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Abstract. We obtain confidence intervals for the location of the percolation phase
transition in Häggström’s divide and color model on the square lattice Z2 and the
hexagonal lattice H. The resulting probabilistic bounds are much tighter than the
best deterministic bounds up to date; they give a clear picture of the behavior of
the DaC models on Z2 and H and enable a comparison with the triangular lattice
T. In particular, our numerical results suggest similarities between DaC model
on these three lattices that are in line with universality considerations, but with a
remarkable difference: while the critical value function rc(p) is known to be constant
in the parameter p for p < pc on T and appears to be linear on Z2, it is almost
certainly non-linear on H.

1. Introduction

Our object of study in this paper is the critical value function in Häggström’s
divide and color (DaC) model, see Häggström (2001). This is a stochastic model
that was originally motivated by physical considerations (see Häggström (2001);
Chayes et al. (2007)), but it has since then been used for biological modeling in
Gravner et al. (2007) as well and inspired several generalizations (see, e.g., Hsu
and Han (2008); Bálint et al. (2009); Graham and Grimmett (2011)). Our results
concerning the location of the phase transition give a clear picture of the behavior
of the DaC model on two important lattices and lead to intriguing open questions.
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Our analysis will be based on the same principles as Riordan and Walters (2007),
where confidence intervals were obtained for the critical value of Bernoulli bond and
site percolation on the 11 Archimedes lattices by a modification of the approach of
Balister et al. (2005). The main idea in Balister et al. (2005); Riordan and Walters
(2007) is truly multidisciplinary and attractive, namely to reduce a problem which
has its roots in theoretical physics by deep mathematical theorems to a situation
in which a form of statistical testing by numerical methods becomes possible. Our
other main goal with this paper is to demonstrate the strength of this strategy
by applying it to a system which is essentially different from those in its previous
applications. In particular, in the DaC model, as opposed to the short-range de-
pendencies in Balister et al. (2005) and the i.i.d. situation in Riordan and Walters
(2007), one has to deal with correlations between sites at arbitrary distances from
each other. We believe that the method of Balister et al. (2005); Riordan and
Walters (2007) has a high potential to be used in a number of further models (see
e.g. Deijfen et al. (2011) where a very similar approach is followed) and deserves
higher publicity than it enjoys at the moment.

Given a graph G with vertex set V and edge set E and parameters p, r ∈ [0, 1],
the DaC model on G is defined in two steps: first, Bernoulli bond percolation with
density p is performed on G, and then the resulting open clusters are independently
colored black (with probability r) or white (a more detailed definition will follow
in the next paragraph). Note that this definition resembles the so-called random-
cluster (or FK) representation of the ferromagnetic Ising model, with two important
differences: a product measure is used in the DaC model in the first step instead of
a random-cluster measure with cluster weight 2 and the second step is more general
here in that all r ∈ [0, 1] are considered instead of only 1/2.

Now we set the terminology that is used throughout, starting with an alternative
(equivalent) definition of the DaC model which goes as follows. First, an edge
configuration η ∈ {0, 1}E is drawn according to the product measure νEp where νp
is the probability measure on {0, 1} with νp({1}) = 1− νp({0}) = p. In the second
step, a site configuration ξ ∈ {0, 1}V is chosen by independently assigning state 1
with probability r or otherwise 0 to each vertex, conditioning on the event that
there exists no edge e = 〈v, w〉 ∈ E such that η(e) = 1 and ξ(v) 6= ξ(w). We denote
the probability measure on {0, 1}V × {0, 1}E associated to this procedure by PG

p,r.
An edge e (a vertex v) is said to be open or closed (black or white) if and only if
it is in state 1 or 0, respectively. We will call the maximal subsets of V connected
by open edges bond clusters, and the maximal monochromatic connected (via the
edge set of E, not only the open edges!) subsets of V black or white clusters. We
write Cv(η) for the bond cluster of a vertex v in the edge configuration η and use
ΩS to denote {0, 1}S for arbitrary sets S.

Note that the measure PG
p,r is concentrated on the set of pairs (η, ξ) such that for

all edges e = 〈v, w〉 ∈ E, ξ(v) = ξ(w) whenever η(e) = 1. When this compatibility
condition is satisfied, we write η ∼ ξ.

For infinite graphs G, there are two types of phase transitions present in the
DaC model in terms of the appearance of infinite 1-clusters; first, there exists
pc = pGc ∈ [0, 1] such that PG

p,r(there exists an infinite bond cluster) is 0 for p < pc
and 1 for p > pc. Second, for each fixed p, there exists rc = rGc (p) such that
PG
p,r(there exists an infinite black cluster) is 0 for r < rc and positive for r > rc.

For more on the different character of these two types of phase transitions, see Bálint
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et al. (2013). A key feature of the DaC model (as noted in Häggström (2001)) is
that while it is close in spirit to the Ising model, its simulation is straightforward
from the definition and does not require sophisticated MCMC algorithms. In this
paper, we will exploit this feature in order to learn about the values and various
features of the critical value function rGc (p).

Monotonicity and continuity properties of the function rGc (p) for general graphs
have been studied in Bálint et al. (2013). Here we will focus on two specific graphs,
namely the square lattice Z2 and the hexagonal lattice H (see Figure 1.1), for which

pZ
2

c = 1/2 and pHc = 1 − 2 sin(π/18) ≈ 0.6527 (see Kesten (1982)). Our reason for
this restriction is twofold: first, these two are the most commonly considered planar
lattices (apart from the triangular lattice T, for which the critical value function
rTc has been completely characterized in Bálint et al. (2009)), whence results about
these cases are of the greatest interest. On the other hand, the DaC model on these
lattices enjoys a form of duality (described in Section 2.2) which is a key ingredient
for the analysis we perform in this paper.

Figure 1.1. A finite sublattice of the square lattice Z2 (above
left) and the hexagonal lattice H (below left) and their respective
matching lattices (right).

Fixing L ∈ {Z2,H}, it is trivial that rLc (p) = 0 for all p > pLc , and it easily follows
from classical results on Bernoulli bond percolation that rLc (p

L
c ) = 1 (see Bálint

et al. (2009) for the case L = Z2). However, there are only very loose theoretical
bounds for the critical value when p < pLc : the duality relation (2.2) in Section 2.2
below and renormalization arguments as in the proof of Theorem 2.6 in Häggström
(2001) give that 1/2 ≤ rLc (p) < 1 for all such p, and Proposition 1 in Bálint et al.
(2013) gives just a slight improvement of these bounds for very small values of p.
Therefore, our ultimate goal here is to get good estimates for rLc (p) with p < pLc .

We end this section with an outline of the paper. Section 2 contains a crucial
reduction of the infinite-volume models to a finite situation by a criterion that is



670 András Bálint, Vincent Beffara and Vincent Tassion

stated in terms of a finite sublattice but nonetheless implies the existence of an
infinite cluster. This method, often called static renormalization in percolation, is
a particular instance of coarse graining. We then describe in Section 3 how the
occurrence of this finite size criterion can be tested in an efficient way and obtain
confidence intervals for rLc (p) as functions of uniform random variables (Proposition
3.1). Finally, we implement this method using a (pseudo)random number generator,
and present and discuss the numerical results in Section 4.

2. Finite size criteria

2.1. An upper bound for rc(p). In this section, we will show how to obtain an upper
bound for rLc (p) by deducing a finite size criterion for percolation in the DaC model
(Proposition 2.3). This criterion, which is a quantitative form of Lemma 2.10 in
Bálint et al. (2009), will play a key role in Sections 3–4. To enhance readability,
we will henceforth focus on the case L = Z2 and mention L = H only when the

analogy is not straightforward. Accordingly, we will write Pp,r and rc(p) for PZ2

p,r

and rZ
2

c (p) respectively, and denote the edge set of Z2 by E2. Let us first recall a
classical result (Lemma 2.2 below) concerning 1-dependent percolation.

Definition 2.1. Given a graph G = (V,E), a probability measure ν on {0, 1}E is
called 1-dependent if, whenever S ⊂ E and T ⊂ E are vertex-disjoint edge sets, the
state of edges in S is independent of that of edges in T under ν.

It follows from standard arguments or from a general theorem of Liggett, Schon-
mann and Stacey (Liggett et al. (1997)) that if each edge is open with a sufficiently
high probability in a 1-dependent bond percolation on Z2, then the origin is with
positive probability in an infinite bond cluster. Currently the best bound is given
by Balister, Bollobás and Walters:

Lemma 2.2. (Balister et al. (2005)) Let ν be any 1-dependent bond percolation
measure on Z2 in which each edge is open with probability at least 0.8639. Then the
probability under ν that the origin lies in an infinite bond cluster is positive.

Now, suppose that the lattice Z2 is embedded in the plane the natural way (so
that v = (i, j) ∈ Z2 has coordinates i and j). We consider the following partition
of R2 (see Figure 2.2): given parameters s ∈ N = {1, 2, . . .} and ` ∈ N, we take
k = s+ 2` and define, for all i, j ∈ Z, the s× s squares

Si,j = [ik + `, ik + `+ s]× [jk + `, jk + `+ s],

the s× 2` rectangles

Hi,j = [ik + `, ik + `+ s]× [jk − `, jk + `],

the 2`× s rectangles

Vi,j = [ik − `, ik + `]× [jk + `, jk + `+ s],

and what remains are the 2`× 2` squares [ik − `, ik + `]× [jk − `, jk + `].
We will couple Pp,r to a 1-dependent bond percolation measure. Define f :

ΩE2 × ΩZ2 → ΩE2 , as follows. To each horizontal edge e = 〈(i, j), (i+ 1, j)〉 ∈ E2,
we associate a (2` + 2s) × s rectangle Re = Si,j ∪ Vi+1,j ∪ Si+1,j and the event
Ee that there exists a left-right black crossing in Re (i.e., a connected path of
vertices all of which are black which links the left side of Re to its right side) and
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Figure 2.2. A partition of R2.
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Figure 2.3. A black component in Re witnesses the occurrence of Ee.

an up-down black crossing in Si,j (see Figure 2.3). Here and below, a vertex in the
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corner of a rectangle is understood to link the corresponding sides in itself. For
each vertical edge e = 〈(i, j), (i, j + 1)〉 ∈ E2, we define the s× (2`+ 2s) rectangle
Re = Si,j ∪Hi,j+1 ∪ Si,j+1 and the event Ee = {up-down black crossing in Re and
left-right black crossing in Si,j} ⊂ ΩE2×ΩZ2 . For each edge e ∈ E2, we also consider
the event Fe = {there exists a bond cluster which contains a vertex in Re and a

vertex at graph distance at least ` from Re} ⊂ ΩE2 ×ΩZ2 , and define Ẽe = Ee∩F c
e .

Now for each configuration ω = (η, ξ) ∈ ΩE2 × ΩZ2 , we determine a corresponding
bond configuration f(ω) = γ ∈ ΩE2 as follows: for all e ∈ E2, we declare e open if

and only if Ẽe holds (i.e., we define γ(e) = 1 if and only if ω ∈ Ẽe). Finally, we
define the probability measure ν = f∗Pp,r on ΩE2 .

It is not difficult to check that ν is a 1-dependent bond percolation measure.
Indeed, if e and e′ are two vertex-disjoint edges in E2, then the corresponding
rectangles Re and Re′ are at graph distance at least 2` from one another, hence F c

e

and F c
e′ are independent. Given that Fe and Fe′ do not hold, the bond clusters in

Re and Re′ are colored independently of each other. Keeping this in mind, a short
computation proves the independence of Ẽe and Ẽe′ under Pp,r, which implies the
1-dependence of ν.

Note also that the function f was chosen in such a way that if γ = f(ω) ∈ ΩE2

contains an infinite open bond cluster, then ω contains an infinite black clus-
ter. Such configurations have zero Pp,r-measure for r < rc(p). Finally, note that

Pp,r(Ẽe) is the same for all edges e ∈ E2. These observations combined with Lemma
2.2 imply that, denoting 〈(0, 0), (0, 1)〉 ∈ E2 by e1, we have the following result.

Proposition 2.3. Given any values of the parameters s, ` ∈ N, if p and r are such
that

Pp,r(Ẽe1) ≥ 0.8639, (2.1)

then rc(p) ≤ r.

Note that Proposition 2.3 is indeed a finite size criterion since the event Ẽe1

depends on the state of a finite number of edges and the color of a finite number
of vertices. A similar criterion, which will imply a lower bound for rc(p), will be
given in Section 2.3.

2.2. Duality. A concept that is essential in understanding site percolation models
on L ∈ {Z2,H} is that of the matching lattice L∗ which is a graph with the same
vertex set, V, as L but more edges: the edge set E∗ of L∗ consists of all the edges
in E plus the diagonals of all the faces of L (see Figure 1.1). The finiteness of a
monochromatic cluster in L can be rephrased in terms of circuits of the opposite
color in L∗ and vice versa; see Kesten (1982) for further details. We say that B ⊂ V

is a black ∗-component in a color configuration ξ ∈ ΩV if it is a black component
in terms of the lattice L∗ (i.e., ξ(v) = 1 for all v ∈ B and B is connected via E∗).

Accordingly, there is yet another phase transition in the DaC model on L at
the point where an infinite black ∗-component appears; formally, for each fixed
p ∈ [0, 1], one can define r∗c (p,L) as the value such that PL

p,r(there exists an infinite
black ∗-component) is 0 for r < r∗c (p,L) and positive for r > r∗c (p,L). It was proved
in Bálint et al. (2009) that there is an intimate connection between all the critical
values in the DaC model that we mentioned so far; namely, for all p < pLc ,

rLc (p) + r∗c (p,L) = 1. (2.2)
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Actually, this relation was proved only for L = Z2, but essentially the same proof
gives the result for L = H as well. The importance of this result here is that due
to the duality relation (2.2), a lower bound for rLc (p) may be obtained by giving an
upper bound for r∗c (p,L).

2.3. A lower bound for rc(p). As in Section 2.1, we will focus on L = Z2 since
the case L = H is analogous; we denote r∗c (p,Z2) here and in the next section by
r∗c (p). Obviously rc(p) itself is an upper bound for r∗c (p). However, a better bound
may be obtained by a slight modification of the approach given in Section 2.1. For
each e ∈ E2, let Re and Fe be as in Section 2.1, define E∗

e by substituting black

∗-component for black component in the definition of Ee, and take Ẽ∗
e = E∗

e ∩ F c
e .

Then, by similar arguments as those before Proposition 2.3 and using (2.2), we get
the following:

Proposition 2.4. Given any values of the parameters s, ` ∈ N, if p and r are such
that

Pp,r(Ẽ
∗
e1) ≥ 0.8639, (2.3)

then r∗c (p) ≤ r, and hence rc(p) ≥ 1− r.

3. The confidence interval

The main idea in Balister et al. (2005); Riordan and Walters (2007) is to reduce
a stochastic model to a new model in finite volume by criteria similar in spirit to
those in Section 2 and do repeated (computer) simulations of the new model to
test whether the corresponding criteria hold. The point is that after a sufficiently
large number of simulations, one can see with an arbitrarily high level of confidence
whether or not the probability of an event exceeds a certain threshold. By the
special nature of the events in question, statistical inferences regarding the original,
infinite-volume model may be made from the simulation results.

To be able to follow this strategy, we will have to refine Propositions 2.3–2.4 as
those are concerned with the state of finitely many objects, but still in the infinite-
volume model. The adjusted criteria that truly are of finite size are given below, see
(3.1) and (3.2). Finding an efficient way of performing the simulation step involves
further obstacles. The main problem is that it would be unfeasible to run a large
number of separate simulations for different values of r to find, for a fixed p, the
lowest value of r such that both (3.1) and (3.2) seem sufficiently likely to hold.
We will tackle this difficulty with a stochastic coupling, which is the simultaneous
construction of several stochastic models on the same probability space. Such a
construction will enable us to deal with all values of r ∈ [0, 1] at the same time and
is very related to the model of invasion percolation.

After the description of the coupling, a “theoretical” confidence interval (meaning
a confidence interval as a function of i.i.d. random variables) for rc(p) is given in
Proposition 3.1. The numerical confidence intervals obtained by this method using
computer simulations will be presented in Section 4. Note also that the inequalities
(3.1) and (3.2) implicitly involve the parameters s and ` whose choices may influence
the width of the confidence intervals obtained; this issue is addressed before the
proof of Proposition 3.1. Our methods in this section work for a general p ∈ [0, pLc );
we note that substantial simplifications are possible in the case p = 0 (i.e., in the
absence of correlations), see Riordan and Walters (2007).
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Fix p ∈ [0, 1/2) and s, ` ∈ N, and define the rectangle R̃e1 = [0, 2s+4`]×[0, s+2`].

Note that for a configuration ω ∈ ΩE2 × ΩZ2 , one can decide whether ω ∈ Ẽe1

(respectively ω ∈ Ẽ∗
e1) holds by checking the restriction of ω to R̃e1 . In fact, defining

G̃ = (Ṽ, Ẽ) as the minimal subgraph of Z2 which contains R̃e1 and considering the

DaC model on G̃, it is easy to see that for any r ∈ [0, 1], PG̃
p,r(Ẽe1) = Pp,r(Ẽe1) and

PG̃
p,r(Ẽ

∗
e1) = Pp,r(Ẽ

∗
e1). (These equalities hold despite the fact that PG̃

p,r is not the

same distribution as the projection of Pp,r on G̃.) Therefore, by Propositions 2.3
and 2.4,

PG̃
p,r(Ẽe1) ≥ 0.8639 (3.1)

would imply that rc(p) ≤ r, and

PG̃
p,r(Ẽ

∗
e1) ≥ 0.8639 (3.2)

would imply that rc(p) ≥ 1 − r. Below we shall describe a method which tests
whether (3.1) or (3.2) holds, simultaneously for all values of r ∈ [0, 1].

We construct the DaC model on G̃ with parameters p and an arbitrary r ∈ [0, 1]
as follows. Fix an arbitrary deterministic enumeration v1, v2, . . . , v|Ṽ| of the vertex

set Ṽ, and for V ⊂ Ṽ, let min(V ) denote the vertex in V of the smallest index. For
all r ∈ [0, 1], we define the function

Ψr : ΩẼ × [0, 1]Ṽ → ΩẼ × ΩṼ,
(η, U) 7→ (η, ξr),

where

ξr(v) =

{
1 if U(min(Cv(η))) < r,
0 if U(min(Cv(η))) ≥ r.

Now, if U denotes uniform distribution on the interval [0, 1] and (η, U) ∈ ΩẼ×[0, 1]Ṽ

is a random configuration with distribution νẼp ⊗ UṼ, then it is not difficult to see

that (η, ξr) = Ψr((η, U)) is a random configuration with distribution PG̃
p,r.

We are interested in the following question: for what values of r does (η, ξr) ∈ Ẽe1

(respectively, (η, ξr) ∈ Ẽ∗
e1) hold? The first step is to look at the edges in η in

R̃e1 \Re1 to see if there is a bond cluster which connects Re1 and the boundary of

R̃e1 . If no such connection is found, it is easy to see that there exists a threshold

value r1 = r1(η, U) ∈ [0, 1] such that for all r ∈ [0, r1), (η, ξr) /∈ Ẽe1 , and for all

r ∈ (r1, 1], we have that (η, ξr) ∈ Ẽe1 . Indeed, the color configurations are coupled

in such a way that if r′ ≥ r and (η, ξr) ∈ Ẽe1 then (η, ξr′) ∈ Ẽe1 , since all vertices
that are black in ξr are black in ξr′ as well. A similar argument shows that in
case of η /∈ Fe1 , there exists r∗1 = r∗1(η, U) ∈ [0, 1] such that (η, ξr) /∈ Ẽ∗

e1 for all

r ∈ [0, r∗1), whereas (η, ξr) ∈ Ẽ∗
e1 for all r ∈ (r∗1 , 1]. Otherwise, i.e., if there is a

connection in η between Re1 and the boundary of R̃e1 , we know that neither of Ẽe1

or Ẽ∗
e1 has occurred. Hence, in that case, we define r1 = r∗1 = 1, which preserves

the above “threshold value” properties as (r1, 1] = (r∗1 , 1] = ∅.
Now, if we want a confidence interval with confidence level 1 − ε where ε > 0

is fixed, we choose positive integers m and n in such a way that the probability
of having at least m successes among n Bernoulli experiments with success proba-
bility 0.8639 each is smaller than (but close to) ε/2. For instance, for a 99.9999%
confidence interval, we can choose n = 400 and m = 373. By repeating the above
experiment n times, each time with random variables that are independent of all
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the previously used ones, we obtain threshold values r1, r2, . . . , rn and r∗1 , r
∗
2 , . . . , r

∗
n.

Then we sort them so that r̃1 ≤ r̃2 ≤ ... ≤ r̃n, and r̃∗1 ≤ r̃∗2 ≤ ... ≤ r̃∗n.

Proposition 3.1. Each of the inequalities rc(p) ≤ r̃m and 1 − r̃∗m ≤ rc(p) occurs
with probability at least 1− ε/2, hence [1− r̃∗m, r̃m] is a confidence interval for rc(p)
of confidence level 1− ε.

Before turning to the proof, we remark that the above confidence interval does
not necessarily provide meaningful information. In fact, with very small (< ε)
probability, r̃m < 1 − r̃∗m can occur. Otherwise, for unreasonable choices of s and
`, taking a too small ` in particular, it could happen that there is a connection in
the bond configuration between Re1 and the boundary of R̃e1 in at least n−m+1
experiments out of the n, in which case [1 − r̃∗m, r̃m] = [0, 1] indeed contains rc(p)
but gives no new information.

However, the real difficulty is that although a confidence interval with an arbi-
trarily high confidence level may be obtained with the above algorithm, we do not
know in advance how wide the confidence interval is. The width of the interval
depends on s and `, and it is a difficult problem to find good parameter values. A
way to make the confidence interval narrower is to decrease the value of m, but
that comes at the price of having a lower confidence level.

The choices we made for the parameters s and ` in our simulations, together
with some intuitive reasoning advocating these choices, are given in the Appendix.

Proof of Proposition 3.1. Let S be the probability measure on the sample space
[0, 1]2n which corresponds to the above experiment, where a realization
(r̃1, r̃

∗
1 , r̃2, r̃

∗
2 , . . . , r̃n, r̃

∗
n) contains the (already ordered) threshold values. Let B0.8639

denote the binomial distribution with parameters n and 0.8639, and Ba(r) the bi-

nomial distribution with parameters n and a(r) = PG̃
p,r(Ẽe1).

For r ∈ [0, 1], let Nr denote the number of trials among the n such that Ẽe1

occurs at level r. Note that Nr has distribution Ba(r). Since a(r) ≥ 0.8639 implies
r ≥ rc(p) (see inequality (3.1)), we have that r < rc(p) implies a(r) < 0.8639.
Therefore, for all r < rc(p), Ba(r) is stochastically dominated by B0.8639. This
implies that for all r < rc(p), we have that

S(r̃m < r) ≤ S(Nr ≥ m)

= Ba(r)({m,m+ 1, . . . , n})
≤ B0.8639({m,m+ 1, . . . , n})
≤ ε/2,

by the definition of m and n.
Hence, for all δ > 0, we have that S(r̃m < rc(p)− δ) ≤ ε/2, which easily implies

that S(r̃m < rc(p)) ≤ ε/2. We also have S(r̃∗m < r∗c (p)) ≤ ε/2 by a completely
analogous computation, which implies by equation (2.2) that S(1− r̃∗m > rc(p)) ≤
ε/2. Therefore,

S(1− r̃∗m ≤ rc(p) ≤ r̃m) ≥ 1− ε,

which is exactly what we wanted to prove. �
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4. Results of the simulations

We implemented the method described in the previous section in a computer
program, and the results for parameter values ε = 10−6, n = 400, m = 373 are given
below.1 We stress again that although the method in Section 3 that determines
a confidence interval for rLc (p) is mathematically rigorous, the results below are
obtained by using the random number generator (Mersenne Twister, available at
http://www.math.sci.hiroshima-u.ac.jp/), therefore their correctness depends
on “how random” the generated numbers are. The simulations ran on the computers
of the ENS-Lyon, and yielded the confidence intervals represented in Figure 4.4.
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Figure 4.4. Simulation results for different values of p < pLc (left:
on the square lattice; right: on the hexagonal lattice). The dashed
line was obtained via a non-rigorous correction method.

Having looked at Figure 4.4, we conjecture the following concerning the behavior
of rLc (p) as a function of p:

Conjecture 4.1. For L ∈ {Z2,H}, in the interval p ∈ [0, pLc ), r
L
c (p) is a strictly

decreasing function of p and

lim
p→pL

c −
rLc (p) =

1

2
.

Since it is rigorously known that rLc (0) > 1/2 and rLc (p) ≥ 1/2 for all p ∈ [0, pLc ),
Conjecture 4.1 would imply that rLc (p) > 1/2 for all p < pLc . This suggests that
the DaC model on Z2 or H is qualitatively different from the DaC model on the
triangular lattice, where the critical value of r is 1/2 for all subcritical p (see
Theorem 1.6 in Bálint et al. (2009)). However, lim rLc (p) = 1/2 would mean that
the difference disappears as p converges to pLc .

The fact that the difference should disappear was conjectured by one of the
authors (VB) and Federico Camia, based on the following heuristic reasoning. Near
p = pLc , the structure of the random graph determined by the bond configuration
(whose vertices correspond to the bond clusters, and there is an edge between
two vertices if the corresponding bond clusters are adjacent in L) is given by the
geometry of “near-critical percolation clusters,” which is expected to be universal
for 2-dimensional planar graphs. This suggests that the critical r for p close to its

1These results — without the description of the method — have been included in Bálint et al.

(2013) as well.

http://www.math.sci.hiroshima-u.ac.jp/
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critical value should not depend much on the original underlying lattice, and we
expect the convergence of rLc (p) to 1/2 to be universal and hold in the case of any
2-dimensional lattice.

There is an additional, strange feature appearing in the case of the square lattice:
rc(p) seems to be close to being an affine function of p on the interval [0, 1/2).
This is not at all the same on the hexagonal lattice, and we have not found any
interpretation of this observation, or of the special role Z2 seems to play here.

Open question 4.2. Is rZ
2

c (p) an affine function of p for p < 1/2?
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Appendix A.

The algorithm in Section 3 is described for general values of s and `, and the
concrete values of these parameters will not affect the correctness of the simulation
results. However, a reasonable choice is important for the tightness of the bounds
obtained and the efficiency of the algorithm, i.e., the running time of the program.
The heuristic arguments given here are somewhat arbitrary, and it is quite possible
that there exist other choices that would give at least as good results as ours.

Applying the method described in Section 3 requires to simulate a realization of
the DaC model on the graph G̃, which is a 2L×L rectangular subset of the square
lattice where

L = s+ 2`. (A.1)

We will keep this value fixed while we let ` and s depend on p. Since we want to
estimate the critical value for a phase transition, it is natural to take the largest L
possible. After having performed various trials of our program, we chose L = 8000,
which was estimated to be the largest value giving a reasonable time of computation.

Having fixed the size of the graph, we want to choose the parameters so that
the probability of Ẽe1 is as high as possible. We need to find a balanced value
for ` as small values favor Ee1 , but a large ` might be required to prevent Fe1

from happening. The exponential decay theorem in Aizenman and Barsky (1987);
Menshikov (1986) for subcritical Bernoulli bond percolation ensures the existence of
an appropriate ` of moderate size. In our context, we decided that a good ` = `(p)
would be one that ensures

PG̃
p,r (Fe1) ≈ 0.001. (A.2)

We did simulations in order to find an ` such that (A.2) holds, then chose s ac-
cording to equation (A.1). The values we used in our simulations are summed up
in Table A.1.
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Z2 H
p s ` s `
0 7998 1 7998 1

0.025 7986 7 7986 7
0.05 7986 8 7984 8
0.075 7982 9 7982 9
0.1 7980 10 7980 10
0.125 7978 11 7978 11
0.15 7976 12 7976 12
0.175 7974 13 7974 13
0.2 7970 15 7970 15
0.225 7964 18 7968 16
0.25 7962 19 7964 18
0.275 7956 22 7962 19
0.3 7948 26 7954 23
0.325 7938 31 7952 24
0.35 7926 37 7946 27
0.375 7904 48 7940 30
0.4 7876 62 7932 34
0.425 7822 89 7924 38
0.45 7704 148 7908 46
0.475 7260 370 7896 52
0.5 7876 62
0.525 7844 78
0.55 7790 105
0.575 7710 145
0.6 7538 231
0.625 7002 499
Table A.1. Parameters chosen
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