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Abstract. Let S,, = X1 4+ --- + X,,, n > 1, where (X;);>1 are random variables.
Let p be a constant and I be the identity function on [0,1]. We study the almost
sure convergence to i of the two polygonal line partial sums processes ¢, and (24
with respective vertices (k/n,Sy) and (7%, Sk), 0 < k < n, where 7, = T} /T, and
Ty = | X1| + -+ -+ |Xk|- These convergences are considered in the space C|0, 1] or in
the Holder spaces H2[0,1], 0 < o < 1. In C[0, 1], any strong law of large numbers
satisfied by .S, is inherited by (,. In HZ[0, 1], assuming moreover that the X;’s are
i.i.d., n71¢, converges almost surely to pf if and only if E|X1|1/(1*°‘) < oo and
p = E X;. In contrast, the same convergence for (2 is equivalent to E |X;| < oo
and p=E Xj.

1. Introduction and main results

On the same probability space (€2, &, P), let us consider a sequence of real valued
random variables (X;);>1 together with its partial sums (S,,)n>0

So=0, S, =X1+---+X,, n>1,
and its polygonal line partial sums processes ({,)n>1, where

In the case when the X;’s are i.i.d., limit theorems establish a strong relationship
between the degree of integrability of X; and the asymptotic behavior of .S,, and of
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Cn- To mention the two most famous examples, it is well known that the almost sure
convergence of n~1S,, to some constant u is equivalent to E |X1] < ccand E X = p,
by Kolmogorov’s strong law of large numbers (SLLN) and its converse; similarly,
the convergence in distribution of n=1/2(S,, — nu) is equivalent to E X7 < co and
E X; = pu, by central limit theorem (CLT) and its converse. One may look at
the central limit theorem as a convergence rate result for the strong law of large
numbers, showing that a convergence rate better or equal than n~'/? cannot be
obtained in the SLLN. Intermediate convergence rates of the form n'/P~1 0 <
p < 2 are obtained from Marcinkiewicz-Zygmund SLLN under the existence of p-th
moment.

As for (,, by Donsker-Prohorov theorem or functional central limit theorem
(FCLT), the process n'/2(n='¢, — ul) converges in distribution to the Brownian
motion in the classical space of continuous functions C[0, 1] if and only if E X? < oo
and p = E X1, where [ is the identity function,

1:00,1] = [0,1], tw I(t) =t.

When E |X;|P < oo for some p > 2, the convergence of n'/2(n=1¢, — ul) can
be strengthened in a convergence in some Holder space H2[0,1], giving a FCLT
in HZ, see Rackauskas and Suquet (2004) for the precise connection between the
degree of integrability of X; and the strength of the relevant Holder topology.
Alternatively, one can also modify the construction of ¢, in an adaptive way to
obtain Holder convergence under mild integrability assumptions, see Rackauskas
and Suquet (2001).

It is a natural question then, to ask whether all these functional central limit
theorems in C0, 1] or in Holder spaces may be viewed as convergence rate results
for some corresponding functional strong law of large numbers (FSLLN).

Our aim in this contribution is to discuss various functional laws of large numbers
for (,, or for some adaptive modification, in terms of the degree of integrability of
Xi.

Throughout the paper, %) denotes almost sure convergence and C|0, 1] is the

Banach space of continuous functions f : [0,1] — R endowed with the so-called
supremum or uniform norm || f|ls = supco 1) |f(¢)], f € C[0,1].
The simplest law of large numbers for (, reads as follows.

Theorem 1.1. Assume that the X;’s are i.i.d. Then the convergence

1
“Co 22wl in the space  C[0,1] (1.1)
n

n—oo

holds if and only if E|X;| < oo and u =E X;.

Since the supremum norm of a polygonal line is reached at some vertex, the
above functional strong law of large numbers for (,, can be viewed as an uniform
law of large numbers for the partial sums as follows.

Theorem 1.2. Assume that the X;’s are i.i.d. Then the convergence

1 a.s.
o 1028, 1S = Rl 222 0, (12)
holds if and only if E|X;| < oo and u = E X;.

As a matter of fact, functional strong law of large numbers in C[0, 1] are easily
inherited from the corresponding strong law for S, according to the following
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result whose proof is a simple exercise in analysis. It is worth noticing that no
direct assumption on the dependence structure of the X;’s is made here.

Theorem 1.3. Let X; be random variables with an arbitrary dependence structure.
Let p be a real number and (by,)n>1 be a non-decreasing sequence of positive numbers
going to infinity. Then the following three convergences are equivalent.

i) b (S, —np) =2 0.

n—oo
i) nby Hn " — pl]loo —2 0.
n—oo

ii1) by, ' maxi<k<n |Sk — kpl BN
n— o0

Combining classical Marcinkiewicz-Zygmund SLLN with Theorem 1.3 gives the
following functional Marcinkiewicz-Zygmund strong law of large numbers for (,
(whose special case p = 1 is equivalent to Theorem 1.1).

Theorem 1.4. Assume that the X;’s are i.i.d. Then the following statements hold
true.

a) IfE|X1|P < oo for some p € (0,1), then n™/P||C, |00 goes to zero almost surely.

b) If E|X1|P < oo for some p € [1,2), then n*~/P|n=1¢, — (E X1)I |l goes to
zero almost surely.

¢) If n=YP||¢, — cnll|loo goes to zero almost surely for some p € (0,2) and some
sequence (cp)n>1 of real numbers, then E|X1|P < co.

Remark 1.5. There is a large literature on the Marcinkiewicz-Zygmund strong law
of large numbers for dependent variables, see e.g. Rio (1995), Fazekas and Klesov
(2000), Fazekas (2006) and the references therein. From these results, FSLLN in
C0, 1] for dependent variables are easily inherited via Theorem 1.3.

Remark 1.6. When p = 0, any FSLLN of the form #¢) in Theorem 1.3 verified by
(n in C[0,1] is satisfied also by the polygonal line &, with vertices (7, Sk), 0 <
k < n where the 7, ;, are deterministic or random in [0, 1], with ming<x<y, 7 = 0,
Maxo<ik<n Tnk = 1 and T, # T, ; every time Sy # S;. This results from i) in
Theorem 1.3. When ¢, satisfies i7) with p # 0, &, satisfies the same functional law
of large numbers if and only if b, maxo<k<n |k — 17, k| converges almost surely to
Zero.

Intuitively, the more concentrated is the distribution of X; (in the i.i.d. case),
the closer to pl should be the paths of n=!¢,. In the functional framework of
C[0,1] this closeness is expressed by a convergence rate in the uniform norm, and
there is no gain in assuming that E |X|P? < oo for p > 2. This can lead us to look
for a different closeness “in shape”, more sensitive to the degree of integrability of
X, by considering stronger norms than the uniform one. This question is natural
since both functions ¢, and pI have a much stronger global regularity than the
continuity.

For o € [0,1) we consider the Hélderian modulus of smoothness of a function
f:[0,1] = R defined by

wa(f,0) = sup M

s,t€[0,1] ‘t — s|@
0<t—s<3

The Holder space HE [0, 1] is then the set of functions f € C]0, 1] such that w,(f,0)
converges to zero as 0 goes to zero, endowed with the norm || f{|o = |f(0)|4+wa(f,1).

, 0€(0,1).
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The following result gives a characterization of the functional strong law of large
numbers for ¢, in the ladder of spaces #2[0,1], 0 < o < 1. As the space H§[0, 1] is
isomorphic to C10, 1], the special case o = 0 is equivalent to Theorem 1.1.

Theorem 1.7. Let 0 < a < 1. When the X;’s are i.i.d., the following statements
are equivalent:

a) E|X V0= <00 and p=E Xy;

b) n=1¢, —=2 ul in the space H[0,1];
n—oo

¢) for any e > 0,

(o]
Z " P(||Cn — nul ||o > en) < oo.
n=1
In terms of increments of partial sums, Theorem 1.7 can be stated in the following
form.

Theorem 1.8. Let 0 < « < 1. Then (a) of Theorem 1.7 is also equivalent with
each of the following statements:

b’) n—1+o¢ max |Sk_Sj _,u(k_])| a.s. 0;
0<j<k<n (k—j)e n—oo
¢’) for anye >0,

o0 .
S — ok —
Z’flP( sup |9 = 5; H( il > Enlfa) < 00.
= 0<j<k<n (k—j5)~

In the special case where a = 0, condition b’) is equivalent to (1.2), while ¢’) is
equivalent to

¢”) for any e >0,

ZnilP( sup |Sk — kpl > 5n> < 00.
—_ 0<k<n

Remark 1.9. Assuming E|X;|"/(1~%) < oo for some 0 < a < 1 and EX; = 0 we
have particularly
[~ Galla ===+ 0 (1.3)
n— oo

and one can ask what is the best possible rate of this convergence. From the classical
Donsker-Prohorov invariance principle, we have that if E X? < oo, then

_ D
Vil alloe —— W,
n—oQ

where W = (W, t € [0,1]) is a standard Wiener process and —L2_, stands for the
n— oo

convergence in distribution. For 0 < a < 1 we observe different rates of convergence.
For 0 < a < 1/2 we have from Rackauskas and Suquet (2004) that

— D
V|l alla —— IW]la
n— oo

if and only if lim;_, o t'/ (/2= P(|X;| > t) = 0, a condition which is stronger than
E |X1|1/(1_a) < oo which in turn is stronger than E X? < co. If 1/2 < o < 1 and
the random variables X} ’s are regularly varying with exponent a > 2, then we have
from Mikosch and Rackauskas (2010) that

' e —2— Y, (1.4)
n—ro0
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where Y has Fréchet distribution with parameter a: P(Y < z) = exp{—z~%},
x>0, and a, = inf{x € R: P(|X;| < ) > 1—1/n}. Since a, = n'/*, with
slowly varying £,,, the normalization in (1.4) is n'~1/¢=2¢-1  Let us observe that
1-1/a—a < 1/2, so the rate in (1.3) is slower for 1/2 < o < 1 than for 0 < o < 1/2.

In the Gaussian case the limiting behavior of ||(,[|1/2 has been investigated
by Siegmund and Venkatraman (1995) and Kabluchko (2008). It is proved that
centered and normed sequence by, (|[n"1¢,[|1/2 — a,) with appropriately chosen se-
quences (b,) and (a,) converges in distribution to a double exponential random
variable. In the non-Gaussian light-tailed case, the limiting distribution of |[¢,|]1/2
has been obtained in Kabluchko and Wang (2012).

Theorem 1.7 indicates that the construction of polygonal line process (,, is not
adapted to the structure of Holder topology with respect to the law of large num-
bers. Next we introduce another construction which we call adaptive. For this we
use the random partition of the interval [0, 1] generated by the points 75 constructed

as follows. For n > 1, put
T, =Y |Xil.
i=1

Then we define the triangular array {7, x,0 < k < n} by setting 7,0 :=0, 7 :=1
and for 1 < k <n,
Ty
—  on the event {7, > 0}
Tn,k: = Tn
0 on the event {7, = 0}.

For notational convenience, we write 7, for 7, j every time there is no ambiguity
on which n is involved by 7. Now we denote by (¢ the random polygonal line
process with vertices the points Vj, := (7%, Sk). To express this in explicit formulas,
we can start with:
() = Sk, 0<k <n.

We note in passing that this writing is consistent, since on the event {7, = 74_1},
X =0 and Sk_1 = Sk. Next we remark that for every ¢ € [0, 1]\ {7, 0 < k < n},
there is a unique (random) integer 1 < j < n such that 7;_; <t < 7; and then

T — 1 t t—T1i_
Gl = —L——Sj1 + Sj = Sj1+ 1

Tj*’i’jfl Tj*ijl Tj*ijl

—Tj-1

X;.
It is worth noticing here that, due to the direct definition of 79 = 0 and 7, = 1, the
above formulas are still valid on the event {T;, = 0}, with j = n.

Before stating the functional law of large numbers for (24, one can get an intuition
by a rough comparison of ¢,, and ¢24. For the first process, the increment Sy — Si_1
(1 < k < n) is realized in the deterministic interval [(k — 1)/n, k/n] with lenght
1/n. For ¢34, the same increment is realized in the random interval I, = [r_1, T&].
In mean, the lenght || = 7, — 7x—1 is asymptotically equivalent to 1/n (or equal if
P(X; =0) =0). Indeed it is easily seen that E|I;| = P(T,, > 0)/nfor 1 <k <n
while E|I,,| = P(T,, > 0)/n + P(T,, = 0). As the Xy’s are i.i.d., P(T,, = 0) =
P(X; = 0)" so, discarding the degenerated case where P(X; = 0) = 1, each || is
equivalent to 1/n.

This apparent similarity between ¢,, and ¢ may be misleading when working
with Holder topologies. In this context, what matters is the slope of the polygonal
line between two consecutive vertices. Contrary to a fixed interval of length 1/n, Ij,
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reacts to a value of X, which can be big with big probability if E | X;|/(1~%) = oo,
Roughly speaking, for the same big increment Sj, — Sy _1, the slope is weaker for (24
than for ¢,,. This is the key of the better Holderian behavior of ¢3¢ as illustrated
by the following result.

Theorem 1.10. Let 0 < a < 1. The following statements are equivalent
a) E|X | < oo and EXy = p;
b) n=1¢2d 22 Ul in the space H2[0,1];

n— oo

¢) for any e >0,

Zn*IP(HCZd —nplllq > en) < co.

n=1

2. FSLLN in C[0, 1]

Since Theorems 1.1 and 1.2 are contained in Theorem 1.4, we need only to prove
Theorems 1.3 and 1.4.

Proof of Theorem 1.3: Observing that the supremum norm of a polygonal line is
reached at some vertex gives immediately the equivalence between conditions %)
and #i7) in Theorem 1.3. Obviously #i¢) implies i). The proof of the implication
i) = 1ii) is purely analytical and is provided by the following lemma. (I

Lemma 2.1. Let p be a real number and (by)n>1 be a non-decreasing sequence of
positive numbers going to infinity. Let (s,)n>1 be a sequence of real numbers such
that b, ' (s, — nu) converges to zero. Then
sy — k

max 1SRl (2.1)

1<k<n bn n—oo
Proof: Let € be an arbitrary positive number. By the convergence to zero of
b, Y(sn — np), there is some integer ko = ko(e) such that for every k > ko,
b, '|sk — ku| < e. Together with the non-decreasingness of the sequence (by,)n>1,
this leads to the upper bound
[si — Kkl < 1 sk — k| bi

max — max |sy — ku| + max
1<k<n by, by, k<ko| l ko<k<n b by,

1
< = —k .
<3 km<2}€>§|sk ul+ e

Since b,, goes to infinity, it follows that

. Sk — ]f
lim sup max M <e,
n—oo 1<k<n n

which gives (2.1) by arbitraryness of €. O

Proof of Theorem 1./: Let p € (0,2). From the classical Marcinkiewicz-Zygmund
SLLN, we know that if E|X;|P < oo, then n~'/PS,, goes a.s. to zero in the case
0 < p < 1, while n=Y/?(S, — nE X;) goes a.s. to zero in the case 1 < p < 2.
Accounting the equivalence of i) and ii) in Theorem 1.3, this immediately gives the
statements a) by choosing = 0 and b) with = E X;.

By the converse part in classical Marcinkiewicz-Zygmund SLLN, if n=/? (S, —c,,)
goes to zero almost surely for some p € (0,2) and some sequence (¢, ),>1 of real
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numbers, then E | X1|P < co. Together with Theorem 1.3, this gives the statement
¢), noting that ||¢, — end]loo > [Cn(1) — enI(1)] = |Sn — cnl- O

3. Some Hoélderian tools

The Holder norm of a polygonal line function is very easy to compute according to
the following lemma for which we refer e.g. to Markeviciute et al. (2012) Lemma 3,
where it is proved in a more general setting.

Lemma 3.1. Lettg =0<t; < - - <t, =1 be a partition of [0,1] and f be a real-
valued polygonal line function on [0, 1] with vertices at the t;’s, i.e. f is continuous
on [0, 1] and its restriction to each interval [t;, t;+1] is an affine function. Then for
any 0 <a <1,

wp OO ()~ (6)]
0<s<t<1 (t — S)O‘ 0<i<j<n (tj — ti)a
Let D; denotes the set of dyadic numbers of level j in [0, 1], that is Dy := {0, 1}

and for j > 1, D; == {(20 - 1)279; 1 <1 <277} Forr € Dj set r~ :=r — 277,
rti=r+279, 5>0. For f:[0,1] - R and r € D; let us define

oty +frm)=2f(r) ifj>1,

A (f) = (AT 200

f(r) ifj=0.

The following sequential norm defined on #g [0, 1] by

I FI5% = sup 2% max [A.(f)],
>0 reD;

is equivalent to the natural norm | f||., see Ciesielski (1960). Let us define also
D; = {k279, 0 < k < 27}, so that D; = {0} U Ui<i<; Di- In what follows, we
denote by log the logarithm with basis 2 (log2 = 1).

Lemma 3.2. For0<a<1,

—pl|fed <2 2% X — 4n® X — -

oo = wrlzt <2 g 2wl 3D (K- )| 440 e X -
nr<i<n(r+2-7)

Proof: First we remark that for j > 1,

max [A(f)] < max () = £(r)] + max | £(r) = ST

As vt and 7~ belong to D, this gives:

sup 2% max |\, (f)| < 2sup 2% max |f(r +277) — f(r)|.
j>1 reD; i>1 reh;
It follows that if f € H2[0,1] and f(0) =0,

£l < 2sup 2% max | f(r +277) — f(r)].
>0 reb;
This inequality can be applied to the random polygonal line (,, — uI. Moreover, it is

clear that there is no loss of generality in assuming 4 = 0 for notational simplicity.
We claim that for r € D,

|S[nr+n2—j] - S[nr]‘ + 2max1§i§n ‘X’L| if ] < IOg n,

2n2~7 maxi<;<n ‘X,L| if j> IOg n.

|Cn<r + 2_j) - Cn(r>‘ < {
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Indeed, if j < logn, this follows immediately by triangular inequality. If j > logn,
277 < 1/n and then with r in say [i/n, (i+1)/n), either r+277 is in (i/n, (i+1)/n]
or belongs to ((i +1)/n, (i +2)/n]. In the first case, noting that the slope of ¢, on
[i/n, (i 4+ 1)/n) is exactly nX; 1, we have

|Cn(r + 2_j) —Cu(r)| = n\Xi+1|2_j < 9279n max | X].
1<i<n

If r and r + 277 are in consecutive intervals, the same argument applies after
chaining, so
[Gu(r +279) = Ga(r)] < [Ga(r) = Ga((i + 1) /)| + [Ga (i + 1) /n) = Ga(r +277)]

<279y max | Xyl
1<i<n

To complete the proof of the lemma, it remains to note that if j < logn, 29¢ < n®
and if j > logn, 279277n = (279)17on < (n=1)1~on = no.

4. Proof of Theorems 1.7 and 1.8

Theorem 1.8 follows immediately from Theorem 1.7 because the Hélder norm of
a polygonal line is reached at two vertices (Lemma 3.1). We shall prove Theorem
1.7 following the scheme:

(a) = (¢) = (b) = (a).

Proof of (a) = (c). Since (a) yields E|X;| < oo, we can assume without loss of
generality that E X; = 0. Define for every positive ¢,

2. X

nr<k<n(r+2-7)

Pi(n,e):=P max 2% max
0<j<logn reh;

>en

and
Py(n,e) =P (n—1+a max |Xj| > a) .
1<k<n

According to Lemma 3.2 it is enough to prove for ¢ = 1,2 and for each € > 0 that
o0
Znilpi(n,s) < 00. (4.1)
n=1

First let us check (4.1) with i = 2. Since Py(n,e) < Y p_, P(|Xx| > en'™*) and
the X} ’s are identically distributed, we get

> n7'Py(n,e) <> P(IXy| > en' ™) < Z/ P(IX| > et ) dt
n—1

n=1 n=1 n=1

:/ P(|X;| > et ™) dt
0

:/ P(X,[1/0-0) 5 c1/0=a)p) gy
0

— VR | x, V(-0 < o,
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Next we prove (4.1) for ¢ = 1. Introducing

Xi = Xilgxism-oy — EXilqx gni-ey,
Xi' = Xilgximmi-ey = EXil{x sni-ay,

and recalling that E X, = 0, we decompose X; in the sum X!+ X" of two truncated
and centered random variables. We split P (n,e) < Pj(n,e/2) + P;'(n,e/2) where
in the definition of P;(n,e) one has to substitute respectively X; by X j’ to define
P{(n,e) and by X! to define P;'(n,¢).

First we estimate P;’(n,e). By Markov inequality we have

P'(n,e) <e‘n7t E 29E max E X
rel); B
1<j<logn Tpr<k<n(r+2-9)

logn
< 'B|XV \Zw
Qapa
e(22—1)

Next we note that E |X{l| <2E |X1‘1{|X1‘>n17a} and

IN

E|X7|. (4.2)

oo
E‘X1|1{‘X1|>nlfa} :/ P(|X1‘1{|X1\>n1*“} > S) ds
0

l—a

n 00
:/ P (|X1|1{|X1‘>n1—a} > S) ds-i-/1 P(|X1‘ > s) ds
0 nl-o
— e P(Xy| > 09 +/ P(IX1] > 5) ds. (4.3)
nl-a

Now from (4.2) and (4.3), we obtain

Zn_lP ,€) < %a) (Z P(|X1| >n'™) + Zn‘Ha /OO

P(|X1] > s) ds) .

The first series in the right hand side converges since
> P(Xy| >0 < B|X V07,

as already seen above when bounding Y »- , n=*P2(n, ). For the second series, we
can write

o k+1

Z / P(Xa] > s)d =Z Z/ P(Xa] > 5)ds

(k+1)1 a
/ P(|X1] > s)ds Z n~ e
k

1—a LSk

P”ﬂ8

b
Il

1

(k+1)1 [e%
< d(a) Z/ k*P(|X1] > s)ds
k

1 -«
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Noting that k* = (k'~*)*/(0~) < 52/(1=2) for every s > k'~ we get

oo o 0o (k1)
Zn_l'm/ P(|X1| > s)ds < () Z/ s¥1=IP(|X,| > s)ds
n=1 - k

nl =1 1—o
< c'(a)/ s¥ 1= P(|X,| > 5)ds
0

_ c(a)(1 - Q)E|X1|1/(1—a) < 0.
o

This achieves the verification of the convergence of > n=1P{'(n,¢).

Now consider the series Y oo, n~'P{(n,). We claim that one can find some real
g > 1/(1 — ) and some constant ¢(«, g) such that

Pl(n,e) < C(L;(I)nl"I(l’a)E | X7 9. (4.4)
€
Postponing the verification of (4.4), let us see how it gives the convergence of

S0 ntP(n,e).
First we note that E|X/{|? < 29E |X1|q1{|Xi|§n1fa} and

E‘X1|q1{|Xi|§n17a} :/0 P(|X1|q1{|Xi|§n17a} > t) dt

ni(l—a)

:/ P(|X1|q1{|Xi|§n1—a} > t) dt
0
ni(—a)
:/ P (nq(l_o‘) > X7 > t) dt
0
nd(l—o) 1-a

P(IX4] >t)dt:/ gs" T P(|X1| > s) ds.
0

<),

Combining this estimate with (4.4) reduces the problem to the convergence of the
series

nt~
0

Y(g, @) = Z na01=) / s P(|1X1| > s)ds. (4.5)
n=1

For this aim, it is convenient to exchange the summations as follows:

(g, ) = i n—11-a) zn:/
n=1 k=1 (

k

(=)
. sTIP(|X| > s)ds

0o p(1—a) 0o
= sTTIP(|Xy| > s)ds Y 07
(=)

< d(q,a) Z/ klma1-2)ga=1p(|X,| > s)ds.
k=17 (k=1)01=

Now we note that in the last integral above, s < k(l_o‘), so k > s1/(=2) and

as 1 —q(1 —a) < 0, kl=90-a) < (gl/(=a)yl=q(=a) —  l/(1=a)=q and finally
Elra—a)ga—1 < g1/(1=a)=1 Thjg leads to

Y(q, ) < 0’(q,a)/ s/ 7LP(1X | > s)ds = ¢’ (g, )E | X [V (7) < oo
0
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To complete the proof, it only remains to check (4.4). In the case where 0 < a <
1/2, we can choose ¢ = 2 and then (4.4) is obtained by Chebyshev inequality:

logn
Pl(ne)<> M P > Xp|>en27®
j=0 reh; nr<k<n(r+2-7)
1 logn 2
2ja /
cLYeeys y
7=0 rel; nr<k<n(r+2-7)
1 logn
= Y 2YEX]?
nees “4
Jj=0
21+2a

— 2
< sprm )" IH20F X1

If & > 1/2, then by Markov and Rosenthal (1970) inequalities we obtain for any
¢>1/(1—a)>2,
logn

1 q

/ Jjqo /
CUEEE = 3705 3 D SE™
7=0 rel; nr<k<n(r+2-7)
logn
< G

igoeyi o /2 o

S 2o (n2 T (X)) 4+ n2 X)),
j=0

denoting by C, the universal constant in Rosenthal inequality. Since ¢ > 2,

(B(X]))9/2 = ((BIX{)Y2)" < ((B]X{9)/9)" = E|X{|*. Morcover, in the

range of summation, 7277 > 1 and as ¢/2 > 1, (n277)%/2 > n2~J. This gives

logn
2C,E | X]|? oo 4C, —a(1—
/ bl el et j(g(a—1/2)+1) q 1—q(1—a) g
Pi(n,e) < gy ZO 2 < a2 1) E|X!|9,
j=

so (4.4) is verified. O

Proof of (¢) = (b): Since (,(0) = 0, we have

¢ — nped || = wa (G — npd 1) = sup 16 (t) = Gu(s) — nualt — 5)|

0<s<t<1 |t — 5|
Applying Lemma 3.1 to the polygonal line ¢, — ul gives

1Gn — Il = n® max 15175 = U =0 (46)

1<i<j<n |7 — ]

From (4.6), it is clear that the sequence (Z,),>1 defined by
Zn:niaHgn*n,qu”aa n>1,

is non-decreasing. Now by (¢) we have for every positive ¢,

oo
Zn‘lP(Zn >en'™) < 0.
n=1
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Exploiting the monotonicity of (Z,,),>1, we obtain

in_lP(Zn > enl™?) Z Y n'P(Z, > en'T?)

n=1 =0 2i<n<2i+!
> Z Z 27i71P(Z2i > 82(i+1)(170‘))
=0 2i<n<2it+l
= Z 27 P(Zyi > 207y,
=0

It follows that for every positive ¢,

> P(Zy > e207Y) < oo (4.7)
=0

For N > 1 let J > 0 be such that 27~! < N < 27. Then

P <sup [n=1¢, — pllla > 6 ( sup n~'teZ, > s)
n>N

n>2J-1

=P ( max n 'z, > 5)

1>J 2i-1<n<2?

<sup o(—lHe)(i=l 7., > 5)
i>J
<Y P(Zy > 2070,
i=J

This upper bound goes to zero when J — oo by (4.7). Hence sup,,> y [|n™¢u—pd|la
converges in probability to zero as N — oo. From this it is easily deduced that
|ln=1¢, — pll||o converges almost surely to zero as n — oo, which gives (b). O
Proof of (b) = (a): Putting {, := {, — nul, we note that

o 6 (1) = G (A —1/n)]

(X, —pl = ol

< lGallas

so (b) implies that
n X, — ) =2 0.

Then, by independence of the X,,’s, the second Borel-Cantelli lemma yields
> P(IXn - pl = n'7%) < oo,
which by identical distribution of the X,,’s can be recast as

D O P(X1—pf = n'"%) <o,

n=1
what gives E|X; — pu['/(17%) < oo. Tt follows that E|X;|/(1=%) < 0o and as
(1—a)™' > 1, E|X;| < oo. Finally n=15,, = n71¢, (1) converges almost surely to
w by (b) and to E X7 by the classical strong law of large numbers. Hence u = E X3
and the proof of Theorem 1.7 is complete. ([l
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5. Proof of Theorem 1.10

As a preliminary remark, it seems worth noticing that the proof of Theorem 1.10
cannot be easily reduced to the case where y = 0. Indeed the centering which
substitutes X; by X! = X; — u changes also the random partition of [0, 1] in another
one, built on the X/, and it seems difficult to find a simple relationship between
the two corresponding polygonal lines.

In what follows, we put

v :E|X1‘

and discard the trivial case where v = 0 since then all the X;’s would be almost
surely null.
We shall prove Theorem 1.10 following the scheme:

(a) = (b) = (a) = (¢) = (a).
Proof of (a) = (b): The Holder norm of the polygonal line (3¢ is reached at two

vertices. Accounting the possibility of several consecutive equal 7;’s, this property
can be translated here by

A= [In7 G = pl|a

1 [Sk — S5 — np(mi — 75)]
= - 1 17 _
n ogg@i <1 (T — 1) {1, >0} + Hl{r,—0}
T2 1Sk — S — 72(Th — Tj)|
=" n 1 17 —oy. 5.1
n 0<7<m<1 (Tr — T;)° {T.>0} + Hl{T, =0} (5.1)

By triangle inequality, on the event {T;, > 0},

3 (Xi—;/:|Xi|) < <1+”T|“> > Xl

n

j<i<k j<i<k
whence
o n - n “
(Tk—Tj)2<1+z|7M|) Sk—Sj—Tl(Tk—Tj)

With this lower bound for the denominator in (5.1), we obtain

T, “r1
A, < =2 =
" ( n + M') (n 0§7¥11"1<a7}'i§1

T, > 72
< (Gzrm) (3 o
n n 1<k<n

We introduce some centering by writing, on the event {7,, > 0},

S =8 PATL - T))

11—«
T, ) 1{Tn>0}

11—«
) 1er, 50y + 0l —0}-

n
Sy — T—‘:Tk

k
Sp — %Tk = Sp — kp — %(Tk — kv) + %(Tn — ),
whence
1 ny 1 2|l
= -2l <= - Ll Ty — k.
o R Sk Tl < o max [ = k| + =57 max [T — k]
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Finally

T, * /2 Iul oo
< | — — — — —
A, < (n + |u|> < max |Sk — k |+ max |T;C kz/|) 1(1, >0}

+ plyr,—oy (5.2)

Now we recall that P(T,, = 0) = P(X; = 0)" which goes to zero, since we discarded
the trivial case where X; = 0 almost surely. As the sequence T,, is non-decreasing,
this implies that

Lir,>0p —— L. (5.3)

As E | X;| < 0o, we have the following convergences

— —— v >0, (5.4)
n n—oo
by classical SLLN applied to the |X;|s,
1
- 1I<nkaé< |Sk — kpl —> 0, (5.5)
by Theorem 1.2,
1 a.s.
T, 02 Ty = kv[1{z, 50y —— 0, (5.6)

by (5.3), (5.4) and Theorem 1.2 applied to the |X;|’s.
Then the almost sure convergence of |[n =¢34 — ul||, to zero results from (5.2)

to (5.6). 0
Proof of (b) = (a): We note that
07— il = wa(n ¢ — 1) 2 (1) - ¢0) — pl = | 22 u' |

Then (b) implies that n~1S,, converges almost surely to u, which gives (a) by the
converse part in the classical Kolmogorov-Khintchine strong law of large numbers
for i.i.d. random variables. (I

Proof of (a) = (c): Writing F,, := {A,, > €}, we have to prove that for every ¢ > 0,
> n'P(E,) < oc. (5.7)
n=1

Recalling that v = E | X;] is assumed to be positive, we split

where
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On the event E/,, as 0 < nv/2 < T,, < 3nv/2, we deduce from (5.2) the following
upper bound.
5\ (2 8 e
2= (F) (et + s, 17 )
1 11—« 1 -«
<a ( max |Sy — k:u|) +0b ( max [T} — k;y|> )
n 1<k<n n 1<k<n

with a = 2(5v) and b = 2374 (5p).
It follows that

1 I—o € 1 l1—a c
)< - — — = — =
PlE)=F <<n s el > 2a> o (( s, [T ) > 2b>
=P ( max |Si — ku| > nsa) +P ( max |1y, — kv| > n5b>

1<k<n 1<k<n

where ¢, = (¢/2a)/1 =% and ¢, = (¢/2b)"/(1=%), Therefore
> nTP(E)) < oo, (5.8)
n=1

by Theorem 1.8 (¢”) applied to the sequences (X;);>1 and (| X;|)i>1-
Next we note that

S atPEN) <Y 0P (|Tn — | > fn) < o0, (5.9)
n=1 n=1 2
by Theorem 1.8 (¢”) applied to the random variables | X;|.
Gathering (5.8) and (5.9) gives (5.7), establishing (c). O

Proof of (¢) = (a): As already observed above,

I~ Gt = pl o =

Sn ‘
S
n

Then (c) implies that for every € > 0,

Zn‘lP(|5n —nv| > ne) < 0o,
n=1

whence (a) follows by the part (¢’') = (a) in Theorem 1.8. O
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