦
2n+1 = {s◦ = (s1, . . . , sm) : there exist a1 < a2 < . . . < am ≤ 2n+ 1,

m, ai ∈ N, such that for 1 ≤ i ≤ m− 1, si = [ai, ai+1) ∩ N,
sm = ([am, 2n+ 1) ∪ [0, a1)) ∩ Z+} .

Take x ∈ Cn, and let M = −S(x)2n+1. With m(x) = min0≤j≤2n+1 Sj(x), define
the first time at which S(x) reaches m(x) + k, k = 0, . . . ,M − 1,

mk(S(x)) = inf {j ≥ 0 : Sj(x) = m(x) + k} .

For i = 1, . . . ,M , put ai = mM−i(S(x)).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(17,-3)

b b b b b b b
× × × ×

Figure 3.1. The black dots represent the configuration x =
{0, 4, 7, 8, 9, 11, 12} ⊂ C8. The corresponding path S(x) starts at
zero and ends in −3 at time 17. It is periodically extended up to
time 20 to better recognize the excursion intervals ϕ1(x). They are
visualized by the dashed line above the x-axis, where the crosses
mark the endpoints of the intervals, i.e. ϕ1(x) = (s1, s2, s3) with
s1 = [3, 4) ∩ N, s2 = [4, 7) ∩ N, s3 = ([7, 17) ∪ [0, 3)) ∩ Z+.

We construct a sequence s◦ = (s1, . . . , sM ) ∈ P◦
2n+1 by setting si = [ai, ai+1)∩N

for i = 1, . . . ,M − 1, sM = ([aM , 2n+ 1) ∪ [0, a1))∩Z+. In other words, if we look
for k = 0, . . . , 2n at the shifted path θk(S(x)) defined by

θk(S(x))i =

{
S(x)i+k − S(x)k , 0 ≤ i ≤ 2n+ 1− k
S(x)i+k−(2n+1) + S(x)2n+1 − S(x)k , 2n+ 1− k < i ≤ 2n+ 1

,

then the element s◦ corresponds to the M successive excursion intervals of
θmM−1

S(x) above two consecutive (new) minima. The length |si| of such an in-
terval is also referred to as a ladder epoch. We let ϕ1(x) = s◦ and define ϕ2 as
the function which sends s◦ = (s1, . . . , sm) ∈ P◦

2n+1 to its arc lengths {|si|}1≤i≤m,
arranged in decreasing order. In this way, we obtain an element in the space of
mass partitions

P↓
2n+1 =

{
s = (s1, . . . , sm) : s1 ≥ s2 ≥ . . . ≥ sm ,m, si ∈ N,

m∑
i=1

si = 2n+ 1

}
.

By filling up with an infinite sequence of zeros, we will often identify mass partitions
with elements in S↓. To summarize our construction, the concatenation map ϕ

ϕ = ϕ2 ◦ ϕ1 : Cn
ϕ1−→ P◦

2n+1
ϕ2−→ P↓

2n+1 ⊂ S↓.

sends configurations x ∈ Cn via their path representations to partitions of
Z/(2n+ 1)Z and then to mass partitions.

3.2. Random evolution. Our purpose here is to randomize the input of the map

ϕ : Cn → P↓
2n+1 to obtain (a sequence of) random mass partitions. More precisely,

we construct two Markov chains on Cn running from time zero up to n as follows.
Let X = {Xk}0≤k≤n be the Markov chain with X0 = ∅ and transition probabilities

pX(x, y) =

{ 1
2n+1−|x| , x ⊂ y and y\x = {i} for some i ∈ {0, . . . , 2n}\x

0 , otherwise
.



On a ternary coalescent process 569

In words, (X0, . . . , Xl) is obtained by occupying successively l sites from {0, . . . , 2n},
chosen uniformly at random. From the point of view of sets, Xl is uniformly
distributed on the space of all l-subsets of {0, . . . , 2n}. By identifying with the
random path S(Xl), we will also think of Xl as simple random walk up to time
2n+ 1, conditioned to end at position −2(n− l)− 1.

Let Y = {Yk}0≤k≤n be the Markov chain with Y0 being uniformly distributed
on the space of all n-subsets of {0, . . . , 2n} and transition probabilities

pY (x, y) =

{ 1
|x| , y ⊂ x and x\y = {i} for some i ∈ {0, . . . , 2n}\y
0 , otherwise

.

In words, (Y0, . . . , Yl) is obtained by removing successively l masses chosen uni-
formly at random from the starting configuration Y0. In terms of sets, Yl is uni-
formly distributed on the space of all (n− l)- subsets of {0, . . . , 2n}. As above, Yl

can be identified with simple random walk up to time 2n + 1, conditioned to end
at −2l − 1. Note that by construction, we have the duality relation

(X0, . . . , Xn)
d
= (Yn, . . . , Y0). (3.1)

3.3. Realization of the skeleton chains. We are not interested in X and Y them-
selves, but rather in ϕ(X) = {ϕ(Xk)}0≤k≤n and ϕ(Y ). As we will show in Propo-
sition 3.5, the former is the state chain of the ternary coalescent starting from
N = 2n + 1 atoms of unit mass. The latter is characterized by Proposition 3.4 as
the state chain of a fragmentation process starting from a single particle of mass
N .

We need some preparation. Recall that simple random walk on Z is the Markov
chain S = {Sm}m≥0 with S0 = 0 and Sm = ζ1 + . . . + ζm, where ζ1, ζ2, . . . are
independent random variables with P(ζi = ±1) = 1/2. For k ∈ Z, the first hitting
time of k is denoted by

Hk = inf{m ≥ 1 : Sm = k}.
The following result on the distribution of Hk is classical.

Lemma 3.2. Let k ∈ Z, k 6= 0, and m ∈ N. Then

P (Hk = m) =

{
|k|
m

(
m

(m+|k|)/2
)
2−m , k = m[mod 2]

0 , k 6= m[mod 2]
.

Moreover, if m = 2n+ 1 and k is a fixed odd number, as n → ∞,

P (Hk = m) ∼ 1

2

√
1

πn3
.

Proof : Clearly, for the probability to be different from zero the numbers k and m
must have the same parity. Then, using the hitting time theorem (see for exam-
ple Kemperman (1961)) in the first equality,

P(Hk = m) =
|k|
m

P(Sm = k) =
|k|
m

(
m

(m+ |k|)/2

)
2−m.

The second statement follows from Stirling’s formula for the factorial. �

Before looking at ϕ(X) and ϕ(Y ) in detail, let us give an indication that the
former is the skeleton chain of the ternary coalescent. Recall Corollary 2.5 and the
connection between X ′ and hitting times. Let N = 2n + 1, 0 ≤ l ≤ n, and take
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N independent copies ξi of the hitting time H−1. Denote by ξ(k) the kth order
statistic of ξ1, . . . , ξN−2l.

Proposition 3.3. ϕ(Xl) is distributed according to (ξ(N−2l), . . . , ξ(1)) conditionally
on ξ1 + . . . + ξN−2l = N , i.e. the one-dimensional distributions of ϕ(X) and X ′

started from N atoms of mass one agree.

Proof : We identify Xl with simple random walk S(Xl) up to time N , conditioned
to end at −(N−2l). For notational simplicity, let us write S instead of S(Xl). Also
recall the definitions of θk(S) and mk(S) from Section 3.1. By Theorem 1 of Bertoin
et al. (2003), if ν is a uniform random variable on {0, . . . , N − 2l− 1} independent
of S, then the chain θmν (S) has the law of S conditioned on H−(N−2l) = N .
Moreover, the index mν is uniformly distributed on {0, . . . , N−1} and independent
of the chain θmν (S). Denote by θkXl the shifted configuration defined by θkXl(i) =
Xl(i+k[mod N ]). Clearly, ϕ(Xl) = ϕ(θkXl) for each k. From Theorem 1 of Bertoin
et al. (2003) we thus infer that for (s1, . . . , sN−2l) ∈ S↓,

P (ϕ(Xl) = (s1, . . . , sN−2l)) = P (ϕ(θmνXl) = (s1, . . . , sN−2l))

= P
(
(ξ(N−2l), . . . , ξ(1)) = (s1, . . . , sN−2l) | ξ1 + . . .+ ξN−2l = N

)
.

�

For the moment, we leave ϕ(X) aside and first turn to ϕ(Y ). In the sequel it
is convenient to use the notion of multisets, which we distinguish from normal sets
by using double braces. For example, {{a, b, c, c}} contains the elements a, b each
with multiplicity 1 and the element c with multiplicity 2. The cardinality of this
multiset is 4, the order of elements is irrelevant, as for sets.

Let ξ1, ξ2, ξ3 be three independent copies of the hitting time H−1. To state the
transition mechanism of ϕ(Y ) in a concise way, we define a family µ=(µs, s ≥ 3 odd)
of probability laws, supported on

Ωs = {R = {{r1, r2, r3}} : ri ∈ N odd, r1 + r2 + r3 = s} ,

by setting

µs(R) = P ({{ξ1, ξ2, ξ3}} = R | ξ1 + ξ2 + ξ3 = s) . (3.2)

More explicitly, applying Lemma 3.2 results in the expression

µs(R) = γ
s

3r1r2r3

(
r1

r1+1
2

)(
r2

r2+1
2

)(
r3

r3+1
2

)[(
s

s+3
2

)]−1

, (3.3)

where γ is the number of triplets (ri, rj , rk) that can be formed fromR={{r1, r2, r3}}

γ =

 6 , |{r1, r2, r3}| = 3
3 , |{r1, r2, r3}| = 2
1 , |{r1, r2, r3}| = 1

.

Proposition 3.4. ϕ(Y ) = {ϕ(Yk)}0≤k≤n is a Markov chain. Its transition mech-
anism from time l ≤ n− 1 to l + 1 is described as follows.

(a) Conditionally on ϕ(Yl) = s = (s1, . . . , s2l+1) ∈ P↓
2n+1, select an index

ι ∈ {1, . . . , 2l + 1} according to the law

P (ι = i | ϕ(Yl) = s) =
si − 1

2(n− l)
.
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(b) Given ϕ(Yl) = s and ι = i, split si according to the law µsi into three num-
bers and rank them together with sm, m ∈ {1, . . . , 2l+1}\{i}, in decreasing
order to obtain a new mass partition.

Proof : Fix l ∈ {0, . . . , n − 1}. We write ϕ(Y )0:i for the vector (ϕ(Y0), . . . , ϕ(Yi)).
The Markov property will follow from

(1) ϕ(Y )0:l and ϕ(Yl+1) are conditionally independent given ϕ1(Yl).
(2) ϕ1(Yl) and ϕ(Yl+1) are conditionally independent given ϕ(Yl).

Indeed, assuming (i) and (ii), with r0:l+1 = (r0, . . . , rl+1) ∈ P↓
2n+1 × . . .× P↓

2n+1,

P (ϕ(Y )0:l+1 = r0:l+1)

=
∑

u:ϕ2(u◦)=rl

P (ϕ(Y )0:l = r0:l | ϕ1(Yl) = u◦)P (ϕ(Yl+1) = rl+1 | ϕ1(Yl) = u◦)

× P (ϕ1(Yl) = u◦)

= P (ϕ(Yl+1) = rl+1 | ϕ(Yl) = rl)P (ϕ(Y )0:l = r0:l) .

For (i), the key step is to show that the conditional law of ϕ(Y )0:l given Yl only
depends on ϕ1(Yl). In that direction, we work conditionally on ϕ1(Yl) = s◦ =
(s1, . . . , s2l+1) and denote by Nk(i) = |Yk ∩ si| the number of sites of the arc
si which are occupied by Yk. Write Nk for the family {Nk(i)}1≤i≤2l+1. Let il
denote the unique index such that the singleton Yl−1\Yl ⊂ sil . In other words, il
is the unique index i such that Nl−1(i) = Nl(i) + 1. Then ϕ1(Yl−1) results from
ϕ1(Yl) = s by merging the arcs sil , sil+1 and sil+2 (with the convention that
indices of arcs are taken modulo 2l+1). By iteration, we realize that the sequence
N0:l = (N0, . . . , Nl) determines ϕ1(Y )0:l and therefore also ϕ(Y )0:l. Hence it now
suffices to check that the conditional distribution of N0:l given Yl only depends on
ϕ1(Yl) = s◦, which is straightforward from the dynamics and the observation that
for every i = 1, . . . , 2l + 1, the arc si has exactly (|si| + 1)/2 sites which are not
occupied by Yl.

We are now able to prove (i). Take t ∈ P↓
2n+1 with P (ϕ1(Yl) = s◦, ϕ(Yl+1) = t) >

0. Then

P (ϕ(Y )0:l = r0:l, ϕ1(Yl) = s◦, ϕ(Yl+1) = t)

=
∑

x∈ϕ
−1
1

(s◦),

y∈ϕ−1(t)

P (ϕ(Y )0:l = r0:l | Yl = x, Yl+1 = y)P (Yl = x, Yl+1 = y) .

Since Y is a Markov chain, it follows that for x, y ∈ Cn with P(Yl = x, Yl+1 = y) > 0,

P (ϕ(Y )0:l = r0:l | Yl = x, Yl+1 = y) = P (ϕ(Y )0:l = r0:l | Yl = x) .

Plugging this into the above formula and using the conditional independence of
ϕ(Y )0:l and Yl given ϕ1(Yl), we deduce that for x ∈ ϕ−1

1 (s◦),

P (ϕ(Y )0:l = r0:l | ϕ1(Yl) = s◦, ϕ(Yl+1) = t) = P (ϕ(Y )0:l = r0:l | Yl = x) .

Similarly, one sees that the right hand side equals P(ϕ(Y )0:l = r0:l | ϕ1(Yl) = s◦),
and (i) follows. We turn to (ii) and the description of the transition mechanism. We
keep the conditioning on ϕ1(Yl) = s◦. Note that Yl+1 evolves from Yl by removing
uniformly at random one of the n − l masses. By identifying Yl with S(Yl), this
amounts to switching one of the upward steps chosen uniformly at random into a
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Figure 3.2. The transition mechanism from ϕ(Y1) to ϕ(Y2),
where n = 6. Here, at time 1 the chain Y is in the configu-
ration state Y1 = {1, 2, 6, 8, 9}. Then the mass at position 8 is
removed. For the corresponding path, this means that the up-
ward step at time 8 is changed into a downward step. The new
path S(Y2) coincides up to time 8 with the old path S(Y1) and is
then indicated by the dashed line. The excursion interval [6, 13)
is broken into three intervals [6, 9), [9, 12), [12, 13). Therefore,
ϕ1(Y2) = (s1, s2, s3, s4, s5) with s1 = [1, 6) ∩ N, s2 = [6, 9) ∩ N,
s3 = [9, 12) ∩ N, s4 = [12, 13) ∩ N, s5 = [0, 1) ∩ Z+ and ϕ(Y2) =
(5, 3, 3, 1, 1).

downward step. More precisely, under our conditioning, the ith arc si is picked
with probability

number of upward steps over si
total number of upward steps

=
(|si| − 1)/2

n− l
, (3.4)

then one of the upward steps over si is selected with uniform probability and
changed into a downward step. Up to a vertical shift in space, S(Yl) restricted to
the arc si obeys the law of simple random walk conditioned on H−1 = |si| (with
an obvious modification for the last arc s2l+1). Given an upward step over si is
switched, S(Yl+1) restricted to si can therefore be seen as simple random walk
conditioned on H−3 = |si|. In terms of ϕ(Y ), we deduce that ϕ(Yl+1) is obtained
by first picking the ith arc si with probability given in (3.4), then splitting its length
according to µ|si| into three numbers r1, r2, r3 corresponding to the first three ladder
epochs of simple random walk conditioned on H−3 = |si|, and finally ranking them
together with the numbers |sj |, j 6= i, in decreasing order. In particular, we realize
that for predicting ϕ(Yl+1) out of ϕ1(Yl), the additional information given by ϕ1(Yl)
compared to ϕ(Yl), namely the location of the arcs, is irrelevant. Hence also (ii)
holds. �

Let us now characterize ϕ(X).

Proposition 3.5. ϕ(X) = {ϕ(Xk)}0≤k≤n is a Markov chain. Its transition mech-
anism from time l ≤ n− 1 to l + 1 is described as follows.



On a ternary coalescent process 573

(a) Conditionally on ϕ(Xl) = s = (s1, . . . , s2(n−l)+1) ∈ P↓
2n+1, select an index

ι out of the set of all 3-subsets of {1, . . . , 2(n− l) + 1} according to the law

P (ι = {i, j, k} | ϕ(Xl) = s) =
si + sj + sk + 3

(2n+ 1− l)2(n− l)(2(n− l)− 1)
.

(b) Given ϕ(Xl) = s and ι = {i, j, k}, rank the sum r = si + sj + sk together
with the numbers sm, m ∈ {1, . . . , 2(n− l)+1}\{i, j, k}, in decreasing order
to obtain a new mass partition.

Proof : From the duality (3.1) it follows that ϕ(X) is obtained by reversing ϕ(Y )
in time. In particular, the Markov property carries over from ϕ(Y ) to ϕ(X).

It remains to look at the transition mechanism. The step from l = n − 1 to n
is obvious from the construction of X and ϕ. Now fix l ∈ {0, . . . , n − 2}, and let

M = 2(n − l) + 1. We work conditionally on ϕ(Xl) = s = (s1, . . . , sM ) ∈ P↓
2n+1.

By construction, ϕ(Xl+1) is obtained from ϕ(Xl) by summing up three numbers
si,sj ,sk, where i,j,k are pairwise distinct, and rearranging the sum together with
sm, m 6= i, j, k, in decreasing order. Write s◦ = (s1, . . . , sM ) for the partition
ϕ1(Xl), and let ν be uniformly distributed on {0, . . . ,M − 1}, independent of Xl.
By the random walk representation and Theorem 1 of Bertoin et al. (2003), the law
of the cyclically ordered arc lengths (|s1+ν |, . . . , |sM+ν |) (indices are taken mod-
ulo M) agrees with the law of the M subsequent ladder epochs of simple random
walk conditioned on H−M = 2n+ 1. In particular, the law of (|s1+ν |, . . . , |sM+ν |)
is invariant under permutations and therefore equals the law of

(
sσ(1), . . . , sσ(M)

)
,

where σ is a permutation of {1, . . . ,M}, chosen uniformly at random and indepen-
dently of Xl. Note that this can also be deduced directly from the fact that Xl is
uniformly distributed on the space of all l-subsets of {0, . . . , 2n}. The probability
that si,sj ,sk are replaced by their sum is given by the probability that the arcs
sσ−1(i)+ν , sσ−1(j)+ν , sσ−1(k)+ν merge. This is the case if and only if the arcs adjoin
each other and the singleton Xl+1\Xl is contained in that arc which is followed in
clockwise order by the other two. More formally, the arcs merge if and only if there
is a permutation ρ of the indices i, j and k such that Xl+1\Xl ⊂ sσ−1(ρ(i))+ν , and

σ−1(ρ(j)) = σ−1(ρ(i)) + 1, σ−1(ρ(k)) = σ−1(ρ(i)) + 2 (both equalities are taken
modulo M). Given Xl+1\Xl ⊂ sσ−1(i)+ν , the probability that sσ−1(i)+ν , sσ−1(j)+ν ,
sσ−1(k)+ν merge is therefore

2

M − 1
× 1

M − 2
.

The probability that Xl+1\Xl ⊂ sσ−1(i)+ν is

number of vacant sites in sσ−1(i)+ν at time l

total number of vacant sites at time l
=

(si + 1)/2

2n+ 1− l
.

Altogether, given ϕ(Xl) = s,

P
(
sσ−1(i)+ν , sσ−1(j)+ν , sσ−1(k)+ν merge

)
=

(
(si + sj + sk + 3)/2

2n+ 1− l

)
2

M − 1
× 1

M − 2
,

which is the probability in (a) in the case l < n− 1. �

Theorem 3.1 now easily follows. Indeed, from the last proposition we see that
ϕ(X) is equal in law to the skeleton chain {X ′

k}0≤k≤n started from N particles of



574 Erich Baur

unit mass. By the duality relation (3.1), reversing ϕ(X) in time yields the process
ϕ(Y ), which is the state chain of a fragmentation process.

4. Random binary forest representation

In this section, we give a second construction of the skeleton chain of the ternary
coalescent in terms of random binary forests. The connection between random
forests and coalescent processes was first observed by Pitman (1999). In our de-
scription, we are guided by Chapter 5.2.3 of Bertoin (2006b).

4.1. Basic definitions on graphs. We first collect some basic notions on graphs
which will useful for our purpose.

A (undirected) graph is a pair G = (V,E), where V is a finite set and E ⊂ {U ⊂
V : |U | = 2}. The elements of V are called vertices, the elements of E edges. The
size of a graph is the number of vertices |V |. A subgraph of a graph G = (V,E) is
a graph H = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E.

Now let G = (V,E) be a graph. Two vertices v, w are adjacent, if {v, w} ∈ E.
The degree of a vertex v is the number of vertices adjacent to v. A sequence
(v1, e1, v2, . . . , vm, em, vm+1) such that m ≥ 0 vi 6= vj for i 6= j and ei = {vi, vi+1} ∈
E for 1 ≤ i ≤ m is called a path, or also a v1-vm+1-path. A cycle is a sequence
(v1, e1, . . . , vm, em, v1) such that m ≥ 2, (v1, e1, . . . , vm−1, em−1, vm) is a path and
em = {vm, v1} ∈ E. We say that two vertices v, w are connected, if there exists
a v-w-path. If there is a v-w-path for any v, w ∈ V , we say that the graph G is
connected. The maximal connected subgraphs of G are its connected components.
A connected graph without a cycle (as a subgraph) is called a tree. In a tree, a leaf
is a vertex of degree equals 1, while the vertices of degree greater than 1 are called
internal vertices.

We are interested in a special family of trees. A binary tree is either a tree
consisting of a single vertex only, called the root of the tree, or a tree where exactly
one vertex has degree 2, which we then call the root of the tree, and all the other
vertices have degree 3 or they are leaves. The height of a vertex v in a binary tree
is the number of edges of the (unique) v-r-path, where r is the root of the tree. If
v is not a leaf, then there are exactly two vertices w,w′ adjacent to v with height
strictly bigger than that of v, the children of v. We call the pair {{v, w}, {v, w′}} the
outgoing edges (from v). Finally, a binary forest is a graph such that its connected
components are binary trees. The leaves or internal vertices of such a forest are
then all those of its tree components.

Observe that a binary forest on N vertices with m tree components has N −m
edges, (N +m)/2 leaves, and (N −m)/2 internal vertices.

Remark 4.1. In the literature, a binary tree in our sense is often called a (rooted) full
labeled binary tree. The term “full” reflects the fact that every vertex other than the
leaves has two children, and “labeled” stresses that the vertices are distinguishable.
However, we will use the term “labeled” to indicate a labeling of internal vertices.

4.2. Dynamics. Our concern here is to describe the dynamics on the space of binary
forests, which will lead to another representation of the ternary coalescent.

As before let N = 2n + 1. We consider V = {1, 2, . . . , N} as a set of vertices.
Given a binary forest on V , we enumerate its tree components according to the
increasing order of their roots.
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We will assign additional labels to all internal vertices of such a forest. A labeling
of a binary forest on V with m tree components is a bijective map from the set
of (N − m)/2 internal vertices into {1, . . . , (N − m)/2}. A labeled binary forest
on V is then a binary forest together with a labeling. Note that internal vertices
are double-labeled, by V and by the labeling just described. The set of all labeled
binary forests on V with m tree components is denoted by F(m,N). Clearly,
F(m,N) is empty if m is an even number.

For every 1 ≤ k ≤ n, we define a map R : F(2k − 1, N) −→ F(2k + 1, N) as
follows. For each τ ∈ F(2k−1, N), select the internal vertex with the highest label
and delete both outgoing edges (and the label, since the vertex is now a leaf). We
obtain a labeled binary forest with 2k + 1 trees, which we denote by R(τ).

As the reader might already guess, the map R will be the building block of the
fragmentation mechanism - it breaks the tree with the highest label into three (new)
trees. The reverse dynamic will correspond to the coagulation mechanism: Out of a
binary forest with at least three trees, pick one leaf and connect it by adding edges
to two distinct roots from other tree components. Then, three trees have merged
into one (new) tree, and the selected leaf has become an internal vertex. Before
underlying this procedure with randomness, let us analyze the map R in detail.

Lemma 4.2. For every 1 ≤ k ≤ n, the map R : F(2k − 1, N) −→ F(2k + 1, N) is
surjective. More precisely, for every τ ∈ F(2k + 1, N),

|{τ̃ ∈ F(2k − 1, N) : R(τ̃) = τ}| = (n+ k + 1)k(2k − 1).

Proof : Let τ ∈ F(2k + 1, N). In order to construct a generic τ̃ ∈ R−1(τ), pick a
leaf i from τ . Write ρ(i) for the root of the tree component containing i. Then
select two roots j 6= j′ different from ρ(i), add the edges {i, j}, {i, j′} and label the
vertex i with the number n− k + 1. Out of three components, we have obtained a
new labeled binary tree with root ρ(i), which is part of a forest with 2k − 1 trees.
Clearly, this forest is contained in R−1(τ). Moreover, different choices of i, j, j′ give
rise to different forests. To finish the proof, note that there are n+ k + 1 possible
choices for a leaf i, and 2k(2k − 1)/2 possible choices for distinct roots {j, j′}. �

Remark 4.3. Applying the map R at most n times destructs a labeled binary forest
into its single vertices. Due to the recursive structure of trees, this method enables
one to compute various combinatorial quantities. For example, using |F(N,N)| = 1
and iteratively the identity

|F(2k − 1, N)| = (n+ k + 1)k(2k − 1) |F(2k + 1, N)|

provided by Lemma 4.2, one obtains for k = 2, . . . , n+ 1

|F(2k − 1, N)| = 2k−(n+1)n (2n+ 1)! (2n− 1)! (k − 2)!

(n+ k)! (k − 1)! (2k − 3)!
.

In the case k = 1,

|F(1, N)| = 2−n(2n)!(2n+ 1)!

(n+ 1)!
= 2−n(2n+ 1)!n!Cn,

where Cn = (2n)!/((n + 1)!n!) is the nth Catalan number. Since there are n!
different labelings of internal vertices, we deduce that the number of binary trees
on V is given by 2−n(2n+ 1)! Cn.
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Figure 4.3. From left to right (right to left) one step in the coag-
ulation (fragmentation) mechanism is shown. For simplicity, only
the labeling of the internal vertices is depicted. On the left, the
leaf with number 6 on the right is chosen as well as two roots
from different tree components. They are connected by two edges
visualized by the dashed lines on the right side.

4.3. From forests to mass partitions. Denote by Rk the kth concatenation of R,
where R0 is the identity map. We randomize the input by endowing the space
F(1, N) with the uniform probability measure and interpret the maps Rk as random
variables

Rk : F(1, N) −→ F(2k + 1, N), k = 0, . . . , n.

In words, Rk(τ) is the forest with 2k + 1 tree components which arises from τ ∈
F(1, N) by picking the k internal vertices with the highest labels and deleting
their outgoing edges. By induction, we deduce from Lemma 4.2 that Rk obeys the
uniform law on the space F(2k + 1), for each k. We then consider the random
variables

|Rk|↓ : F(1, N) −→ P↓
2n+1, k = 0, . . . , n,

where for a tree τ ∈ F(1, N), |Rk|↓(τ) = s = (s1, . . . , s2k+1) ∈ P↓
2n+1 is the

sequence of the sizes of the tree components, ranked in decreasing order.
Turning back to the ternary coalescent, let X ′

k, k = 0, . . . , n, denote the skeleton
chain started from N particles of unit mass. Its connection to the sizes of the tree
components is given by

Proposition 4.4. The sequence of random variables {|Rn−k|↓}0≤k≤n is the state
chain of the ternary coalescent, that is(

|Rn|↓, |Rn−1|↓, . . . , |R0|↓
) d
= (X ′

0, . . . ,X ′
n) .

Proof : For each tree τ ∈ F(1, N), the forest Rn(τ) has no edges, so |Rn|↓ =
(1, . . . , 1) = X ′

0. Note that given |Rl|↓ = s = (s1, . . . , s2l+1) for some 1 ≤ l ≤ n,
the mass partition |Rl−1|↓ is obtained from s by replacing three elements si,sj ,sk,
where i,j,k are pairwise distinct, by their sum. Furthermore, observe that the
random variables Rk, l ≤ k ≤ n, are measurable with respect to the sigma-field
generated by Rl. In particular, by Proposition 3.5, the claim follows if we show
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that for every 0 ≤ l < n, for every s = (s1, . . . , s2(n−l)+1) ∈ P↓
2n+1 and for every

3-subset {i, j, k} ⊂ {1, . . . , 2(n− l) + 1},

P
(
|Rn−l−1|↓ = si⊕j⊕k | Rn−l, |Rn−l|↓ = s

)
=

si + sj + sk + 3

(2n+ 1− l)2(n− l)(2(n− l)− 1)
.

Take a forest τ ∈ F(2(n − l) + 1, N). We work conditionally on Rn−l = τ . By
our observation above, Rn−l−1 is uniformly distributed on the set of (2n + 1 −
l)(n − l)(2(n − l) − 1) forests which can be obtained from τ in the way described
in Lemma 4.2. We write τ1, . . . , τ2(n−l)+1 for the tree components of τ . For every
3-subset {a, b, c} ⊂ {1, . . . , 2(n− l) + 1}, the probability that the leaf i is picked in
τa and the roots are chosen from τb and τc is therefore

|τa|+ 1

2
× 1

(2n+ 1− l)(n− l)(2(n− l)− 1)
.

Hence the probability that Rn−l−1 evolves from τ by merging the trees τa, τb and
τc, that is the probability that the leaf i is picked in either τa, τb or τc and connected
to the roots of the other two components is

|τa|+ |τb|+ |τc|+ 3

(2n+ 1− l)2(n− l)(2(n− l)− 1)
.

�

As a consequence of Theorem 3.1, the time-reversed process {|Rk|↓}0≤k≤n is a
fragmentation chain with dislocation law µ.

Remark 4.5. Adapting the proof of Corollary 5.7 in Bertoin (2006b) to our sit-
uation, we find another way to prove Corollary 2.5, based on the binary forest

representation. Namely, with m = 2(n− l)+ 1 and s = (s1, . . . , sm) ∈ P↓
2n+1, there

are
1

m!

(
2n+ 1

s1, . . . , sm

)
=

(2n+ 1)!

m! s1! · · · sm!

possibilities to partition the set of vertices {1, . . . , 2n+ 1} into non-empty disjoint
sets Ei, i = 1, . . . ,m, such that |Ei| = si and minEi < minEj for i < j ≤ m.
Without labeling internal vertices, the number of binary tree structures which can
be attached to Ei is |F(1, si)|/((si − 1)/2)!. Having chosen a binary tree structure
for each Ei, there are l! possible ways to label the l internal vertices. Recall that
the tree components of a forest are enumerated in increasing order of their roots.
It follows that the number of binary forests τ ∈ F(m, 2n+1) with tree components
τi such that |τi| = si is given by

(2n+ 1)! l!

m!

m∏
i=1

|F(1, si)|
si!
(
si−1
2

)
!
.

Since Rn−l is uniformly distributed on F(m, 2n+1), we deduce from Proposition 4.4
that

P (X ′
l = (s1, . . . , sm)) =

γ(s)

|F(m, 2n+ 1)|
(2n+ 1)! l!

m!

m∏
i=1

|F(1, si)|
si!
(
si−1
2

)
!
,

where γ(s) has been defined in Section 2.2. Plugging in the values for |F(m, 2n+1)|
and |F(1, si)| from Remark 4.3 results in the expression obtained in Corollary 2.5.
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4.4. Encoding forests by paths. We conclude our discussion of binary forests by
illustrating a direct connection to the random walk representation. Here, it is more
convenient to consider (rooted unlabeled) plane trees and forests. In a plane forest
vertices are regarded as indistinguishable, but the set of children for each vertex is
ordered, as well as the set of roots of the different tree components. The ordering
induces serveral natural enumerations of the vertices. For example, one of them is
provided by the order in which the vertices are visited by a depth-first search, see
Figure 4.4. More on this can be found in Chapter 6.2 of Pitman (2006).

We will look at (full) binary plane forests. To relate them to the binary forests
considered above, note that the number of binary plane forests on N vertices with
k tree components is equal to

2(N−k)/2k!

N !((N − k)/2)!
|F(k,N)|,

since there are 2(N−k)/2 possible orderings of the children of the internal vertices
of a forest in F(k,N), k! orderings of the roots, but neither vertices are labeled
nor there is an additional identification of internal vertices. Clearly the ternary
coalescent with a monodisperse initial configuration can also be realized on the
space of binary plane forests, with the same dynamics.

There are various possibilities to code plane trees and forests by discrete func-
tions. For a (finite) plane tree θ on N vertices, one common way is to look at its
Lukasiewicz path {xl}0≤l≤N . Denoting by v0, . . . , vN−1 the vertices of θ listed in
the order of a depth-first search and by k(v) the number of children of vertex v,
one defines

xj =

j−1∑
i=0

(k(vi)− 1), 0 ≤ j ≤ N.

Note that x0 = 0, xN = −1, and

xj − xj−1 = k(vj−1)− 1, 1 ≤ j ≤ N. (4.1)

It is easy to see that there is a bijection between Lukasiewicz paths and rooted
plane trees. A sequence of such trees may then by encoded by gluing together the
corresponding Lukasiewicz paths, retaining the relationship (4.1). In other words,
the coding of the next tree starts if a new minimum is attained.

Turning to random trees, it follows from Proposition 1.4 in Le Gall (2005) that
a Galton-Watson tree with offspring distribution η(k) = 1/2(δ0(k) + δ2(k)), con-
ditioned to have total progeny size N , is distributed according to a tree chosen
uniformly at random among the set of all binary plane trees on N vertices. Fur-
ther, the corresponding Lukasiewicz path tree is distributed as the path of simple
random walk on Z up to time N , conditioned on H−1 = N (see Corollary 1.6
in Le Gall (2005)).

We then realize that for an integer 0 ≤ l ≤ n, the path of simple random walk
up to time N , conditioned on H−(2l+1) = N , encodes a forest distributed uniformly
over all binary plane forests onN vertices with 2l+1 tree components. In particular,
the sequence of the sizes of the tree components is distributed as the sequence of
the ladder epochs of the conditioned random walk path, if both are put in random
uniform order, say. However, the sequence of coding functions induced by the above
dynamics on the space of binary forests is not directly related to the sequence of
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Figure 4.4. On the top a binary plane forest on 11 vertices with 3
tree components is shown, where the vertices are enumerated by a
depth-first search. The corresponding Lukasiewicz path is depicted
below. The crosses indicate where the coding of a new tree starts.

paths of the random walk representation. In this sense, the connection between the
two representations is only static.

5. Asymptotics of the ternary coalescent

Having concrete realizations at hand, we are now able to investigate asymptotic
properties of the ternary coalescent process. Let us write X [N ] = (X [N ](t), t ≥
0) for the coalescent with kernel κ started from the monodisperse configuration

(1, . . . , 1) consisting of N = 2n+ 1 atoms of unit mass, and put X ′[N ]
k = X [N ](Tk),

k = 0, . . . , n. The number of particles at time t ≥ 0 is denoted by #[N ](t), and the
number of jumps up to time t by J [N ](t).

We will consider the space of mass partitions with total mass bounded by 1,

S≤1 =

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑
i=1

si ≤ 1

}
,

and the subset S1 ⊂ S≤1 of sequences with
∑∞

i=1 si = 1. We equip S≤1 with the
uniform distance. The induced topology coincides with that of pointwise conver-
gence and turns S≤1 into a compact space. The l1-distance induces a finer topology.
However, if (sn, n ∈ N) is some sequence in S≤1 converging pointwise to s ∈ S1,
then the convergence does also hold in the l1-sense, as it can be easily deduced from
Scheffé’s lemma. Therefore, on S1 all these types of convergence are equivalent.
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We turn to our main result of this section. Recall that the standard additive
coalescent X = (X(t), t ∈ R) is the unique additive coalescent process such that for
each t ∈ R, X(t) has the law of the ranked sequence a1 ≥ a2 ≥ ... of the atoms of a

Poisson random measure on (0,∞) with intensity measure Λ(da) = e−tda/
√
2πa3,

conditioned on
∑∞

i=1 ai = 1. We refer to Aldous and Pitman (1998) and Evans and
Pitman (1998) for background.

Theorem 5.1. As n → ∞, the S1-valued process

t 7→ 1

N
X [N ](et/N3/2), t ∈ R,

converges in the sense of finite-dimensional distributions towards the standard ad-
ditive coalescent.

Here, the multiplication with 1/N is meant element-wise. At first glance the
convergence may look surprising, since the standard additive coalescent is a binary
coalescent that arises as a limit of additive coalescent processes as follows (Evans
and Pitman (1998)). Let X[n] = (X[n](t), t ≥ 0) be the stochastic coalescent with
binary coagulation kernel

κ̃(r, s) = r + s, r, s > 0,

started from the monodisperse configuration with n atoms, each of mass 1/n. Then,
as n → ∞, the time-shifted processes (X[n](t+(1/2) lnn), t ≥ −(1/2) lnn) converge
weakly to X.

However, our convergence result concerns only the finite-dimensional laws. For
the one-dimensional distributions, one might expect a result in this direction if one
compares the one-dimensional statistics of the skeleton chains of the ternary and
the additive coalescent X[n]. The states of the additive coalescent can be expressed
in terms of independent standard Borel variables (see for example (30) in Evans and
Pitman (1998)), which have a similar tail behavior as the hitting time Hk. For the
finite-dimensional laws, an analysis of the first hitting time distribution shows that
a “true” ternary coagulation step, i.e. the event that three particles merge which
are all of a size comparable to n, only occurs with negligible probability. Therefore,
under the rescaling, the process looks more like a binary coalescent.

Let us briefly comment on the scaling in the theorem. To obtain a limit for the
normalized sequence of masses, the number of atoms must be of order

√
n. We refer

to Lemma 5.3 for a better understanding. As Lemma 5.2 shows, if the process X [N ]

runs for time t/N3/2, then the amount of particles has typically reduced from N

to about
√
N/t. Note that when approximating the standard additive coalescent

with the processes X[n] starting from n atoms of mass 1/n, the macroscopic picture
appears at times t + (1/2) lnn, at which there are about

√
n/et particles. Here,

roughly speaking, the standard Borel law plays the role of the hitting time distri-
bution. Precise statements can be found in the books of Pitman (2006), Chapter
10.3, and Bertoin (2006b), Chapter 5.3.

We shall present three different ways to obtain convergence for the rescaled
ternary coalescent of which we discuss two in detail. The first more general method
will lead to one-dimensional convergence in Proposition 5.5. It relies on the obser-
vation that the distribution of the hitting time Hk is in the domain of attraction
of a stable(1/2) law. Then a size-biased reordering is used to construct the limit-
ing mass partition. The second method resulting in finite-dimensional convergence
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(and therefore in the proof of the theorem) is more specialized to our situation.
It is based on the identification of configurations with mass partitions via paths,
as described in Section 3.1. Since the two methods do not rely on each other, the
reader in a hurry may safely skip Section 5.2. In a closing remark we outline a
possible third way to establish finite-dimensional convergence, using the random
binary forest representation.

5.1. Number of particles. In order to relate the behavior of X [N ] to that of its
skeleton chain, we prove a limit theorem for the number of particles. As just
remarked, it will become clear later why we choose the spatial scale factor N−1/2.

Lemma 5.2. For every t > 0, as n → ∞,

#[N ](t/N3/2)√
N

→ 1

t
in probability.

Proof : Using the relation #[N ](·) = N − 2J [N ](·), the claim will follow once we
show that

J [N ](t/N3/2)√
N

− (
√
N − t−1)

2
→ 0 in probability. (5.1)

Remember that J [N ](t/N3/2) = max{k ∈ Z+ : N3/2Tk ≤ t}, where Tk is the

kth coagulation time given by Tk
d
=
∑k

i=1 α(i)
−1ei, the rates α(i) = α(i,N)

are as in (2.1) and e1, e2, . . . is a sequence of independent standard exponential

variables. Heuristically, replacing Tk by its expectation
∑k

i=1 α(i)
−1, the num-

ber of jumps J [N ](t/N3/2) should roughly behave as the maximal k such that

N3/2
∑k

i=1 α(i)
−1 ≤ t. We will show that with the choice kn = n− t−1

√
N/2,

N3/2
kn∑
i=1

α(i)−1 = t+ o(1), (5.2)

where we agree that the sum runs from 1 to the largest integer below kn. First
note that

N3/2
kn∑
i=1

α(i)−1 = N3/2
kn∑
i=1

1

(N + 1− i)(N + 1− 2i)(N − 2i)

= N3/2

(
kn∑
i=1

1

(N − i)(N − 2i)2

)
+O(n−1/2).

Furthermore, some simple computations show that for each ε > 0,

kn∑
i=1

1

(N − i)(N − 2i)2
=

∫ kn

0

dx

(N − x)(N − 2x)2
+O(n−2)

=
1

N(N − 2kn)
+O(n−2+ε)

=
t

N3/2
+O(n−2+ε).

Altogether, we obtain (5.2). Moreover, since

Var
(
N3/2Tkn

)
= N3

kn∑
i=1

α(i)−2 = O(n−1/2),
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we deduce that N3/2Tkn → t in probability. From this (5.1) readily follows. �

5.2. Mass partitions induced by Poisson measures. We now prove one-dimensional
convergence of the ternary coalescent process. The reader who is not familiar with
Poisson random measures and size-biased reorderings is invited to consult Section
2.2.3 of Bertoin (2006b) first.

Let ξ1, ξ2, . . . be a sequence of independent copies of H−1. Recall that by
Lemma 3.2, as l → ∞,

P (ξ1 = 2l + 1) ∼ 1

2

√
1

πl3
. (5.3)

For k ∈ Z+, let Σ2k+1 = ξ1 + . . .+ ξ2k+1, and denote by S(2k+1,N) a random mass
partition distributed as the rearrangement in decreasing order of ξ1/N, . . . , ξ2k+1/N ,
conditionally on Σ2k+1 = N . As a special case of Corollary 2.2 in Bertoin (2006b)
we have

Lemma 5.3. Fix b > 0. Then S(2k+1,N) converges in distribution on S≤1 as k,

n → ∞ with k ∼ bn1/2 to the ranked sequence (a1, a2, . . .) of the atoms of a Poisson
random measure on (0,∞) with intensity Λ(da) = bπ−1/2a−3/2da, conditioned on∑∞

i=1 ai = 1.

For the skeleton chain X ′[N ], we derive the following consequence.

Corollary 5.4. Fix b > 0. If n, k → ∞ with k ∼ bn1/2, then (1/N)X ′[N ]
n−k converges

in distribution on S1 to the ranked sequence (a1, a2, . . .) of the atoms of a Poisson
random measure on (0,∞) with intensity Λ(da) = bπ−1/2a−3/2da, conditioned on∑∞

i=1 ai = 1.

Proof : This follows from Proposition 3.3 together with the last lemma. �

Combining the corollary with the weak convergence result for the number of
particles, we easily obtain one-dimensional convergence.

Proposition 5.5. Fix t > 0. Then

1

N
X [N ](t/N3/2)

converges in distribution on S1 to the ranked sequence (a1, a2, . . .) of the atoms of
a Poisson random measure on (0,∞) with intensity

t−1

√
2πa3

da, a > 0,

conditioned on
∑∞

i=1 ai = 1. In particular, the one-dimensional distributions of the
process

t 7→ 1

N
X [N ](et/N3/2), t ∈ R,

converge to those of the standard additive coalescent.

Proof : Let kn = n− J [N ](t/N3/2). Then X [N ](t/N3/2) = X ′[N ]
n−kn

, so we may show

convergence for (1/N)X ′[N ]
n−kn

. From Lemma 5.2 it follows that as n → ∞,

kn√
n
→ t−1

√
2

in probability. (5.4)
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Furthermore, we know from Corollary 5.4 that if ln is a deterministic sequence of in-

tegers with ln ∼
√
nt−1/

√
2, then we have the asserted convergence for (1/N)X ′[N ]

n−ln
.

It therefore remains to argue that we may replace ln by the random sequence
kn. To this end, recall that S≤1 is a compact metric space, so by Prohorov’s
theorem (see Billingsley (1968), Section 6) the space of probability measures on
S≤1 is relatively compact, and we only have to show convergence on S≤1 in the
sense of finite-dimensional distributions. Since all our random mass partitions lie
in S1 almost surely, this leads to convergence in distribution on S1. Denote by

x
[N ]
i the ith component of (1/N)X ′[N ]

n−kn
. Finite-dimensional convergence on S≤1 is

equivalent to say that for each j ∈ N,(
x
[N ]
1 , x

[N ]
1 + x

[N ]
2 , . . . , x

[N ]
1 + . . .+ x

[N ]
j

)
converges in distribution towards (a1, a1 + a2, . . . , a1 + . . .+ aj). This follows if we
show that for all j ∈ N and λi ≥ 0, as n → ∞,

E

[
exp

(
−

j∑
i=1

λi

(
x
[N ]
1 + . . .+ x

[N ]
i

))]
→ E

[
exp

(
−

j∑
i=1

λi (a1 + . . .+ ai)

)]
.

(5.5)
Denote by f : S≤1 → (0, 1] the function

f(s) = exp

(
−

j∑
i=1

λi (s1 + . . .+ si)

)
, s = (s1, s2, . . .) ∈ S≤1.

Note that f((1/N)X [N ](t)) ≥ f((1/N)X [N ](s)) almost surely whenever t ≤ s.
By (5.4) we can find deterministic sequences of integers l−n and l+n such that

l−n ∼ l+n ∼
√
nt−1/

√
2 and the probability of the event {l−n ≤ kn ≤ l+n } tends

to 1 as n → ∞. But on this event, we have by monotonicity

f

(
1

N
X ′[N ]

n−l−n

)
≤ f

(
1

N
X ′[N ]

n−kn

)
≤ f

(
1

N
X ′[N ]

n−l+n

)
.

The expectations of the outer quantities converge to the right side of (5.2). This
finishes the proof. �

5.3. Convergence of ladder epochs. Aldous and Pitman (1998) have shown that
the exponential time change

F (t) = X(− ln t), t > 0,

with F (0) = (1, 0, . . .) transforms the standard additive coalescent into a fragmen-
tation process which is self-similar with index α = 1/2. In Bertoin (2000) one finds
an explicit construction of this fragmentation process in terms of ladder epochs of
Brownian excursion with drift, and our result on finite-dimensional convergence for
the ternary coalescent will be based on this identity.

Let us introduce some notation. We denote by C[0, 1] the space of continuous
real-valued paths on [0, 1], endowed with the uniform topology. For an arbitrary
path ω ∈ C[0, 1], its ladder time set is given by

L(ω) =
{
s ∈ [0, 1] : ω(s) = inf

[0,s]
ω

}
.

Since L(ω) is a closed set, there exists a unique decomposition of [0, 1]\L(ω) into
a countable union of disjoint (open) intervals. We denote by G(ω) the ranked
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sequence of their lengths. By filling up with zeros, we may always interpret G(ω)
as a mass partition in S≤1. Note that G(ω) ∈ S1 if and only if L(ω) has Lebesgue
measure zero.

The construction of the dual fragmentation process F in Bertoin (2000) can
be summarized as follows. Let ε = (ε(s), 0 ≤ s ≤ 1) be a positive Brownian
excursion. For every t ≥ 0, consider the excursion dragged down with drift t, that
is εt(s) = ε(s)−st, 0 ≤ s ≤ 1, and its ladder time set L(εt), which has almost surely
Lebesgue measure zero. Then, the law of (G(εt), t ≥ 0) and (F (t), t ≥ 0) coincide.

In light of our representation of the ternary coalescent in terms of ladder epochs,
it seems natural to establish convergence of these objects. In this direction, the
main step is to prove convergence of the underlying random paths, with the origin
placed at the first instant when their minimum is attained, towards a Brownian
excursion with drift.

To begin with, take a process (Jn(t), t ≥ 0) distributed as (J [N ](t/N3/2), t ≥ 0),
and independently of this a Markov chain {Xl}0≤l≤n as defined in Section 3.2. Let
us first fix t > 0, and write Jn = Jn(t). Remember that given Jn, we may identify
XJn with simple random walk up to time N , conditioned to end at −(2(n−Jn)+1),

S(XJn)j = 2

(
j−1∑
i=0

XJn(i)

)
− j, 0 ≤ j ≤ 2n+ 1.

By linear interpolation, we define the corresponding continuous random path Sn,t

on the unit interval,

Sn,t(s) = 2

bNsc−1∑
i=0

XJn(i) + (Ns− bNsc)XJn(bNsc)

−Ns, 0 ≤ s ≤ 1.

We shall now prove convergence of the finite-dimensional laws of the C[0, 1]-valued
process (N−1/2Sn,t, t > 0). The limiting object (Bbr

t−1 , t > 0) is distributed as

(Bbr
t−1 , t > 0)

d
=
(
(Bbr(s)− st−1, 0 ≤ s ≤ 1), t > 0

)
, (5.6)

where Bbr is a standard Brownian bridge on the unit interval. In particular, for
each fixed t, the distribution of Bbr

t−1 on C[0, 1] is that of a Brownian bridge from
0 to −t−1.

Lemma 5.6. The C[0, 1]-valued process
(
N−1/2Sn,t, t > 0

)
converges in the sense

of finite-dimensional distributions as n → ∞ to
(
Bbr

t−1 , t > 0
)
.

Proof : Let us fix t > 0 as above and first prove one-dimensional convergence. For
0 ≤ s ≤ 1, define

Wn(s) = 2

bNsc−1∑
i=0

Xn(i) + (Ns− bNsc)Xn(bNsc)

−Ns,

Dn(s) = 2

bNsc−1∑
i=0

(Xn(i)−XJn(i)) + (Ns− bNsc) (Xn(bNsc)−XJn(bNsc))

 .

We may then express Sn,t as Sn,t = Wn −Dn.
The process Wn(·) is linear interpolation of simple random walk up to time N ,

conditioned to end at −1. We deduce from a conditioned version of Donsker’s
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invariance principle (see Dwass and Karlin (1963)) that (N−1/2Wn(s), 0 ≤ s ≤ 1)
converges weakly in C[0, 1] to the standard Brownian bridge Bbr.

Concerning the drift part Dn, we let

D(1)
n (s) =

bNsc−1∑
i=0

(Xn(i)−XJn(i)) ,

D(2)
n (s) = 2(Ns− bNsc) (Xn(bNsc)−XJn(bNsc)) ,

so that Dn = 2D
(1)
n + D

(2)
n . Now fix s ∈ [0, 1]. A moment’s thought reveals that

conditioned on Jn = n − k for some k ∈ {0, . . . , n}, the random variable D
(1)
n (s)

follows the hypergeometric distribution. More precisely,

P
(
D(1)

n (s) = j | Jn = n− k
)
=

(bNsc
j

)(
N−bNsc

k−j

)(
N
k

) ,

where max{0, k + bNsc −N} ≤ j ≤ min{k, bNsc}. As a consequence,

E
[
D(1)

n (s) | Jn = n− k
]
= k

bNsc
N

, Var
(
D(1)

n (s) | Jn = n− k
)
≤ k. (5.7)

Let kn = n− Jn. Choosing ε > 0 arbitrarily small, we have for large n by the law
of total probability

P
(
N−1/2|Dn(s)− 2kns| > ε

)
≤

b
√
nt−1c∑
k=0

P
(
N−1/2|D(1)

n (s)− E[D(1)
n (s)| > ε/3 | kn = k

)
P(kn = k)

+ P
(
kn ≥

√
nt−1

)
= o(1),

where the last line follows from (5.4), (5.7) and Chebyshev’s inequality. Since
by (5.1), N−1/22kns converges in probability to t−1s, so does N−1/2Dn(s). In
particular, the finite-dimensional laws of (N−1/2Dn(s), 0 ≤ s ≤ 1) converge to
those of (t−1s, 0 ≤ s ≤ 1). Moreover, Dn(s) is increasing in s, and a similar
computation entails that for λ large enough, as n → ∞,

P
(
N−1/2Dn(1) ≥ λ

)
= o(1).

Using Theorem 8.4 of Billingsley (1968), we conclude that the distributions of
N−1/2Dn(·) form a tight sequence. It follows that (N−1/2Dn(s), 0 ≤ s ≤ 1) con-
verges in probability to (t−1s, 0 ≤ s ≤ 1). Applying now Theorem 4.4 from Billings-
ley (1968) together with the continuous mapping theorem finishes the proof of the
one-dimensional convergence.

The arguments obviously extend to finite-dimensional distributions. Indeed, the
bridge term Wn is the same for all t, and the drift term Dn converges in probability,
for each t. Therefore, finite-dimensional convergence follows again from Theorem
4.4 of Billingsley (1968). �

As for discrete paths, we introduce for v ∈ [0, 1] the shift operator θ on C[0, 1],

(θvω)(s) =

{
ω(s+ v)− ω(v) , 0 ≤ s ≤ 1− v
ω(s+ v − 1)− ω(v) + ω(1)− ω(0) , 1− v < s ≤ 1

.
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Define H : C[0, 1] → [0, 1] as the first time when the global minimum is attained,

H(ω) = inf

{
s ∈ [0, 1] : ω(s) = inf

[0,1]
ω

}
.

Clearly, H is not continuous on the whole space, but it is so restricted to the subset
of paths which uniquely attain their minimum. It is well-known and also implied
by the subsequent Lemma 5.8 that the distribution of Bbr

t−1 is fully supported on
this subset. Further, the shift operator is continuous as a map

θ : C[0, 1]× [0, 1] → C[0, 1], θ(ω, v) = θvω.

Setting θHω = θH(ω)ω, it then follows from the above lemma and the continuous
mapping theorem that for n → ∞,(

N−1/2θHSn,t, t > 0
)
→
(
θHBbr

t−1 , t > 0
)

in the sense of finite-dimensional distributions. Recall (Bbr
t−1(s), 0 ≤ s ≤ 1)

d
=

(Bbr(s) − st−1, 0 ≤ s ≤ 1), where Bbr is a Brownian bridge (the same for all t).
Denoting by ε a standard Brownian excursion, it has been proven by Vervaat (1979)
that

θHBbr d
= ε.

Since θu ◦ θv = θw for w = u+ v[mod 1], we have θH = θH ◦ θv pathwise for every
0 ≤ v ≤ 1. Therefore, if µ denotes the almost surely unique instant when Bbr

attains its minimum,

θHBbr
t−1

d
= θH ◦ θµ

(
Bbr − st−1, 0 ≤ s ≤ 1

)
= θH

(
θHBbr − st−1, 0 ≤ s ≤ 1

)
d
= θHεt−1 . (5.8)

Here, as above, εt−1(s) = ε(s)− st−1 is the Brownian excursion dragged down with
drift t−1. Since εt−1 attains its minimal value almost surely at the endpoint, we
have proven the following

Corollary 5.7. In the notation above,
(
N−1/2θHSn,t, t > 0

)
converges in the sense

of finite-dimensional distributions as n → ∞ to (εt−1 , t > 0).

The convergence of the ternary coalescent is now easy to establish. As last
preparation, let us recall a technical result. Call a point x ∈ [0, 1] a local minimum
of ω ∈ C[0, 1], if there exists δ > 0 such that for all y ∈ [max{x−δ, 0},min{x+δ, 1}],
ω(x) ≤ ω(y). The following statement is true for all real t.

Lemma 5.8. With probability one, all local minima of (εt(s), 0 ≤ s ≤ 1) are
distinct.

Proof : By (5.8), we may show the statement for (Bbr
t (s), 0 ≤ s ≤ 1) instead. Since

for the time-reversed process, it holds that

(Bbr(1− s)− (1− s)t, 0 ≤ s ≤ 1)
d
= (Bbr(s) + st− t, 0 ≤ s ≤ 1),

it suffices to show that for some 1/2 ≤ r < 1, (Bbr
t (s), 0 ≤ s ≤ r) has almost

surely distinct local minima. However, if Fr denotes the filtration generated by
the canonical process x· on C[0, 1] up to time r < 1, Q denotes the law of Bbr

t



On a ternary coalescent process 587

and, for a moment, P is Wiener measure and p the Gaussian transition kernel, it is
well-known that Q is locally absolute continuous with respect to P,

Q|Fr =
p1−r(xr,−t)

p1(0,−t)
· P|Fr .

Since the local minima of Brownian motion on [0, 1] are distinct almost surely (see
for example Theorem 2.11 in the book of Mörters and Peres (2010)), the lemma is
proven. �
Proof of Theorem 5.1: In view of the result of Bertoin (2000), the claim follows if
we show that the finite-dimensional laws of

t 7→ 1

N
X [N ](t/N3/2), t > 0,

converge to those of (G(εt−1), t > 0). Remember the map ϕ constructed in Sec-
tion 3.1 sending configurations to mass partitions. With Jn(t) = J [N ](t/N3/2)
defined as above, we have already seen that(

1

N
ϕ(XJn(t)), t ≥ 0

)
d
=

(
1

N
X [N ](t/N3/2), t ≥ 0

)
.

Let t > 0, and assume that conditionally on Jn,

1

N
ϕ(XJn(t)) = (s1, . . . , s2(n−Jn(t))+1),

where Nsi ∈ {1, 3, 5, . . . , N} with
∑

si = 1. Then by construction of both ϕ, G
and linear interpolation,

G(N−1/2θHSn,t) = (g1, . . . , g2(n−Jn(t))+1),

with gi = si−1/N for all i. Thus, the theorem follows if we show finite-dimensional
convergence of (G(N−1/2θHSn,t), t > 0) to (G(εt−1), t > 0). It is easy to check that
G : C[0, 1] → S≤1 is continuous on the subset of those paths which attain their local
minima at unique points. By Lemma 5.8, the distribution of εt−1 assigns mass one
to this subset. Therefore, Corollary 5.7 and the continuous mapping theorem yield
convergence of the finite-dimensional distributions on S≤1, and since G(εt−1) ∈ S1
with probability one, we obtain finite-dimensional convergence on S1. 2

Remark 5.9. (i) For the proof of Theorem 5.1 we used the random walk repre-
sentation. Let us point out another possibility to derive convergence, using the
random binary forest representation. Following the construction in Section 4, the
state chain of the ternary coalescent starting from N particles of unit mass can be
realized in reversed time by deleting successively pairs of outgoing edges from a
random tree uniformly distributed over all binary plane trees on N vertices. Such
a random tree can be seen as a Galton-Watson tree with offspring distribution
µ(k) = 1

2 (δ0(k) + δ2(k)), conditioned to have total population size N . One finds
oneself in the setting of Theorem 23 (in the sublattice case) of Aldous (1993). In
particular, if τ [N ] denotes the uniform binary plane tree on N vertices, where mass
1/N is assigned to each vertex and the edges are rescaled to have length 1/

√
N ,

then τ [N ] converges weakly as N → ∞ to the Brownian continuum random tree
(CRT) introduced in Aldous (1991). By splitting the skeleton of this tree into sub-
trees according to a Poisson process of cuts with some intensity t ≥ 0 per unit
length, Aldous and Pitman (1998) derived from the CRT an S1-valued fragmen-
tation process of ranked masses of tree components, indexed by the intensity t.
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Further, they showed that the time change t 7→ e−t turns this process into the
standard additive coalescent. As in Aldous and Pitman (1998), it should be pos-
sible to approximate the Poisson process of marks on the CRT by the process of
deleting edges from the binary plane tree. This would lead to another proof of
Theorem 5.1.
(ii) Recall the random walk representation introduced in Section 3. Fix an integer
k of size at least 3, and define the configuration space Ck

n as the set of all subsets of
{0, . . . , (k − 1)n} with cardinality less or equal to n. Now identify a configuration
x ∈ Ck

n with a path of a walk that goes up k − 2 steps if a site is occupied and one
step down otherwise, i.e. S(k)(x)0 = 0 and for 1 ≤ j ≤ (k − 1)n+ 1,

S(k)(x)j = k

(
j−1∑
i=0

x(i)

)
− j.

By imposing an analogous dynamics, i.e. by occupying successively n sites cho-
sen uniformly at random from {0, . . . , (k − 1)n}, the sequence of ladder epochs of
the corresponding new paths is now a realization of the state chain of the k-ary
coalescent process with kernel κk(s1, . . . , sk) = s1 + . . . + sk + k/(k − 2), started
from (k − 1)n + 1 particles of unit mass. As for the case k = 3, running this pro-
cess backwards in time yields a fragmentation process. Moreover, Kemperman’s
formula applies also to first hitting times of such asymmetric random walks, so
that their distributions can easily be computed. With some minor modifications,
and under a different rescaling of time, one again obtains convergence of the finite-
dimensional laws of this k-ary coalescent process towards those of the standard
additive coalescent.

Not surprisingly, there is an analogous random (k− 1)-ary forest representation
of this process. Indeed, when glueing (full) (k − 1)-ary trees by picking uniformly
at random one leaf and k − 1 roots from different components, in a similar way as
described in Section 4 for the case k = 3, the ranked sequence of the tree sizes is
another realization of the state chain of the k-ary coalescent with kernel κk.

This remark shows that our ternary coalescent process is only one particular
process out of a family of k-ary coalescents that can be studied by the same means.

Acknowledgments

I am grateful to Jean Bertoin for stimulating discussions and helpful advice.
Further I would like to thank the anonymous referees for their valuable comments.

References

D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1), 1–28 (1991).
MR1085326.

D. Aldous. The continuum random tree. III. Ann. Probab. 21 (1), 248–289 (1993).
MR1207226.

D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (4),
1703–1726 (1998). MR1675063.

J. Bertoin. A fragmentation process connected to Brownian motion. Probab. Theory
Related Fields 117 (2), 289–301 (2000). MR1771665.

J. Bertoin. Eternal additive coalescents and certain bridges with exchangeable
increments. Ann. Probab. 29 (1), 344–360 (2001). MR1825153.

http://www.ams.org/mathscinet-getitem?mr=MR1085326
http://www.ams.org/mathscinet-getitem?mr=MR1207226
http://www.ams.org/mathscinet-getitem?mr=MR1675063
http://www.ams.org/mathscinet-getitem?mr=MR1771665
http://www.ams.org/mathscinet-getitem?mr=MR1825153


On a ternary coalescent process 589

J. Bertoin. Different aspects of a random fragmentation model. Stochastic Process.
Appl. 116 (3), 345–369 (2006a). MR2199553.

J. Bertoin. Random fragmentation and coagulation processes, volume 102 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge (2006b). ISBN 978-0-521-86728-3; 0-521-86728-2. MR2253162.

J. Bertoin, L. Chaumont and J. Pitman. Path transformations of first passage
bridges. Electron. Comm. Probab. 8, 155–166 (electronic) (2003). MR2042754.

P. Billingsley. Convergence of probability measures. John Wiley & Sons Inc., New
York (1968). MR0233396.

M. Dwass and S. Karlin. Conditioned limit theorems. Ann. Math. Statist. 34,
1147–1167 (1963). MR0166814.

S. N. Evans and J. Pitman. Construction of Markovian coalescents. Ann. Inst. H.
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