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Abstract. We consider a one-dimensional simple symmetric exclusion process in
equilibrium as a dynamic random environment for a nearest-neighbor random walk
that on occupied/vacant sites has two different local drifts to the right. We obtain
a LLN, a functional CLT and large deviation bounds for the random walk under
the annealed measure by means of a renewal argument. We also obtain an Einstein
relation under a suitable perturbation. A brief discussion on the topic of random
walks in slowly mixing dynamic random environments is presented.

1. Introduction: model, results and motivation

1.1. The model. Let

ξ = (ξt)t≥0 with ξt =
(
ξt(x)

)
x∈Z

(1.1)

be a càdlàg Markov process with state space Ω = {0, 1}Z. We say that at time t the
site x is occupied by a particle if ξt(x) = 1 and is vacant or, alternatively, occupied
by a hole, if ξt(x) = 0. For η ∈ Ω, we write P η to denote the law of ξ starting from
ξ0 = η, and denote by

Pµ(·) =
∫

Ω

P η(·)µ(dη) (1.2)

the law of ξ when ξ0 is drawn from a probability measure µ on Ω.
Having fixed a realization of ξ, let

X = (Xt)t≥0 (1.3)

be the Random Walk (RW) that starts from 0 and has local transition rates

x → x+ 1 at rate α1 ξt(x) + α0 [1− ξt(x)],

x → x− 1 at rate β1 ξt(x) + β0 [1− ξt(x)],
(1.4)
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where

α0, α1, β0, β1 ∈ (0,∞), (1.5)

i.e., on occupied (resp. vacant) sites the random walk jumps to the right at rate

α1 and to the left at rate β1 (resp. α0 and β0). We write P ξ
X to denote the law of

X when ξ is fixed and, for an initial measure µ,

Pµ(·) =
∫

P ξ
X(·)Pµ(dξ) (1.6)

to denote the law of X averaged over ξ. We refer to P ξ
X as the quenched law and

to Pµ as the annealed law.
We are interested in studying the RW X when ξ is a one-dimensional Simple

Symmetric Exclusion Process (SSEP), i.e., an Interacting Particle System (IPS)
(see Liggett (2005)) whose generator L acts on a real cylinder function f as

(Lf)(η) =
∑

x,y∈Z

x∼y

[f(ηxy)− f(η)] , η ∈ Ω, (1.7)

where the sum runs over unordered pairs of neighboring sites in Z, and ηxy is the
configuration obtained from η by interchanging the states at sites x and y. For any
ρ ∈ (0, 1), the Bernoulli product measure with density ρ, which we denote by νρ, is
an ergodic measure for the SSEP (Liggett (2005), Theorem VIII.1.44).

We will assume that

α0 ∧ α1 − β0 ∨ β1 > 1. (1.8)

Condition (1.8) implies that the local drifts on occupied and vacant sites, α1 − β1

and α0−β0 respectively, are both bigger than 1. Thus the RW is not only transient,
but travels faster than local information can spread in the SSEP. This is a strong
property which is key to our argument; it allows us, roughly speaking, to overcome
the slow mixing in time of the SSEP with the good mixing in space of νρ, giving
rise to a regenerative structure for the random walk.

1.2. Results. In the three theorems below we fix ρ ∈ [0, 1] and assume (1.5), (1.8).

Theorem 1.1. (Law of large numbers)
There exists v ≥ α0 ∧ α1 − β0 ∨ β1 > 1 such that

lim
t→∞

Xt

t
= v Pνρ-a.s. and in Lp ∀ p ≥ 1. (1.9)

Theorem 1.2. (Annealed large deviations)
For any ǫ > 0,

lim sup
t→∞

t−1 logPνρ(|Xt − tv| ≥ tǫ) < 0. (1.10)

Theorem 1.3. (Annealed functional central limit theorem)
There exists σ ∈ (0,∞) such that, under Pνρ ,

(
Xnt − ntv√

n

)

t≥0

⇒ σB (1.11)

where B is a standard Brownian motion and “⇒” denotes weak convergence in
Skorohod space.
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For the next result, we interpret the model of Section 1.1 as a perturbation of a
homogeneous RW. We regard the exclusion process as an oscillating random field
which interacts weakly with the RW, affecting its asymptotic speed. The Einstein
relation then says that the rate of change of the speed when the interaction is very
weak is given by the diffusion coefficient of the unperturbed walk. This is a form
of the fluctuation-dissipation theorem from statistical physics, which concerns the
response of thermodynamical systems to small external perturbations, connecting
it with spontaneous fluctuations of the system. As references we mention Dembo
and Deuschel (2010); Gantert et al. (2012); Komorowski and Olla (2005).

Theorem 1.4. (Einstein Relation)
Fix α, β > 0 with α − β > 1. Let λ ∈ (0,∞) be the perturbation strength, and fix
interaction constants F0, F1 ∈ R with F0 +F1 = 1. Let the perturbed rates be given
by:

α0 = α exp

{
F0

λ

1− ρ
+ o(λ)

}
, β0 = β exp

{
−F0

λ

1− ρ
+ o(λ)

}
,

α1 = α exp

{
F1

λ

ρ
+ o(λ)

}
, β1 = β exp

{
−F1

λ

ρ
+ o(λ)

}
.

(1.12)

When λ is small enough, (1.8) is satisfied. For such λ, let v(λ) be the speed as in
(1.9). Then

lim
λ↓0

v(λ) − v(0)

λ
= α+ β. (1.13)

The rest of the paper is organized as follows. In Section 1.3, we present a brief
introduction to RW in static and dynamic Random Environment (RE), and discuss
slowly mixing dynamic REs. In Section 2, we construct a particular version of our
model. Section 3 is the core of the paper; there we develop a regeneration scheme
that is used in Section 4 to prove Theorems 1.1–1.4.

1.3. Motivation. RandomWalks in Random Environments (RWRE) on Z
d are RWs

whose transition probabilities or rates depend on a random field (static case) or on
a random process (dynamic case) which is called a random environment. They
model the motion of a particle in an inhomogeneous medium.

RWs in static REs have been an intensive research area since the 1970’s (see
e.g. Solomon (1975)). One-dimensional models are well understood. In particu-
lar, recurrence vs. transience criteria, LLNs and CLTs have been derived, as well
as quenched and annealed LDPs. In higher dimensions the picture is much less
complete, but several results are available for RWs that are transient in some di-
rection. In particular, LLNs and CLTs for i.i.d. REs (Sznitman and Zerner (1999);
Sznitman (2000, 2001); Rassoul-Agha and Seppäläinen (2009)) and for uniformly
(fast) mixing REs (Comets and Zeitouni (2004, 2005); Rassoul-Agha (2003)) have
been obtained under ballisticity conditions. See Bolthausen and Sznitman (2002);
Zeitouni (2004, 2006) for an overview.

By considering time as an additional dimension, one can view RWs in dynamic
REs in dimension d as RWs in static REs in dimension d+1 which are transient in
the time direction (see e.g. Avena et al. (2011)). Thus there are results analogous
to the static, transient case. In particular, LLNs and CLTs have been obtained
when the dynamic RE has either no correlations in space and/or time, or has
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uniform and fast mixing, where ‘fast’ means either exponential or (more recently)
polynomial with a high enough degree. A few references are: Avena et al. (2011);
Bandyopadhyay and Zeitouni (2006); Bérard (2004); Boldrighini et al. (2004, 2009);
Bricmont and Kupiainen (2009); den Hollander et al. (2013b); Dolgopyat et al.
(2008); Joseph and Rassoul-Agha (2011); Redig and Völlering (2013). Further
references can be found in Avena (2010); Avena et al. (2010).

Very little is known for dynamics with slow and/or non-uniform mixing (e.g.
exclusion, supercritical contact, and zero-range processes), apart from recent re-
sults for specific cases (den Hollander and dos Santos (2013), den Hollander et al.
(2013a)). A special interest in studying RW in slowly mixing dynamic REs comes
from the static, one-dimensional case, where unusual asymptotic behavior can be
observed. More specifically, there are regimes exhibiting transience with zero speed
(Solomon (1975)), non-diffusivity (Kesten et al. (1975); Sinăı (1982)) and subexpo-
nential decay of the probability of travelling at speeds slower than typical (Comets
et al. (2000); Greven and den Hollander (1994)). Such phenomena do not occur
in dynamic RE with fast mixing (as discussed in the previous paragraph), but one
would expect them to persist when the dynamics are slow enough. Indeed, for
a RW in the SSEP with symmetric drifts on holes/particles (i.e., dropping (1.8)
and taking α0 = β1, β0 = α1), it was shown in Avena et al. (2010) that the cost
for travelling with zero speed is subexponential; furthermore, simulation results
(Avena and Thomann (2012)) suggest the existence of non-diffusive regimes. Thus
the SSEP, being a natural example where mixing is both slow and non-uniform due
to particle conservation, is an interesting and challenging choice of dynamic RE.

In the present paper, we study the RW in the SSEP under the additional as-
sumption of a strong spatial drift (1.8), which significantly facilitates the analysis.
We believe that the regeneration strategy developed in Section 3 could be adapted
to other dynamic REs (for instance, asymmetric exclusion processes or a Poissonian
field of independent RWs) under similar drift assumptions.

2. Construction of the model

In this section we construct particular versions of the random walk and of the
exclusion process, and introduce the notion of marked agents. The resulting Lemma
2.1 plays a key role throughout the paper.

2.1. Coupling with the minimal walker. We will construct the RW X defined in
(1.3) from four independent Poisson processes and the RE. This is valid in any
dynamic RE given by a two-state IPS.

Let the following set of Poissonian clocks be given, each independent of all the
other variables:

N+ = (N+
t )t≥0 with rate α0 ∧ α1,

N− = (N−
t )t≥0 with rate β0 ∧ β1,

N̂+ = (N̂+
t )t≥0 with rate α0 ∨ α1 − α0 ∧ α1,

N̂− = (N̂−
t )t≥0 with rate β0 ∨ β1 − β0 ∧ β1.

(2.1)

Now define X by the following rules:

(1) X jumps only when one of the Poisson clocks ring;
(2) When N+ rings, X jumps to the right; when N− rings, X jumps to the

left;
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(3) When N̂+ rings, X jumps to the right if the state j at its position is such

that αj = α0 ∨ α1. When N̂− rings, X jumps to the left if βj = β0 ∨ β1.
Otherwise, X stays still.

In this construction,X is a function of (N±, N̂±, ξ) and depends on the environment

only through the states it sees when N̂+ or N̂− ring.
Let M = (Mt)t≥0 be defined by

Mt := N+
t −N−

t − N̂−
t . (2.2)

By construction, for any t ≥ s ≥ 0,

Mt −Ms ≤ Xt −Xs, (2.3)

and we are thus justified to call M the minimal walker.
Let

Nt := N+
t +N−

t + N̂+
t + N̂−

t (2.4)

be the number of attempted jumps before time t and

N̂t := N̂+
t + N̂−

t (2.5)

the number of times before time t when the random walk observes the environment.
Note that, by construction,

|Xt −Xs| ≤ Nt −Ns ∀ t ≥ s ≥ 0. (2.6)

As a consequence, for all p ≥ 1, there is a C(p) ∈ (0,∞) such that

sup
η∈Ω

Eη[|Xt|p] ≤ C(p)tp. (2.7)

Therefore, by uniform integrability, as soon as a LLN holds, convergence in Lp,
p ≥ 1, will follow as well.

2.2. Graphical representation. The SSEP can be constructed from a graphical rep-
resentation as follows. Let

I = (I(x))x∈Z
(2.8)

be a collection of i.i.d. Poisson processes with rate 1. Draw the events of I(x) on
Z × [0,∞) as arrows between the points x and x + 1. Then, for each t > 0 and
x ∈ Z, there exists (a.s.) a unique path in Z× [0,∞) starting at (x, t) and ending in
Z×{0} going downwards in time and crossing any arrows it encounters; see Figure
2.1. Denote by γt(x) ∈ Z the end position of this path. The process γ = (γt)t≥0 is
called the interchange process. On the other hand, for each t ≥ 0 and x ∈ Z, there
is a unique y in Z such that γt(y) = x; denote by

γ−1 = (γ−1
t )t≥0 (2.9)

the process such that γ−1
t (x) = y.

We interpret these processes by saying that there are agents on the lattice,
named after their initial positions, who move around by exchanging places with
their neighbors at events of I. Then γ−1

t (x) is the position at time t of agent x and
γt(x) is the agent who at time t is at position x.

The SSEP ξ = (ξt)t≥0 starting from a configuration ξ0 ∈ Ω = {0, 1}Z is obtained
from γ by putting

ξt(x) := ξ0(γt(x)), x ∈ Z. (2.10)
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Figure 2.1. Graphical representation. The dotted lines represent
events of I . The thick lines mark the path of the agent γt(x).

The description under the ‘agent interpretation’ is that we assign at time 0 to each
agent x a state ξ0(x) and declare the state of the exclusion process at a space time
position (x, t) to be the state of the agent who is there.

We will call P̃ the joint law of (N+, N−, N̂+, N̂−, I). For simplicity of notation,

we redefine Pµ as the joint law of (N+, N−, N̂+, N̂−, I) and ξ0 when the latter is

distributed as µ, i.e., Pµ = µ × P̃ . Then ξ as defined in (2.10) is under Pµ indeed
distributed as a SSEP started from µ.

2.3. Marked agents. In our proof, regeneration comes as a consequence of the fact
that, even though the environment is slowly mixing, the environment perceived by
the walker is fast mixing in some sense. The idea is that, since X has a strong drift
and the information spread is limited, the dependence on the observed environment
is left behind very fast. In the exclusion process, this dependence is carried by the
agents of the interchange process whom the RW meets; we will therefore keep track
of them via the following time-increasing set of marked agents :

At :=
⋃

0<s≤t

N̂s− 6=N̂s

{γs(Xs−)} . (2.11)

In words, At consists of all the agents x ∈ Z whose states the walker observes up
to time t. Set also

Rt := sup
x∈At

γ−1
t (x), (2.12)

i.e., Rt is the position of the rightmost marked agent at time t. As usual we take
sup ∅ = −∞.

An important observation is that the walker depends on the initial configuration
only through the states of the agents in At. More precisely, X is adapted to the
filtration G = (Gt)t≥0 given by

Gt := σ((N±
s , N̂±

s , Is)0≤s≤t, At, (ξ0(x))x∈At
). (2.13)

Moreover, as the next lemma shows, a consequence of the i.i.d. structure and ex-
changeability of νρ is that the states of the agents who are not in At are still, given
Gt, distributed as under νρ.
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Lemma 2.1. For any t ≥ 0 and x1, . . . xn ∈ Z,

Eνρ

[
n∏

i=1

ξt(xi)

∣∣∣∣∣Gt

]
= ρn a.s. on {γt(x1), ..., γt(xn) /∈ At}. (2.14)

Moreover, (2.14) is still valid when t is replaced with a finite G-stopping time.

Proof : From the definition of At it follows that, for A ⊂ Z,

{At = A} ∈ σ((N±
s , N̂±

s , Is)0≤s≤t, (ξ0(x))x∈A). (2.15)

With (2.15) we can verify by summing over A that, for any x1, ..., xn ∈ Z,

Eνρ

[
n∏

i=1

ξ0(xi)

∣∣∣∣∣Gt

]
= ρn a.s. on the set {x1, ..., xn /∈ At}. (2.16)

The summation is justified because At is a finite set. Since γ is G-adapted and
ξt(x) = ξ0(γt(x)), (2.14) follows. The extension to a G-stopping time is done by
approximating it from above by stopping times taking values in a countable set (to
which (2.14) easily extends) and then using the right-continuity of At and ξt.

3. Regeneration

In this section we will develop a regenerative structure for the path of the RW
X . Let us first give an informal description of the regeneration strategy. Since
X is travelling fast to the right, there will be moments, called trial times, when
the RW has left behind all agents previously met. At these times, it may ‘try to
regenerate’, and we say that it succeeds if afterwards it never meets those agents
again. In case it does not succeed, we wait for the moment when it meets an agent
from the past, which we call a failure time, and repeat the procedure by waiting for
the next trial time. Summarizing, the regeneration strategy consists of two steps:
waiting for a trial time when there is a chance for the walker to forget its past, and
then checking whether it succeeds or fails in its regeneration attempt. These steps
are repeated until the walker succeeds, which will eventually happen by the strong
drift assumption (1.8).

We proceed to formalize the regeneration scheme, beginning with the trial times.
Let (Tt)t≥0 be the family of G-stopping times defined by:

Tt := inf
{
s ≥ Jt : Xs > Rs

}
. (3.1)

where Jt := inf{s ≥ t : Nt 6= Ns} is the time of the next possible jump after time t.
The previous discussion justifies calling Tt the first trial time after time t. From the
definition it is clear that they are indeed G-stopping times. Note that, a.s., Tt > t.

In order to define the failure times, first let, for t ≥ 0, x ∈ Z,

Y t(x) = (Y t
s (x))s≥t (3.2)

be the path starting at time t from x and jumping to the right across the arrows of
the process I in (2.8); see Figure 3.2. Then (Y t

t+u(x) − x)u≥0 is a Poisson process
with rate 1.

Now let (Ft)t≥0 be the family of G-stopping times defined by

Ft := inf{s > t : Xs ≤ Y t
s (Xt − 1)}. (3.3)
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Figure 3.2. As in Figure 2.1, the dotted lines are events of I . The
path Y t(x) starts at x and goes upwards in time and to the right across
the arrows.

As usual we take inf ∅ = ∞. We call Ft the first failure time after time t. The
Ft’s are smaller than the failure times informally discussed in the beginning of the
section. Indeed, agents to the left of Xt at time t can never cross Y t(Xt − 1), as
can be seen on the graphical representation. In particular, if Ft = ∞, then X will
after time t never meet such agents again.

In the following lemma we obtain exponential moment bounds for the trial times
Tt, showing in particular that they are a.s. finite.

Lemma 3.1. For every a > 0, there exists b1 ∈ (0,∞) such that, for all t ≥ 0,

Eνρ [e
b1(Tt−t)|Gt] ≤ (1 + a) ea(Rt−Xt)

+

Pνρ-a.s. (3.4)

Proof : Let

Ỹ t = Y t(Rt ∨Xt) (3.5)

be the Poisson path starting at time t from the position Rt ∨Xt.

Define Ht := inf{s > t : Ms −Mt +Xt > Ỹ t
s }. Let us check that

Tt ≤ Ht ∨ Jt ≤ Jt +Ht. (3.6)

Indeed, if XJt
> Ỹ t

Jt
(which can happen only if Rt ≤ Xt), then Tt = Jt. Suppose

now that XJt
≤ Ỹ t

Jt
. Recall the definition of γ−1 in (2.9). By geometrical con-

straints, if γ−1
s (x) ≤ Ỹ t

s for some s ≥ t, then this will also hold for all future times.

In particular, agents marked by X before it crosses Ỹ t will never be able to cross

Ỹ t themselves. This implies that Tt is smaller than the first time after t when X

is to the right of Ỹ t, which is in turn smaller than Ht by (2.3).
Next we show that, for any a > 0, we can find b1 > 0 such that

Eνρ [e
2b1(Ht−t)|Gt] ≤ (1 + a) e2a(Rt−Xt)

+

. (3.7)

Indeed, since M is independent of I, (Zu)u≥0 := (Mt+u−Mt−(Ỹ t
t+u−Rt∨Xt))u≥0

is under Pνρ(·|Gt) a continuous-time RW starting from 0 that has a positive drift d
by (1.8). Let Tx be the first time when Z hits a site x > 0. Then Ht − t = Tx with
x = (Rt −Xt)

+ + 1. Therewith,

Eνρ [e
2b1(Ht−t)|Gt] = Ee2b1Tx ≤ E

(
e
2b1 sup

y>0
(Ty−

2(y−1)
d

)
)
e2b1

2(x−1)
d .
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Since the exponential moment is finite, we can choose b1 sufficiently small so that
the first factor is smaller than 1 + a and 4b1/d ≤ 2a, proving (3.7).

To prove (3.4), we use (3.6) and the Cauchy-Schwarz inequality to get

Eνρ [e
b1(Tt−t)|Gt] ≤

(
Eνρ [e

2b1(Ht−t)|Gt]
) 1

2
(
Eνρ [e

2b1(Jt−t)|Gt]
) 1

2

.

Choosing b1 so small that also Eνρ [e
2b1(Jt−t)|Gt] < 1 + a completes the proof.

For t ≥ 0, denote by X(t) the increments of the walk after time t, that is,

X(t)
u := Xt+u −Xt. (3.8)

The next lemma shows that the second step of the regeneration strategy indeed
works.

Lemma 3.2. For each t ≥ 0,

Pνρ

(
Ft = ∞, X(t) ∈ ·

∣∣∣Gt

)
= Pνρ (Γ, X ∈ ·) a.s. on {Rt < Xt}, (3.9)

where Γ := {F0 = ∞}.
Proof : First note that

η 7→ Pη (Γ, X ∈ ·) does not depend on (η(x))x<0. (3.10)

This can be verified using the graphical representation. Indeed, the agents x <
0 can never cross Y 0(−1). Therefore, on Γ, none of them ever meets X , i.e.,
At ∩ (Z \ N0) = ∅ for all t. On the other hand, Γ is itself measurable in σ(X, I);
since X is adapted to G, (3.10) follows.

Now, letting ξ̄t(·) := ξt(Xt + ·), we can write

Pνρ

(
Rt < Xt, Ft = ∞, X(t) ∈ ·

∣∣∣Gt

)
= Eνρ

[
1{Rt<Xt}Pξ̄t (Γ, X ∈ ·)

∣∣Gt

]

= 1{Rt<Xt}Pνρ (Γ, X ∈ ·) ,
(3.11)

where the first equality holds by the Markov property and translation-invariance of
the graphical representation and the second is justified since, by (3.10),
Pξ̄t (Γ, X ∈ ·) is a function only of (ξ̄t(x))x≥0, whose distribution under Pνρ(·|Gt)
is, by Lemma 2.1, a.s. equal to νρ when Rt < Xt.

Before proceeding we make a simple but nonetheless important remark:

Remark 3.3. Replacing t in Tt and Ft with a finite G-stopping time still yields a
stopping time, and Lemmas 3.1–3.2 (as well as Lemmas 3.5 and 3.6 below) remain
true with a finite stopping time in place of t.

Remark 3.3 is justified by right-continuity as in the proof of Lemma 2.1. Recall
also that a stopping time multiplied by the indicator function of the set where it is
finite is again a stopping time.

We are now in shape to prove our main result.

Theorem 3.4. There exists a Pνρ-a.s. positive and finite random time τ such that,
Pνρ-a.s.,

Pνρ

(
(Xτ+s −Xτ )s≥0 ∈ ·

∣∣∣ τ, (Xs)s≤τ

)
= Pνρ

(
X ∈ ·

∣∣∣Γ
)
; (3.12)

Pνρ

(
(Xτ+s −Xτ )s≥0 ∈ ·

∣∣∣Γ, τ, (Xs)s≤τ

)
= Pνρ

(
X ∈ ·

∣∣∣Γ
)
. (3.13)



702 L. Avena et al.

Proof : We will obtain the regeneration time τ with the help of an increasing se-
quence (Un)n∈N0 of G-stopping times in [0,∞], which will be defined using Tt and
Ft. We will throughout the proof tacitly use Remark 3.3.

Set U0 := 0. Supposing that for some n ≥ 0, (Uk)k≤2n are all defined, let

U2n+1 :=

{
∞ if U2n = ∞
TU2n otherwise,

U2(n+1) :=

{
∞ if U2n+1 = ∞
FU2n+1 otherwise.

(3.14)

Then (Un)n∈N0 is an increasing sequence of G-stopping times. Now define

K = inf{n ∈ N0 : U2n+1 < ∞, FU2n+1 = ∞} ∈ [0,∞], (3.15)

i.e., 2K + 1 is the first index before the sequence U hits infinity.
Set κ := Pνρ(Γ). Then κ > 0 since X dominates M and M − Y 0(−1) has a

positive drift. By Lemma 3.2, for any n ∈ N,

Pνρ (K ≥ n) = Pνρ (U2k+1 < ∞ ∀ k = 0, . . . , n)

= Eνρ

[
1{K≥n−1}Pνρ

(
FU2n−1 < ∞

∣∣GU2n−1

)]

= (1− κ)Pνρ (K ≥ n− 1) , (3.16)

where for the last equality we used that XU2n−1 > RU2n−1 if U2n−1 < ∞. Thus, by
induction,

Pνρ (K ≥ n) = (1− κ)n ∀ n ∈ N0. (3.17)

In particular, K < ∞ Pνρ-a.s. and we can define

τ := U2K+1 < ∞ Pνρ-a.s. (3.18)

Since Pνρ(·|Γ) ≪ Pνρ , τ is a.s. well-defined and finite also under Pνρ(·|Γ).
We will now proceed to verify (3.12). Define Gτ as the sigma-algebra of the

events B such that, for all n ∈ N0, there exist Bn ∈ GU2n+1 such that B ∩ {K =
n} = Bn ∩ {K = n}. Note that τ and (Xs)s≤τ are measurable in Gτ .

Take f ≥ 0 measurable, B ∈ Gτ , and write

Eνρ

[
1Bf(X

(τ))
]
=

∞∑

n=0

Eνρ

[
1Bn

1{K=n}f(X
(U2n+1))

]

=

∞∑

n=0

Eνρ

[
1Bn

1{U2n+1<∞,FU2n+1
=∞}f(X

(U2n+1))
]

=
∞∑

n=0

Eνρ

[
1Bn

1{U2n+1<∞}Eνρ

[
1{FU2n+1

=∞}f(X
(U2n+1))

∣∣∣GU2n+1

]]
.

When U2n+1 < ∞, RU2n+1 < XU2n+1 so, by Lemma 3.2, the last line equals

Eνρ [f(X)1Γ]

∞∑

n=0

Eνρ

[
1Bn

1{U2n+1<∞}

]

= Eνρ [f(X) |Γ]
∞∑

n=0

Eνρ

[
1Bn

1{U2n+1<∞}

]
Pνρ(Γ)
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which, by Lemma 3.2 again, is equal to

Eνρ [f(X) |Γ]
∞∑

n=0

Eνρ

[
1Bn

1{U2n+1<∞}Pνρ

(
FU2n+1 = ∞

∣∣GU2n+1

)]

= Eνρ [f(X) |Γ]
∞∑

n=0

Pνρ (Bn,K = n)

= Eνρ [f(X) |Γ]Pνρ(B). (3.19)

This proves (3.12). To finish the proof, note that Γ ∈ Gτ since, for any t ≥ 0,

Γ ∩ {Ft = ∞} = {Xs > Y 0
s (−1) ∀ s ≤ t} ∩ {Ft = ∞}. (3.20)

So (3.13) follows by applying (3.19) to B ∩ Γ in place of B.

In Proposition 3.7 below, we will show that τ and Xτ have exponential moments.
For its proof, we will need the following two lemmas.

Lemma 3.5. For all ǫ > 0, there exists a1 ∈ (0,∞) such that, for all t ≥ 0,

Eνρ

[
1{Ft<∞}e

a1(Ft−t)
∣∣∣Gt

]
≤ 1 + ǫ Pνρ-a.s. (3.21)

Proof : Let

Dt := sup{s > t;Ms −Mt +Xt ≤ Y t
s (Xt − 1)}. (3.22)

If Ft < ∞, then Ft ≤ Dt because, when finite, Ft is smaller than the last time s > t
when Xs ≤ Y t

s (Xt − 1), which is in turn smaller than Dt by (2.3). On the other
hand, (Mt+u − Mt +Xt − Y t

t+u(Xt − 1))u≥0 is under Pνρ(·|Gt) a continuous-time
RW with positive drift starting at 1. Since Dt− t is the last time when this random
walk is less or equal to 0, (3.21) follows.

Lemma 3.6. For all ǫ > 0, there exists a2 ∈ (0,∞) such that, for all t ≥ 0,

Eνρ

[
1{Ft<∞}e

a2(RFt
−XFt

)+
∣∣∣Gt

]
≤ 1 + ǫ Pνρ-a.s. on {Rt < Xt}. (3.23)

Proof : Take Dt as in (3.22) and recall that, when finite, Ft ≤ Dt. Let χt :=
Xt + NDt

− Nt and consider Y t(χt) (see (3.2)). If Rt < Xt, then RFt
≤ Y t

Ft
(χt)

and so
RFt

−XFt
≤ Y t

Dt
(χt)− χt +NDt

−Nt + 1. (3.24)

Now (3.23) follows by noting that, even though χt is not in Gt, it is independent of
(Y t

t+u(χt)−χt)u≥0 (as they depend on disjoint regions of the graphical representa-
tion), so that the latter is still a Poisson process under Pνρ(·|Gt).

Proposition 3.7. There exists b ∈ (0,∞) such that

Eνρ [e
bτ ], Eνρ [e

bNτ ] < ∞, (3.25)

the same being true under Pνρ(·|Γ).
Proof : The last sentence follows from (3.25) and κ = Pνρ(Γ) > 0. Since N is a
Poisson process, it is enough prove to that τ has exponential moments under Pνρ .

To this end, let ǫ > 0 such that (1 + ǫ)2(1 − κ) < 1. Take a ∈ (0, ǫ) such that, for
all t ≥ 0,

Eνρ

[
1{Ft<∞}e

a(Ft−t)+a(RFt
−XFt

)+
∣∣∣Gt

]
≤ 1 + ǫ Pνρ-a.s. on {Rt < Xt}. (3.26)
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Such a exists by Lemmas 3.5 and 3.6 and an application of Hölder’s inequality. For
this a, take b1 as in Lemma 3.1 and let b := (a∧ b1)/2. Now fix n ≥ 1 and estimate,
recalling that RU2n−1 < XU2n−1 when U2n−1 < ∞,

Eνρ

[
1{U2n<∞}e

2bU2n+1
]

= Eνρ

[
1{U2n<∞}e

2bU2nEνρ

[
e2b(TU2n−U2n)

∣∣∣GU2n

]]

≤ (1 + a)Eνρ

[
1{U2n<∞}e

2bU2n+a(RU2n−XU2n )+
]

= (1 + a)Eνρ

{
1{U2n−2<∞}e

2bU2n−1

× Eνρ

[
1{FU2n−1

<∞}e
2b(FU2n−1

−U2n−1)+a
(
RFU2n−1

−XFU2n−1

)+
∣∣∣∣GU2n−1

]}

≤ (1 + ǫ)2Eνρ

[
1{U2(n−1)<∞}e

2bU2(n−1)+1

]
.

By induction, we get

Eνρ

[
1{U2n<∞}e

2bU2n+1
]
≤ (1 + ǫ)2n+1. (3.27)

To conclude, use Hölder’s inequality and (3.17) to write:

Eνρ

[
ebτ
]

=
∑∞

n=0 Eνρ

[
1{K=n}e

bU2n+1
]
=
∑∞

n=0 Eνρ

[
1{K=n}1{U2n<∞}e

bU2n+1
]

≤∑∞
n=0 Pνρ (K = n)

1
2 Eνρ

[
1{U2n<∞}e

2bU2n+1
] 1

2

≤
√
1 + ǫ

∑∞
n=0

(√
(1 − κ)(1 + ǫ)2

)n
< ∞.

Finally, due to Theorem 3.4, we can construct a sequence of i.i.d. regeneration
times.

Theorem 3.8. By enlarging the probability space, one can assume the existence of a
sequence (τn)n∈N of random times with τ1 := τ and such that, setting Sn :=

∑n
i=1 τi,(

τn+1,
(
X(Sn)

s

)
0≤s≤τn+1

)
n∈N

(3.28)

is under Pνρ an i.i.d. sequence which is independent from (τ, (Xs)0≤s≤τ ), each of
its terms being distributed as (τ, (Xs)0≤s≤τ ) under Pνρ(·|Γ).
Proof : Let (Ω, E) be the measurable space used to construct the random processes

N±, N̂±, I and the random initial configuration ξ0. For n ∈ N ∪ {∞}, let Pn be
the product probability measure on the product space (Ωn, En) whose marginals
are Pνρ on the first coordinate and Pνρ(·|Γ) on the remaining ones. For i ∈ N,
i ≤ n, let X(i, n) = (Xs(i, n))s≥0 be the random process obtained by evaluating
X on the i-th coordinate. Define τi,n analogously by evaluating τ . Let S0(n) := 0

and Sk(n) :=
∑k

i=1 τi,n for k < n. Now define the process X̃(n) = (X̃s(n))s≥0 by

X̃s(n) :=

{
Xs−Si(n)(i, n) for s ∈ [Si−1(n), Si(n)) , i ∈ N, i < n,
Xs−Sn−1(n)(n, n) for s ≥ Sn−1(n) if n < ∞.

(3.29)

Using Theorem 3.4 we can verify by induction that, for any n ∈ N, X̃(n) has under

Pn the same law as X under P. Since the processes X̃(n), n ∈ N ∪ {∞}, can be
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coupled in such a way that, for any L > 0, there exists a (random) n0 ∈ N such
that (

X̃s(n)
)
s∈[0,L]

=
(
X̃s(∞)

)
s∈[0,L]

if n ≥ n0, (3.30)

X̃(∞) also has the same law as X . Moreover, X̃(∞) has the properties claimed in
the statement. These properties are passed to X using a coupling measure Q on
Ω× ΩN such that Q(X = X̃) = 1.

4. Limit Theorems

As a fruit of the regenerative structure constructed in Section 3, we now obtain
the asymptotic results stated in Section 1.2.

4.1. Proofs of Theorems 1.1 — 1.3. Let us collect some useful facts. First of all,
by Theorem 3.8, Proposition 3.7 and (2.6),

(
sup

s∈[0,τn+1]

∣∣∣X(Sn)
s

∣∣∣
)

n∈N0

have a uniform exponential moment. (4.1)

Furthermore, again by Theorem 3.8 and Proposition 3.7,

lim
n→∞

Sn

n
= Eνρ [τ |Γ] and lim

n→∞

XSn

n
= Eνρ [Xτ |Γ] Pνρ-a.s. (4.2)

For t ≥ 0, let kt be the random integer such that

Skt
≤ t < Skt+1. (4.3)

Then a.s. limt→∞ t−1kt = Eνρ [τ |Γ]−1. Thus the candidate velocity for X is

v :=
Eνρ [Xτ |Γ]
Eνρ [τ |Γ]

. (4.4)

Proof of Theorems 1.1 and 1.2: We first prove (1.10). From Theorem 3.8 and Propo-
sition 3.7 we obtain LDP’s for both Sn and XSn

with rate functions which are only
zero at Eνρ [τ |Γ] and Eνρ [Xτ |Γ], respectively. Since kt is the inverse of Sn, it also

satisfies a LDP with a rate function which is zero only at Eνρ [τ |Γ]−1 (see Glynn and
Whitt (1994)). Fix ǫ > 0. From the LDP’s for XSn

and kt, we get exponential de-
cay of Pνρ

(
|t−1XSkt

− v| ≥ ǫ
)
, while the same is obtained for Pνρ

(
|Xt −XSkt

| ≥ ǫt
)

from (4.1) and the LDP for kt. From this, (1.10) is readily obtained, and the LLN
follows by the Borel-Cantelli lemma. By (2.3), v ≥ α0 ∧ α1 − β0 ∨ β1 > 1. Conver-
gence in Lp follows from (2.7).

Proof of Theorem 1.3: Let σ̂2 be the variance of Xτ − τv under Pνρ(·|Γ) which is
finite due to (3.25) and positive since Xτ − τv is not a.s. constant. For the process
Yk := XSk

−Skv, k ∈ N, a functional CLT with variance σ̂2 holds since, by Theorem
3.8 and (3.25), the assumptions of the Donsker-Prohorov invariance principle are
satisfied.

Consider now the random time change ϕn(t) := knt/n. From the LLN and LDP
for kt it follows that

lim
n→∞

sup
t∈[0,L]

∣∣∣∣ϕn(t)−
t

E [τ |Γ]

∣∣∣∣ = 0 P-a.s. ∀ L > 0, (4.5)

and hence ϕn converges a.s. in Skorohod space to the linear function t 7→ t/E [τ |Γ].
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Let Y
(n)
t := n−1/2Y⌊nt⌋. With a time-change argument (see e.g. Billingsley

(1968), (17.7)–(17.9) and Theorem 4.4), we see that (Y
(n)
ϕn(t)

)t≥0 converges weakly

to a Brownian motion with variance σ2 := σ̂2/Eνρ [τ |Γ]. To extend this to X , note
that, for any T > 0,

sup
0≤t≤T

∣∣∣∣
Xnt − ntv√

n
− Y

(n)
ϕn(t)

∣∣∣∣ ≤
1√
n

sup
0≤t≤T

(∣∣Xnt −XSknt

∣∣+ v |Sknt
− nt|

)
(4.6)

which goes a.s. to 0 as n → ∞ by Theorem 3.8, (4.1) and the LDP for kt.

4.2. Einstein relation: proof of Theorem 1.4. We first show how the speed v is
related to the observed density of particles, and that the latter approaches the
density of the environment as λ ↓ 0.

Proposition 4.1. The limit

ρ̂(λ) = lim
t→∞

1

t

∫ t

0

Eνρ [ξs(Xs)] ds (4.7)

exists and satisfies

v(λ) = [α1(λ) − β1(λ)] ρ̂(λ) + [α0(λ)− β0(λ)] [1− ρ̂(λ)] , (4.8)

lim
λ↓0

ρ̂(λ) = ρ. (4.9)

Proof : Since X is Markovian under the quenched measure,

Xt −
∫ t

0

(α1 − β1)ξs(Xs) + (α0 − β0)(1− ξs(Xs))ds (4.10)

is a martingale under P ξ
X for a.e. ξ. Hence by Theorem 1.1 the limit in (4.7) exists

and satisfies (4.8). We proceed to prove (4.9). Write
∫ t

0

Eνρ [ξs (Xs)] ds =

∫ t

0

Pνρ (γs(Xs) ∈ As, ξs(Xs) = 1) ds

+

∫ t

0

Pνρ (γs(Xs) /∈ As, ξs(Xs) = 1) ds.

The first term is bounded by

Lt := Eνρ

[∫ t

0

1{γs(Xs)∈As}ds

]
, (4.11)

the expected time spent by the walker on marked agents up to time t. For the
second term, we use Lemma 2.1:
∫ t

0

Pνρ (γs(Xs) /∈ As, ξs(Xs) = 1) ds =

∫ t

0

Eνρ

[
1{γs(Xs)/∈As}Eνρ [ξs (Xs) | Gs]

]
ds

= ρ

∫ t

0

Pνρ (γs(Xs) /∈ As) ds = ρ (t− Lt) .

Hence ∣∣∣∣
∫ t

0

Eνρ [ξs(Xs)] ds− ρt

∣∣∣∣ ≤ Lt. (4.12)

In order to bound Lt, consider the total time that the walker spends on top of a
single marked agent x. If t is the time when this agent is marked, the agent will
never cross to the right of Y t(γ−1

t (x)). On the other hand, after time t, X will
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never be to the left of M −Mt + γ−1
t (x)− 1. Hence the time spent on the marked

agent x is bounded by the total time during which Y t(γ−1
t (x)) is to the right of

M −Mt + γ−1
t (x). Writing tx = inf{t ≥ 0 : x ∈ At}, we get

Lt ≤
∑

x∈Z

Eνρ

[
1{tx<t}

∫ ∞

tx

1{Y tx
s (γ−1

tx
(x))>Ms−Mtx+γ−1

tx
(x)}ds

]

= Eνρ [|At|]Eνρ

[∫ ∞

0

1{Y 0
s (0)>Ms}ds

]
. (4.13)

When λ is small enough, (1.8) is satisfied, and the term with the integral in (4.13) is
uniformly bounded by some constant C ∈ (0,∞). On the other hand, the number

of marked agents |At| is bounded by N̂t, so finally we have
∣∣∣∣
∫ t

0

Eνρ [ξs(Xs)] ds− ρt

∣∣∣∣ ≤ Lt ≤ tC
(
|α1(λ) − α0(λ)| + |β1(λ)− β0(λ)|

)
,

proving (4.9).

Proof of Theorem 1.4: Write

v(λ)− v(0)

λ
=

(α1(λ)− β1(λ))− (α1(0)− β1(0))

λ
ρ̂(λ)

+ (α1(0)− β1(0))
ρ̂(λ)− ρ̂(0)

λ

+
(α0(λ)− β0(λ)) − (α0(0)− β0(0))

λ
(1− ρ̂(λ))

+ (α0(0)− β0(0))
(1 − ρ̂(λ)) − (1− ρ̂(0))

λ

=
(α1(λ)− β1(λ))− (α1(0)− β1(0))

λ
ρ̂(λ)

+
(α0(λ)− β0(λ)) − (α0(0)− β0(0))

λ
(1− ρ̂(λ)).

Now take the limit as λ ↓ 0 and use (4.9) to get

v′(0) =

(
α
F1

ρ
+ β

F1

ρ

)
ρ+

(
α

F0

1− ρ
+ β

F0

1− ρ

)
(1 − ρ)

= (α+ β)(F1 + F0) = α+ β.
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