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Abstract. We study the random pinning model, in the case of a Gaussian envi-
ronment presenting power-law decaying correlations, of exponent decay a > 0. A
similar study was done in a hierachical version of the model Berger and Toninelli
(2013), and we extend here the results to the non-hierarchical (and more natural)
case. We comment on the annealed (i.e. averaged over disorder) model, which is far
from being trivial, and we discuss the influence of disorder on the critical properties
of the system. We show that the annealed critical exponent νa is the same as the
homogeneous one νpur, provided that correlations are decaying fast enough (a > 2).
If correlations are summable (a > 1), we also show that the disordered phase tran-
sition is at least of order 2, showing disorder relevance if νpur < 2. If correlations
are not summable (a < 1), we show that the phase transition disappears.

1. Introduction

The question of the influence of inhomogeneities on the critical properties of a
physical system has been studied in the physics literature for a great variety of
models. In the case where the disorder is IID, the question of relevance/irrelevance
of disorder is predicted by the so-called Harris criterion Harris (1974): disorder is
irrelevant if νpur > 2, where νpur is the correlation length critical exponent of the
homogeneous model. Following the reasoning of Weinrib and Halperin Weinrib and
Halperin (1983) one realizes that, introducing correlations with power-law decay
r−a (where a > 0, and r the distance between the points), disorder should be
relevant if νpur < 2/min(a, 1), and irrelevant if νpur > 2/min(a, 1). Therefore,
the Harris prediction for disorder relevance/irrelevance should be modified only if
a < 1.
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In the mathematical literature, the question of disorder (ir)relevance has been
very active during the past few years, in the framework of polymer pinning models
den Hollander (2009); Giacomin (2007, 2011). The Harris criterion has in particular
been proved thanks to a series of articles. We investigate here the polymer pinning
model in random correlated environment of Gaussian type, with correlation decay
exponent a > 0. Several results where obtained in Berger and Toninelli (2013), for
the hierachical pinning model, and we prove here a variety of corresponding results
on the disordered and annealed non-hierarchical system. In particular, we confirm
part of the Weinrib-Halperin prediction for a > 1. We also show that the case a < 1
is somehow special, and that the behavior of the system does not fit the prediction
in that case.

1.1. The disordered pinning model. Consider τ := (τn)n > 0 a recurrent renewal
process, with law denoted by P: τ0 = 0, and the (τi − τi−1)i > 1 are IID, N-valued.
The set τ = {τ0, τ1, . . .} (making a slight abuse of notation) can be thought as the
set of contact points between a polymer and a defect line. We assume that the
inter-arrival distribution K(·) verifies

K(n) := P(τ1 = n) =
ϕ(n)

n1+α
, (1.1)

for some α > 0, and slowly varying function ϕ(·) (see Bingham et al. (1987)). The
fact that the renewal is recurrent simply means that K(∞) = P(τ1 = +∞) = 0.
We also assume for simplicity that K(n) > 0 for all n ∈ N.

Given a sequence ω = (ωn)n∈N of real numbers (the environment), and parame-

ters h ∈ R and β > 0, we define the polymer measure P
ω,β
N,h, N ∈ N, as follows

dPω,β
N,h

dP
(τ) :=

1

Zω,β
N,h

exp

(
N∑

n=1

(h+ βωn)δn

)
δN , (1.2)

where we noted δn := 1{n∈τ}, and where Zω,β
N,h := E

[
exp

(∑N
n=1(h+ βωn)δn

)
δN

]

is the partition function of the system.

In what follows, we take ω a random ergodic sequence, with law denoted by P.
We also assume that ω0 is integrable.

Proposition 1.1 (see Giacomin (2007), Theorem 4.6). The limit

F(β, h) := lim
N→∞

1

N
logZω,β

N,h = sup
N∈N

1

N
E logZω,β

N,h, (1.3)

exists and is constant P a.s. It is called the quenched free energy. There exists a
quenched critical point hque

c (β) ∈ R, such that F(β, h) > 0 if and only if h > hque
c (β).

We stress that the free energy carries some physical information on the thermo-
dynamic limit of the system. Indeed, one has that at every point where F has a
derivative, one has

lim
N→∞

1

N
E

ω,β
N,h

[
N∑

n=1

δn

]
=

∂

∂h
F(β, h). (1.4)

Therefore, thanks to the convexity of h 7→ F(β, h), one concludes that if F(β, h) > 0
there is a positive density of contacts under the polymer measure, in the limit N
goes to infinity. Then the critical point hque

c (β) marks the transition between the
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delocalized phase (for h < hque
c , F(β, h) = 0) and the localized phase (for h > hque

c ,
F(β, h) > 0).

One also defines the annealed partition function, Za
N,h,β := E[Zω,β

N,h], used to
be confronted to the disordered system. Then the annealed free energy is defined

as Fa(β, h) := limN→∞
1
N logEZω,β

N,h, and one has an annealed critical point ha
c(β)

that separates phases where F
a(β, h) = 0 and where F

a(β, h) > 0. A simple use of
Jensen’s inequality yields that F(β, h) 6 F

a(β, h), so that ha
c(β) > hque

c (β).

1.1.1. The homogeneous model. The homogeneous pinning model is the pinning
model with no disorder, i.e. with β = 0. The partition function is ZN,h :=

E
[
eh

∑
N
n=1 δnδN

]
. This model is actually fully solvable.

Proposition 1.2 (Giacomin (2007), Theorem 2.1). The pure free energy, F(h) :=
F(0, h), exhibits a phase transition at the critical point hc = 0 (recall we have a
recurrent renewal τ). One has the following asymptotic of F(h) around h = 0+: for
every α > 0 and ϕ(·), there exists some slowly varying function ϕ̂(·) such that

F(h)
hց0∼ ϕ̂(h)h1∨1/α, (1.5)

where f ∼ g means that the ratio f/g converges to 1, and a ∨ b stands for the
maximum between a and b.

The pure critical exponent is therefore νpur := 1∨1/α, and it encodes the critical
behavior of the homogeneous model.

1.2. The case of an IID environment. First, note that in the IID case, the annealed
partition function is E

[
e
∑

(βωn+h)δn
]
= E

[
e
∑

(λ(β)+h)δn
]
with λ(β) := logE

[
eβω1

]
:

the annealed system is the homogeneous pinning model with parameter h + λ(β),
and is therefore understood. In particular, the annealed critical point is ha

c(β) =
−λ(β).

For the pinning model in IID environment, the Harris criterion for disorder
relevance/irrelevance is mathematically settled, both in terms of critical points and
in terms of critical exponents. A recent series of papers indeed proved that

• if α < 1/2, then disorder is irrelevant: if β > 0 is small enough, one has that
hque
c (β) = ha

c(β), and the quenched critical behavior is the same as the homogeneous
one;

• if α > 1/2, then disorder is relevant: for any β > 0 one has hque
c (β) > ha

c(β),
and the order of the disordered phase transition is at least 2 (thus strictly larger
than νpur if α > 1/2).

We refer to Alexander (2008); Alexander and Zygouras (2009); Cheliotis and
den Hollander (2013); Giacomin et al. (2011); Giacomin and Toninelli (2006, 2009);
Lacoin (2010); Toninelli (2008a,b) for specific details, and Giacomin (2011) for a
review of the techniques used.

1.3. The long-range correlated Gaussian environment. Up to recently, the pinning
model defined above was studied only in an IID environment, or in the case of
a Gaussian environment with finite-range correlations Poisat (2013a, 2012). In
this latter case, it is shown that the features of the system are the same as with
an IID environment, in particular concerning the disorder relevance picture. In
Berger (2013); Berger and Lacoin (2012), the authors study the drastic effects of the
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presence of large and frequent attractive regions on the phase transition: important
disorder fluctuations lead to a regime where disorder always modifies the critical
properties, whatever νpur is. In Berger and Toninelli (2013); Poisat (2012), the
authors focus on long-range correlated Gaussian environment, as we now do.

Let ω = (ωn)n∈N be a Gaussian stationary process (with law P), with zero
mean and unitary variance, and with correlation function (ρn)n > 0. We denote
the covariance matrix Υ = (Υij)i,j∈N (with the notation Υij := E[ωiωj ] = ρ|j−i|),
which is symmetric definite positive (so that ω is well-defined). We also assume
that limn→∞ |ρn| = 0, so that the sequence ω is ergodic (see Cornfeld et al. (1982,
Ch.14 §2, Th.2)).

The Weinrib-Halperin prediction suggests to consider a power-law decaying cor-
relation function, ρn ∼ n−a, and we therefore make the following assumption.

Assumption 1. There exist some a > 0 and a constant c0 > 0 such that

ρk
k→∞∼ c0k

−a. (1.6)

We refer to summable correlations when a > 1, and to non-summable correlations
when a 6 1.

We stress here that ρk = (1+k)−a for all k > 0 is a valid choice for a correlation
function, since it is convex, cf. Pólya (1949).

Note that most of our results are actually valid under more general assumptions,
but we focus on this Assumption, which is very natural and make our statements
clearer.

1.4. Comparison with the hierarchical framework. In Berger and Toninelli (2013),
the authors focus on the hierarchical version of the pinning model, and we believe
that all the results they obtain should have an analogue in the non-hierarchical
framework. In Berger and Toninelli (2013), the correlations respect the hierarchical
structure: Cov(ωi, ωj) = κd(i,j), where d(i, j) is the hierarchical distance between i
and j. It corresponds to a power law decay |i− j|−a in the non-hierarchical model,
with a := log(1/κ)/ log 2 (we keep this notation for this section). We therefore
compare our model with the hierarchical one, and give more predictions on the
behavior of the system, and on the influence of correlations on the disorder relevance
picture: see Figure 2.1, in comparison with Berger and Toninelli (2013, Fig. 1).

In the hierarchical framework, different behaviors have been identified:
• If a > 1, aνpur > 2. Then one controls the annealed model close to the

annealed critical point (see Berger and Toninelli (2013, Prop 3.2)): in particular
the annealed critical behavior is the same as the homogeneous one, νa = νpur. In
this region, the Harris criterion is not modified:

- If νpur > 2, then disorder is irrelevant: there exists some β0 > 0 such that
hc(β) = ha

c(β) for any 0 < β 6 β0. Moreover, for every η > 0 and choosing
u > 0 sufficiently small, F(β, ha

c(β) + u) > (1 − η)Fa(β, ha
c(β) + u), so that

νque = νa = νpur.
- If νpur 6 2, then disorder is relevant: the quenched and annealed critical
points differ for every β > 0. Moreover, the disordered phase transition is
at least of order 2, so that disorder is relevant in terms of critical exponents
if νpur < 2.
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• If a > 1, aνpur < 2. Then it is shown that the annealed critical properties
are different than that of the homogeneous model (see Berger and Toninelli (2013,
Theorem 3.6)). However, the disordered phase transition is still of order at least 2,
showing disorder relevance (since νpur < 2/a < 2).

• If a < 1. The phase transition does not survive: the free energy is positive
for all values of h ∈ R as soon β > 0, so that hc(β) = −∞. It is therefore more
problematic to deal with the question of the influence of disorder on the critical
properties of the system.

Let us remark that hierarchical model have always been a fruitful tool in the
study of disordered systems. In particular, Dyson (1969), from his study of the
hierarchical ferromagnetic Ising model, combined with the Griffith correlation in-
equalities, deduced a criteria for the existence of a phase transition for the (non-
hierachical) one dimensional ferromagnetic Ising model with couplings Ji−j ∼
|i − j|−a. We stress that there are no such correlation inequalities for the pin-
ning model, and results cannot be derived directly from the hierarchical model,
even though we expect the behavior of the two models to be similar. Therefore,
to prove results in the non-hierachical case, we need to adapt the techniques of
Berger and Toninelli (2013). Many difficulties arise in this process, in particular
because the hierarchical correlation structure is much simpler to study than in the
non-hierarchical case.

Let us highlight how the remaining of the paper is organized. In Section 2 we
present our main results on the model and comment them, as well for the annealed
system (Theorem 2.2) as for the disordered one (Theorems 2.3-2.5). In Section 3
we collect some crucial observations on the annealed model in the correlated case,
and prove Theorem 2.2. In Section 4 we prove the results on the disordered system.
Gaussian estimates are given in Appendix.

2. Main results

2.1. The annealed model. We first focus on the study of the annealed model, which
is often the first step towards the understanding of the disordered model. The
annealed partition function is given, thanks to a Gaussian computation, by

Za,Υ
N,h := E[Zω,β

N,h] = E
[
eH

a,Υ
N,h δN

]
,

with Ha,Υ
N,h := (β2/2 + h)

N∑

n=1

δn + β2
N∑

n=1

δn

N−n∑

k=1

ρkδn+k.
(2.1)

We keep the superscript Υ in Za,Υ
N,h, to recall the correlation structure, but we drop

it if there is no ambiguity.
One remarks that (2.1) is far from being the partition function of the standard

homogeneous pinning model. It explains the difficulty of studying the pinning model
in correlated random environment: even annealing techniques, that give simple and
non-trivial bounds in the case of an IID environment (where the annealed model is
the standard homogeneous one), are not easy to apply.

The annealed model is actually interesting in itself, since it gives an example
of a non-disordered pinning model in which the rewards correlate according to the
position of the renewal points. One can also consider the annealed model as a
“standard” homogeneous pinning model (in the sense that a reward h is given to
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each contact point), but with an underlying correlated renewal process, that is
with non-IID inter-arrivals. This model, and in particular its phase transition, is
in particular the focus of Poisat (2013b).

Proposition 2.1. If a > 1, then the limit

F
a,Υ(β, h) := lim

N→∞

1

N
logZa,Υ

N,h (2.2)

exists, is non-negative and finite. There exists a critical point ha,Υ
c (β) ∈ R, such

that Fa,Υ(β, h) > 0 if and only if h > ha,Υ
c (β).

This result relies on Hammersley’s generalized super-additive Theorem Hammer-
sley (1962, Theorem 2), and appears in Poisat (2013b). We do not prove it here.
One actually only needs the absolute summability of correlations (

∑
n∈N

|ρn| <
+∞) to get this proposition. We are unable to tell if this condition is neces-
sary, or if conditionally summable correlations (that is with

∑
n∈N

ρn < +∞ but∑
n∈N

|ρn| = +∞) would be sufficient to provide the existence of the annealed free
energy.

As far as the annealed critical point is concerned, an analytic expression is given
for ha,Υ

c (β) in Poisat (2013b): it is the maximal eigenvalue of a Ruelle-Perron-
Frobenius operator related to the model (see Poisat (2013b, Cor. 4.1)). However, it
is in general not possible to compute its value. One however gets large-temperature
asymptotic (β ց 0), Poisat (2013b, Theorem 2.3)

ha,Υ
c (β)

βց0∼ −β2

2


1 + 2

∑

n > 1

ρnP(n ∈ τ)


 . (2.3)

The following theorem states that if a > 2, then the annealed free energy has
the same critical exponent as the pure free energy. This is analogous to Berger and
Toninelli (2013, Theorem 3.1) in the hierarchical framework.

Theorem 2.2. Under Assumption 1, we suppose that a > 2. Then there exist
some β0 > 0 and a constant c1 > 0, such that for any fixed β 6 β0 one has

F

(
c−1
1 u

)
6 F

a,Υ(β, ha,Υ
c (β) + u) 6 F

(
c1u
)
, (2.4)

for all u 6 c−1
1 .

A analogous result has also independently been proved in Poisat (2013b) (see
Theorem 2.1), using a Ruelle-Perron-Frobenius operator approach to the study of
the annealed partition function. Our proof, however, is (almost completely) self-
contained, and uses basic arguments.

The assumption a > 2 (that could be weakened to only having
∑

k|ρk| < +∞)
enables us to get some quasi-renewal property for the partition function, see (3.5)-
(3.6). We prove Theorem 2.2 in Section 3.2, using this quasi-renewal property.
It is therefore difficult to go beyond the condition a > 2, since without it, the
correlations spread easily from one block to another (see(3.5)-(3.6) in Section 3.1,
that do not necessarily hold if a 6 2).

2.2. Influence of disorder in the case of summable correlations, smoothing of the
phase transition. We now assume that a > 1, so that correlations are (absolutely)
summable. We also assume that Υ is invertible, condition that we comment later,
in Remark 2.4. We show that in presence of disorder, the phase transition is always
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at least of order 2, as in the IID case (see Giacomin (2007, Th.5.6)), and in the
correlated hierarchical model (see Berger and Toninelli (2013, Proposition 3.5))

Theorem 2.3. Under Assumption 1 with a > 1, and assuming that Υ is invertible,
one has that for every α > 0, for all β > 0 and h ∈ R

F(β, h) 6
1 + α

2Υ∞β2
(h− hc(β))

2
+ , (2.5)

where we defined Υ∞ :=
(
1 + 2

∑
k∈N

ρk
)
∈ (0,+∞).

This stresses the relevance of disorder in the case α > 1/2, where the pure model
exhibits a phase transition of order νpur := 1∨ 1/α < 2. Therefore, with summable
correlations, we already have identified a region of the (α, a)-plane where disorder is
relevant: it corresponds to the relevant disorder region in the IID case, as predicted
by the Weinrib-Halperin criterion.

Remark 2.4. The condition that Υ is invertible is a bit delicate, and enables us to
get uniform bounds on the eigenvalues of Υ−1

l , where Υl denotes the restriction of Υ
to the first l rows and columns. Indeed, when a > 1, Υ is a bounded and invertible
operator on the Banach space of sequences of real numbers (an)n∈N, with finite
ℓ1-norm ||(an)n∈N||ℓ1 :=

∑
n∈N

|an| < +∞, so that Υ−1 is a bounded operator.
It tells us that the lowest eigenvalue of Υ is bounded away from 0, and that the
eigenvalues of Υl are uniformly bounded away from 0.

In particular, one has

Υ∞ := lim
l→∞

〈Υl1l,1l〉
〈1l,1l〉

= 1 + 2
∑

k∈N

ρk > 0, (2.6)

where 〈·, ·〉 denotes the usual Euclidean scalar product, and 1l is the vector con-
stituted of l 1s and then of 0s. Note that Υ∞ = 1 in the IID case. Also, Υ∞ is
an increasing function of the correlations, and it becomes infinite when correlations
are no longer summable. Interestingly, Υ∞ is also related to the relative entropy of

two translated Gaussian vectors: Lemma A.2 gives that 〈Υ−1
l 1l,1l〉 l→∞∼ (Υ∞)−1l.

The assumption that Υ−1 is a bounded operator plays an important role in the
proof of that Lemma.

A simple case when Υ is invertible is when 1 = ρ0 > 2
∑

k∈N
|ρk|: it is then

diagonally dominant. More generally, one has to consider the Laurent series of
the Toeplitz matrix Υ, f(λ) = 1 + 2

∑
k∈N

ρn cos(λn) (we used that ρ0 = 1).
Then, the fundamental eigenvalue distribution theorem of Szegö Grenander and
Szegö (1958, Ch. 5) tells that the Toeplitz operator Υ is invertible if and only if
minλ∈[0,2π] f(λ) > 0. Note that one recovers the diagonally dominant condition as
a consequence of Szegö’s theorem.

2.3. The effect of non-summable correlations. If a 6 1, then correlations are not
summable,

∑
k∈N

ρk = +∞, and the annealed model is actually ill-defined. Indeed,
imposing renewal points at every site in {1, . . . , N} in the annealed partition func-

tion, one ends up with the bound Za,Υ
N,h > K(1)N exp

(
N(h+ β2/2+ β2

∑N
k=1 ρk)

)
,

so that 1
N logZa,Υ

N,h > logK(1) + β2/2 + h + β2
∑N

k=1 ρk. Letting N go to infinity,
we see that the annealed free energy is infinite.

But, when a < 1, not only the annealed free energy is ill-defined: we also prove
that the quenched free energy is strictly positive for every value of h ∈ R: the
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disordered system does not have a localization/delocalization phase transition and
is always localized, as found in the hierarchical case Berger and Toninelli (2013,
Theorem 3.7).

Theorem 2.5. Under Assumption 1 with a > 1, if in addition the correlations are
non-negative (ρk > 0 for all k ∈ N), one has that F(β, h) > 0 for every β > 0, h ∈ R,
so that hque

c (β) = −∞. There exists some constant c2 > 0 such that for all h 6 −1
and β > 0

F(β, h) > exp
(
−c2|h|

(
|h|/β2

)1/(1−a)
)
. (2.7)

The non-negativity condition for the correlations is only technical (and appears
in the proof of Lemma A.1), and we believe that the same result should be true
with a more general correlation structure.

This shows that the phase transition disappears when correlations are too strong.
It provides an example where strongly correlated disorder always modifies (in an
extreme way) the behavior of the system, for every value of the renewal parameter
α. However the fact that hque

c (β) = −∞ does not allow us to study sharply how the
phase transition is modified by the presence of disorder, and therefore we cannot
verify nor contradict the Weinrib-Halperin prediction. This phenomenon comes
from the appearance of large, frequent, and arbitrarily favorable regions in the
environment. This is the mark of the appearance of infinite disorder, and is studied
in depth in Berger (2013).

We now have a clearer picture of the behavior of the disordered system, and of
its dependence on the strength of the correlations, that we collect in Figure 2.1, to
be compared with Berger and Toninelli (2013, Fig. 1) for the hierarchical pinning
model.

3. The annealed model

3.1. Preliminary observations on the annealed partition function. We now give the
reason why the condition a > 2 simplifies the analysis of the annealed system. Given
two arbitrary disjoint blocks B1 and B2, the contribution to the Hamiltonian (2.1)
of these two blocks can be divided into:

• two internal contributions (β2/2 + h)
∑

i∈Bs
δi + β2

∑
i,j∈Bs,i<j δiδjρ|i−j|

for s = 1, 2,
• an interaction contribution β2

∑
i∈B1,j∈B2

δiδjρ|i−j|.

We also refer to the latter term as the correlation term. Then we can use uniform
bounds to control the interactions between B1 and B2, since there are at most k
points at distance k between B1 and B2:

−
∞∑

k=1

k|ρk| 6
∞∑

k=1

ρk
∑

i∈B1,j∈B2

|i−j|=k

δiδj 6

∞∑

k=1

k|ρk|. (3.1)

Thanks to this remark, if a > 2, then
∑

k|ρk| < ∞, and we have a ”quasi super-
multiplicativity” property (super-multiplicativity would hold if all of the ρk were
non-negative): for any N > 1 and 0 6 k 6 N , one has

Za
n,h > e−β2 ∑

k|ρk|Za
k,hZ

a
N−k,h. (3.2)
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Figure 2.1. Overview of the annealed behavior and of disorder
relevance/irrelevance in the (α, a)-plane, in analogy with Berger
and Toninelli (2013, Fig. 1). In the region a < 1 (non-summable
correlations), the annealed model is not well-defined, and there is
no phase transition for the disordered system (Theorem 2.5). In
the region a > 1, the annealed model is well-defined, and Theorem
2.2 shows that the annealed critical behavior is the same that the
pure one if a > 2. Theorem 2.3 shows that disorder is relevant
for α > 1/2, but we still have no proof of disorder irrelevance
for α < 1/2, that we believe to hold according to the physicists’
predictions. For a ∈ (1, 2), the results in the hierarchical case
indicate that the annealed critical exponent νa should be equal to
the pure one νpur if aνpur > 2 (i.e. a > 2(1∧α)), and that it should
be strictly larger if aνpur < 2.

We also get the two following bounds, which can be seen as substitutes for the
renewal property (property that we do not have in our annealed system because of
the two-body δiδj term). Decomposing according to the last renewal before some
integer M ∈ [0, N ], and the first after it, one gets

Za
n,h >

M∑

i=0

N∑

j=M+1

e−β2 ∑
k|ρk |Za

i,h K(j − i)eβ
2/2+h−β2 ∑

|ρk| Za
N−j,h, (3.3)

and

Za
n,h 6

M∑

i=0

N∑

j=M+1

eβ
2 ∑

k|ρk|Za
i,h K(j − i)eβ

2/2+h+β2 ∑
|ρk| Za

N−j,h. (3.4)

Note that the terms eβ
2/2+h−β2 ∑

|ρk| and eβ
2/2+h+β2 ∑

|ρk| come from bounding
uniformly the contribution of the point j to the partition function (note that∑ |ρk| < +∞ because a > 2). If we write h = ha

c + u, and using that ha
c is of
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order β2 (see (2.3)), we get a constant c > 0 such that

e−cβ2

eu
M∑

i=0

N∑

j=M+1

Za
i,hK(j − i)Za

N−j,h 6 Za
n,h

6 ecβ
2

eu
M∑

i=0

N∑

j=M+1

Za
i,hK(j − i)Za

N−j,h.

(3.5)

Note that one has also uniform bounds for u ∈ [−1, 1] (we are interested in the

critical behavior, i.e. for u close to 0): one replaces the constant ecβ
2

eu by C1 :=

ecβ
2+1, and the constant e−cβ2

eu by C−1
1 .

In a general way, for any indexes 0 = i0 < i1 < i2 < · · · < im = N , we also get

(
e−cβ2

eu
)m m∏

k=1

Za
ik−ik−1,h 6 E

[
m∏

k=1

δike
Ha

N,h

]
6

(
ecβ

2

eu
)m m∏

k=1

Za
ik−ik−1,h.

(3.6)
When β is small, (3.5)-(3.6) are close to the renewal equation verified by Zpur

N,h

which is the same as (3.5)-(3.6) with β = 0. In the sequel, we refer to (3.5)-(3.6)
as the quasi-renewal property. We can actually show Theorem 2.2 provided that
these inequalities hold. Therefore if one is able to get (3.5)-(3.6) with a weaker
condition than

∑
k|ρk| < ∞ (which could be a > 2(α ∧ 1), as the comparison with

the hierarchical model suggests, see Section 1.4), such a theorem would follow.

3.2. The annealed critical behavior.

3.2.1. On the resolution of the homogeneous model. Our proof of Theorem 2.2 is
inspired from the following proposition.

Proposition 3.1. The homogeneous free energy F(h) is the only solution of the
equation (in b)

P̂(b) :=
∑

n > 0

e−bnP(n ∈ τ) =
1

1− e−h
(3.7)

if such a solution exists, and F(h) = 0 otherwise. Thanks to (3.7), one is in
particular able to recover Proposition 1.2.

The proof of such a result is standard, and we refer to Giacomin (2007, Propo-
sition 1.1), which gives a slightly different form: F(h) is the only solution of the

equation K̂(b) :=
∑

n∈N
e−bnK(n) = e−h. One recovers Proposition 3.1 observing

that P̂(b) = 1 + K̂(b)P̂(b).

3.2.2. Proof of Theorem 2.2. We now drop the superscript Υ in Za,Υ
N,h, and write ha

c

instead of ha,Υ
c (β), to keep notations simple.

The essential tool is to use the quasi-renewal property (3.5)-(3.6) to prove that

the Laplace transform of Za
n,ha

c
is of the same order as P̂(λ), the Laplace transform

of Zpur
N,h=0 = P(n ∈ τ). Then, one would to be able to apply the same idea as in

Proposition 3.1. The following proposition indeed proves that statement.
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Proposition 3.2. We assume that the quasi-renewal property (3.5)-(3.6) holds.

Define for all λ > 0 Ẑha
c
(λ) :=

∑∞
n=0 e

−λnZa
n,ha

c
. Then there exists a constant

c3 > 0, such that for every 0 < λ 6 1 one has

c−1
3 P̂(λ) 6 Ẑha

c
(λ) 6 c3P̂(λ). (3.8)

We remark that in Berger and Toninelli (2013), the key for the study of the dis-
ordered system via annealed techniques is a sharp control of the annealed polymer
measure at its critical point (even though the exact value of this critical point is not
known). In the present case, since there is no iterative structure for the partition
function, there are many technicalities that are harder to deal with. We however
have results in this direction, such as Propositions 3.2-3.6, that are the first step
towards proving that the Harris criterion holds if

∑
k|ρk| < ∞, in terms of critical

point shifts. We do not develop the analysis in this direction, which is still open
and would require a stronger knowledge of the annealed system.

Proof of Theorem 2.2 given Proposition 3.2: Recall that we define u := h− ha
c , so

that we only work with u > 0, u ∈ [0, 1], as we already know that for u 6 0,
F
a(β, u) = 0 = F(u). We use the following binomial expansion

eu
∑

N
n=1 δnδN = (1 + eu − 1)

∑N−1
n=1 δneuδN

= eu
N−1∑

m=0

(eu − 1)m
∑

0<i1<...<im 6 N−1

δi1 . . . δimδN ,
(3.9)

to get that

Za
n,h = E

[
eu

∑N
n=1 δne

Ha
n,ha

c δN

]

=
eu

eu − 1

N∑

m=1

∑

0<i1<...<im=N

(eu − 1)mE
[
δi1 . . . δime

Ha
N,ha

c

]
.

(3.10)

Note that as there is no renewal structure for E
[
· eH

a
N,ha

c

]
, one cannot factorize

the quantity E
[
δi1 . . . δime

Ha
N,ha

c

]
easily. However, since we have the quasi-renewal

property (3.6), we get the two following bounds, valid for any m ∈ N and subse-
quence 0 < i1 < . . . < im = N , uniformly for u ∈ [0, 1]:

(C−1
1 )m

m∏

k=1

Za
ik−ik−1,ha

c
6 E

[
δi1 . . . δimδNe

Ha
n,ha

c

]
6 (C1)

m
m∏

k=1

Za
ik−ik−1,ha

c
, (3.11)

where C1 := ecβ+1 is defined in Section 3.1. Now, we define

Z̄a
N,h :=

eu

eu − 1

N∑

m=1

(
C−1

1 (eu − 1)
)m ∑

0<i1<...<im=N

m∏

k=1

Za
ik−ik−1,ha

c

and Z̃a
N,h :=

eu

eu − 1

N∑

m=1

(C1(e
u − 1))

m
∑

0<i1<...<im=N

m∏

k=1

Za
ik−ik−1,ha

c
,

(3.12)

so that Z̄a
N,h 6 Za

n,h 6 Z̃a
N,h. For u > 0, we can define b̄ > 0 and b̃ > 0 such that

Ẑha
c
( b̄ ) = C1(1− e−u)−1, and Ẑha

c
( b̃ ) = C−1

1 (1 − e−u)−1, (3.13)
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if the equations have a solution and otherwise set b̄ = 0, or b̃ = 0. Then, if one
defines K(b̄)(n) := C−1

1 (1− e−u)e−b̄nZa
n,h for n > 1, one verifies that K(b̄)(·) is the

inter-arrival distribution of a positive recurrent renewal τ (b̄). Moreover, with this

definition, Z̄a
N,h = eu

eu−1e
b̄NP(b̄)(n ∈ τ (b̄)), and one gets that lim 1

N log Z̄a
N,h = b̄.

Similarly, one has that lim 1
N log Z̃a

N,h = b̃.

Then, one gets that b̄ 6 F
a(β, ha

c+u) 6 b̃, from the fact that Z̄a
N,h 6 Za

n,h 6 Z̃a
N,h.

Using that P̂(·) is decreasing, one therefore has that P̂(̃b) 6 P̂(Fa(β, ha
c+u)) 6 P̂(b̄).

The definitions (3.13), combined with Proposition 3.2, gives that for every u > 0
such that b̄ 6 1 one has

(c3C1)
−1(1− e−u)−1 6 P̂(Fa(β, ha

c + u)) 6 c3C1(1 − e−u)−1. (3.14)

We finally have that for u > 0 small enough, there are two constants c and c′ such
that

(1 − e−cu)−1 6 P̂(Fa(β, ha
c + u)) 6 (1− e−c′u)−1. (3.15)

Applying the inverse of P̂ (which is also decreasing), one gets the result from the

fact that F(u) = P̂((1− e−u)−1) (see (3.7)). �

3.3. Proof of Proposition 3.2. Let us first note that, thanks to Kamarata’s Taube-
rian Theorem Bingham et al. (1987, Theorem 1.7.1), the asymptotic behavior of

the Laplace transform of Za
n,h is directly related to that of

∑N
n=0 Z

a
n,ha

c
. We also

stress that
∑N

n=0 P(n ∈ τ)
N→∞∼ ϕ̃(N)Nmin(α,1), where ϕ̄(·) is a well determined

slowly varying function, see Bingham et al. (1987, Theorems 8.7.3 and 8.7.5): for

example, ϕ̃(n) = sin(πα)
π ϕ(n)−1 if α ∈ (0, 1), and ϕ̃(n) = E[τ1]

−1 if α > 1, the cases
α = 0 and α = 1 requiring more care.

To avoid too many technicalities, we will focus only on the cases α ∈ (0, 1) and
α > 1, the cases α = 0 and α = 1 following the same proof. We therefore only need
to prove that there exists a constant c4 so that, for all N ∈ N,

c−1
4 ϕ(N)−1Nα 6

N∑

n=0

Za
n,ha

c
6 c4ϕ(N)−1Nα if α ∈ (0, 1), (3.16)

and c−1
4 N 6

N∑

n=0

Za
n,ha

c
6 c4N if α > 1. (3.17)

In terms of Laplace transforms, one has to show that there exists a constant c5 so
that, for all for all λ ∈ (0, 1)

c−1
5 ϕ(1/λ)−1λ−α

6 Ẑa
n,ha

c
(λ) 6 c5 ϕ(1/λ)

−1λ−α if α ∈ (0, 1), (3.18)

and c−1
5 λ−1 6 Ẑa

n,ha
c
(λ) 6 c5λ

−1 if α > 1. (3.19)

The behavior of the Laplace transform P̂(λ) can be found using (3.16), together
with Bingham et al. (1987, Theorem 1.7.1). Note that the lower bounds (resp. the
upper bounds) in (3.16) correspond to the lower bounds (resp. the upper bounds)
in (3.18).

Let us first prove a preliminary result that will be useful, both in the case α ∈
(0, 1), and in the case α > 1.



Pinning model in long-range correlated Gaussian environment 965

Claim 3.3. For every α > 0, if the quasi-renewal property (3.5)-(3.6) holds, then

for all N ∈ N one has Za
N,ha

c
6 C1, where C1 = ecβ

2+1 is defined above.

Indeed, the l.h.s. inequality in (3.6) yields that for all u ∈ [−1, 1], one has

C−1
1 Za

M+N,h > (C−1
1 Za

N,h)(C
−1
1 Za

M,h)

for all M,N > 0. Therefore one gets that if C−1
1 Za

n0,h
> 1 for some n0, then the

partition function grows exponentially, and F(β, h) > 0. This gives directly that
C−1

1 Za
N,ha

c
6 1 for all N ∈ N. �

Let us focus first on the case α ∈ (0, 1), since Proposition 3.6 gives a better result
in the case α > 1, and prove (3.16).

Upper bound. We prove the following Lemma

Lemma 3.4. For α ∈ (0, 1), there exists a constant C0 > 0 such that for any
N > 1

N∑

n=0

Za
n,ha

c
6 C0ϕ(N)−1Nα. (3.20)

Proof : If the Lemma were not true, then for any constant A > 0 arbitrarily large,
there would exist some n0 > 1 such that

n0∑

n=0

Za
n,ha

c
> Aϕ(n0)

−1nα
0 . (3.21)

But in this case, using the l.h.s. inequality of (3.5), we get for any 2n0 6 p 6 4n0

Za
p,ha

c
> C−1

1

⌊p/2⌋∑

i=0

p∑

j=⌊p/2⌋+1

Za
i,ha

c
K(j − i)Za

p−j,ha
c

> C−1
1




n0∑

i=0

p∑

j=p−n0

Za
i,ha

c
Za
p−j,ha

c


 min

n 6 p
K(n) > C−1

1 A2ϕ(n0)
−2n2α

0 min
n 6 4n0

K(n),

(3.22)

where we restricted the sum to i and p− j smaller than n0, to be able to use the in-
equality (3.21). On the other hand, with the assumption that K(n) ∼ ϕ(n)n−(1+α),
there exists a constant c > 0 (not depending on n0) such that one has that

minn 6 4n0 K(n) > cϕ(n0)n
−(1+α)
0 . And thus for any 2n0 6 p 6 4n0 one has

that

Za
p,ha

c
> c′A2ϕ(n0)

−1nα−1
0 .

Then, summing over p, we get an inequality similar to (3.21):

4n0∑

p=0

Za
p,ha

c
>

4n0∑

p=2n0

Za
p,ha

c
> c′′A2ϕ(n0)

−1nα
0 =: c̄A2ϕ(4n0)

−1(4n0)
α. (3.23)

Now, we are able to repeat this argument with n0 replaced with 4n0 and A with
c̄A2. By induction, we finally have for any k > 0

4kn0∑

n=0

Za
n,ha

c
> (c̄)2

k−1A2kϕ(4kn0)
−1(4kn0)

α. (3.24)
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To find a contradiction, we choose A > (c̄)−1, so that (c̄)2
k−1A2k > γ2k with γ > 1.

Now, we can choose k ∈ N such that γ2kϕ(4kn0)
−1(4kn0)

α−1 > 2C1 (C1 being
the constant in Claim 3.3). Thanks to (3.24), we get that at least one of the terms

Za
n,ha

c
for n 6 4kn0 is bigger than (4kn0)

α−1γ2k > 2C1, which contradicts the Claim

3.3. �

Lower Bound. We use the following Lemma

Lemma 3.5. If α ∈ (0, 1), there exists some η > 0, such that if for some n0 > 1
one has

n0∑

i=0

Za
i,h

∞∑

j=n0

K(j − i) 6 η and

n0∑

i=0

Za
i,h 6 ηϕ(n0)

−1nα
0 , (3.25)

then F
a(β, h) = 0.

This Lemma comes easily from Giacomin et al. (2010, Lemma 5.2) where the case
α = 1/2 was considered, and gives a finite-size criterion for delocalization. It comes
from cutting the system into blocks of size n0, and then using a coarse-graining
argument in order to reduce the analysis to finite-size estimates (on segments of
size 6 n0). It is therefore not difficult to extend it to every α ∈ (0, 1), in particular
thanks to the quasi-renewal property (3.5)-(3.6), that allows us to proceed to the
coarse-graining decomposition of the system.

From this Lemma, one deduces that at h = ha
c , for all n ∈ N one has

∑n
i=1

∑∞
j=n Za

i,ha
c
K(j − i) > η

2 (3.26)

or
∑n

i=1 Z
a
i,ha

c
>

η
2ϕ(n)

−1nα. (3.27)

Indeed, otherwise, one could find some n0 > 0 such that both of these assumptions
fail, and then one picks some ε > 0 such that Za

n0,ha
c+ε verifies the conditions of

Lemma 3.5, so that Fa(β, ha
c + ε) = 0. This contradicts the definition of ha

c .

We now try to deduce directly the behavior of Ẑa
ha
c
(λ) from (3.26)-(3.27) (it turns

out to be easier). We define the sets

E1 := {n > 0, such that (3.26) holds} ,
E2 := {n > 0, such that (3.27) holds} . (3.28)

Thanks to (3.26)-(3.27), one knows that, for every k ∈ N, either |E1 ∩ [0, k]| > k/2
or |E2 ∩ [0, k]| > k/2. Let us fix λ ∈ (0, 1), and kλ := ⌊1/λ⌋.

(1) If |E1∩[0, kλ]| > kλ/2. For λ > 0, we define f(λ) =
∑∞

n=0 e
−λnϕ(n)(n+1)−α.

We know that f(λ)
λ↓0∼ cst.ϕ(1/λ)λα−1 thanks to Bingham et al. (1987, Th.1.7.1).

Then, using the assumption on K(·) to find some constant c > 0 such that for all
i 6 n one has

∑∞
j=n K(j − i) 6 cϕ(n− i)(n+ 1− i)−α, one gets

Ẑha
c
(λ)f(λ) =

∞∑

n=0

e−λn
n∑

i=1

Za
i,ha

c
ϕ(n− i)(n+ 1− i)−α

>

∞∑

n=0

c−1e−λn
n∑

i=1

Za
i,ha

c

∞∑

j=n

K(j − i)

> c−1η/2
∑

n∈E1

e−λn
> c−1e−1η/2 |E1 ∩ [0, kλ]| > c−1e−1 η

4
kλ,

(3.29)
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where in the second inequality we used the definition of E1, and then we cut the
sum at kλ. Thus we get from our estimate on f(λ), that there exists a constant c,
so that for any fixed λ ∈ (0, 1) (recall that kλ = ⌊1/λ⌋), if |E1 ∩ [0, kλ]| > kλ/2,
then

Ẑha
c
> c ϕ(1/λ)−1λ−α. (3.30)

(2) If |E2 ∩ [0, kλ]| > kλ/2. Then, using the definition of E2 and the notation
k2 := max(E2 ∩ {1, . . . , ⌊1/λ⌋}), one has

Ẑha
c
(λ) > e−1

max(E2∩{1,...,⌊1/λ⌋})∑

i=0

Za
i,ha

c
> e−1 η

2
ϕ(k2)

−1kα2 . (3.31)

Note that k2 ∈ [kλ/2, kλ] if |E2 ∩ [0, kλ]| > kλ/2. Therefore, there exists a constant
c′, so that for any fixed λ ∈ (0, 1) (recall that kλ = ⌊1/λ⌋), if |E2 ∩ [0, kλ]| > kλ/2,
then

Ẑha
c
> c′ ϕ(1/λ)−1λ−α. (3.32)

Then, combining (3.30) and (3.32), we get our Ẑa
ha
c
(λ) > min(c, c′)ϕ(1/λ)−1λ−α

for all λ ∈ (0, 1). �

3.3.1. Improvement of Proposition 3.2 in the case α > 1. In this case, we can
estimate Za

N,ha
c
more precisely, and estimate not only the Laplace transform of

Za
N,ha

c
(cf. Proposition 3.2), but Za

N,ha
c
itself, similarly to Berger and Toninelli

(2013, Proposition 3.2).

Proposition 3.6. Let α > 1. Assume that the quasi-renewal property (3.5)-(3.6)
holds. Then there exists a constants c6 such that, for any N > 2 and any sequence
of indexes 1 6 i1 6 i2 6 . . . 6 im = N with m > 1, we have

(c−1
6 )mE(δi1 . . . δim) 6 E

[
δi1 . . . δime

Ha
N,ha

c

]
6 (c6)

mE(δi1 . . . δim). (3.33)

In particular, if m = 1 one has that c−1
6 P(N ∈ τ) 6 Za

N,ha
c
6 c6P(N ∈ τ).

This Proposition tells that the annealed polymer measure at the critical point
is “close” to the renewal measure P, so that the behavior of the annealed model is
very close to the one of the homogeneous model.

We have E(δi1 . . . δim) =
∏m

k=1 P(ik− ik−1 ∈ τ), so that recalling (3.11), we only
have to compare Za

n,ha
c
with P(n ∈ τ). It is therefore sufficient to prove that there

exists a constant c such that c−1P(N ∈ τ) 6 Za
N,ha

c
6 cP(N ∈ τ). But for α > 1,

we have limN→∞ P(N ∈ τ) = E[τ1]
−1, so that we only have to show that Za

N,ha
c
is

bounded away from 0 and +∞, which is provided by the following lemma.

Lemma 3.7. If (3.5)-(3.6) hold, and if α > 1, there exists a constant C2 > 0, such
that for all N > 0

C−1
2 6 Za

N,ha
c
6 C2 (3.34)

Proof : The upper bound is already given by Claim 3.3, thanks to quasi super-
multiplicativity. For the other bound, we show the following claim.
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Claim 3.8. If (3.5)-(3.6) hold, and if α > 1, let ε > 0 (small) and A > 0 (large) be
fixed according to the conditions (3.40)-(3.42) below. Then for every N > 0, there
exists some n1 ∈ [N −A,N ] such that Za

n1,ha
c
> ε.

From this Claim and inequality (3.5) with the choice M = N − 1, we have

Za
n,ha

c
> C−1

1

N−1∑

n=0

Za
n,ha

c
K(N − n)eβ

2/2+ha
c > C′Za

n1,ha
c
K(N − n1), (3.35)

where we only kept the term n = n1 in the sum, n1 being given by the Claim 3.8.
We get that for every N > 0,

Za
n,ha

c
> εC′

(
min
i 6 A

K(i)
)
eβ

2/2+ha
c =: C−1

2 , (3.36)

which ends the proof of Lemma 3.7. �

Now, we prove the Claim 3.8 by contradiction. The idea is to prove that if
the claim were not true, we can increase a bit the parameter h and still be in the
delocalized phase.

Proof of Claim 3.8: Let us suppose that the claim is not true. Then we can find
some n0, such that for any k ∈ [n0−A, n0] one has Z

a
k,ha

c
6 ε. The integer n0 being

fixed, we choose some h > ha
c close enough to ha

c such that for this n0, we have
(recall Za

n,ha
c
6 C1)

Za
n,h 6 2C1 for all n 6 n0, (3.37)

and Za
k,h 6 2ε for all k ∈ [n0 −A, n0]. (3.38)

We will now see that the properties (3.37)-(3.38) are kept when we consider bigger
systems: we show that we have Za

n,h 6 2C1 for all n 6 2n0 , and Za
k,h 6 2ε for all

k ∈ [2n0−A, 2n0]. By induction one therefore gets that Za
N,h 6 2C1 for all N , such

that Fa(β, h) = 0, which gives a contradiction with the definition of ha
c .

• We first start to show that for any p ∈ [n0 + 1, 2n0], one has Za
p,h 6 2C1 . We

use the r.h.s. inequality of (3.5) with M = n0, and we divide the sum into two
parts:

Za
p,h 6 C1

n0∑

i=n0−A

p∑

j=n0+1

Za
i,hK(j−i)Za

p−j,h+C1

n0−A−1∑

i=0

p∑

j=n0+1

Za
i,hK(j−i)Za

p−j,h

6 4εC2
1

∑

n > 1

nK(n) + 4C3
1

∑

n > A

nK(n), (3.39)

where we used the properties (3.37)-(3.38), and the fact that K(j − i) appears at
most j − i times. Thus we have Zp,h 6 2C1 for p ∈ [n0 + 1, 2n0] provided that

ε 6 (4C1E[τ1])
−1 and

∑

n > A

nK(n) 6 (4C2
1 )

−1, (3.40)

and we have the property (3.37) with n0 replaced by 2n0.
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• We now show that Za
p,h 6 2ε for all p ∈ [2n0−A, 2n0]. Again, we use the r.h.s.

inequality of (3.5) with M = ⌊p/2⌋, and the properties (3.37)-(3.38) to get

Za
p,h 6 C1

⌊p/2⌋∑

i=⌊p/2⌋−A/2

⌊p/2⌋+A/2∑

j=⌊p/2⌋+1

Za
i,hK(j − i)Za

p−j,h

+ C1

∑

i<⌊p/2⌋−A/2
or j>⌊p/2⌋+A/2

Za
i,hK(j − i)Za

p−j,h

6 4ε2C1

∑

n > 1

nK(n) + 4C2
1

∑

n > A/2

nK(n),

(3.41)

where we also used that we have i, p − j ∈ [n0 − A, n0] in the first sum (since
p ∈ [2n0 −A,2n0]), and j − i > A/2 in the second sum. Thus we have Zp,h 6 2ε
for p ∈ [2n0 −A, 2n0] provided that

ε 6 (4C1E[τ1])
−1 and

∑

n > A/2

nK(n) 6 (4C2
1 )

−1ε, (3.42)

and we have the property (3.38) with n0 replaced by 2n0. �

Claim 3.8 controls directly the partition function, instead of its Laplace transform
as in Proposition 3.2. We emphasize that this improvement can be very useful,
because it allows us to compare Za

n,ha
c
Ea

n,hc
[δi] with P(i ∈ τ), analogously with

Berger and Toninelli (2013, Proposition 3.2). For example an easy computation
(expanding the exponential) gives that

E
[
ec2u

∑
N
n=1 δn1{N∈τ}

]
6 Za

n,h = E

[
exp

(
u

N∑

n=1

δn

)
e
Ha

N,ha
c

]

6 E
[
ec2u

∑
N
n=1 δn1{N∈τ}

]
,

(3.43)

which gives more directly Theorem 2.2.

4. Proof of the results on the disordered system

4.1. The case of summable correlations, proof of Theorem 2.3. As we saw in Section
3, the annealed model is well-defined under the Assumption 1, only with a > 1,
when correlations are absolutely summable.

The proof of Theorem 2.3, is very similar to what is done in Giacomin and
Toninelli (2006) for the case of independent variable. The main idea is to stand
at hc(β) (hc(β) > ha

c(β) > −∞ since the correlations are summable), and to get
a lower bound for F(β, hc(β)) involving F(β, h) by choosing a suitable localization
strategy for the polymer to adopt, and computing the contribution to the free
energy of this strategy. This is inspired by what is done in Giacomin (2007, Ch.
6) to bound the critical point of the random copolymer model. More precisely one
gives a definition of a ”good block”, supposed to be favorable to localization in
that the ωi are sufficiently positive, and analyses the contribution of the strategy
of aiming only at the good blocks. The main difficulty is here to get good estimates
on the probability of having a ”good” block

Let us fix some l ∈ N (to be optimized later), take n ∈ N and let I ⊂ {1, . . . , n},
which is supposed to denote the set of indexes corresponding to ”good blocks” of
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size l, and we order its elements: I = {ip}p∈N with i1 < i2 < · · · . We then divide

a system of size nl into n blocks of size l, and denote Z
ω,(k)
l,h the (pinned) partition

function on the kth block of size l, that is Z
ω,(k)
l,h = Zθ(k−1)lω,β

l,h (θ being the shift

operator, i.e. θpω := (ωn+p)n > 0).
For any fixed ω and n ∈ N, we denote In = I ∩ [0, n], so that targeting only the

blocks in In gives

Zω,β
nl,h > K((n− i|In|)l)

|In|∏

k=1

K((ik − ik−1 − 1)l)
∏

k∈In

Z
ω,β,(k)
l,h , (4.1)

with the convention that K(0) := 1. Then if ε > 0 is fixed (meant to be small),
taking l large enough so that logK(kl) > − (1 + ε)(1 +α) log(kl) for all k > 0, one
has
1

nl
logZω,β

nl,h >
1

nl

∑

k∈In

logZ
ω,(k)
l,h

− (1 + ε)(1 + α)
1

nl

(
log((n− i|In|)l) +

In∑

k=1

log((ik − ik−1 − 1)l)

)

>
1

n

∑

k∈In

1

l
logZ

ω,(k)
l,h − (1 + ε)(1 + α)

1

l

|In|+ 1

n
log

(
n

|In|+ 1
− 1

)
,

(4.2)

where we used Jensen inequality in the last inequality (which only means that the
entropic cost of targeting the blocks of In is maximal when all its elements are
equally distant). Note that (4.2) is very general, and it is useful to derive some
results on the free energy, choosing the appropriate definition for an environment
to be favorable (and thus the blocks to be aimed), and the appropriate size of the
blocks (see Section 4.2 for another example of application).

We fix β > 0, and set u := h− hc(β). Then, fix ε > 0, and define the events

A(k)
l =

{
Z

ω,(k)
l,hc(β)

> exp ((1 − ε)l F(β, hc(β) + u))
}
, (4.3)

and define In the set of favorable blocks

I(ω) := {k ∈ N : A(k)
l is verified}. (4.4)

Then taking l large enough so that (4.2) is valid for the ε chosen above, one has

1

nl
logZω,β

nl,h >
|In|
n

(1−ε)F(β, hc(β)+u)−(1+ε)(1+α)
1

l

|In|+ 1

n
log

(
n

|In|+ 1
− 1

)
.

(4.5)

We also note pl := P(A(1)
l ) = P(1 ∈ In), so that one has that P-a.s. limn→∞

1
n |In| =

pl, thanks to Birkhoff’s Ergodic Theorem (cf. Nadkarni (1998, Chap. 2)). Then,
letting n go to infinity, one has

0 = F(β, hc(β)) > pl(1− ε)F(β, hc(β) + u)− (1 + ε)(1 + α)pl
1

l
log(p−1

l − 1)

> pl

(
(1− ε)F(β, hc(β) + u) + (1 + 2ε)(1 + α)

1

l
log(pl)

)
, (4.6)

the second inequality coming from the fact that p−1
l is large for large l.
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We now give a bound on pl, with the same change of measure technique used
in the proof of Lemma A.3. We consider the measure P̄ on {ω1, . . . , ωl} which
is absolutely continuous with respect to P, and consists in translating the ωi’s of

u/β, without changing the correlation matrix Υ. Then, using that l−1 logZω,β
l,hc(β)

converges to F(β, hc(β) + u) in P̄-probability as l goes to infinity, we have that

P̄(A(1)
l ) > 1− ε, for l sufficiently large. We recall the classic entropy inequality

P(A) > P̄(A) exp

(
− 1

P̄(A)
(H(P̄|P) + e−1)

)
, (4.7)

with H(P̄|P) the relative entropy of P̄ w.r.t. P. After some straightforward compu-

tation, one gets H(P̄|P) = u2

2β2 〈Υ−11l,1l〉, where 1l is the vector whose l elements

are all equal to 1.
From Lemma A.1 (which needs Υ to be invertible), one directly has that H(P̄|P)=

(1 + o(1)) u2

2Υ∞β2 l, so that for l large one gets that

1

l
log pl > − (1 + ε)

1

l
(1− ε)−1H(P̄|P) > − 1 + 2ε

1− ε

u2

2Υ∞β2
. (4.8)

This inequality, combined with (4.6), gives

F(β, hc(β) + u) 6 − 1 + 2ε

1− ε
(1 + α)

1

l
log pl 6

(
1 + 2ε

1− ε

)2
1 + α

2Υ∞β2
u2, (4.9)

which, thanks to the arbitrariness of ε, concludes the proof. �

4.2. The case of non-summable correlations, proof of Theorem 2.5. This theorem
is the non-hierarchical analogue of Berger and Toninelli (2013, Theorem 3.8). But
because there are some technical differences, we include the proof here for the sake
of completeness.

Proof : The idea is to lower bound the partition function by exhibiting a suitable
localization strategy for the polymer, that consists in aiming at ”good” blocks, i.e.
blocks where ωi is very large. We then compute the contribution to the free energy
of this strategy, in the spirit of (4.2). For a < 1 (non-summable correlations), it
is a lot easier to find such large block (see Lemma 4.1 to be compared with the
independent case). In this sense, the behavior of the system is qualitatively different
from the a > 1 case.

Clearly, it is sufficient to prove the claim for h negative and large enough in
absolute value. Let us fix h negative with |h| large and take l = l(h) ∈ N, to be
chosen later. Recall (4.2), and define

A(k)
l := {for all i ∈ [(k − 1)l, kl] ∩ N, one has βωi + h > |h|} , (4.10)

and as in Section 4.1 the set of favorable blocks In, and pl := P(A(1)
l ) = P(1 ∈ In).

One notices that Z
ω,(k)
l,h > Zpur

l,|h| for all k ∈ In, so that provided that l is large

enough, one has l−1 logZP,pure
l,|h| > 1

2F(|h|). Therefore, from (4.2), if l is large enough

so that the above inequality is valid, and letting n goes to infinity, we get P-a.s.

F(β, h) >
pl
2
F(|h|)− Cpl

1

l
log(p−1

l − 1) > pl

(
c|h|+ c′

1

l
log pl

)
, (4.11)
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where we used that P-a.s. limn→∞
1
n |In| = pl, because of Birkhoff’s Ergodic The-

orem (cf. Nadkarni (1998, Chap. 2)). The second inequality comes from the fact
that, for |h| > 1, one has F(|h|) > cst. |h|, and that p−1

l is large if l is large.

It then remains to estimate the probability pl.

Lemma 4.1. Under Assumption 1 with a < 1, if correlations are non-negative,
there exist two constants c, C > 0 such that for every l ∈ N and A > C(log l)1/2

one has

P (∀i ∈ {1, . . . , l}, ωi > A) > c−1 exp
(
−cA2la

)
. (4.12)

From this Lemma, that we prove in Appendix A (Lemma A.3), and choosing l
such that

√
log l 6 2|h|/(Cβ), one gets that

pl = P
(
∀i ∈ {1, . . . , l}, ωi > 2|h|/β

)
> c−1 exp

(
−clah2/β2

)
. (4.13)

Then in view of (4.11) one chooses l = (C̄|h|/β2)1/(1−a) (this is compatible with
the condition

√
log l 6 2|h|/(Cβ) if |h| is large enough) so that one gets c|h| +

c′l−1 log pl > c|h|/2 > c/2, provided that C̄ is large enough. And (4.11) finally
gives with this choice of l

F(β, h) > cst. exp
(
−clah2/β2

)
> cst. exp

(
−c′|h|

(
|h|/β2

)1/(1−a)
)
. (4.14)

�
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Appendix A. Estimates on correlated Gaussian sequences

In this Appendix, we give some estimates on the probability for a long-range
correlated Gaussian vector to be componentwise larger than some fixed value (see
Lemma A.3). These estimates lies on the study of the relative entropy of two
translated correlated Gaussian vectors. LetW = {Wn}n∈N be a stationary Gaussian
process, centered and with unitary variance, and with covariance matrix denoted by
Υ. We write (ρk)k > 0 the correlation function, such that Υij = E[WiWj ] = ρ|i−j|.
Let Υl denote the restricted correlation matrix, that is the correlation matrix of
the Gaussian vector W(l) := (W1, . . . ,Wl), which is symmetric positive definite.

We recall Assumption 1, that tells that the correlations are power-law decaying,
i.e. that ρk ∼ c0k

−a for some constants c0 and a > 0.

A.1. Entropic cost of shifting a Gaussian vector. In Section 4.1, and in Lemma A.3,
one has to estimate the entropic cost of shifting the Gaussian correlated vector W(l)

by some vector V , V being chosen to be 1l, the vector of size l constituted of only 1,
or U , the Perron-Frobenius eigenvector of Υ (if the entries of Υ are non-negative).
It appears after a short computation that the relative entropy of the two translated
Gaussian vector of is 1

2 〈Υ−1V, V 〉. We therefore give the two following Lemmas
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that estimate this quantity, one regarding the case a > 1 (summable correlations),
the other one the case a < 1 (non-summable correlations).

Lemma A.1 (Summable correlations). Under Assumption 1 with a > 1, and if Υ
is invertible, then one has

〈Υ−1
l 1l,1l〉 l→∞

= (1 + o(1))(Υ∞)−1l, (A.1)

where Υ∞ := 1 + 2
∑

k∈N
ρk (and 1l was defined above).

Note that this Lemma is actually valid under the weaker assumption that
∑

|ρk|<
+∞, Υ still having to be invertible.

In the case a < 1, we actually need the extra assumption that correlations are
non-negative. We then note µ the maximal (Perron-Frobenius) eigenvalue of Υl, so
that thanks to the Perron-Frobenius theorem we can take U an eigenvector asso-
ciated to this eigenvalue with Ui > 0 for all i ∈ {1, . . . , l}. Up to a multiplication,
we can choose U such that mini∈{1,...,l} Ui = 1.

Lemma A.2 (Non-summable correlations). Under Assumption 1 with a < 1, and
if ρk > 0 for all k > 0, one has that 1l 6 U 6 c1l, where the inequality is
componentwise. Moreover, there exists a constant c4 > 0 such that for all l ∈ N

one has c−1
4 l1−a 6 µ 6 c4l

1−a, and therefore

c−1
4 la 6 〈Υ−1

l U,U〉 6 cc−1
4 la. (A.2)

Note that here, it is difficult to get directly an estimate on 〈Υ−1
l 1l,1l〉. The case

a = 1 is left aside, but one would get the same type of result, with la replaced by
l/ log l.

Proof of Lemma A.1: The proof is classical, since we deal with Toeplitz matrices,
and we include it here briefly, for the sake of completeness. The idea is to approx-
imate Υl by the appropriate circulant matrix Λl

Λl :=




ρ0 · · · ρm ρm · · · ρ1
...

. . .
. . .

...
ρm 0 ρm

. . .
. . .

ρm · · · ρ0 · · · ρm
. . .

. . .

ρm 0 ρm
...

. . .
. . .

...
ρ1 · · · ρm ρm · · · ρ0




, with m = ⌊
√
l⌋.

(A.3)
One has that Υl and Λl are asymptotically equivalent, in the sense that their
respective operator norms are bounded, uniformly in l (thanks to the summability
of the correlations), and that the Hilbert-Schmidt norm || · ||HS of the difference
Υl − Λl verifies

||Υl − Λl||2HS :=
1

l

l∑

i,j

(Υij − Λij)
2 6

c

l




l∑

i=1

∑

k > m

ρ2k +

m∑

i=1

m∑

k=1

ρ2k


 l→∞→ 0. (A.4)
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For the convergence, we used that m ≪ l, and the summability of the correlations.
One notices that 1l is an eigenvector of Λl, and that Λl1l = υl1l, where υl :=
1+ 2

∑m
k=1 ρk, which converges to Υ∞. Then we use the idea that, as the operator

norms of Υ−1
l and of Λ−1

l are asymptotically bounded, Υ−1
l and Λ−1

l are also
asymptotically equivalent. One has

|〈(Υ−1
l − Λ−1

l )1l,1l〉| = υ−1
l |〈Υ−1

l (Υl − Λl)1l,1l〉| 6 l υ−1
l |||Υ−1

l ||| ||Υl − Λl||HS.
(A.5)

Therefore 〈Υ−1
l 1l,1l〉 = 〈Λ−1

l 1l,1l〉 + o(l) = (1 + o(1))υ−1
l l, which concludes the

proof since bl
l→∞→ Υ∞. �

Proof of Lemma A.2: We remark that the idea of the proof of Lemma A.1 would
also work if a > 1/2 (and without the assumption of non-negativity), because in
that case

∑
ρ2k < ∞, and (A.4) would still be valid. It is however difficult to adapt

this proof to the a 6 1/2 case, and that is why we develop the following technique,
that gives estimates on the eigenvector associated to the largest eigenvalue of Υ−1

l .
Let us consider the Perron-Frobenius eigenvector U of Υl, with eigenvalue µ, as

defined above: we have that Ui > 0 for all i ∈ {1, . . . , l}, and we choose U such
that mini∈{1,...,l} Ui = 1. Let us stress that one has, in a classical way

µ > min
i∈{1,...,l}

l∑

j=1

Υij > cl1−a,

µ 6 max
i∈{1,...,l}

l∑

j=1

Υij 6 Cl1−a,

(A.6)

where we used the assumption (1) on the form of the correlations, and that a < 1.
Then one has 〈Υ−1

l U,U〉 = µ−1〈U,U〉, so that we are left to show that the Perron-
Frobenius eigenvector U is actually close to the vector 1l. One actually shows that
1l 6 U 6 c1l where the inequality is componentwise, so that cl 6 〈U,U〉 6 c′l, and
it concludes the proof thanks to (A.6).

We now prove that U∞ := maxi∈{1,...,n} Ui 6 c (we already have mini∈{1,...,l} Ui = 1).
Let us show that for i < j

|Ui − Uj| 6 c
|j − i|1−a

n1−a
U∞. (A.7)

One writes the relation (ΥlU)a = µUa for a = i, j, and gets

µ|Ui − Uj| =
∣∣∣∣∣

l∑

k=1

(Υik −Υjk)Uk

∣∣∣∣∣

6 U∞

l∑

k=1

(Υik −Υjk)1{Υik>Υjk} + U∞

l∑

k=1

(Υik −Υjk)1{Υik>Υjk}. (A.8)

From Assumption 1 on the form of the correlations, there is some constant C > 0
such that, if |j − i| > C, then one has ρp > ρp+|i−j| for all p > |j − i|. Then one
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can write, in the case i− j > C, that

l∑

k=0

(Υik−Υjk)1{Υik>Υjk} 6

i∑

p=j−i

(ρp−ρp+j−i)+2

j−1∑

p=0

Kp+

2(j−i)∑

p=j−i

(ρp−ρp−(j−i))

6 2

2(j−i)∑

p=0

ρp 6 c|j − i|1−a. (A.9)

The second term in (A.8) is dealt with the same way by symmetry, so that one
finally has µ|Ui − Uj | 6 cU∞|j − i|1−a for |i− j| > C. Inequality (A.7) follows for
every i, j ∈ N by adjusting the constant.

Suppose that U∞ > 4. The relation (A.7) gives that the components of the
vector U cannot vary too much. One chooses i0 such that Ui0 = U∞, and from
(A.7) one gets that for all j ∈ N

U∞ − Uj 6 c
|j − i0|1−a

n1−a
U∞. (A.10)

There is therefore some δ > 0, such that having |j − i0| 6 δl implies that
Uj >

1
2U∞( > 2). Then, take j0 with Uj0 = 1 so that from writing (KU)j0 = µUj0

one gets

µ =

l∑

k=1

Υj0kUk >

l∑

k=1
|k−k0| 6 δl/2

Υj0k
U∞

2
>

U∞

2

δ

2
cl1−a, (A.11)

where we used in the last inequality that, from Assumption 1, there exists a constant
c > 0 such that for all k ∈ {1, . . . , l} one has Υj0k > cl−a, since |j0 − k| 6 l. One
then concludes that U∞ 6 cst. thanks to (A.6). �

A.2. Probability for a Gaussian vector to be componentwise large. We prove the
following Lemma

Lemma A.3. Under Assumption 1 with a < 1, and if ρk > 0 for all k > 0, there
exist two constants c, C > 0 such that for every l ∈ N, one has

P (∀i ∈ {1, . . . , l}, Wi > A) > c−1 exp
(
−c(A ∨ C

√
log l)2la

)
. (A.12)

This Lemma, taking A > C
√
log l, gives directly Lemma 4.1. Setting A =

0, one would also have an interesting statement, that is that, when a < 1, the
probability that the Gaussian vector is componentwise non-negative does not decay
exponentially fast in the size of the vector, but stretched-exponentially.

Proof : First of all, note A := {∀i ∈ {1, . . . , l}, Wi > A}. Set P̄ the law P on
{W1, . . . ,Wl}, where the Wi’s have been translated by B × U , where B := 2(A ∨
C
√
log l) (the constant C is chosen later), and U is the Perron-Fröbenius vector

of Υl, introduced in Lemma A.1. Under P̄, {Wi}i∈{1,...,l} is a Gaussian vector of

covariance matrix Υl, and such that ĒWi = BUi > B for all 1 6 i 6 l. Then one
uses the classical entropic inequality

P(A) > P̄(A) exp
(
−P̄(A)−1(H(P̄|P) + e−1)

)
, (A.13)

where H(P̄|P) := E

[
dP̄
dP log

dP̄
dP

]
denotes the relative entropy of P̃ with respect to P.
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Note that P̄(A) > P

(
min

i=1,...,l
Wi > A−B

)
= P

(
max

i=1,...,l
Wi 6 B −A

)
, and that

B − A > C
√
log l. One uses Slepian’s Lemma that tells that if {Ŵi}i∈{1,...,l} is a

vector of IID standard Gaussian variables (whose law is denoted P̂), then one has

E

[
max

i=1,...,l
Wi

]
6 Ê

[
max

i=1,...,l
Ŵi

]
6 c
√
log l, (A.14)

where the second inequality is classical. Thus one gets

P

(
max

i=1,...,l
Wi > 2c

√
log l

)
6

1

2c
√
log l

E

[
max

i=1,...,l
Wi

]
6 1/2. (A.15)

In the end, one chooses the constant C such that P
(
maxi=1,...,l Wi 6 C

√
log l

)
>1/2

and one finally gets that P̄(A) > 1/2.

One is then left with estimating the relative entropy H(P̄|P) in (A.13). A straight-
forward Gaussian computation gives that H(P̄|P) = B2〈Υ−1

l U,U〉. In the case
a < 1, Lemma A.1 gives that H(P̄|P) 6 cB2l−a, which combined with (A.13)
gives the right bound. �
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U. Grenander and G. Szegö. Toeplitz forms and their applications. California
Monographs in Mathematical Sciences. University of California Press, Berkeley
(1958). MR0094840.

J.M. Hammersley. Generalization of the fundamental theorem on sub-additive func-
tions. Proc. Cambridge Philos. Soc. 58, 235–238 (1962). MR0137800.

A.B. Harris. Effect of random defects on the critical behaviour of ising mod-
els. Journal of Physics C: Solid State Physics 7 (9), 1671 (1974). DOI:
10.1088/0022-3719/7/9/009.

Frank den Hollander. Random polymers, volume 1974 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin (2009). ISBN 978-3-642-00332-5. Lectures from
the 37th Probability Summer School held in Saint-Flour, 2007. MR2504175.

H. Lacoin. The martingale approach to disorder irrelevance for pinning models.
Electron. Commun. Probab. 15, 418–427 (2010). MR2726088.

M.G. Nadkarni. Basic ergodic theory. Birkhäuser Advanced Texts: Basler
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