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Abstract. We prove the scaling relation χ = 2ξ− 1 between the transversal expo-
nent ξ and the fluctuation exponent χ for directed polymers in a random environ-
ment in d dimensions. The definition of these exponents is similar to that proposed
in Chatterjee (2013) in first-passage percolation. The proof presented here also
establishes the relation in the zero temperature version of the model, known as
last-passage percolation.

1. Introduction

This paper is about Directed Polymers in a Random Environment. In this model,
we place non-negative, independent, identically distributed random variables (τe),
one at each nearest neighbor edge of Zd. For u, v vertices of Zd, a directed path from
u to v is a sequence of vertices (vk)

n
k=0, and nearest neighbor edges ek = (vk,vk+1),

k = 0, . . . , n− 1 such that v0 = u, vn = v and the coordinates of the vk’s are non-
decreasing in k.

Given β > 0 we define the partition function from u to v at inverse temperature
β as

Zβ(u,v) =
∑

γ:u→v

exp(−βτ(γ)) ,
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where the sum runs over all directed paths from u to v and τ(γ) =
∑

e∈γ τe. Note
that to have a non-empty collection of directed paths one needs the coordinates of
the final point to be greater than or equal to those of the initial point. We will
write this condition as u ≤ v. We then extend the partition function to Rd in
the natural way: if u ∈ Rd then write [u] for the unique lattice point such that
u ∈ [u] + [−1/2, 1/2)d. We then define Zβ(u,v) = Zβ([u], [v]). Associated to
Zβ(u,v) is the random probability measure

µu,v(γ) =
1

Zβ(u,v)
exp(−βτ(γ)) .

In this paper we will study the relation between three exponents. The first
one, denoted by χ, measures the growth of the variance of the partition function
Zβ(0, ne), where

e = (1, . . . , 1) ∈ Zd ,

as n goes to infinity. The second, denoted by ξ, measures the transversal fluctua-

tions of a typical path sampled from µβ
0,ne. The third, denoted by κ, measures the

curvature of the limiting free energy in the direction e. We will show that these
exponents are related by

χ = κξ − (κ− 1) . (1.1)

This scaling relation is now known for an undirected zero temperature version
of the model that we consider here (first-passage percolation) (Chatterjee (2013),
see also Auffinger and Damron (2011)). The directed zero temperature case can be
proved by methods similar to those presented here (See Remark 1.10). The actual
values of χ and ξ are known for certain “exactly solvable” models in two dimensions
(see Borodin et al. (2013); Johansson (2000a,b); Seppäläinen (2012) for instance).
For these models in a appropriate sense, ξ = 2/3, κ = 2 and χ = 1/3 and therefore
(1.1) holds.

It is conjectured that in any dimension, under mild assumptions on the distribu-
tion of the τe’s, κ = 2. In this case, (1.1) becomes the famous KPZ scaling relation
(see Kardar et al. (1986)):

χ = 2ξ − 1 . (1.2)

We will define these exponents in Section 1.1, where we also state our main
result. First, we will state the shape theorem for the free energy. This theorem
is the analogue of the classical shape theorem proved by Richardson (1973) in the
the Eden model and then by Cox and Durrett (1981) for first-passage percolation
models. The shape theorem was extended to directed percolation models by Martin
in Martin (2004). Our proofs follow their ideas with minor modifications and are
presented in Appendix A. Let | · |1 denote the `1 norm in Zd. For x ∈ Zd

+ := {z =

(z1, . . . , zd) ∈ Zd : zi ≥ 0 for all i}, define the free energy as

F (0,x) = − 1

β
log

Zβ(0,x)

d|x|1
. (1.3)

(The factor d−|x|1 is present to force F (0,x) ≥ 0.)
We prove the following basic properties in Appendix A. They are analogous to

ones proved for directed last-passage percolation Martin (2004).

Proposition 1.1. If Eτe < ∞ then there exists a deterministic function f : Rd
+ →

R such that for all x,y ∈ Rd
+,
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(1) the following limit exists a.s. and in L1:

lim
n→∞

1

n
F (0, nx) = f(x) < ∞ .

(2) f is nonnegative. Furthermore,

inf
x∈Rd

+\{0}

f(x)

|x|1
> 0 (1.4)

if and only if P(τe = 0) < 1.
(3) f is positive homogenous; that is, for any λ ≥ 0, f(λx) = λf(x).
(4) f is invariant under permutation of the cooordinates.
(5) f(x+ y) ≤ f(x) + f(y).
(6) f is continuous.

The function f will be called the limiting free energy. We set

Bt = {x ∈ Rd
+ : F (0,x) ≤ t} and B = {x ∈ Rd

+ : f(x) ≤ 1} . (1.5)

Note that by the above proposition, B is compact and convex. The shape theorem
is then the following:

Proposition 1.2. If Eτd+α
e < ∞ for some α > 0 and P(τe = 0) < 1, then for any

ε > 0

P
(
(1− ε)B ⊆ Bt

t
⊆ (1 + ε)B for all sufficiently large t

)
= 1 .

We prove Propositions 1.1 and 1.2 in Appendix A.

1.1. Exponents and main result. We will now rigorously define the three exponents
mentioned above.

Let | · | denote the Euclidean norm in Rd. Our main assumption on the limiting
free energy is the following curvature requirement in the diagonal direction.

Assumption 1.1. There exists a positive number κ and positive constants C1, C2, ε
such that if z · e = 0 and |z| < ε then

C1|z|κ ≤ |f(e+ z)− f(e)| ≤ C2|z|κ . (1.6)

Remark 1.3. We fixed the direction e to simplify notation. All theorems can be
extended to any direction where the analogue of (1.6) holds. It is worth noting
that it is always possible to find directions (possibly different) where the lower and
upper bounds of (1.6) hold with κ = 2. (See for instance Chatterjee (2013, Section
5).)

Definition 1.4. The number κ that satisfies (1.6) is called the curvature exponent
of the polymer model in the diagonal direction.

We now define the other two exponents. Given x ∈ Rd we set L(x) to be the
line segment in Rd that interpolates between 0 and x. For any r > 0, we define the
cylinder of radius r between 0 and x as the set

Cx[r] :=

{
z ∈ Zd : inf

w∈L(x)
|z−w| < r

}
.

We say that a nearest neighbor path γ is in the cylinder Cx[r] if all vertices of γ lie
in Cx[r].
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Definition 1.5. The transversal exponent ξa is the smallest real number such that
for any ξ′ > ξa there exist α, δ > 0 such that for all n

P
(
µ0,ne(γ ∈ Cne[n

ξ′ ]) < 1− 1

n1+α

)
≤ e−nδ

. (1.7)

Definition 1.6. The transversal exponent ξb is defined as

ξb = inf

{
ξ : ∀ ε > 0, P

(
µ0,ne(γ ∈ Cne[n

ξ]) > 1− ε

)
→ 1

}
. (1.8)

Roughly speaking, the exponent ξ is such that a typical polymer path of length n
deviates from the straight line by a distance of order nξ. Definition 1.5 guarantees
that the path is inside any cylinder of radius nξ′ for ξ′ > ξa, while Definition 1.6
guarantees that a cylinder of radius nξ′′ for ξ′′ < ξb is not large enough to contain
the path. Note that trivially 0 ≤ ξb ≤ ξa ≤ 1.

We will need to define two fluctuation exponents.

Definition 1.7. The fluctuation exponent χa is defined as the smallest number
such that for any χ′ > χa, there exists α > 0 such that

sup
v∈Zd

+\{0}
E exp

(
α
|F (0,v)− EF (0,v)|

|v|χ′

1

)
< ∞ . (1.9)

Definition 1.7 says that the collection of random variables(
|F (0,v)− EF (0,v)|

|v|χ′

1

)
v∈Zd

+\{0}

is exponentially tight. It is known by the work of Piza (1997, Proposition 1(c)) (see
also Kesten (1993, Equation (1.15))) that this holds for χ′ = 1/2 if one assumes
finite exponential moments for the distribution of τe. The next definition guarantees
that the variance of F (0,v) is not significantly smaller than |v|2χb .

Definition 1.8. The fluctuation exponent χb is defined as the largest number such
that for any χ′′ < χb

inf
n

Var(F (0, ne))

n2χ′′ > 0 . (1.10)

Our main result in this paper is the following.

Theorem 1.9. Assume that the polymer model has exponents as in definitions
1.4-1.8 with χ := χa = χb and ξ := ξa = ξb. Then

χ = κξ − (κ− 1) . (1.11)

We finish this section with a few remarks.

Remark 1.10. The directed zero temperature case, commonly called last-passage
percolation, can be analyzed in the same way (and even with the same proof)
as what is given here. The only difference is that we must make the assumption
P(τe = S) < 1, where S is the supremum of the support of the distribution of τe.
In particular, one can show that under the assumption of existence of exponents
analogous to above, one has the relation χ = κξ−(κ−1). Equation (1.11) has been
shown to hold for some definition of exponents in certain “exactly solvable” cases
Johansson (2000a). For more information on exact solvable models the reader is
invited to check the survey Corwin (2012) and the references therein.
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Remark 1.11. For a log-gamma distribution on edge-weights in dimension 2,
Seppäläinen (2012) has explicitly derived the limiting shape for the free energy.
Consequently it can be verified that the exponent κ equals 2 in this case.

Remark 1.12. Equation (1.11) is trivially true when the environment is not present.
Indeed, for β = 0 the polymer path is roughly a simple random walk and therefore
χ = 0 and ξ = 1/2. In two dimensions, if β scales to zero as a function of n
as β = cn−1/4, it is also known that (1.11) holds with d = 1 with χ = 0, ξ =
1/2. Interestingly, in this case, the fluctuations do not decouple from the random
environment and the polymer path has non-trivial scaling limit Alberts et al. (2010).
Equation (1.11) also holds for directed polymers in thin cylinders, for directions
asymptotically close to a coordinate axis Auffinger et al. (2012).

Remark 1.13. The proof of the scaling relation presented here can be viewed as
a rigorous version of the following heuristic. The left-side of (1.11) represents
the order of the energy difference of two typical paths sampled from the measure
µ0,ne1 . These two paths are both in a cylinder of size nξ and their energy difference
is governed by the error estimate of the f function in this set. Assumption 1.1 is a
geometric constraint on this estimate and gives rise to the right side of (1.11). To
implement this idea, we actually use partition functions (for different realizations
of the disorder) instead of measures and couple two nearly-independent partition
functions (in parallel cylinders) instead of sampling two independent paths.

The rest of this manuscript is organized as follows. In Section 2, we prove
the upper bound χ ≤ κξ − (κ − 1). This is the most involved part of the proof
of Theorem 1.9. In Section 3, we prove the lower bound by the same argument
initially given by Newman and Piza (1995). In Appendix A we prove Proposition 1
and the Shape Theorem while in Appendix B we establish a lemma that estimates
the rate of convergence of F (0,x) towards f(x).

2. Proof of χ ≤ κξ − (κ− 1)

To prove the upper bound χ ≤ κξ−(κ−1) we will follow the strategy of Auffinger
and Damron (2011). We start with a lemma. Write I(A) for the indicator function
of the event A.

Lemma 2.1. Let X and Y be random variables with ‖X‖4, ‖Y ‖4 < ∞ and let E
be an event such that for some ε > 0,

|X − Y |I(E) ≤ ε almost surely.

Then

|Var X −Var Y | ≤ ‖X − Y ‖4(‖X‖2 + ‖Y ‖2)P(Ec)1/4 + ε(‖X‖2 + ‖Y ‖2) . (2.1)

Proof : Let X̃ = X − EX and Ỹ = Y − EY . The left side of (2.1) equals∣∣∣‖X̃‖22 − ‖Ỹ ‖22
∣∣∣ =

∣∣∣‖X̃‖2 − ‖Ỹ ‖2
∣∣∣ ∣∣∣‖X̃‖2 + ‖Ỹ ‖2

∣∣∣
≤ ‖X − Y ‖2(‖X‖2 + ‖Y ‖2)
= ‖(X − Y )I(Ec) + (X − Y )I(E)‖2(‖X‖2 + ‖Y ‖2)
≤ ‖X − Y ‖4(‖X‖2 + ‖Y ‖2)P(Ec)1/4 + ε(‖X‖2 + ‖Y ‖2) .

�
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Note that by Piza (1997, Proposition 1(b)), χb ≤ 1/2. Therefore if ξa = 1 then
the bound χ ≤ κξ − (κ − 1) holds. Because we will deal with the case χ = 0 in a
later argument, we will now assume that

ξa < 1 and χb > 0 (2.2)

so that we can choose ξ′ and χ′′ such that

ξa < ξ′ < 1 and 0 < χ′′ < χb . (2.3)

Let vn be a point in Zd with vn · e = 0 and |vn| ∈ [2nξ′ , 3nξ′ ]. Set

δF (n, ξ′) = F (0, ne)− F (vn,vn + ne) .

2.1. Lower bound on Var δF (n, ξ′).

Proposition 2.2. Assume (2.2). For each ξ′ and χ′′ chosen as in (2.3), there
exists C = C(ξ′, χ′′) such that for all n,

Var δF (n, ξ′) ≥ Cn2χ′′
.

Proof : Let C1 = Cne[n
ξ′ ] and C2 = C1 + vn. Note that by our choice of vn,

C1 ∩C2 = ∅. We now define the restricted partition functions Z1(n)
′ and Z2(n)

′ as
follows:

Z1(n)
′ =

∑
γ:0→ne,γ⊆C1

exp(−βτ(γ)), Z2(n)
′ =

∑
γ:vn→vn+ne,γ⊆C2

exp(−βτ(γ))

with the corresponding free energies F ′
1 and F ′

2 as in (1.3).
Note that F ′

1 and F ′
2 are independent random variables with the same distribu-

tion. We will now show that given our choice of the size of the cylinder C1, the
variance of F (0, ne) cannot be much higher than the variance of F ′

1.
Let α = α(ξ′) be given as in Definition 1.5. Let E be the event {F (0, ne) ≥

F ′
1 − 1

βn
−(1+α) and F (vn,vn + ne) ≥ F ′

2 − 1
βn

−(1+α)}. Note that

Ec ⊆ {logµ0,ne(C1) ≤ −n−(1+α)} ∪ {logµvn,vn+ne(C2) ≤ −n−(1+α)} .

Therefore from the inequality exp(−x) ≤ 1 − 1
2x for x small and positive and by

the definition of ξa there exists δ > 0 so that P(Ec) ≤ 2e−nδ

for n large enough.
By Lemma 2.1 with X = δF (n, ξ′), Y = δF (n, ξ′)′ := F ′

1−F ′
2 and ε = 2

βn
−(1+α)

there exists C1 > 0 such that

Var δF (n, ξ′)

≥ Var δF (n, ξ′)′ − (‖δF (n, ξ′)‖2 + ‖δF (n, ξ′)′‖2)(ε+ P(Bc)1/4‖δF (n, ξ′)

− δF (n, ξ′)′‖4)

≥ Var δF (n, ξ′)′ − C1n
2e−nδ/4 − C1n

−α .

Here we have used that each δF is a difference of logarithms of partition functions,
each of which has L4 norm bounded above by Cn (compare for example to the
contribution given by a deterministic path) for some constant C. Therefore there
exists a constant C2 such that for all n,

Var δF (n, ξ′) ≥ Var δF (n, ξ′)′ − C2 . (2.4)
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But δF (n, ξ′)′ is the difference of i.i.d. random variables distributed as F ′
1, so

Var δF (n, ξ′)′ = 2Var F1(n)
′ . (2.5)

By exactly the same argument as that given above, we can find C3 such that for
all n,

Var F1(n)
′ ≥ VarF (0, ne)− C3 .

Now, combining (2.4) with (2.5) and using the definition of χ′′, we can find C4 such

that for all n, Var δF (n, ξ′) ≥ C4n
2χ′′

. �

2.2. Upper bound on Var δF (n, ξ′). In this section we work with the same choice of
ξ′ that satisfies (2.3). We will prove the following.

Proposition 2.3. Assume (2.2) and that (1.4) holds for some C1, C2, ε and κ. For
each η satisfying ξ′ < η < 1 and each χ′ > χa, there exists D = D(η, χ′) such that
for all n,

Var δF (n, ξ′) ≤ Dn2η(1−κ)+2ξ′κ +Dn2ηχ′
.

Proof : Let C1 and C2 be as in the proof of the lower bound. Let B̃ be the convex
hull of C1 ∪ C2. Define

L1 = {v ∈ B̃ : v · e = 0}, R1 = L1 + bnηce

and L2 = L1+(n−bnηc)e, R2 = L1+ne. Let Z̃(u,v) be the constrained partition
function from u to v only considering paths that intersect both R1 and L2 and
define the corresponding free energy F̃ (u,v). Set

F̃1 = F̃ (0, ne), F̃2 = F̃ (vn,vn + ne).

As in the last section, if E is the event {F (0, ne) ≥ F̃1− 1
βn

−(1+α) and F (vn,vn+

ne) ≥ F̃2 − 1
βn

−(1+α)}, Lemma 2.1 implies that there exists a constant C5 such

that

Var δF (n, ξ′) ≤ Var (F̃1 − F̃2) + C5 . (2.6)

Therefore it suffices to bound Var (F̃1 − F̃2), which is equal to ‖F̃1 − F̃2‖22.
To do this, let

Mi = max
u∈Li,v∈Ri

Z(u,v), mi = min
u∈Li,v∈Ri

Z(u,v) for i = 1, 2 . (2.7)

Now,

|F̃1 − F̃2| =
∣∣∣∣− 1

β
log

Z̃(0, ne)

Z̃(vn,vn + ne)

∣∣∣∣
=

1

β

∣∣∣∣ log
∑

y∈R1,y′∈L2
Z(0,y)Z(y,y′)Z(y′, ne)∑

y∈R1,y′∈L2
Z(vn,y)Z(y,y′)Z(y′,vn + ne)

∣∣∣∣
≤ 1

β

∣∣∣∣ log M1M2

m1m2

∣∣∣∣.
(2.8)

Lemma 2.4. There exists a constant C6 such that for all n

E| logM1 − logm1|2 ≤ C6n
2ηχ′

+ C6n
2(η−κ(η−ξ′)) .
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Proof : Note that

E| logM1 − logm1|2 ≤ E
(

max
u1∈L1,v1∈R1
u2∈L1,v2∈R1

| logZ(u1,v1)− logZ(u2,v2)|2
)

≤ 4E
(

max
u1∈L1,v1∈R1

| logZ(0, nηe)− logZ(u1,v1)|2
)
.

(2.9)

Now

max
u1∈L1,v1∈R1

| logZ(0, nηe)− logZ(u1,v1)| ≤ I + II (2.10)

where

I = | logZ(0, nηe) + βnηf(e)|+ max
u1∈L1,v1∈R1

| logZ(u1,v1) + βf(v1 − u1)| ,

II = β max
u1∈L1,v1∈R1

|f(u1 − v1)− f(nηe)| .

To estimate the second term, note that for any u1 ∈ L1 and v1 ∈ R1

|f(v1 − u1)− f(nηe)| = nη

∣∣∣∣f (v1 − u1

nη
− e+ e

)
− f(e)

∣∣∣∣
≤ C2n

η

∣∣∣∣v1 − u1

nη
− e

∣∣∣∣κ
≤ C7n

η−κ(η−ξ′) ,

(2.11)

where we used the curvature assumption (1.6) and the fact that η > ξ′.
The estimation of I follows directly from Lemma B.1. Indeed, taking χa < χ̂ <

χ′, it provides α > 0 such that

sup
u1∈L1,v1∈R1

E exp

(
α
| logZ(u1,v1) + βf(u1 − v1)|

|u1 − v1|χ̂

)
< ∞. (2.12)

Now note that for any α > 0 and any positive random variable X one has

‖X‖2 ≤ 1

α
log 2EeαX . (2.13)

This can be seen by Jensen’s inequality as

eα‖X‖2 = 1 + α‖X‖2 +
∞∑

n=2

(α‖X‖2)n

n!

≤ 1 + α‖X‖2 + E
∞∑

n=2

(αX)n

n!
≤ α‖X‖2 + EeαX .

(2.14)

Because eα‖X‖2 ≥ 2α‖X‖2, we must have α‖X‖2 ≤ EeαX , so eα‖X‖2 ≤ 2EeαX .
Taking logarithms, we find (2.13).

Applying (2.13) to

X = max
u1∈L1,v1∈R1

| logZ(u1,v1) + βf(v1 − u1)|
|v1 − u1|χ̂
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we obtain an upper bound for EX2 of(
1

α
log 2EeαX

)2

≤

(
1

α
log 2

∑
u1,v1

E exp

[
α
| logZ(u1,v1) + βf(v1 − u1)|

|v1 − u1|χ̂

])2

≤ C8(log n)
2

where in the last inequality we used (2.12) and bounded the total number of points

in R1 ∪L1 from above by some constant times nηξ′ . Since |v1 −u1|χ̂ ≤ C9n
ηχ̂ this

immediately implies that

EI2 ≤ C10n
2ηχ′

. (2.15)

Hence, combining (2.15) and (2.11) we finish the proof of the lemma.
�

Going back to the proof of the proposition, using Lemma 1 and (2.8) we see that

since F̃1 and F̃2 have the same distribution

Var(F̃1 − F̃2) ≤
4

β2
(C6n

2ηχ′
+ C6n

2(η−κ(η−ξ′))) .

Using (2.6), this ends the proof of Proposition 2.3.
�

2.3. Proof of χ ≤ κξ − (κ− 1). In this section we prove one of the two inequalities
for the relation (1.1). We first show that χ ≥ 0. We then split the proof into two
cases depending on the value of χ. The proof for χ > 0 will follow from the previous
sections and the proof for χ = 0 will be essentially a rewrite of Chatterjee (2013,
Section 9).

2.3.1. χ is always non-negative. We follow the analogous proof of Chatterjee (2013,
Section 3). To prove that χ ≥ 0 it suffices to show the existence of a constant C > 0
such that for any v ∈ Zd

+ \ {0} , VarF (0,v) ≥ C. We proceed as follows. Assume
that the edge-weights are non-degenerate. Let E be the collection of edges incident
to the origin. Let c1 < c2 be positive constants such that

P(max
e∈E

τe ≤ c1) > 0 and P(min
e∈E

τe ≥ c2) > 0 .

Define a new environment τ ′e such that τ ′e = τe if e /∈ E and τ ′e is a independent copy
of τe if e ∈ E. Let F ′ be the corresponding free energy for the environment τ ′ and F
be the sigma-algebra generated by the edges e /∈ E. Under the event maxe∈E τe ≤ c1
and mine∈E τ ′e ≥ c2 one has that for all v ∈ Zd

+\{0}, |F (0,v)−F ′(0,v)| > c2−c1 >
0. Therefore

EVar(F (0,v) | F) =
1

2
E
[
E(|F (0,v)− F ′(0,v)|2 | F)

]
>

1

2
(c2 − c1)

2 > 0

which implies that for any v ∈ Zd
+ \ {0}, VarF (0,v) ≥ C with C = 1

2 (c2 − c1)
2.
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2.3.2. The case χ > 0. We combine Propositions 2.2 and 2.3. Indeed, it follows
from these propositions that for any η satisfying ξ′ < η < 1 and any χ′′ < χ < χ′

one has positive constants C1, C2 such that for all n ≥ 1,

C1n
2χ′′

≤ C2n
2η(1−κ)+2ξ′κ + C2n

2ηχ′
.

For any η with ξ′ < η < 1, we may choose χ′′ = χ′′(η) and χ′ = χ′(η) (both
converging to χ as η → 1) that are so close to χ that 2ηχ′ < 2χ′′. This implies

that for all n large enough C1

2 n2χ′′ ≤ C2n
2η(1−κ)+2ξ′κ. This can only hold if χ′′ ≤

η(1− κ) + ξ′κ. Taking η to 1 and therefore χ′′ to χ we obtain

χ ≤ κξ − (κ− 1) .

2.3.3. The case χ = 0. In this section we prove the inequality χ ≤ κξ−(κ−1) in the
case χ = 0, beginning with a lemma that replaces Chatterjee (2013, Lemma 9.1).
For M > 0, let F (M)(0,x) be the free energy of all paths from 0 to x in the constant
environment, where each edge-weight equals M .

Lemma 2.5. Assume that P(τe = L) < 1, where L is the infimum of the support
of the distribution of τe and Eτd+α

e < ∞ for some α > 0. There exists M > L such
that

P
(
F (0,x) ≥ F (M)(0,x) for all but finitely many x ∈ Zd

+

)
= 1 .

Proof : Because of the shape theorem and Lemma A.6, it suffices to show that for
some M > L,

EF (0,x) ≥ F (M)(0,x)

for all nonzero x ∈ Zd
+. We do this by a computation similar to that given in the

proof of Proposition 1.1, item 2. Write N(0,x) for the number of directed paths
from 0 to x. We first consider the case L = 0 and use Jensen’s inequality:

EF (0,x)≥− 1

β
log

∑
γ:0→x Ee−βτ(γ)

d|x|1
=

1

β
(|x|1 log d−logN(0,x))−|x|1

β
logEe−βτe .

On the other hand,

F (M)(0,x) = − 1

β
log

e−βM |x|1N(0,x)

d|x|1
=

1

β
(|x|1 log d− logN(0,x)) +M |x|1 .

So choosing M < − 1
β logEe−βτe (which is positive by assumption), the proof is

complete.
In the case L > 0 we define new edge-weights (se) by se = τe−L. Define F s(0,x)

in the same way as F (0,x) but for the weights (se). By the above argument, we
find K > 0 such that

P
(
F s(0,x) ≥ F (K)(0,x) for all but finitely many x ∈ Zd

+

)
= 1 .

But F s(0,x) + L|x|1 = F (0,x), so we can set M = K + L. �

Proof of χ ≤ κξ − (κ− 1) in the case χ = 0. In the rest of this section, we essen-
tially copy Chatterjee (2013) with minor changes. We will prove the inequality by
contradiction. Assume that χ = 0 and κξ − (κ − 1) < χ. Then ξ < (κ − 1)/κ.
Choose ξ′ such that

ξ < ξ′ < (κ− 1)/κ .

Let δ = δ(ξ′) be as in the definition of ξa.
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Choose ζ, r′ and r such that 0 < r′ < r < ζ < δ/d and ζ < ξ′. Let n be a positive
integer, to be chosen large at the end of the proof. Choose any z with z · e = 0 and
|z|1 ∈ (nξ′ , 2nξ′ ]. Let w = ne/2 + z. Then because ξ′ < (κ− 1)/κ, there exists C1

such that for all n,

|f(w)− f(ne/2)| ≤ C1 .

Similarly,

|f(ne−w)− f(ne/2)| ≤ C1 .

Therefore, for all n,

|f(ne)− (f(w)− f(ne−w))| ≤ C2 . (2.16)

By Lemma B.1 and the assumption that χ = 0, the probabilities P(|F (0,w) −
f(w)| > nr), P(|F (w, ne) − f(ne −w)| > nr) and P(|F (0, ne) − f(ne)| > nr) are

all bounded by e−C3n
r−r′

for some C3 depending on r only. These observations,
along with (2.16), imply that there are constants C4 and C5, independent of our
choice of n such that

P(|F (0, ne)− (F (0,w) + F (w, ne))| > C4n
r) ≤ e−C5n

r−r′

. (2.17)

By the definition of ξa, there exists C6 such that

P(µ(γ ∈ Cne[n
ξ′ ]) > 1− e−βnr

) ≥ 1− C6 exp(−nδ) . (2.18)

Let F0(0, ne) be the free energy of all paths from 0 to ne that stay inside of the

cylinder Cne[n
ξ′ ]. Inequality (2.18) means in particular that

P(F0(0, ne)− F (0, ne) ≤ nr) ≥ 1− C6 exp(−nδ) .

Combining this with (2.17), we see that if E1 is the event

E1 := {|F0(0, ne)− (F (0,w) + F (w, ne))| ≤ C7n
r} ,

(for C7 = C4 + 1) then

P(E1) ≥ 1− C6e
−nδ

− e−C5n
r−r′

. (2.19)

Let V be the set of all lattice points within `1 distance nζ from w. Let ∂V be
the set of v ∈ V which have one neighbor outside of V . Write ∂1V for the set of
points v ∈ ∂V with v ≤ w. Letting L,M be as in Lemma 2.5, we have

P(E2) → 1 as n → ∞ ,

where E2 is the event that F (v,w) ≥ FM (v,w) for all v ∈ ∂1V .
Let E(V ) denote the set of edges in directed paths from vertices in ∂1V to w.

Let (τ ′e)e∈E(V ) be a collection of i.i.d. random variables, independent of the original
edge-weights, but having the same distribution. For e /∈ E(V ) let τ ′e = τe. Choosing
L′ such that L < L′ < M , let E3 be the event

E3 := {τ ′e ≤ L′ for all e ∈ E(V )} .

If E3 occurs, then for each directed path σ from a vertex in ∂1V to w, τ ′(σ) ≤ L′nζ

and therefore F ′(v,w) ≤ F (L′)(v,w), where F ′(v,w) is defined the same way as
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F (v,w) but for the weights (τ ′e). We can estimate

F (0,w)− F ′(0,w) = − 1

β
log

∑
v∈∂1V

e−βF (0,v)e−βF (v,w)∑
v′∈∂1V

e−βF ′(0,v′)e−βF ′(v′,w)

= − 1

β
log

∑
v∈∂1V

e−βF (0,v)e−β(F (v,w)−F ′(v,w))e−βF ′(v,w)∑
v′∈∂1V

e−βF (0,v′)e−βF ′(v′,w)
.

On the event E2 ∩ E3, we have

F (v,w)−F ′(v,w) ≥ F (v,w)−F (M)(v,w)+F (M)(v,w)−F (L′)(v,w) ≥ (M−L′)nζ

and therefore F (0,w)−F ′(0,w) ≥ (M−L′)nζ . This means that if all of the events
Ei, i = 1, 2, 3 occur simultaneously then

F0(0, ne) ≥ F (0,w) + F (w, ne)− C7n
r

≥ F ′(0,w) + F ′(w, ne)− C7n
r + (M − L′)nζ .

As ζ > r, we would then have, for some C8,

µ′
0,ne(γ ∈ Cne[n

ξ′ ]) ≤ e−C8n
ζ

,

where µ′
0,ne is the Gibbs measure for the weights (τ ′e).

Since the intersection ∩3
i=1Ei’s occurs with probability at least e−C9n

ζd

,

P(µ0,ne(γ ∈ Cne[n
ξ′ ]) ≥ e−C8n

ζ

) ≤ 1− e−C9n
ζd

.

Recalling that ζd < δ, this contradicts (2.18).
�

3. Proof of the lower bound χ ≥ κξ − (κ− 1)

The argument below was initially given for zero temperature in the work of
Newman and Piza (1995) as a rigorous version of one by Krug - Spohn and for
positive temperature (but with a different definition of exponents than the ones
we consider here) by Piza (1997). It was adapted by others, including Chatterjee
(2013), in several different models. Since this argument has appeared so many
times in the literature we try to be brief in this section and leave some details to
the reader.

The proof will proceed by contradiction. Suppose that χ < κξ− (κ− 1). Choose
ξ′ such that

χ+ κ− 1

κ
< ξ′ < ξ ≤ 1 .

Let V be the set of all lattice points v in the set Cne[2n
ξ′ ] \ Cne[n

ξ′ ] such that
0 ≤ v ≤ ne. We first claim that there is a constant C1 such that for any v ∈ V
and any n ∈ Z+,

f(v) + f(ne− v) ≥ f(ne) + C1n
κξ′−(κ−1) . (3.1)

Indeed, by symmetry, we may assume that v has Euclidean norm at least n
2 . Let

w be the orthogonal projection of v onto e. By convexity of f we have

f(v) + f(ne−v)− f(ne) = f(v)− f(w) + f(ne−v)− f(ne−w) ≥ f(v)− f(w) ,

but also
f(v)− f(w) = f(v −w +w)− f(w) ≥ C1n

κξ′−(κ−1)

by Assumption 1.1.
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Now, take χ1, χ2 such that χ < χ1 < χ2 < κξ′ − (κ− 1). Then by Lemma B.1,
there is a constant C2 such that for n large enough, the following three inequalities
hold:

P
(
F (0, ne) > nf(e) + nχ2

)
≤ exp

(
− C2n

χ2−χ1
)
,

P
(
F (0,v) < f(v)− nχ2

)
≤ exp

(
− C2n

χ2−χ1
)
,

P
(
F (v, ne) < f(ne− v)− nχ2

)
≤ exp

(
− C2n

χ2−χ1
)
.

This combined with κξ′ − (κ− 1) > χ2 shows that for some C3 > 0 if n is large
enough, for any v ∈ V , ,

P
(
F (0, ne) ≥ F (0,v) + F (v, ne)− C3n

κξ′−(κ−1)

)
≤ 3 exp

(
− C2n

χ2−χ1
)
.

The size of V is a polynomial function in n. This implies that there exists C4 > 0
such that

P
(
F (0, ne) ≥ F (0,v) + F (v, ne)− C3n

κξ′−(κ−1) for some v ∈ V

)
≤ exp

(
− C4n

χ2−χ1
)
.

Note that this translates to

P
(
µ0,ne({γ : v ∈ γ}) ≤ e−βC3n

κξ′−(κ−1)

for some v ∈ V

)
≤ exp(−C4n

χ2−χ1) ,

and therefore for some C5 > 0 we have

P
(
µ0,ne({γ : v ∈ γ for some v ∈ V }) ≤ e−βC5n

κξ′−(κ−1)

)
≤ exp(−C4n

χ2−χ1) .

Now, an application of Borel-Cantelli shows that ξ′ is such that for all ε > 0

P
(
µ0,ne(γ ∈ Cne[n

ξ′ ]) > 1− ε

)
→ 1

and this contradicts the definition of ξb.

Appendix A. Proof of Proposition 1.1 and the Shape Theorem

In this section, we prove Propositions 1.1 and 1.2. We start with a concentration
lemma that will be used in both propositions. Let z1, . . . , zk, z ∈ Zd

+ such that

z1 ≤ · · · ≤ zk ≤ z .

Define the free energy of all paths that pass through all zi’s from 0 to z as

F (0, z;~z) = F (0, z1, . . . , zk, z) .

Lemma A.1. Let ~z = (z1, . . . , zk) and z be as above. Assume that P(τe ≤ L) = 1.
For any t > 0,

P
(
|F (0, z;~z)− EF (0, z;~z)| > t

√
|z|1
)

≤ 2 exp

(
− t2

2L2

)
.
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Proof : Let F0 denote the trivial sigma-algebra and Fj , j ≥ 1 be the sigma-algebra
generated by the weights τe such that both endpoints of e have `1 norm no bigger
than j. To prove the lemma, we will write F (0, z;~z)− EF (0, z;~z) as a sum of |z|1
martingale differences:

F (0, z;~z)− EF (0, z;~z) =

|z|1∑
j=1

Dj −Dj−1, where Dj = E
(
F (0, z;~z) | Fj

)
.

For a fixed j, write F [τ (1), τ (2), τ (3)] for F (0, z;~z) as a function of the edge weights
for edges with both endpoints of `1-norm no bigger than j (τ (1)), strictly bigger
than j (τ (3)) and all other edges (τ (2)). The bound on the edge weights implies

that if (τe) and (τ̃
(2)
e ) are sampled independently from P then

|F [τ (1), τ (2), τ (3)]− F [τ (1), τ̃ (2), τ (3)]| ≤ L P-almost surely .

Therefore a calculation gives

|Dj+1 −Dj | ≤ L for all j .

By the Azuma-Hoeffding inequality Azuma (1967),

P
(
|F (0, z;~z)− EF (0, z;~z)| > s

)
≤ 2 exp

(
−s2

2|z|1L2

)
. (A.1)

The lemma follows by taking s = t
√
|z|1. �

A.1. Proof of Proposition 1.1. We will first prove existence of f and then we will
prove properties (2)-(5).

A.1.1. Existence of the limit. As usual, the L1 and almost sure convergence (to a
finite limit) of limn→∞

1
nF (0, nx) for x ∈ Zd

+ follows from Kingman’s subadditive
ergodic theorem. Because the model is not invariant under non-integer translations,
to apply the same theorem with x ∈ Rd

+ we have to enlarge the space, as in Hoffman
(2008).

Let Ω̃ = [−1/2, 1/2)d × Ω and define a probability measure P̄ on this space

as m × P, where m is Lebesgue measure. We write a typical configuration in Ω̃

as ω̃ = (r, ω). For any y ∈ Rd
+, define the translation operator T̃y on Ω̃ in the

following manner. If z ∈ Rd
+ then write z for z− [z]. Then T̃y is defined as

T̃y(r, ω) = (r+ y, T[r+y]ω) ,

T[r+y]ω is the translation of ω by vertex [r+ y]. Note that P̄ is invariant under T̃y

(but not necessarily ergodic). Last, we define the free energy between vertices u
and v in (r, ω) as

F (u,v)(r, ω) = F (r+ u, r+ v)(ω) .

Now that we set up the enlarged space, we briefly note that to show the existence
of

f(x) = lim
n→∞

(1/n)F (0, nx) (A.2)

almost surely and in L1, we may assume that all coordinates of x are strictly
positive. Otherwise x is contained in a lower dimensional subspace of Rd and all
directed paths from 0 to x must stay in this subspace. By permutation invariance
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of the coordinates we could then assume the first k coordinates of x are the nonzero
ones and argue for the existence of f as below in the space Rk

+.
So fix x = (x1, . . . , xd) with all coordinates nonzero and apply Kingman’s sub-

additive ergodic theorem to the double sequence of variables (Fm,n)m≤n (for each
ergodic component of the measure P̄) defined by

Fm,n(ω̃) = F (mx, nx)(ω̃) .

This provides the existence of the limit

(1/n)F (0, nx) → f(x)(ω̃) < ∞ P̄-almost surely (A.3)

and in L1(P̄). We are left to argue that this implies convergence under the original
measure and that this limit is almost surely constant.

We first address almost sure convergence. Equation (A.3) means that if we
select a point r uniformly at random in [−1/2, 1/2)d, then with probability one,
(1/n)F (r, r + nx) converges for almost all ω. Fix some such r and call this limit
f(x). Because it does not depend on any finite number of edge weights, f(x) is
constant P-almost surely. Now write

|(1/n)F (0, nx)− f(x)| ≤ |(1/n)F (r, r+ nx)− f(x)|
+(1/n)|F (0, nx)− F (r, nx)|
+(1/n)|F (r, nx)− F (r, r+ nx)| .

By definition, F (r, nx) = F (0, nx), so we are left to show

(1/n)|F (0, nx)− F (0, r+ nx)| → 0 almost surely . (A.4)

By the positivity of the xi’s, fix k ≥ 1 such that (1/k) ≤ minj xj . For such a
choice,

−1/2 + nxj ≥ 1/2 + (n− k)xj

for all j and n ≥ k and therefore

r+ (n− k)x ≤ nx ≤ r+ (n+ k)x for n ≥ k .

By subadditivity,

F (0, r+ (n+ k)x)− F (nx, r+ (n+ k)x) ≤ F (0, nx)

≤ F (0, r+ (n− k)x)

+F (r+ (n− k)x, nx) .

Because (1/n)F (0, r+ (n+ k)x) and (1/n)F (0, r+ (n− k)x) converge to the same
number, we need then to show that

(1/n)F (r+ (n− k)x, nx) and (1/n)F (nx, r+ (n+ k)x) converge to 0 .

Translating both terms back by (n− k)x it suffices to show that for each ε > 0 and
R > 0, ∑

n

P

 sup
t≤s

|t|1,|s|1≤R

F (t, s) ≥ εn

 < ∞ ,

which follows because the supremum inside has finite mean. This proves almost
sure existence of the limit (A.2).

To show L1 convergence, let

T (0,x) = max
γ:0→x

τ(γ) (A.5)
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and note the inequality

0 ≤ F (0, nx) ≤ T (0, nx) + (n/β)|x|1 log d .

Because (1/n)T (0, nx) converges almost surely and in L1 (see Martin (2004, Propo-
sition 2.1)), the dominated convergence theorem finishes the proof.

A.1.2. Properties of f . We prove now that f has the properties of Proposition 1.1.
For item (2), the assumption P(τe = 0) < 1 implies that Ee−βτe < 1. So let
x ∈ Rd

+ \ {0} and fix a directed path σ : 0 → [x]:

EF (0,x) = − 1

β
E log

∑
γ:0→[x] exp(−βτ(γ))

d|[x]|1
≥ − 1

β
logEe−βτ(σ)

= − 1

β
log
(
Ee−βτe

)|[x]|1
.

Here we have used Jensen’s inequality with the logarithm. This implies

f(x) = lim
n→∞

1

n
EF (0, nx) ≥ −|x|1

β
logEe−βτe ,

giving (1.4).
Next, if λ > 0 then

f(λx) = lim
n→∞

F (0, nλx)

n
= λ lim

n→∞

F (0, nλx)

nλ
= λf(x) ,

proving item (3). (Here we have used that the convergence (1/n)F (0, nx) occurs
over real n going to infinity, which is a slight extension of part (1).) Items (4) and
(5) follow immediately from the facts that f is deterministic and F is subadditive.
This implies convexity of f : if x,y ∈ Rd

+ and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

and therefore f is continuous except possibly at the boundary of Rd
+.

For the remainder of the section we prove continuity at the boundary using a
direct adaptation of the arguments of Martin (2004). The strategy of the proof is
to first consider the case where the weights are bounded and then use a truncation
argument. The next lemma is the analogue of Lemma 3.2 in Martin (2004).

Lemma A.2. Suppose P(τe ≤ L) = 1. Let R > 0 and ε > 0. There exists δ > 0
such that if |x| ≤ R and xj = 0 (where 1 ≤ j ≤ d), then for all 0 ≤ h ≤ δ,

|f(x+ hej)− f(x)| < ε .

Proof : By symmetry, we may take j = 1. We write a general vector in Rd
+ as

(x,x) where x ∈ R+ and x ∈ Rd−1
+ . We need to show that given R > 0, for

x = (x2, x3, . . . , xd) ∈ Rd−1
+ ,

f(h,x) → f(0,x), as h → 0+ ,

uniformly in {x : |x| ≤ R}.
Let x and h > 0 be as above and n ∈ Z+. A path from 0 to the point [n(h,x)]

contains exactly [nh] steps which increase the first coordinate, so can be decomposed
into a concatenation of paths from (r,mr) to (r,mr+1), r = 0, 1, 2, . . . , [nh], where

mr ∈ Zd−1
+ for each r and

0 = m0 ≤ m1 ≤ · · · ≤ m[nh]+1 = [nx] . (A.6)
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As noted in Martin (2004), the number of the choices for the mr satisfying the
above equation is

d∏
i=2

(
[nxi] + [nh]

[nh]

)
.

By Stirlings formula, this is exp[nφ(h,x) + o(n)], where

φ(h,x) =
∑

2≤i≤d

xi>0

(
h log

h+ xi

h
+ xi log

xi + h

xi

)
.

For each 0 ≤ i ≤ [nh] define F̄ (mi,mi+1) as the free energy of all paths joining
(i,mi) and (i+ 1,mi+1). We trivially have

F (0, n(h,x)) = − 1

β
log

∑
m0,m1,··· ,m[nh]+1

[∏
i

exp(−βF̄ (mi,mi+1))

]
.

For fixed ~m = {mr}, by subadditivity and the definition of f

E
[nh]∑
i=0

F̄ (mi,mi+1) ≥ EF (0, n(0,x)) ≥ nf(0,x) . (A.7)

We can now apply Lemma A.1 to obtain the existence of C1 > 0 such that for any
a > 0

P

∣∣∣∣∣∣
[nh]∑
i=0

F̄ (mi,mi+1)− E
[nh]∑
i=0

F̄ (mi,mi+1)

∣∣∣∣∣∣ ≥ na

 ≤ 2 exp

(
−C1

na2

L2

)
.

Because φ(h,x) tends to 0 uniformly in |x| ≤ R as h goes to zero, we can choose δ
such that if 0 ≤ h < δ then

φ(h,x) ≤ min

{
βε

2
,
C1ε

2

18L2

}
.

Now, taking the sum over all possible ~m’s,

P
[
F (0, n(h,x)) ≤ nf(0,x)− nε

]
≤ exp(nφ(h,x) + o(n))

·max
~m

P

(∑
i

F̄ (mi,mi+1) ≤ nf(0, x)− nε+
n

β
φ(h,x) + o(n)

)
≤ exp(nφ(h,x) + o(n))

·max
~m

P

(∑
i

F̄ (mi,mi+1)−
∑
i

EF̄ (mi,mi+1) ≤ −nε/2 + o(n)

)
.

For n large, so that o(n) ≤ nε/6, we can apply the concentration inequality with
a = ε/3 to get an upper bound of

2 exp(nφ(h,x) + o(n)) exp

(
−C1

nε2

9L2

)
.

By the choice of h, this is summable and therefore we can apply Borel-Cantelli to
obtain

f(0,x)− f(h,x) ≤ ε .
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In the other direction, subadditivity implies

f(h,x)− f(0,x) ≤ f(h,0) = hEτe ≤ hL ,

which also tends to zero as h goes to zero, uniformly over all x. �

Now that we have established Lemma A.2, continuity of f at the boundary of
Rd

+ follows immediately from the argument of Martin (2004, Lemma 3.3).

Lemma A.3. Suppose P(τe ≤ L) = 1. Then f is continuous on Rd
+.

Proof : The proof is identical to that of Martin (2004, Lemma 3.3), replacing each
instance of the word “concave” by “convex.” �

The next step is to show that one can remove the truncation and finally prove
item (5). For general weights τe we define the truncated ones τLe = min{τe, L}.
There is a corresponding free energy FL(u,v) for u ≤ v in Rd

+ and limiting free
energy fL(u). Clearly

FL(u,v) ≤ F (u,v) and so fL(u) ≤ f(u) .

The first part of the lemma says that fL → f uniformly on compact subsets of
Rd

+, implying continuity for f . The second and third parts will be used later in the
shape theorem.

Lemma A.4 (Truncation Lemma). Suppose that Eτd+α
e < ∞ for some α > 0.

(1) Given R > 0 and ε > 0 there exists L such that

sup
u∈Rd

+

|u|1≤R

(f(u)− fL(u)) ≤ ε .

(2) Given ε > 0 there exists L such that

P(F (0, z) ≤ FL(0, z) + ε|z|1 for all but finitely many z ∈ Zd
+) = 1 .

(3) Given ε > 0 there exists L such that

EF (0, z) ≤ EFL(0, z) + ε|z|1 for all z ∈ Zd
+ .

Proof : We begin by estimating the difference between the free energies. This will
be used in all parts of the lemma. For u ∈ Rd

+,

F (0,u)− FL(0,u) = − 1

β
log

∑
γ:0→[u] e

−β
∑

e∈γ τe∑
γ:0→[u] e

−β
∑

e∈γ τL
e

= − 1

β
log

∑
γ:0→[u] e

−β
∑

e∈γ τe−τL
e −β

∑
e∈γ τL

e∑
γ:0→[u] e

−β
∑

e∈γ τL
e

≤ max
γ:0→[u]

∑
e∈γ

(τe − τLe ) .

(A.8)

The last term in (A.8) is just the last-passage time (see (A.5)) T̃L(0, [u]) from 0 to
[u] using i.i.d. edge weights (τ̃e) whose distribution satisfies

τ̃e =

{
0 with probability P(τe ≤ L)

τe − L with probability P(τe > L)
.
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Since Eτ̃e < ∞, Martin (2004, Proposition 2.2) implies that the limit shape function

0 ≤ GL(u) := lim
n→∞

(1/n)T̃L(0, nu) < ∞

exists a.s. and in L1. Furthermore, Martin (2004, Lemma 3.5(i)) provides a con-
stant c > 0 such that

for all z ∈ Zd
+, ET̃L(0, z) ≤ c|z|1

∫ ∞

0

P(τ̃e ≥ s)1/d ds . (A.9)

The condition Eτd+α
e < ∞ implies that the integral on the right is finite. Given

ε,R > 0, choose L such that
∫∞
0

P(τ̃e ≥ s)1/d ds < ε/(cR). Then for any u ∈ Rd
+

such that |u|1 ≤ R,

GL(u) = lim
n→∞

(1/n)ET̃L(0, nu) ≤ ε .

Therefore, f(u)− fL(u) ≤ GL(u) ≤ ε, proving part 1.
For the second part, use (A.9) to choose L large enough that GL(u) ≤ ε

2 |u|1 for

all u ∈ Rd
+. The shape theorem in last-passage percolation Martin (2004, Theorem

5.1) implies that for all but finitely many u ∈ Zd
+,∣∣∣∣∣ max

γ:0→u

∑
e∈γ

(τe − τLe )−GL(u)

∣∣∣∣∣ ≤ ε

2
|u|1 . (A.10)

Combining (A.8), GL(u) ≤ ε
2 |u|1 and (A.10), we end the proof of part two.

Part three also follows from (A.9); given ε > 0 we can find L such that for all

z ∈ Zd
+, ET̃L(0, z) ≤ ε|z|1. Taking expectation in (A.8) and combining with this

statement finishes the proof. �

A.2. Proof of Proposition 1.2. If P(τe = 0) = 1 then the model is deterministic
and there is nothing to prove. Otherwise we use part (ii) of Proposition 1.1 and
subadditivity to get

0 < inf
06=x∈Rd

+

f(x)

|x|1
≤ sup

0 6=x∈Rd
+

f(x)

|x|1
≤ d f(1, 0, . . . , 0) = d Eτe < ∞ .

Therefore to prove the shape theorem we must show the following. For any ε > 0,
there are almost surely only finitely many z ∈ Zd

+ such that

|F (0, z)− f(z)| ≥ ε|z|1 .

This statement is a consequence of the following lemmas:

Lemma A.5. For each ε > 0,

P
(
|F (0, z)− EF (0, z)| < ε|z|1 for all but finitely many z ∈ Zd

+

)
= 1 .

Lemma A.6. For each ε > 0, for all but finitely many z ∈ Zd
+, |EF (0, z)−f(z)| <

ε|z|1.

Proof of Lemma A.5: If the weights are bounded by L > 0 then one can apply the
concentration inequality of Lemma A.1 to obtain:

P
(
|F (0, z)− EF (0, z)| > ε|z|1

)
≤ 2 exp

(
−ε2|z|1

2L2

)
. (A.11)
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For n ∈ N, there are no more than C(n+ 1)d points z such that |z|1 = n. Thus,∑
z∈Zd

+

P
(
|F (0, z)− EF (0, z)| > ε|z|1

)
≤ 2C

∑
n∈Z+

(n+ 1)d exp

(
− ε2n

2L2

)
< ∞

and Borel-Cantelli finishes the proof in the case of bounded weights.
The case of unbounded weights now follows by combining the above result with

parts 2 and 3 of the truncation lemma. �

Proof of Lemma A.6: From subadditivity, EF (0, z) ≥ f(z) for all z. Therefore we
just need to show that if ε > 0 then EF (0, z) < f(z)+ε|z|1 except for finitely many
z.

First, assume that the weights are bounded by L > 0. Fix a > 0. By Proposition
1.1, part (6), f is continuous on Rd

+, and hence is uniformly continuous on the

compact subset {x ∈ Rd
+ : |x|1 ≤ 2d}. Choose 0 < u < min(1, a) such that

whenever |x|1 ≤ d and |x− x′|1 ≤ ud, |f(x)− f(x′)| ≤ a .

Now let

C =

{
ur, r ∈

{
0, 1, . . . ,

⌊
1

u

⌋}d}
.

C is a finite subset of Rd
+ and for each y ∈ C, we have (by Proposition 1.1 part (1)),

1

n
EF (0, ny) → f(y), as n → ∞ .

Hence there is N = N(a) such that, for all n ≥ N and all y ∈ C,
EF (0, ny) ≤ n(f(y) + a) .

Let z = (z1, . . . , zd) in Zd
+ satisfy max zi ≥ N . Define

y = u

(⌊
z1

umax zi

⌋
, . . . ,

⌊
zd

umax zi

⌋)
.

Then y ∈ C, with (max zi)y ≤ z, with |y|1 ≤ d and with∣∣∣∣ z

max zi
− y

∣∣∣∣
1

≤ ud ≤ ad .

Using first subadditivity, the bound τe ≤ L, then the continuity bounds above,
we obtain

EF (0, z) ≤ EF (0, (max zi)y) + EF (0, z− (max zi)y)

≤ EF (0, (max zi)y) +

(
L+

log d

β

)
|[z− (max zi)y]|1

≤ (f(y) + a)(max zi) +

(
L+

log d

β

)
(|z− (max zi)y|1 + d)

≤ f(z) + (max zi)

(
2a+

(
L+

log d

β

) ∣∣∣∣ z

max zi
− y

∣∣∣∣
1

+

(
L+

log d

β

)
d

max zi

)
≤ f(z) + (max zi)

(
2a+

(
L+

log d

β

)
ad+

(
L+

log d

β

)
d

max zi

)
.
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Hence if a < ε(4(2+ (L+(1/β) log d)d))−1, then for all z with |z|1 ≥ max(N(a),
2(L+ (1/β) log d)d/ε), we have

EF (0, z) ≤ f(z) + ε|z|1 ,

and this finishes the proof in the case of bounded weights.
The case of unbounded weights follows from parts 1 and 3 of the truncation

lemma. Indeed, given ε > 0, part 1 gives L such that for all u ∈ Rd
+ with |u|1 ≤ 1,

f(u)− fL(u) < ε/3. Then as both limiting free energies are positive homogeneous,

f(u)− fL(u) < (ε/3)|u|1 for all u ∈ Rd
+ .

Now part 3 provides a (possibly larger) L such that also

EF (0,u)− EFL(0,u) ≤ (ε/3)|u|1 for all u ∈ Rd
+

By combining these with the first part of this proof, we are done.
�

Appendix B. Alexander’s method

The goal of this last section is to prove the following lemma, which is based
entirely on work of Alexander (1997) and the extension by Chatterjee (2013).

Lemma B.1. Given χ′ > χa there exists α > 0 such that

sup
x∈Zd

+\{0}
E exp

(
α
|F (0,x)− f(x)|

|x|χ′

1

)
< ∞ .

The main task in proving Lemma B.1 is to control the order of deviations of
h(x) := EF (0,x) from f(x). In the zero temperature case this was beautifully done
by Alexander (1997) and adapted by Chatterjee (2013). Recently, in the positive
temperature case, Alexander and Zygouras (2013) showed that EF (0,x)− f(x) =

O( |x|
1
2

log |x| ) under a certain assumption on the weight distribution. Since we take

χ′ > χa and therefore do not require a fine result involving logarithms, we do not
need to use the methods developed in Alexander and Zygouras (2013).

Recall that B is the limit shape of the model, defined in (1.5). We set Hx

to be any hyperplane tangent to f(x)B at x. Let H0
x be the translation of Hx

that passes through the origin. There exists a unique linear functional fx on Rd

satisfying fx(y) = 0 for all y ∈ H0
x and fx(x) = f(x). Note that fx(y) ≤ f(y) for

all y. We can see this as follows. If y = 0 it is clearly true. Otherwise, y/f(y) ∈ B
and so fx(y/f(y)) ≤ 1. Furthermore, since f is convex and symmetric about the
diagonal through 0 and e, we have

f(z) ≥ f(e)|z|1
d

. (B.1)

From subadditivity and symmetry we also obtain

f(z) ≤ f(e1)|z|1 . (B.2)

Fix χ′′ > χa. For each x ∈ Rd
+, C > 0 and K > 0 define

Qx(C,K) := {y ∈ Zd
+ : |y|1 ≤ K|x|1, fx(y) ≤ f(x), h(y) ≤ fx(y) + C|x|χ

′′

1 } ,

Gx := {y ∈ Zd
+ : fx(y) > f(x)} ,
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∆x := {y ∈ Qx : y adjacent to Zd \Qx, y not adjacent to Gx } ,

Dx := {y ∈ Qx : y adjacent to Gx} .

Now set

Qx = Qx(C1, 2d
3/2f(e1)/f(e) + 1)

where C1 := 320d2/α. The following lemma is the analogue of Alexander (1997,
Lemma 3.3) and Chatterjee (2013, Lemma 4.3):

Lemma B.2. There exists a constant C ′ > 0 such that if |x|1 > C ′ then the
following hold.

(1) If y ∈ Qx then f(y) ≤ 2f(x) and |y|1 ≤ 2d
3
2 f(e1)|x|1/f(e).

(2) If y ∈ ∆x then h(y)− fx(y) ≥ C1|x|χ
′′

1 (log |x|1)/2.
(3) If y ∈ Dx then fx(y) ≥ 5g(x)/6.

Proof : The proof is as in Chatterjee (2013, Lemma 4.3) where equations (B.1) and
(B.2) replace equation (11), which is not necessarily true in the model considered
here. �

Although in the last lemma we had to use equations (B.1) and (B.2) to adapt the
proof of Lemma B.2, the next result follows directly from Alexander (1997, Lemma
1.6) (or Chatterjee (2013, Lemma 4.2)). In fact, those are undirected results, but
the directed version follows as in Alexander (1997, Section 4).

Lemma B.3. Suppose that for some M > 1, C > 0,K > 0 and a > 1 the following
holds. For each x ∈ Zd

+ with |x|1 ≥ M , there exists an integer n ≥ 1, a directed
lattice path γ from 0 to nx and a sequence of sites 0 = v0 ≤ v1 ≤ . . . ≤ vm = nx
in γ such that m ≤ an and vi − vi−1 ∈ Qx(C,K) for all 1 ≤ i ≤ m. Then for some
C ′ > 0 and for all x ∈ Zd

+ we have

f(x) ≤ h(x) ≤ f(x) + C ′|x|χ
′′

1 log |x|1 .

We now check that the assumption on the existence of the exponent χa implies
that the hypothesis of Lemma B.3 is satisfied with the choices C = C1, K =
2d

3
2 f(e1)/f(e) and M large enough. We will need more notation though.
A collection of vertices (vi), i = 0, . . . ,m satisfying the hypothesis of Lemma B.3

is called a skeleton of nx with m+ 1 steps. Let Sm be the collection of all possible
skeletons of nx with m+ 1 steps. That is, define

Sm = {~v : ~v = {0 ≤ v1 ≤ v2 ≤ . . . ≤ vm} with

vi+1 − vi ∈ Qx(C,K) ∀i = 0, . . . ,m− 1} .

By Lemma B.2, part 1, there exists a constant C0 such that the cardinality of Sm

satisfies

|Sm| ≤ (C0|x|d1)m . (B.3)

Given a skeleton ~v, F (vi, vi+1), i = 0, . . . ,m − 1 are independent random vari-
ables. Also, by Definition 1.7 and Lemma B.2, part 1, there exists C1 > 0 such
that for all i,

E exp

(
α

Kχ′′

|F (vi, vi+1)− EF (vi, vi+1)|
|x|χ′′

1

)
< C1 .

Therefore, for all t ≥ 0
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P
(m−1∑

i=0

|F (vi, vi+1)− EF (vi, vi+1)| ≥ t

)
≤ exp

(
− αt

(K|x|1)χ′′

)
Cm

1 . (B.4)

Choosing t = C2m|x|χ
′′

1 log |x|1 for C2 large enough, a simple union bound com-
bining (B.3) with (B.4) implies that there exist constants C3 and C4 > 0 such that
if |x|1 ≥ C3 then

P
(
∃ ~v ∈ Sm such that

m−1∑
i=0

|F (vi, vi+1)− EF (vi, vi+1)| ≥ C2m|x|χ
′′

1 log |x|1
)

≤ e−C4m log |x|1 .

This however implies that |x|1 bigger than some C5,

P


∃ m ≥ 1, ~v ∈ Sm such that

m−1∑
i=0

|F (vi, vi+1)− EF (vi, vi+1)| ≥ C2m|x|χ
′′

1 log |x|1

 ≤ (1/2)e−C4m log |x|1 .

(B.5)
Once equation (B.5) is established one can follow the same lines as in the proof

of Alexander (1997, Proposition 3.4) to show that the hypothesis of Lemma B.3 is
satisfied. Namely, we obtain:

Lemma B.4. There exists a constant C such that if |x|1 ≥ C then for sufficiently
large n there exists a directed lattice path from 0 to nx with a skeleton of 2n+1 or
fewer vertices.

We finish this section with the proof of Lemma B.1.

Proof of Lemma B.1: Given χ′ > χa, let χ′′ be such that χ′ > χ′′ > χa. Taking
α as in Definition 1.7, Lemma B.3 (applied to χ′′) combined with the triangle
inequality implies the existence of C,C ′ > 0 such that for all x ∈ Zd

+ \ {0},

E exp

(
α
|F (0,x)− f(x)|

|x|χ′

1

)
≤ CE exp

(
α
|F (0,x)− EF (0,x)|

|x|χ′

1

)
< C ′ .

�
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