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Abstract. We study some problems inherent with certain forms of functional
depth, in particular, zero depth and lack of consistency.

1. Introduction

The use of a variety of depth functions to provide a center-outward ordering of
finite dimensional data is well established, and more recently a number of interesting
papers have considered analogues of such depths to study multivariate data in the
infinite dimensional setting. These depths apply to data given in terms of infinite
sequences, as functions defined on some interval, and also as points in some infinite
dimensional Banach space. The papers López-Pintado and Romo (2009, 2011);
Dutta et al. (2011); Chakraborty and Chaudhuri (2013); Mosler and Polyakova
(2012); Cuevas and Fraiman (2009) introduce interesting examples of such depths,
and also include many additional references, but the focus here centers on the
problem that the natural analogue of some commonly used depths in Rd may well
be zero ”most of the time” in the infinite dimensional setting. By ”most of the time”
it is meant that the depth is zero on a set whose probability is one with respect to
the probability the depth is based on. This was pointed out in Theorem 3 of Dutta
et al. (2011) for Tukey’s half-space depth with respect to certain probability laws
on the Hilbert space `2, and also for the band depth and half-region depth of López-
Pintado and Romo (2009, 2011) in Chakraborty and Chaudhuri (2013). The paper
Kuelbs and Zinn (2012) also examined this problem for half-region depth showing
it not only vanishes most of the time, but in many examples it vanishes everywhere.
Moreover, in Kuelbs and Zinn (2012) it is also shown how one can smooth such
data so as to regain positive half-region depth, and then establish consistency for
the empirical half-region depth of the smoothed data. In some cases one can also
show

√
n consistency. In a related, but slightly different context, smoothing was
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used to guarantee various limit theorems (see Kuelbs et al. (2013); Kuelbs and Zinn
(2013)).

In the present work our goal is to better understand both the problem of zero
depth as well as questions of consistency for infinite dimensional data. Our results
are in the context of Tukey half-space depth, and also for the simplicial depth in the
infinite dimensional setting obtained as in Mosler and Polyakova (2012). Of course,
there are other possible choices, but the importance of our choices in the finite
dimensional setting made them attractive to study for functional data. Moreover,
it is clear that for data symmetric about zero, the half-space depth of the zero
vector will typically be 1

2 , but the result in Dutta et al. (2011) shows this depth
may also be zero with probability one. Hence an immediate question to ask is for
what other points might this depth be strictly positive? Also, perhaps the set of
points at which the depth is non-zero is “special” and one can prove consistency
for these special points.

In this paper, in a number of cases, we’ll describe the precise set of points at which
the half-space depth is strictly positive and when it is zero. This is accomplished
via Theorems 2.2 and 2.6 of section 2, and we also provide some explicit formulas
for half-space depth in special cases in section 3. Theorem 2.7 of section 2 shows
that in many situations the empirical half-space depth is zero with probability one.
Combined with Theorems 2.2 and 2.6, this last result is particularly bad news, as
often the empirical depth is zero with probability one at all the points where the
true depth is strictly positive. Of course, if the true half-space depth is zero, in
this case we would have consistency, but very little information. Also, the remark
following the statement of Theorem 2.7 below points out several aspects of such
problems, and how the results of Theorem 2.7 differ from those on Tukey functional
depth on page eleven of Mosler and Polyakova (2012).

Proposition 3.6 of section 3 shows how these results combine for Gaussian mea-
sures with infinite dimensional support on a separable Banach space, and, although
we can identify the precise set of positivity of the half space depth based on B∗,
there still is a lack of consistency. In the last part of section 3 we see the simplicial
depth of Liu (see Liu (1988, 1990)) extended to R∞ using definition one in section
7 of Mosler and Polyakova (2012) is also subject to the very same problems. This
is an interesting fact in its own right, but also because this depth is quite different
(see Zuo and Serfling (2000)) than Tukey’s half-space depth. It is also interesting
to note that the context in which zero empirical depth appears for these particular
depths seems to occur when there are a lot of independence-like properties in the
data. Hence, it may be possible to modify or smooth either the random variable
or the depth to ensure consistency or even a central limit type theorem, but that
is off in the future.

There are several other interesting aspects of this study that should be men-
tioned. These include the fact that the results of Theorem 2.6 connect with ad-
missible translates of probability measures on R∞ (see Kakutani (1948), Shepp
(1965)), and in subsection 3.2 we need some delicate tail estimates of Rademacher
series to estimate the magnitude of the actual half-space depth at a point (see
Montgomery-Smith (1990)).

Finally, it seems to be clear that each example of functional depth brings with it
its own difficulties. Some may be more immune to various difficulties than others.
This can be seen in the following example of the dual integrated depth of Cuevas and
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Fraiman (2009), where positivity of the depth holds, and we also have an immediate
link to positivity of the modified band depth of López-Pintado and Romo (2009).
We start with the one-dimensional version of the band depth of López-Pintado and
Romo (2009). That is, if r ≥ 2 and for {ξj}rj=1 iid with distribution µ,

BDr,1(b, µ) = P ( min
1≤j≤r

ξj ≤ b ≤ max
1≤j≤r

ξj).

Of course, BD2,1 is the univariate version of the simplicial depth, and BD2,1(b, µ) ≤
BDr,1(b, µ). Hence, it is positive provided b is in the interior of the closed convex
hull of the support of µ, or at a boundary point, if the boundary point has positive
µ-probability. Assume that Q is the measure on the set of point evaluations, et(a) =
a(t), say for a in C[0, 1], given by Lebesgue measure, m, on [0, 1]. (For A a Borel
subset in the weak-star topology of C∗[0, 1], the dual space of C[0, 1], define Q(A) =
m(t ∈ [0, 1] : et ∈ A)). Now, consider a stochastic process, {X(t) : t ∈ [0, 1]} with
distribution, P , on C[0, 1] and i.i.d. copies, {Xj(t) : t ∈ [0, 1]}∞j=1, and a function,
a ∈ C[0, 1]. Then the definition of the dual integrated depth associated with the
depth BDr,1 gives

IDD(a, P ) =

∫ 1

0

P ( min
1≤j≤r

Xj(t) ≤ a(t) ≤ max
1≤j≤r

Xj(t)) dt (1.1)

= (by Fubini) E [m(t ∈ [0, 1] : min
1≤j≤r

Xj(t) ≤ a(t) ≤ max
1≤j≤r

Xj(t))]

= MBDr,1(a, P ),

where MBDr,1(a, P ) is the modified band depth of López-Pintado and Romo
(2009). In particular, the positivity of the integrand in (1.1) on some open subin-
terval of [0, 1] implies that for each such a, the quantities in (1.1) are positive. For
example, if s1,t = inf{x : P (X(t) ≤ x) > 0} and s2,t = sup{x : P (X(t) ≤ x) < 1}
for t ∈ [0, 1], and E = {t ∈ [0, 1] : s1,t = −∞, s2,t = ∞} has positive Lebesgue
measure, then for all a ∈ C[0, 1] and t ∈ E the quantity

P ( min
1≤j≤r

Xj(t) ≤ a(t) ≤ max
1≤j≤r

Xj(t))

is strictly positive. Also, for consistency results related to dual integrated depths
one should examine Theorem 2 in Cuevas and Fraiman (2009), and for (unmodified)
band depth López-Pintado and Romo (2009).

2. Infinite dimensional half space depth.

Here we formulate some results on half space depth in infinite dimensional, real,
topological vector spaces B, whose topology is metrizable, complete and separable
via a translation invariant metric. They are the so-called F-spaces in Rudin (1966),
and include the real separable Banach spaces, as well as Fréchet spaces such as R∞,
and many other topological vector spaces.

Throughout X,X1, X2, . . . are i.i.d. B-valued random vectors on the probability
space (Ω,F , P ) which are measurable from F to the Borel sets BB of B, and
µ denotes the law of X on (B,BB). We also assume T is a collection of Borel
measurable functionals on B. Then, we define the half space depth of a ∈ B with
respect to T and µ to be

HDT (a, µ) = inf
t∈T

P (ω ∈ Ω : t(X(ω)) ≥ t(a)). (2.1)
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We usually denote the right hand term by inft∈T P (t(X) ≥ t(a)), and observe
that we also have

HDT (a, µ) = inf
t∈T

µ(x ∈ B : t(x) ≥ t(a)). (2.2)

If µn(ω) = 1
n

∑n
j=1 δXj(ω), n ≥ 1, then for each ω ∈ Ω we have µn a probability

measure on B and the empirical half space depth for a ∈ B with respect to T and
µn is defined to be

HDT (a, µn) = inf
t∈T

µn(x ∈ B : t(x) ≥ t(a)), (2.3)

and hence we also have

HDT (a, µn) = inf
t∈T

1

n

n∑
j=1

I(t(Xj) ≥ t(a)). (2.4)

If B = Rd and T is the linear functionals on Rd in (2.1), this is Tukey half space
depth. Of course, since the linear functionals on Rd are given by inner products,
we denote this by HDRd(a, µ), and observe that

HDRd(a, µ) = inf
t∈Rd

P (t(X) ≥ t(a)) = inf
t∈Rd

µ(x ∈ Rd : t(x) ≥ t(a)).

When B is a real separable Banach or Fréchet space, with the dual space of con-
tinuous linear functionals on B denoted by B∗, then a natural definition of Tukey
half space depth with T = B∗ is given by

HDB∗(a, µ) = inf
t∈B∗

P (t(X) ≥ t(a)).

It should be observed that in the literature the half space depth we defined on Rd or
B is likely to be written as HDE(a, µ) where E is Rd or B, respectively. We chose
our terminology to emphasize that the functionals in T need not be continuous or
linear on B.

The point to be seen here is that in the infinite dimensional setting the class
B∗ is frequently much too large to provide positive depth on much of the space B.
Moreover, problems of consistency emerge even if the half space depth is positive
at a point and T is countably infinite. Hence it is useful to formulate depth as in
(2.1) where the class of functionals T allows more flexibility. It is also important
to note that the functionals t ∈ T need not be linear or continuous on B, and
there are good reasons for this. First, in the generality we are considering there are
examples, such as Lp for 0 < p < 1, where the only continuous linear functional
on B will be the functional that is identically zero, and of more importance, the
functionals of interest need not be linear to start with. For example, in section 3.3
we show a lack of consistency for the Mosler-Polyakova version of Liu’s simplicial
depth using maps that are probabilities (which are highly non-linear functions of
the data).

Example 2.1. To see the effect that different choices of T can have on half-space
depth, let X take values in C[0, 1], the space of continuous functions on [0, 1],
where L(X(s)) = N(0, 1 + s) and E(X(s)X(t)) = 1 + min{s, t} for s, t ∈ (0, 1).
Then, {X(s) : 0 ≤ s ≤ 1} is a standard sample continuous Brownian motion
started randomly at time zero with a N(0, 1) distribution, and if T consists of the
evaluation maps

et(a) = a(t), t ∈ [0, 1], a ∈ C[0, 1],
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we have

HD(a, µ) = inf
t∈[0,1]

P (X(t) ≥ a(t)),

where µ is the law of X on C[0, 1]. Therefore,

HD(a, µ) = inf
t∈[0,1]

P (
X(t)√
1 + t

≥ a(t)√
1 + t

) = inf
t∈[0,1]

[1− Φ(
a(t)√
1 + t

)],

and since supt∈[0,1]
|a(t)|√
1+t

< ∞ for all a ∈ C[0, 1] we have HD(a, µ) > 0 for all

a ∈ C[0, 1]. On the other hand, if T consists of the differences of two evaluation
maps, then as we will now see the half-space depth will be zero with µ probability
one. In fact, we need not consider all differences, but only that T consists of the
sequence of differences

θk(a) ≡ a(
1

k
)− a(

1

k + 1
), k ≥ 1.

Then, the half-space depth of a function a ∈ C[0, 1] with respect to µ and this
choice of T is

HD(a, µ) = inf
k≥1

P (θk(X) ≥ θk(a)).

Now Gk =
√

k(k + 1)θk(X), k ≥ 1, are i.i.d. N(0, 1) random variables and hence
for a ∈ C[0, 1]

HD(a, µ) = inf
k≥1

P (Gk ≥
√

k(k + 1)θk(a)) = 1− Φ(sup
k≥1

√
k(k + 1)θk(a)).

If

A = {a ∈ C[0, 1] : sup
k≥1

√
k(k + 1)θk(a) = ∞},

then µ(A) = P (supk≥1 Gk = ∞) = 1, and hence with µ-probability oneHD(a, µ) =
0 when T consists of these differences.

Now we turn to three theorems and the additional notation used in the remain-
der of the paper. The first theorem obtains sufficient conditions for half space depth
to be zero in the infinite dimensional setting, and following its statement there are
a couple of remarks indicating how Theorem 3 of Dutta et al. (2011) for half space
depth in `2 follows as a special case. These remarks also examine other aspects
of the theorem. A second theorem, when combined with Theorem 2.2, establishes
necessary and sufficient conditions that the depth be positive, and the third ex-
amines when the empirical version of this depth in (2.3) and (2.4) approximates
the true distributional depth. There are also corollaries and remarks pertaining
to these results, which indicate how they fit together. The proofs of the theorems
appear at the end of the section.

Theorem 2.2. Let X be a random vector with values in a real separable F-space B,
and assume the functionals {tk : k ≥ 1} are measurable from the Borel subsets of B
to the reals. In addition, assume {tk(X) : k ≥ 1} are mean zero random variables
with variances σ2

k ∈ (0,∞), k ≥ 1, and that E(ti(X)tj(X)) = 0, 1 ≤ i < j < ∞. If
T consists of all finite linear combinations of the maps {tk : k ≥ 1}, then

HDT (a, µ) = 0 (2.5)
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for all a ∈ B such that ∑
k≥1

t2k(a)

σ2
k

= ∞. (2.6)

Furthermore, (2.5) holds with µ probability one if

P (
∑
k≥1

t2k(X)/σ2
k = ∞) = 1. (2.7)

Since T contains the finite linear combinations of the {tk : k ≥ 1} it will be
convenient to parameterize these functionals by letting `0 denote the sequences in
R∞ which have only finitely many non-zero terms, and for α = (α1, α2, . . .) ∈ `0 let

tα =
∑
k≥1

αktk. (2.8)

Then, the right hand term in (2.8) is a finite sum, tα is a typical functional in T ,
and the half space depth of a ∈ B with respect to T and µ satisfies

HDT (a, µ) = inf
α∈`0

P (tα(X) ≥ tα(a)). (2.9)

Remark 2.3. Let {tk(X) : k ≥ 1} be as in Theorem 2.2. Hence, if for some sequence
{an : n ≥ 1} increasing to infinity, we have

lim sup
n→∞

1

an

n∑
k=1

t2k(X)/σ2
k > 0 (2.10)

with probability one, then (2.7) holds and the final conclusion of Theorem 2.2 im-
plies (2.5) with µ-probability one. Futhermore, since E(t2k(X)/σ2

k) = 1 for k ≥ 1, if
an = n the stability result in (2.10) would immediately hold from the ergodic the-
orem if the sequence {t2k(X)/σ2

k} is stationary and ergodic. It also follows without
the ergodicity assumption provided we have stationarity and P (t1(X) = 0) = 0.
Of course, if the random variables {tk(X) : k ≥ 1} are assumed independent, then
(2.10) holds with an = n and limit one in a variety of situations by applying a law
of large numbers. For example, under the independence assumption and that∑

k≥1

E(t4k(X))

k2σ4
k

< ∞, (2.11)

this is the case. However, the condition (2.10) also follows with an = n and the
limit being one provided (2.11) holds and that {t2k(X)/σ2

k : k ≥ 1} are uncorrelated.
That is, under these conditions it is easy to check that

E([
1

n

n∑
k=1

t2k(X)

σ2
k

− 1]2) =
1

n2

n∑
k=1

E(
t4k(X)

σ4
k

)− 1

n
. (2.12)

Hence, (2.11) and Kronecker’s Lemma combine to imply

lim
n→∞

1

n2

n∑
k=1

E(
t4k(X)

σ4
k

) = 0. (2.13)

Therefore, 1
n

∑n
k=1

t2k(X)

σ2
k

converges in L2 to one, and (2.10) holds with an = n and

limit one with probability one.
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Remark 2.4. If X takes values in the real separable Banach space `2, then Theorem
3 of Dutta et al. (2011) shows that under certain conditions on the distribution of
X the Tukey half space depth with T = `∗2 is zero. In that result the maps tk(X)
are assumed to be mean zero independent random variables such that tk(X) =
〈X, ek〉,where 〈·, ·〉 is the inner product on `2 and {ek : k ≥ 1} is the canonical basis
of `2. Furthermore, (2.11) is assumed to hold, and the half space depth is defined in
terms of all continuous linear functionals on `2. In our terminology, the finite linear
combinations of the {tk(X) : k ≥ 1} we denote by {tα : α ∈ `0} would be replaced
by {tα : α ∈ `2}, and hence that depth is less than or equal the depth we use. Since
zero is the minimal possible depth, our result in Theorem 2.2 therefore implies the
result in Dutta et al. (2011). Moreover, it implies similar results in any F-space B
without an independence or a linearity assumption on the mappings {tk : k ≥ 1}.

If X is symmetric about the vector a ∈ B and the maps {tk : k ≥ 1} are linear,
then for each α ∈ `0 we have P (tα(X) ≥ tα(a)) ≥ 1/2, and hence HDT (a, µ) ≥ 1/2.
Furthermore, it will equal 1/2 if P (tk(X) = tk(a)) = 0 for all k ≥ 1. Thus
certain vectors have positive half space depth, and our next proposition examines
for which vectors in B this might be the case. However, in order to provide sufficient
conditions for positive half space depth we require some additional assumptions.
They are:

Assumptions. (A-I) For a ∈ B and all integers d ≥ 1

HDRd(Πd(a), µ
Πd) > 0, (2.14)

where Πd(a) = (t1(a), . . . , td(a)) and µΠd is the image of µ on Rd via the map
Πd(·) : B → Rd,

(A-II) For some constant c < ∞, E(t4k(X)) ≤ c[E(t2k(X))]2 for all k ≥ 1,

and

(A-III) {tk(X)/λk : k ≥ 1}, 0 < λk < ∞, are i.i.d. with probability density φ that
is positive a.s., (locally) absolutely continuous on R (i.e., φ is absolutely continuous
on every compact interval of R) satisfying

I(φ) =
∫
R

(φ′)2(x)

φ(x)
dx < ∞, (2.15)

and

σ2 =

∫
R
x2φ(x)dx < ∞. (2.16)

Remark 2.5. The condition (2.14) may be difficult to check in some situations, but
it is a necessary condition for HDT (a, µ) to be strictly positive since

HDRd(Πd(a), P
Πd) = inf

α∈`0
P (

d∑
k=1

αktk(X) ≥
d∑

k=1

αktk(a))

≥ inf
α∈`0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) = HDT (a, µ).



838 James Kuelbs and Joel Zinn

The quantity in (2.15) is often called the Fisher information. It appeared in Fisher
(1973) and was used in Shepp (1965) in connection with admissible translates (see
Definition 2.13 below). While the uses of the Fisher information are ubiquitous
in Statistics, at this point we only use the connection to admissible translates.
Furthermore, if µ is a probability measure on Rd with probability density that is
strictly positive a.s. with respect to Lebesgue measure, then every vector b ∈ Rd is
an admissible translate. Therefore, by the proof of Lemma 2.15 every vector in Rd

has positive half space depth with respect to µ for µ symmetric, and under these
conditions (2.14) holds. In addition, the conclusion of Theorem 2.6 given by the
assumptions in (A-III) would then follow from the assumptions in (A-I) and (A-II)
provided we also assume

∫
R x4φ(x)dx < ∞. Of course, the conditions in (A-I) and

(A-II) do not require that {tk(X) : k ≥ 1} have densities, and they apply without
the {tk(X) : k ≥ 1} being scaled i.i.d. random variables. Hence, in that sense they
are more general than what can be obtained from the assumptions in (A-III), but
it is also of interest that the conditions in (A-III) yield results without a fourth
moment assumption as in (A-II).

Condition (2.15) and Lemma 2.15 below allow us to link half space depth to
admissible translates of product measures and the results of Kakutani (1948) and
Shepp (1965).

Theorem 2.6. Let X be a random vector with values in a real separable F-space
B, and assume {tk(X) : k ≥ 1} are independent, symmetric random variables
with variances σ2

k ∈ (0,∞), k ≥ 1. In addition, assume (A-I) and (A-II) hold, or
(A-III) holds. Then, for a ∈ B and T all finite linear combinations of the maps
{tk : k ≥ 1},

HDT (a, µ) > 0 (2.17)

if and only if ∑
k≥1

t2k(a)

σ2
k

< ∞. (2.18)

Our next theorem examines empirical half space depth, and the corollary and
remark following its statement clarify consistency for the empirical depth in the
setting of Theorems 2.2 and 2.6 provided (2.20) holds.

Theorem 2.7. Let {Xj : j ≥ 1} be i.i.d. copies of X where X is a random vector
taking values in a real F-space B and {tk(X) : k ≥ 1} are independent mean zero
random variables with variances σ2

k ∈ (0,∞), k ≥ 1. Furthermore, assume for all
ck, k ≥ 1, such that limk→∞ ck/σk = 0,

lim inf
k→∞

P (tk(X) < ck) > 0, (2.19)

and T ⊇ {tk(·) : k ≥ 1}. Then, for all n ≥ 1 and a ∈ B with

lim
k→∞

tk(a)

σk
= 0, (2.20)

the empirical half space depth

HDT (a, µn) ≡ inf
t∈T

1

n

n∑
j=1

I(t(Xj) ≥ t(a)) = 0 (2.21)
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with probability one.

Remark 2.8. The empirical half space depth, HDT (a, µn), can be thought to have
two ”random quantities” on different probability spaces. One, say, ω with cor-
responding probability, P , is through the random variables in µn and the other
with respect to the induced measure, µ, on the space, B. In Mosler and Polyakova
(2012) Mosler and Polyakova give a result that holds quite generally for Tukey-like
depths as long as T = B∗. Namely that fixing ω and computing with respect to µ
the empirical depth equals zero with µ-probability one provided finite dimensional
subspaces have µ probability zero. On the other hand, in special, but interesting
circumstances (as in the above Theorem 2.7), we fix a in a large class and show,
that the empirical depths are zero with P -probability one. So, in particular, we
can say for each point in this “large class” that consistency fails or fails to give any
information.

Corollary 2.9. Assume the conditions in Theorem 2.7 with T all finite linear
combinations of {tk(·) : k ≥ 1}, and that (A-I) and (A-II) hold, or (A-III) holds.
Then, for each a ∈ B such that ∑

k≥1

t2k(a)

σ2
k

< ∞, (2.22)

the empirical half space depth

HDT (a, µn) = 0 (2.23)

with probability one for all n ≥ 1, and the half space depth HDT (a, µ) > 0. Hence
the natural empirical half space depth fails to approximate the true half space depth
at such points a ∈ B, i.e. consistency fails at all such points. However, we do have
consistency for those a ∈ B where (2.18) fails, but (2.20) holds.

Remark 2.10. The proof of Corollary 2.9 follows immediately from Theorems 2.2,
2.6 and 2.7. Furthermore, if the condition in (2.19) is replaced by the assumption

lim inf
k→∞

P (tk(X) < tk(a)) > 0,

then the proof of Theorem 2.7 implies that HDT (a, µn) = 0 with probability one
for all n ≥ 1 without assuming the variances σ2

k exist. However, the condition
(2.20) allows us to relate empirical half space depth to the true half space depth
as indicated in Corollary 2.9. Moreover, it is only under the assumptions in (A-I)
and (A-II) where the condition (2.19) is something extra. That is, the assumptions
in (A-III) imply (2.19). This can be seen by observing that P (tk(X) < ck) =∫ ck

λk
−∞ φ(x)dx, and hence σk = σλk, limk→∞ ck/σk = 0, and φ symmetric about zero
implies limk→∞ P (tk(X) < ck) = 1/2.

2.1. Proof of Theorem 2.2. Using (2.8) and (2.9)

HDT (a, µ) ≤ inf
α∈`0,tα(a)>0

P (tα(X) ≥ tα(a)),

and by Markov’s inequality

HDT (a, µ) ≤ inf
α∈`0,tα(a)>0

E(t2α(X)/t2α(a)) = inf
α∈`0,tα(a)>0

∑
k≥1 α

2
kσ

2
k

(
∑

k≥1 αktk(a))2
.
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Therefore, HDT (a, µ) = 0 whenever

sup
α∈`0,tα(a)>0

(
∑

k≥1 αktk(a))
2∑

k≥1 α
2
kσ

2
k

= ∞.

Given a ∈ B such that (2.6) holds, then by setting αk = tk(a)/σ
2
k, k = 1, · · · , n,

and zero for k ≥ n, we therefore have

sup
α∈`0,tα(a)>0

(
∑

k≥1 αktk(a)
2∑

k≥1 α
2
kσ

2
k

≥ sup
n

n∑
k=1

tk(a)
2/σ2

k = ∞.

Thus the theorem is proved as the final assertion that (2.5) follows from (2.7) is
now immediate.

2.2. Proof of Theorem 2.6. To prove Theorem 2.6 it will be convenient to first prove
some lemmas, where we continue to use the parameterization of T determined in
(2.8).

Lemma 2.11. Let {tk(X) : k ≥ 1} be independent with mean zero, σ2
k = E(t2k(X)) ∈

(0,∞), and define `+0 = {α ∈ `0 :
∑

k≥1 α
2
k > 0}. Furthermore, assume there exists

c ∈ (0,∞) such that (A-II) holds. Then,

inf
α∈`+0

[E((
∑

k≥1 αktk(X))2)]2

E((
∑

k≥1 αktk(X))4)
≥ (3c)−1. (2.24)

Proof : Expanding the sum to the fourth power we have

E(|
∑
k≥1

αktk(X)|4) =
∑
k≥1

α4
kE(tk(X)4) + 6

∑
1≤i<j

α2
iα

2
jE(ti(X)2)E(tj(X)2),

and hence, since c ≥ 1,

E(|
∑
k≥1

αktk(X)|4) ≤ 3c[
∑
k≥1

α4
kE2(tk(X)2) + 2

∑
1≤i<j

α2
iα

2
jE(ti(X)2)E(tj(X)2)]

= 3c[
∑
k≥1

α2
kE(tk(X)2)]2.

�

Lemma 2.12. If {tk(X) : k ≥ 1} are independent and symmetric (about zero),

(A-II) holds, and a ∈ B is such that
∑

k≥1
t2k(a)

σ2
k

< 1, then

inf
α∈`0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) > 0.

Proof : Take δ > 0 such that
∑

k≥1
t2k(a)

σ2
k

< (1− δ)2. Then,

|
∑
k≥1

αktk(a)| ≤ ||{αkσk}||2||{tk(a)/σk}||2 ≤ (1− δ)||{αkσk}||2,

and hence

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) ≥ P (
∑
k≥1

αktk(X) ≥ (1− δ)||{αkσk}||2).
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Since {tk(X) : k ≥ 1} are independent and symmetric, we thus have

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) ≥
1

2
P (|

∑
k≥1

αktk(X)| ≥ (1− δ)||{αkσk}||2). (2.25)

Now

E((
∑
k≥1

αktk(X))2) =
∑
k≥1

α2
kσ

2
k,

and hence (2.25) and the Paley-Zygmund inequality implies

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a))

≥ 1

2
P (|

∑
k≥1

αktk(X)|2 ≥ (1− δ)2||{αkσk}||22)

≥ 1

2
{[1− (1− δ)2]

E((
∑

k≥1 αktk(X))2)

(E((
∑

k≥1 αktk(X))4))
1
2

}2. (2.26)

Since (A-II) holds, Lemma 2.11 implies we can combine (2.24) and (2.26) to obtain

inf
α∈`0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) ≥
1

6c
(2δ − δ2)2 > 0, (2.27)

and the lemma is proven. �

Proof of Theorem 2.6 assuming (A-I)and (A-II). First we observe from
Theorem 2.2 that (2.18) is necessary for (2.17). Hence we turn to the converse.

To prove sufficiency we first observe that for each d ≥ 1 and α ∈ `0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) (2.28)

≥ P (
d∑

k=1

αktk(X) ≥
d∑

k=1

αktk(a),
∑

k≥d+1

αktk(X) ≥
∑

k≥d+1

αktk(a)),

and hence the independence of the {tk(X) : k ≥ 1} implies

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) (2.29)

≥ P (
d∑

k=1

αktk(X) ≥
d∑

k=1

αktk(a))P (
∑

k≥d+1

αktk(X) ≥
∑

k≥d+1

αktk(a))).

Taking d sufficiently large such that∑
k≥d+1

t2k(a)

σ2
k

< 1, (2.30)

we have from Lemma 2.12 that

inf
α∈`0

P (
∑

k≥d+1

αktk(X) ≥
∑

k≥d+1

αktk(a))) > 0. (2.31)
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Since (2.14) holds we have

inf
k∈`0

P (

d∑
k=1

αktk(X) ≥
d∑

k=1

αktk(a)) > 0, (2.32)

and the theorem is proved when (A-I) and (A-II) are assumed

In order to complete the proof of the theorem under the assumptions in (A-
III) we need a definition, some additional notation and some lemmas. We start
with a definition of an admissible translate for a probability measure. Admissible
translates appear in a variety of settings in the literature, sometimes with slightly
different meanings, but for probability measures on the Borel subsets of R∞ with
i.i.d. coordinates our definition below agrees with that used by Shepp in Shepp
(1965) for a totally indistinguishable translate. It also agrees with terminology
used in the study of centered Gaussian measures µ on a separable Banach space,
where the admissible translates are the vectors in the Hilbert space Hµ given in
subsection 3.1, and in similar situations for other types of measures.

Definition 2.13. Let µ be a probability measure on the Borel subsets BE of an F-
space E, and for x ∈ E and A ∈ BE set µx(A) = µ(A−x). Then x is an admissible
translate of µ if µx and µ are mutually absolutely continuous with respect to one
another on (E,BE).

Lemma 2.14. If x is an admissible translate of the probability, µ, then −x is also
an admissible translate of µ.

Proof : Suppose µ(A+x) = 0. Then, x an admissible translate of µ implies µ((A+
x)− x) = 0, and hence µ(A) = 0. Conversely, if µ(A) = 0, then µ((A + x) − x) =
µ(A) = 0, and since x is an admissible translate, this implies µ(A+ x) = 0. �

When E is a sequence space, such as R∞ or `p, we denote the typical vector x
by writing x = (x1, x2, . . .) or x = {xk : k ≥ 1}.

Lemma 2.15. Let X take values in the F-space B and assume µ = L(X) is defined
on (B,BB). Let Λ : B → R∞ be such that

Λ(a) = (t1(a), t2(a), . . .), a ∈ B, (2.33)

where the maps tk(·), k ≥ 1, are BB measurable to the reals, and L(Λ(X)) =
L(−Λ(X)), i.e., Λ(X) has a symmetric distribution. If a ∈ B is such that
(t1(a), t2(a), . . .) is an admissible translate for the probability measure µΛ(A) =
µ(Λ−1(A)) = P (X ∈ Λ−1(A)), A ∈ BR∞ , then

HDT (a, µ) > 0, (2.34)

where T denotes all finite linear combination of the maps {tk : k ≥ 1}.

Proof : If HDT (a, µ) = 0, then there exists fn ∈ `0 such that

lim
n→∞

P (tfn(X) ≥ tfn(a)) = 0. (2.35)

By taking a subsequence, we may assume that∑
n≥1

P (tfn(X) ≥ tfn(a)) < ∞, (2.36)

and therefore P (tfn(X) ≥ tfn(a) i.o.) = 0.
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We now connect this with Λ and the fact that Λ(a) is an admissible translate.
For this purpose for n ≥ 1 let fn = (α1,n, α2,n, . . .) ∈ `0, x = (x1, x2, · · · ) ∈ R∞,
and 〈fn, x〉 =

∑
k≥1 αk,nxk,. We thus have

P (tfn(X)− tfn(a) ≥ 0 i.o.) = P (〈fn,Λ(X)− Λ(a)〉 ≥ 0 i.o.) (2.37)

= µ(u ∈ B : 〈fn,Λ(u)− Λ(a)〉 ≥ 0 i.o.) = µΛ(α ∈ R∞ : 〈fn, α− Λ(a)〉 ≥ 0 i.o.)

= µΛ(β + Λ(a) ∈ R∞ : 〈fn, β〉 ≥ 0 i.o.) = (µΛ)−Λ(a)(γ ∈ R∞ : 〈fn, γ〉 ≥ 0 i.o.) = 0.

Further,

(µΛ)−Λ(a)(γ ∈ R∞ : 〈fn, γ〉 ≥ 0 i.o.) = 0

if and only if (µΛ)−Λ(a)(γ ∈ R∞ : 〈fn, γ〉 < 0, eventually) = 1.

But, since Λ(a) = (t1(a), t2(a), · · · ) is an admissible translate for the probability
µΛ by Lemma 2.14 we also have −Λ(a) is an admissible translate and consequently

1 = µΛ(γ ∈ R∞ : 〈fn, γ〉 < 0, eventually) (2.38)

By symmetry of the measure µΛ we also have

1 = µΛ(γ ∈ R∞ : 〈fn, γ〉 > 0, eventually), (2.39)

which yields a contradiction. �

Proof of Theorem 2.6 assuming (A-III). As before, Theorem 2.2 shows (2.18)
is necessary for (2.17). Hence we turn to the converse, showing∑

k≥1

t2k(a)

λ2
k

< ∞ (2.40)

implies

HDT (a, µ) > 0. (2.41)

Since (2.16) holds, Lemma 2.15 will show (2.41) for a ∈ B satisfying (2.40)
provided we show Λ(a) = (t1(a), t2(a), . . .) is an admissible translate of µΛ, where
µ = L(X).

This follows using Kakutani’s result on the equivalence of infinite product mea-
sures as in Shepp (1965). That is, if µk = L(tk(X)) and νk = L(tk(X) + tk(a)) are
mutually absolutely continuous for k ≥ 1, then Λ(a) is an admissible translate for
µΛ if and only if

H(µΛ, µΛ+Λ(a)) =

∞∏
k=1

H(µk, νk) > 0, (2.42)

where µΛ+Λ(a) = L(Λ(X) + Λ(a)) and

H(µk, νk) =

∫
R
(
dµk

dx

dνk
dx

)
1
2 dx. (2.43)

Now

dµk

dx
(s) =

φ( s
λk

)

λk
, (2.44)
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dνk
dx

(s) =
φ( s−tk(a)

λk
)

λk
, (2.45)

and hence

H(µk, νk) =

∫
R
(
φ( s

λk
)

λk

φ( s−tk(a)
λk

)

λk
)

1
2 ds =

∫
R
(φ(t)φ(t− tk(a)

λk
))

1
2 dt. (2.46)

Now (2.40) and φ having finite information, since (2.15) holds, combine with part

(ii) of Theorem 1 of Shepp (1965) to imply Λ(a)/λ ≡ ( t1(a)λ1
, t2(a)

λ2
, . . .) is an admis-

sible translate of PY , where Y = Λ(X)/λ. Therefore, Kakutani’s theorem implies

H(PY , PY+Λ(a)/λ) > 0, (2.47)

and since an easy calculation shows

H(PY , PY+Λ(a)/λ) =
∞∏
k=1

∫
R
(φ(t)φ(t− tk(a)

λk
))

1
2 dt, (2.48)

(2.46), (2.47) and (2.48) combine to imply (2.42). Thus Kakutani’s theorem implies
Λ(a) is an admissible translate of µΛ and Lemma 2.15 completes the proof.

2.3. Proof of Theorem 2.7. Since {tk : k ≥ 1} ⊆ T we have

HDT (a, µn) ≤ inf
k≥1

1

n

n∑
j=1

I(tk(Xj) ≥ tk(a)), (2.49)

and hence it suffices to show for all n ≥ 1 and a ∈ B satisfying (2.20)

inf
k≥1

Zn,k(a) = 0, (2.50)

with probability one, where

Zn,k(a) =
1

n

n∑
j=1

I(tk(Xj) ≥ tk(a)). (2.51)

Since the random variables {tk(X) : k ≥ 1} are independent, the sequences {tk(Xj) :
k ≥ 1} consist of independent random variables, and as sequences are independent
and identically distributed for j ≥ 1. Hence fix n ≥ 1 and assume a ∈ B satisfies
(2.20).

Then, the sequence {Zn,k(a) : k ≥ 1} consists of independent random variables.
Furthermore, (2.19) then implies there exists δ > 0 and {ki : i ≥ 1} a subsequence
of the positive integers such that for all ki

P (tki(X) < tki(a)) ≥ δ. (2.52)

Therefore, for all n ≥ 1

P (Zn,ki(a) = 0) ≥ δn. (2.53)

Hence for n fixed, the independence in k ≥ 1 and the Borel-Cantelli lemma implies

P (Zn,ki(a) = 0 i.o. in i) = 1. (2.54)

Now (2.54) implies (2.50) with probability one, and the theorem is proved.
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3. Examples and explicit forms of half space depth

If {tk(X) : k ≥ 1} is a sequence of mean zero Gaussian random variables with
variances σ2

k ∈ (0,∞), k ≥ 1, then Theorems 2.2 and 2.6 readily apply to provide
necessary and sufficient conditions for the half space depth in (2.5) to be positive.
Theorem 2.7 and Corollary 2.9 also provide information about the empirical depth.
However, in this situation we can obtain an explicit formula for this depth. In
fact, the formula we obtain holds when the sequence {tk(X) : k ≥ 1} consists of
i.i.d. scaled symmetric stable random variables, which is interesting since among
the non-degenerate stable random variables only the Gaussians have a variance
and our conditions are in terms of second and higher moments. We also obtain
a formula for the Tukey half space depth for any centered Gaussian measure on
a separable Banach space B when the depth is computed using B∗. Finally, we
provide some information when the {tk(X) : k ≥ 1} are i.i.d. Rademacher random
variables, but in this case the results are less explicit.

3.1. An explicit formula for half region depth for stables. To obtain an explicit
formula for the half space depth for symmetric stable random variables we need
the following lemma on the sequence spaces `p, 0 < p ≤ 2. It is essentially proved
in Wheeden and Zygmund (1977), pp. 128-129, and hence we omit further details.

Lemma 3.1. If 1 < p < ∞, 1
p + 1

q = 1, and y = {yj : j ≥ 1} ∈ R∞, then

sup
x∈`0,||x||p=1

∑
j≥1

|xjyj | = ||y||q, (3.1)

where ||y||q = (
∑

j≥1 |yj |q)
1
q could well be infinity. If 0 < p ≤ 1, then (3.1) holds

with q = ∞ and ||y||∞ = supk≥1 |yk|, which again could be infinite.

Notation 3.2. If b = {bk : k ≥ 1} ∈ R∞ and c = {ck : k ≥ 1} is a strictly positive
sequence, we will write b/c to denote the sequence {bk/ck : k ≥ 1},

Proposition 3.3. Let S be a non-degenerate symmetric p-stable random variable
where 0 < p ≤ 2, and for ck ∈ (0,∞), k ≥ 1, assume {tk(X) : k ≥ 1} are in-
dependent with L(tk(X)) = L(ckS). If T denotes all finite linear combinations of
{tk : k ≥ 1} and for a ∈ B we let τ(a) = {tk(a) : k ≥ 1}, then

HDT (a, µ) = 1− P (S ≤ ||τ(a)/c||q), (3.2)

where q = ∞ for 0 < p ≤ 1, 1
p + 1

q = 1 for 1 < p ≤ 2.

Remark 3.4. If ||τ(a)/c||q = ∞ in (3.2), then HDT (a, µ) = 0 for 0 < p ≤ 2.
Moreover, since c is fixed, the depth is continuous as a function of the sequence
τ(a)/c in the q-norm when restricted to the set where ||τ(a)/c|||q < ∞, but it is
highly discontinuous with respect to the product topology on R∞. If p = 2, S has
variance one, and ck = 1, k ≥ 1, then for any a ∈ B

HDT (a, µ) = 1− Φ(||τ(a)||2), (3.3)

where Φ(·) is the distribution function of a centered Gaussian random variable
with variance one. Also, if 1 < p ≤ 2, then it is easy to see from Remark 2.8 that
consistency fails at all a ∈ B where the depth is strictly positive.
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Proof : Since the sequence {tk(X) : k ≥ 1} is independent and symmetric, it suffices
to show

inf
α∈`0,tα(a)>0

P (
tα(X)

tα(a)
≥ 1) = 1− P (S ≤ ||τ(a)/c||q) (3.4)

Now

tα(X)

tα(a)
=

∑
k≥1 αktk(X)∑
k≥1 αktk(a)

, (3.5)

and using independence and that the random variables {tk(X), k ≥ 1} are p-stable,
we therefore have

L( tα(X)

tα(a)
) = L(

(
∑

k≥1 |αkck|p)
1
p∑

k≥1 αktk(a)
S). (3.6)

Hence,

inf
α∈`0,tα(a)>0

P (
tα(X)

tα(a)
≥ 1) = inf

α∈`0,tα(a)>0
P (S ≥

∑
k≥1 αktk(a)

(
∑

k≥1 |αkck|p)
1
p

). (3.7)

Letting βk = |αk|sign(tk(a)), k ≥ 1, and using the continuity of the distribution of
S, we have

inf
α∈`0,tα(a)>0

P (
tα(X)

tα(a)
≥ 1) = P (S ≥ sup

β∈`0,||β||∞>0

∑
k≥1 |βktk(a)|

(
∑

k≥1 |βkck|p)
1
p

). (3.8)

Setting

γk =
βkck

(
∑

k≥1 |βkck|p)
1
p

, k ≥ 1, (3.9)

we have

sup
β∈`0,||β||∞>0

∑
k≥1 |βktk(a)|

(
∑

k≥1 |βkck|p)
1
p

= sup
{γ∈`0,||γ||p=1}

∑
k≥1

|γktk(a)/ck| = ||τ(a)/c||q,

(3.10)

where the last equality follows from Lemma 4 provided p and q are related as
indicated in the proposition. �

Our next result obtains the analogue of the p = q = 2 case of Proposition 3.3
when X is a centered Gaussian random vector X taking values in a separable
Banach space B and the half space depth is given by

HDB∗(a, µ) = inf
t∈B∗

P (t(X) ≥ t(a)) (3.11)

where B∗ is the dual of B. As before, we assume X is defined on the probability
space (Ω,F , P ) and is measurable from F to the Borel subsets of B, and let µ =
L(X).

Let || · || and || · ||B∗ denote the norms on B and B∗, respectively. Then, by the
Fernique-Landau-Shepp result Fernique (1970); Landau and Shepp (1970) for some
s > 0 ∫

B

exp{s||x||2}dµ(x) < ∞, (3.12)
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and hence the linear map S : B∗ → B given by the Bochner integral

Sf =

∫
B

xf(x)dµ(x) (3.13)

is continuous from B∗ to B. The Hilbert space Hµ generating µ is given by the
completion of the range of S with respect to the norm || · ||µ obtained from the
inner product

〈Sf, Sg〉µ =

∫
B

f(x)g(x)dµ(x). (3.14)

Moreover, Hµ can be viewed as a subset of B, since for x ∈ Hµ

‖x‖ ≤ σ(µ)‖x‖µ (3.15)

where

σ(µ) ≡ sup
‖f‖B∗≤1

(∫
B

f2(x)dµ(x)

)1/2

< ∞. (3.16)

It is also well known that the support of the Gaussian measure µ is given by the
closure of Hµ in B, which we denote by H̄µ, and that µ(Hµ) = 0 when Hµ is infinite
dimensional. Of course, Hµ = H̄µ when Hµ is finite dimensional, so in that case
µ(Hµ) = 1.

Additional properties relating Hµ, 〈·, ·〉µ, B, and the measure µ can be found in
Lemma 2.1 of Kuelbs and Zinn (2008). However, the above suffice to state our
proposition on the half space depth in (3.11) for Gaussian measures, and for the
following useful lemma used in its proof. The proof of the lemma is in Kuelbs and
Zinn (2008), where it appears in a slightly more general form as Lemma 2.2. Once
we have this lemma, the remainder of the proof follows as in Proposition 3.3.

Lemma 3.5. Let µ be a centered Gaussian measure on B, and assume Hµ and
|| · ||µ are defined as above. If

θ(x) = sup
f∈B∗,

∫
B

f2dµ≤1

f(x), (3.17)

then θ(x) = ||x||µ for x ∈ Hµ, and θ(x) = ∞ for x ∈ B −Hµ.

Proposition 3.6. Let X be a B-valued centered Gaussian random vector as above,
and assume Φ(·) is the distribution function of a mean zero-variance one Gaussian
random variable. Then,

HDB∗(a, µ) = 1− Φ(||a||µ), a ∈ Hµ, (3.18)

and

HDB∗(a, µ) = 0, a ∈ B −Hµ. (3.19)

Furthermore,

µ(a ∈ B : HDB∗(a, µ) = 0) = 0 or 1 (3.20)

according as Hµ is a finite dimensional Hilbert space or an infinite dimensional
Hilbert space. In addition, if Hµ is infinite dimensional, then for all a ∈ Hµ the
empirical half space depth given in (2.3) or (2.4) with T = B∗ is zero with P -
probability one. Hence the empirical half depth fails to approximate the true half
space depth for all a ∈ Hµ in this setting, i.e. consistency fails at all such points.
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Proof : As mentioned following (3.16), since µ is a Gaussian measure with mean vec-
tor zero, µ(Hµ) has probability one or zero, according as Hµ is a finite dimensional
Hilbert space or an infinite dimensional Hilbert space, so (3.20) follows immediately
once we verify (3.18) and (3.19).

Since f(x) is centered Gaussian with variance σ2
f ≡

∫
B
f2(x)dµ(x) for f ∈ B∗,

it follows that

HDB∗(a, µ) = inf
f∈B∗,f(a)>0

µ(x : f(x) ≥ f(a)) = inf
f∈B∗,f(a)>0

[1− Φ(f(a)/σf )].

(3.21)

Using the continuity of Φ and that it is increasing, we thus have

HDB∗(a, µ) = 1− Φ( sup
f∈B∗,f(a)>0

f(a)/σf ). (3.22)

Moreover, since

sup
f∈B∗,f(a)>0

f(a)/σf = θ(a), (3.23)

where θ(·) is as in (3.17), we therefore have (3.18) and (3.19).
If Hµ is infinite dimensional, then there exists a sequence {tk : k ≥ 1} ⊆ B∗ such

that {Stk = S(tk) : k ≥ 1} are orthonormal in Hµ, for all a ∈ Hµ,

lim
k→∞

tk(a) = 0,

and {tk(X) : k ≥ 1} are independent centered Gaussian random variables with
variance one. Thus, for all a ∈ Hµ and µn = 1

n

∑n
j=1 δXj , where X,X1, X2, · · · are

i.i.d. B-valued Gaussian random vectors, the empirical depth

HDB∗(a, µn) = inf
t∈B∗

µn(x ∈ B : t(x) ≥ t(a)) ≤ inf
k≥1

1

n

n∑
j=1

I(tk(Xj) ≥ tk(a)).

Hence, as in the proof of Theorem 2.7 for n ≥ 1 fixed, the independence in k ≥ 1
and the Borel-Cantelli lemma easily imply the empirical half space depth is zero
with P -probability one. Thus, the proposition is proved. �

3.2. The Rademacher case. The explicit results obtained in Propositions 3.3 and 3.6
depend on the scaling properties of the symmetric stable laws, and therefore are
likely quite special. They also involve continuous distributions, so for contrast
we examine the special discrete case where {tk(X) : k ≥ 1} are independent
Rademacher random variables. Of course, Theorem 2.2 implies that

HDT (a, µ) = 0 (3.24)

whenever
∑

k≥1 t
2
k(a) = ∞, but, as can be seen from Lemma 3.8 below, that is not

the entire story. Furthermore, although the condition (2.14) in (A-I) of Theorem
2.6 is not applicable, once we prove Lemma 3.8, it is easy to see how a suitable
modification of the proof of Theorem 2.6 and the conditions in (A-I) allow us to
identify the set where the depth is strictly positive. We also indicate how the ideas
in Montgomery-Smith’s paper Montgomery-Smith (1990) provides an alternative
approach to obtain the results for Rademacher {tk(X) : k ≥ 1}. Finally, we point
out that Lemma 3.8 can be refined to apply to other bounded random variables, and
hence Proposition 3.7 below has comparable analogues. For example, if {tk(X) :
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k ≥ 1} are independent, symmetric random variables with E(t2k(X)) ∈ (0,∞), (A-
II) holds, P (|tk(X)| ≤ bk) = 1 where bk < ∞ for all k ≥ 1, and L(tk(X)) has
support in every neighborhood of bk and of −bk for all k ≥ 1, then

sup
k≥1

|tk(a)|
bk

> 1 or
∑
k≥1

t2k(a)

σ2
k

= ∞ imply HDT (a, µ) = 0,

and

sup
k≥1

|tk(a)|
bk

< 1 and
∑
k≥1

t2k(a)

σ2
k

< ∞ imply HDT (a, µ) > 0.

What happens when supk≥1
|tk(a)|

bk
= 1 depends on whether L((tk(X)) has positive

mass at bk, or not. This can be seen in the following proposition, which summarizes
our results for Rademacher variables. Since its proof can easily be modified to
obtain the previous results, those details are omitted.

Proposition 3.7. Let {tk(X) : k ≥ 1} be independent Rademacher random vari-
ables. Then, (3.24) holds for all a ∈ B such that

∑
k≥1 t

2
k(a) = ∞ or

supk≥1 |tk(a)| > 1. In addition,

HDT (a, µ) > 0 (3.25)

for all a ∈ B such that
∑

k≥1 t
2
k(a) < ∞ and supk≥1 |tk(a)| ≤ 1, and consistency

fails at all such points a ∈ B.

The proof of the proposition requires the following lemma.

Lemma 3.8. Let {tk(X) : k ≥ 1} be independent Rademacher random variables.
If a ∈ B and supk≥1 |tk(a)| > 1, then

HDT (a, µ) = 0. (3.26)

Furthermore, if supk≥1 |tk(a)| ≤ 1, then for every d ≥ 1

HDRd(Πd(a), µ
Πd) ≥ 2−d, (3.27)

where Πd(a) = (t1(a), . . . , td(a)), a ∈ B, and µΠd is the image of µ on Rd via the
map Πd(·) : B → Rd.

Proof : If |tk0(a)| > 1, and α̂ = {δ(k, k0)sign(tk(a)) : k ≥ 1} where δ(k, k0) = 1
when k = k0 and zero otherwise, then

HDT (a, µ) = inf
α∈`0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) ≤ inf
α=α̂

P (α(X) ≥ α(a)) (3.28)

= P (sign(tk0(a))tk0(X) ≥ |tk0(a)|) = 0. (3.29)

Hence, (3.26) holds.
To verify (3.27) we observe that µΠd = L(PΠd(X)), and hence

HDRd(Πd(a), µ
Πd) = inf

α∈`0
P (

d∑
k=1

αktk(X) ≥
d∑

k=1

αktk(a))

≥ inf
α∈`0

P (

d−1∑
k=1

αktk(X) ≥
d−1∑
k=1

αktk(a), αdtd(X) ≥ αdtd(a))
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≥ inf
α∈`0

P (
d−1∑
k=1

αktk(X) ≥
d−1∑
k=1

αktk(a))P (αdtd(X) ≥ αdtd(a)), (3.30)

where the last inequality holds by the independence of the {tk(X) : k ≥ 1}. Fur-
thermore, for all k ≥ 1,

inf
s∈R

P (stk(X) ≥ stk(a)) = min[A1, A2], (3.31)

where

A1 = inf
s≥0

P (stk(X) ≥ stk(a)) = P (tk(X) ≥ tk(a))

and

A2 = inf
s<0

P (stk(X) ≥ stk(a)) = P (tk(X) ≤ tk(a)).

Hence |tk(a)| ≤ 1 implies Ai ≥ 1/2 for i = 1, 2, and (3.31) then implies (3.27) for
d = 1. Furthermore, (3.31) applied to (3.30) allows us to induct on d proving (3.27)
for all d ≥ 1. �

Proof of Proposition 3.7. If
∑

k≥1 t
2
k(a) = ∞, then (3.24) holds by Theorem

2.2, and when supk≥1 |tk(a)| > 1, we have (3.24) by Lemma 3.8. Hence it remains

to show that
∑

k≥1 t
2
k(a) < ∞ and supk≥1 |tk(a)| ≤ 1 imply (3.25). This follows

since (3.27) holds for all a ∈ B satisfying supk≥1 |tk(a)| ≤ 1, and hence, although
this is not equivalent (2.14) in (A-I), the proof of Theorem 2.6 shows that if (2.14)
is replaced by (3.27) in (A-I), then (3.25) holds provided

∑
k≥1 t

2
k(a) < ∞ and

supk≥1 |tk(a)| ≤ 1 for a ∈ B. Finally, Remark 2.8 following Theorem 2.7 implies
that for all such a ∈ B consistency fails.

Although Proposition 3.7 identifies those a ∈ B with positive half-space depth
for the Rademacher variables, it is unclear what its value might be on such points.
Below we obtain some estimates on a lower bound for this depth using two different
methods. The first method modifies the estimates in Lemma 2.12 appropriately,
and the second applies the delicate results in Montgomery-Smith (1990). However,
neither approach yields estimates that apply to all a ∈ B where the half space depth
is positive, and hence they do identify that collection of points as in Proposition 3.7.

Proposition 3.9. Let {tk(X) : k ≥ 1} be independent Rademacher random vari-

ables, and a ∈ B. If r ∈ N and δ are such that
∑

k>r t
2
k(a) ≤

1

4
and δ

√
r ≤ 1

4
, then

supk≥1 |tk(a)| ≤ δ implies

HDT (a, µ) = inf
α∈`0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) ≥
3

32
. (3.32)

Proof : If r, δ > 0 and α ∈ `0 are as indicated in the proposition, then∑
k≥1

αktk(a) =

r∑
k=1

αktk(a) +
∑

k≥r+1

αktk(a) ≤ δ
√
r‖α‖2 + ‖α‖2

(∑
k>r

t2k(a)
)1/2

.

Hence,
∑

k≥1 αktk(a) ≤
1

2
‖α‖2 , and

P
(∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)
)
≥ P

(∑
k≥1

αktk(X) ≥ 1

2
‖α‖2

)
(3.33)
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=
1

2
P
(
|
∑
k≥1

αktk(X)| ≥ 1

2
‖α‖2

)
=

1

2
P
(
|
∑
k≥1

αktk(X)|2 ≥ 1

4
‖α‖22

)
. (3.34)

Thus the Paley-Zygmund inequality and Lemma 2.11 (with the tk(X) Rademacher
random variables) applied to the last term in (3.34), imply

P
(∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)) ≥
9

32

(E[(
∑

k≥1 αktk(X))2])2

E[(
∑

k≥1 αktk(X))4]
≥ 3

32
, (3.35)

which proves the proposition. �

In order to use the results in Montgomery-Smith (1990) we introduce some norms
from the theory of interpolation of Banach spaces. Of course, (3.40) below plays a
role analogous to the `∞ and `2 assumptions in Proposition 3.7. The notation is
from Montgomery-Smith (1990), which defines for x ∈ `2 and t > 0

K1,2(x, t) ≡ K(x, t : `1, `2) = inf{||x′||1 + t||x′′||2 : x′, x′′ ∈ `2, x
′ + x′′ = x},

(3.36)

and

J∞,2(x, t) ≡ J(x, t : `∞, `2) = max{||x||∞, t||x||2}. (3.37)

Then, for t > 0, x ∈ `2 we have from Lemma 1 in Montgomery-Smith (1990) that

K1,2(x, t) = sup{
∑
k≥1

xkyk : y ∈ `2, J∞,2(y, t
−1) ≤ 1}, (3.38)

and Theorem 1 of Montgomery-Smith (1990) implies there is a constant c > 0 such
that for all x ∈ `2 and t > 0

P (
∑
k≥1

xkεk ≥ c−1K1,2(x, t)) ≥ c−1e−ct2 , (3.39)

where {εk : k ≥ 1} are independent Rademacher random variables.

Proposition 3.10. Let {tk(X) : k ≥ 1} be independent Rademacher random vari-
ables, and a ∈ B is such that

∑
k≥1 t

2
k(a) < ∞ . If c > 0 is as in (3.39) and for

some t0 > 0

max{c||{tk(a) : k ≥ 1}||∞, t−1
0 c||{tk(a) : k ≥ 1}||2} ≤ 1, (3.40)

then,

HDT (a, µ) ≥ c−1e−ct20 . (3.41)

Proof : If (3.40) holds, then (3.38) implies for all α ∈ `2 that

K1,2(α, t0) ≥ c
∑
k≥1

αktk(a). (3.42)

Since symmetry implies

HDT (a, µ) = inf
α∈`0,tα(a)>0

P (
∑
k≥1

αktk(X) ≥
∑
k≥1

αktk(a)), (3.43)

(3.39),(3.42), and (3.43) combine to imply

HDT (a, µ) ≥ inf
α∈`0,tα(a)>0

P (
∑
k≥1

αktk(X) ≥ c−1K1,2(α, t0)) ≥ c−1e−ct20 . (3.44)



852 James Kuelbs and Joel Zinn

Therefore, (3.41) holds and the proposition is proved. �

3.3. Empirical depths for the Mosler-Polyakova version of Liu’s simplicial depth.
The depths considered to this point have been based on linear combinations of the
one dimensional functionals {tk : k ≥ 1}, but they may as well take values in Rd.
The recent manuscript by Mosler and Polyakova (2012) uses this approach to define
depths on B. That is, let Dd(·, ·) be a depth on Rd, and assume Θ is a collection
of Borel measurable maps from B to Rd. Then, for µ a Borel probability measure
on B and a ∈ B, define

DΘ(a, µ) = inf
θ∈Θ

Dd(θ(a), µ
θ), (3.45)

where µθ(A) = µ(θ−1(A)), A a Borel subset of Rd.
In connection with their application to data clouds in B, the paper Mosler and

Polyakova (2012) points out that there may be problems with this sort of depth
when Θ is too large. The next proposition provides an explicit example of this
problem in connection with the empirical estimation of DΘ(a, µ) when B = R∞

and Dd(·, ·) is simplicial depth as in Liu (1990). That is, for x ∈ Rd and Q a Borel
probability measure on Rd

Dd(x,Q) = P (x ∈ co(Y1, . . . , Y(d+1))), (3.46)

where Y1, . . . , Y(d+1) are i.i.d. with law Q and co(Y1, . . . , Y(d+1)) denotes the open
convex hull of Y1, . . . , Y(d+1). In particular, it is interesting to observe via (3.51)-
(3.54) below that empirical estimation is not dependable when enough independence
is inherent in the data, even if Θ is only countable.

Some further notation is as follows. Let X,X1, X2, . . . be i.i.d. R∞ valued ran-
dom vectors with X = (η1, η2, . . .) where η, η1, η2, . . . are i.i.d. real valued random
variables, and Xj = (η1,j , η2,j , . . .), j ≥ 1. For x = (x1, x2, . . .) ∈ R∞, let

θk(x) = (xik+1, . . . , xik+1
), (3.47)

where ik = (k − 1)d, k = 1, 2, . . . , and henceforth assume Θ = {θk : k ≥ 1}. Then,
for a = (a1, a2, . . . , ad, a1, a2, . . . , ad, . . .) ∈ R∞ we have θk(a) = (a1, . . . , ad) for all
k ≥ 1. Furthermore, for all k ≥ 1, u ≥ 0, the probability

P (θk(a) ∈ co(θk(Xu+1), . . . , θk(Xu+(d+1)))) (3.48)

is independent of k and u, and denoted by λ(a). For a ∈ R∞, we define

Zn,k(a) =
∑
Jn,d

I(θk(a) ∈ co(θk(Xj1), . . . , θk(Xjd+1
))), (3.49)

where
Jn,d = {(j1, . . . , jd+1) : 1 ≤ j1 < · · · < jd+1 ≤ n}.

Then, for a ∈ R∞, and Dd(x,Q) the simplicial depth of (3.46) with
Q = L(η1, . . . , ηd), we follow Liu (1988) and Liu (1990), and consider the sam-
ple analogue of (3.45) to be

DΘ,n(a) = inf
k≥1

Zn,k(a)

Nn,d
, (3.50)

where Nn,d = n!
(d+1)!(n−d−1)! . This is slightly different than what one would have

if the empirical simplicial depth were defined in terms of the empirical probability
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measure Pn = 1
n

∑n
k=1 δXk

, as then Nn,d would be replaced by n(d+1)

(d+1)! . However,

since these quantities differ by a non-random quantity which is O( 1n ), we lose no
generality in using (3.50).

Proposition 3.11. Let X,X1, · · · be i.i.d. R∞-valued Borel measurable random
vectors on the probability space (Ω,F , P ) as indicated above, and assume η has a
probability density on R. Also, assume DΘ(a, µ) is defined using simplicial depth
on Rd as above, and Θ = {θk : k ≥ 1}. Then, {θk(X) : k ≥ 1} are i.i.d. Rd-
valued random vectors with absolutely continuous distribution Q on Rd, and for
a = (a1, a2, . . . , ad, a1, a2, . . . , ad, . . .) ∈ R∞ we have

DΘ(a, µ) = inf
k≥1

P (θk(a) ∈ co(θk(X1), . . . , θk(Xd+1))) = λ(a). (3.51)

Furthermore, for each k ≥ 1 we have with P–probability one that

lim
n→∞

|Zn,k(a)

Nn,d
− λ(a)| = 0, (3.52)

but with probability one

|DΘ,n(a)−DΘ(a, µ)| = | inf
k≥1

Zn,k(a)

Nn,d
− λ(a)| = λ(a). (3.53)

Hence, for λ(a) > 0, the empirical simplicial depth fails to approximate the true
simplicial depth as n → ∞ in this model.

Remark 3.12. For the proof of the proposition we only need that η does not have an
atom of size one, but when using the open convex hull in the definition of simplicial
depth something close to absolute continuity is needed to have λ(a) > 0 for a large
collection of points. Furthermore, it is also important in the proofs of various useful
properties of the simplicial depth in Rd for d ≥ 2. For example, see the results in
Liu (1990). Finally, if the integer d ≥ 2 is fixed, then essentially the same proof
provides an analogous result provided we take η, η1, . . . to be Rd valued random
vectors with absolutely continuous distribution.

Proof. Since θk(a) = (a1, · · · , ad) for k ≥ 1, the independence structure we
have assumed in n and k implies that (3.52) follows from the law of large numbers
for U -statistics, see, for example, Hoeffding (1961), or Theorem 4.1.4 in de la Peña
and Giné (1999). Moreover,

{Zn,k(a) = 0} = {
∑
Jn,d

I(θk(a)ε/co(θk(Xj1), . . . , θk(Xjd+1
))) = Nn,d},

where

I(θk(a)ε/co(θk(Xj1), . . . , θk(Xjd+1
)))

= I(θk(a)ε/co((ηik+1,j1 , . . . , ηik+1,jd+1
), . . . , (ηik+1,j1 , . . . , ηik+1,jd+1

))).

Since θk(a) = (a1, · · · , ad) we therefore have

{Zn,k(a) = 0} ⊇ A1,n,k ∪A2,n,k,

where

A1,n,k = {
∑
Jn,d

I(a1 < ηik+1,j1 , . . . , a1 < ηik+1,jd+1
) = Nn,d},
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and

A2,n,k = {
∑
Jn,d

I(a1 > ηik+1,j1 , . . . , a1 > ηik+1,jd+1
) = Nn,d}.

Now

A1,n,k = {a1 < ηik+1,1, . . . , a1 < ηik+1,n},
and

A2,n,k = {a1 > ηik+1,1, . . . , a1 > ηik+1,n},
and hence

P (A1,n,k) = P (η > a1)
n and P (A2,n,k) = P (η < a1)

n.

Since η has a continuous distribution function P (η < a1) + P (η > a1) = 1 and
hence

P (Zn,k(a) = 0) ≥ P (η > a1)
n + P (η < a1)

n > 0, (3.54)

Applying the Borel-Cantelli lemma with n ≥ 1 fixed, the independence in k and
(3.54) implies

P (Zn,k(a) = 0 i.o. in k) = 1. (3.55)

and hence P (infk≥1 Zn,k(a) = 0) = 1. Thus (3.55) implies (3.53) with probability
one, which proves the proposition.

Acknowledgement: It is a pleasure to thank the referees for a careful reading of
the manuscript. Their comments and suggestions led to a number of improvements
in the exposition.
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