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Abstract. Let G be a non—linear function of a Gaussian process { X} }+c7z with long-range dependence. The
resulting process {G(X;)}iez is not Gaussian when G is not linear. We consider random wavelet coefficients
associated with {G(X¢)}iez and the corresponding wavelet scalogram which is the average of squares of
wavelet coefficients over locations. We obtain the asymptotic behavior of the scalogram as the number of
observations and the analyzing scale tend to infinity. It is known that when G is a Hermite polynomial
of any order, then the limit is either the Gaussian or the Rosenblatt distribution, that is, the limit can be
represented by a multiple Wiener-It6 integral of order one or two. We show, however, that there are large
classes of functions G which yield a higher order Hermite distribution, that is, the limit can be represented
by a a multiple Wiener-1t6 integral of order greater than two. This happens for example if G is a linear
combination of a Hermite polynomial of order 1 and a Hermite polynomial of order ¢ > 3. The limit in
this case can be Gaussian but it can also be a Hermite distribution of order ¢ — 1 > 2. This depends not
only on the relation between the number of observations and the scale size but also on whether ¢ is larger
or smaller than a new critical index ¢*. The convergence of the wavelet scalogram is therefore significantly
more complex than the usual one.
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1. Introduction

Denote by X = {X;}:ez a centered stationary Gaussian process with unit variance and spectral density
f(A), A € (—m, 7). Such a stochastic process is said to have short memory or short-range dependence if f(\)
is bounded around A = 0 and long memory or long—-range dependence if f(A\) — oo as A — 0. We will suppose
that {X;}ez has long memory with memory parameter 0 < d < 1/2, that is,

FO) ~ A2 (N) as A = 0 (1.1)

where f*()) is a bounded spectral density which is continuous and positive at the origin. This hypothesis is
semi—parametric in nature because the function f* plays the role of a “nuisance function”. It is convenient
to set

FO) =11 —e 72N, Ae (—m, 7). (1.2)
Since the process X is defined only if ffﬂ F(A)dA < o0, we need to require d < %
Consider now a process {Y;}:cz, such that

(ARY), =G(Xy), teZ, (1.3)

for K > 0, where (AY); = Y; — Yi_1, {Xt}+ez is Gaussian with spectral density f satisfying (1.2) and where
G is a function such that E[G(X;)] = 0 and E[G(X;)?] < co. While the process {Y;};ez is not necessarily
stationary, its K-th difference AXY; is stationary and is the output of a non-linear filter G with Gaussian
input.

We shall study the asymptotic behavior of the wavelet scalogram of {Y; }+ez, that is, the average of squares
of its wavelet coefficients. As shown in Flandrin (1992); Abry and Veitch (1998); Veitch and Abry (1999)
and Bardet (2000) in a parametric context, the normalized limit of scalogram can be used to estimate the
long memory exponent d defined in (1.1).

Empirical studies presented in Abry et al. (2011) consider the problem of estimating d under various
types of functions G. The argument, consistent with the one in Clausel et al. (2012), suggests that at large
scales the wavelet coefficients behavior only depends on the “Hermite rank”, which is defined below, of G.
Moreover the authors develop heuristical arguments to deduce the asymptotic behavior of wavelet-based
regression estimator of d. We provide here a theoretical analysis in a semi—parametric setting for a large
class of functions G. We will show that, as j goes to infinity, there is a delicate interplay between the scale
7; (typically 27) and the number of wavelet coefficients n; and that the “reduction theorem” (see below)
applies only when v, is much greater than n;.

In the semi—parametric context, the case where the function G is linear was firstly considered in Moulines
et al. (2007) and the case where G is a Hermite polynomial of arbitrary order was studied in Clausel et al.
(2014). The case where G(X}) is the so—called “Rosenblatt process” was studied by Bardet and Tudor (2010)
(see also Tudor (2013)) and is somewhat analogous to the one where G is the second Hermite polynomial.
Our goal is to show that for more complicated functions G, one can obtain new types of limits.

We have referred to Hermite polynomials a number of times. This is because they form a basis for the
space of functions G and thus appear naturally in our setting. Since the function G satisfies E[G(X)] = 0
and E[G(X)?] < oo for X ~ N(0,1), G(X) can be expanded in Hermite polynomials, that is,

(oo}
¢x) =Y “H,(X). (1.4)

q
q=1 ¢

One sometimes refer to (1.4) as an expansion in Wiener chaos. The convergence of the infinite sum (1.4) is
in L?(Q),
¢q = E[GIX)H,(X)], ¢=>1, (1.5)

and

Hy(w) = (1)1 ()

are the Hermite polynomials. These Hermite polynomials satisfy Ho(z) = 1, Hy(z) = x, Ha(z) = 2° — 1 and

one has
1 —22/2
e dx = q!]l{q:q/} .

E[H,(X)Hy (X)] = / H, () Hy () =
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Observe that the expansion (1.4) starts at ¢ = 1, since
o = BG(X)Ho(X)] = E[G(X)] =0, (16)

by assumption. Denote by qg > 1 the Hermite rank of G, namely the index of the first non—zero coefficient
in the expansion (1.4). Formally, ¢o is such that

¢o = min{q > 1, ¢, # 0} . (1.7)
One has then
+oo 2
c
> A =E[GX)’] <. (1.8)
e

We will focus on the wavelet coefficients of the sequence {Y;}iez in (1.3). Since {Y;}+ez is random so will
be its wavelet coefficients which we denote by {W; x, j > 0, k € Z}, where j indicates the scale index and k
the location. These wavelet coefficients are defined by

Wik =Y hi(yk—t)Y;, (1.9)

teEL

where 7; 1 00 as j 1 0o is a sequence of non-—negative decimation factors applied at scale index j, for example
v = 27 and h; is a filter whose properties are listed in Appendix C. We follow the engineering convention
where large values of j correspond to large scales. Our goal is to find the distribution of the empirical
quadratic mean of these wavelet coefficients at large scales j — oo, that is, the asymptotic behavior of the
wavelet scalogram

Spyi=— > Wi, (1.10)

adequately centered and normalized as the scale v; and the number of wavelets coefficients n; available at
scale index j both tend to infinity.

The reduction theorem of Taqqu (1974/75) states that if G(X;) is long-range dependent then the limit
in the sense of finite-dimensional distributions of Z["t] G(X) adequately normalized, depends on the first

term in the Hermite expansion of GG. In other words, there exist normalization factors a,, — co as n — oo
such that

[nt] [nt]
1
— Y G(Xy)  and Z a0 L Hy, (X1)
" k=1

have the same non—degenerate limit as n — oo.

We are interested here, however, in the asymptotic behavior of the wavelet scalogram S, ; in (1.10). We
want to find exponents o > 0 and v > 0 such that as the number of wavelet coefficients n; and the scale ;
tend to oo,

{n5v; Sy pjtusu € Z} (1.11)
tends, after centering, to a limit in the sense of the finite-dimensional distributions in the scale increment .
This is a necessary and important step in developing methods for estimating the underlying long memory
parameter.

The limit of the sequence S, ; will be related to the so—called Hermite process. The Hermite process is a
self-similar stochastic process, with stationary increments and long range dependence. The Hermite process
of order ¢ lives in the gth Wiener chaos, that is, it can be written as an iterated multiple integral of order ¢
with respect to white noise. We refer to Definition 2.1 below for the precise representation.

We will see that, in the scalogram setting, the reduction theorem mentioned above does not always apply.
For example if G(X;) = Hi(X¢) + Hg, (Xt), ¢1 > 3 then the Hermite rank is go = 1. But the limit of the
normalized scalogram is not necessarily the same as that of Hy(X;) = X;. This is essentially due to the fact
that the scalogram involves squares and, in addition, depends on two parameters j and n; which both tend
to oo.

In Clausel et al. (2014), the case

G(Xy) = Hy(Xy), ¢=2

)
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was studied and it was shown that in this case the limit is a Rosenblatt process (see Definition 2.1). In the
present paper we study other classes of functions G for which different Hermite processes appear in the limit.
For example, for the process

G(Xy) = Hi(Xe) + Hg, (X)), @123,

considered above, the limit of (1.11) may be either Gaussian, a Hermite process of order ¢; —1 or a Rosenblatt
process depending on the specific circumstances. We will show the existence of a critical indezx ¢f and of
critical exponents v, v’ such that when ¢; < ¢, then :

e the limit is Gaussian if n; < 77,

e the limit is a Hermite process of order ¢; — 1 if 7/ < n; < 'y]”/,

e the limit is a Rosenblatt process if v; < ny,
where a; < b; means that a; = o(b;) as j — oo.

We will also study interesting cases where the function G has a Hermite rank greater than two.

The paper is organized as follows. Long range—-dependence and the multidimensional wavelet scalogram
are introduced in Section 2. The main results are stated and illustrated in Section 3. The chaos decomposition
of the scalogram is given in Section 4. The study of the leading terms is done in Sections 5 and 6. The proofs
of the main theorems are given in Section 7 while Section 8 contains some technical lemmas. Basic facts
about the Wiener chaos are gathered in Appendix B and Appendix C lists the assumptions on the wavelet
filters.

2. Long-range dependence and the multidimensional wavelet scalogram

The Gaussian sequence X = {X;}+cz with spectral density (1.2) is long-range dependent because d > 0
and hence its spectrum explodes at A = 0. Whether {H,(X;)}.ez is also long-range dependent depends on
the respective values of ¢ and d. We show in Clausel et al. (2012), that the spectral density of {H,(X;) ez
behaves like |A\|72%+(@) as X — 0, where

d4+(q) = max(6(q),0) and d(q) =qd—(¢—1)/2. (2.1)

Hence 6. (q) is the memory parameter of {H,(X;)}icz. Therefore, since 0 < d < 1/2, {Hqy(X¢)} ez, ¢ > 1,
is long-range dependent if and only if

0(qg) >0 (1/2)(1—-1/q) <d < 1/2, (2.2)
that is, d must be sufficiently close to 1/2. Specifically, for long-range dependence,
g=1=d>0, ¢g=2=d>1/4, ¢q=3=d>1/3, g=4=d>3/8. (2.3)
From another perspective,
0 >0<=1<g¢g<1/(1-2d), (2.4)

and thus {H,(X;)}1ez is short-range dependent if ¢ > 1/(1 — 2d).
We shall suppose that the Hermite rank of G is go > 1, that is the expansion of G(X;) starts at go. We
always assume that {H,, (X;)}+cz has long memory, that is,

@0 < 1/(1—2d). (2.5)

The condition (2.5), with go defined as the Hermite rank (1.7), ensures such that {AKY }ycz = {G(X}) }iez
is long-range dependent (see Clausel et al. (2012), Lemma 4.1). We are mainly interested in the asymptotic
behavior of the scalogram S, ;, defined by (1.10) as n; — oo (large sample behavior) and j — oo (large
scale behavior). More precisely, we will study the asymptotic behavior of the sequence

n; —1
o 1 Jt+u
Snj+u7j+u = Snj+uuj+u - E(Snj+u,j+u) = niy Z (Wj2+u,k - E(Wszru,k)) ’ (26)
ITE k=0

adequately normalized as j,n; — oo.
There are two perspectives. One can consider, as in Clausel et al. (2012), that the wavelet coefficients
W 4u,k are processes indexed by u taking a finite number of values. A second perspective consists in replacing



Higher order chaotic limits of wavelets scalograms 983

instead the filter h; in (1.9) by a multidimensional filter hy ;,¢ = 1,--- ,m and thus replacing W ; in (1.9)
by
Waegk =Y hey(yk — )Y .
tez
We adopted this second perspective in Clausel et al. (2014) and we also adopt it here since it allows us to
compare our results to those obtained in Rouefl and Taqgqu (2009) in the Gaussian case.
We use bold faced symbols W ;. and h; to emphasize the multivariate setting and let

h] = {hf,ja { = 17' o 7m}a Wj,k = {Wf,j,lm l = 17' o 7m} 5
with

Wk =3 hj(yk—1)Y; =Y hi(yk—t)AG(X,), j>0,keZ. (2.7)
tez tez
We then will study the asymptotic behavior of the sequence

L L
Suys = D0 (Wi~ E[W3,]) . (2.8)
"i =0
adequately normalized as j — oo, where, by convention, in this paper,
Wi ={W7 =1, ,m}. (2.9)
The squared Euclidean norm of a vector X = [1, ..., 2,,]7 will be denoted by |x|?> = 2% +--- + 22,

It turns out that the asymptotic behavior of §nj _j depends on how the subsequence of Hermite coefficients
¢q, ¢ > 1 which are non-vanishing is distributed. We denote this subsequence by {cq, }rcc where £ is a
sequence of consecutive integers starting at 0,

£c{0,1,2,...}, (2.10)

with same cardinality as the set of non-vanishing coefficients, and (g¢)ecc is a (finite of infinite) increasing
sequence of integers such that

go = index of the first non-zero coefficient c,,
ge = index of the (¢ 4 1)th non—zero coefficient, ¢>1.

Examples
1) If
G(Xy) = 1 H1(Xy) 4 & 30 Hg(Xt) ,

where ¢; #0, c2 =0, ¢c3 #0, ¢, =0 for ¢ >4, then gy =1, ¢1 =3 and £ = {0,1}.

2) If
G(X1) = 5 Ha(Xy) + 5 Ha(Xe) + 5 Ha(Xo)

where ¢; =0, co #0, ¢3 #0, (:475.07 cq:0for.q25, thené0:2, @1 =3, ¢ =4and £L=1{0,1,2}.

3) If

(oo}
G(Xy) :Z qH (X)),
Wherecq#Oforq21thenqo—l,q1—2,...7and£—{0,1,27~-~}.
4) If
c
G(Xf) = ﬁHQO (Xf) )

where ¢,, # 0 and ¢, = 0 for ¢ # qo, then £ = {0}.
While ¢ is always equal to 0 (see (1.6)), the assumption (1.7) ensures that ¢,, # 0 and hence that £
always contains the index 0, so that £ is never empty. In particular, we may write
¢
(ARY), =G(X) =) %qu (Xy), telZ, (2.11)
lel

where, if £ is infinite, the sum converges in the L? sense.
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We set
I={tel :t+1€L,qy1—q=1}, (2.12)
J=A{(t1,62) € L? : & <Ly, qo, #1 and qp, —qr, > 2}, (2.13)
that is, g¢ and gg41 take consecutive values when ¢ € I and ¢, and ¢y, differ by two or more when (¢1,¢3) € J.

The structure of these two sets is particulary important. The set I could be empty (there are no consecutive
values of g¢) or not empty. Then we set

lo = {min([) >0, when [ is not empty , (2.14)

0, when [ is empty .

When { is finite (that is, I is not empty), gy, is the smallest index ¢ such that two Hermite coefficients ¢,
cq+1 are non—zero. It will be involved in the normalization. We define, in addition,

mo=min({¢{ € L, g¢ >3})>0. (2.15)
Thus gy, is the smallest index ¢ such that ¢, is non-zero with ¢ > 3.
Examples
1) If
C2 Cq
G(Xy) = cr Hy(Xy) + EHZ(Xt) + IH4(Xt) )
where ¢1 # 0, co # 0, c3 = 0,¢4 # 0,¢q =0 for ¢ > 5 then £ ={0,1,2}, I = {1}, lo =1, mpo =4
and J = {(2,4)}.
2) If
Co C3 Cy4
G(Xy) = EHQ(Xt) + gHs(Xt) + EHZL(Xt) )
where ¢1 =0, c2 #0, c3 #0, ¢4 #0, ¢y =0 for ¢ > 5, then £ ={0,1,2}, I ={2,3}, o =2, my =3
and J = {(2,4)}.
3) If
G(Xt) = i Hi(Xy) = e1 Xy
where ¢; # 0 and ¢, = 0 for ¢ > 2, then £ = {0} and both I and J are empty.

We are interested in the asymptotic behavior of the normalized scalogram S, ; defined in (2.8). This
behavior depends on the sets J and I. These sets affect both the rate of convergence and the limit distribution
of the rescaled sequence. The limit (see Section 3) will be expressed in terms of the Hermite processes which
are defined as follows :

Definition 2.1. The Hermite process of order ¢ and index

(1/2)(1—-1/q) <d < 1/2, (2.16)
is the continuous time process
" ai(uattug)t _ 4 s —~
Zga(t) = ——|ug - ug T dW - dW teR. 2.17
)= [ oy il AW ) dW ), £ € (2.17)

It is Gaussian and called Fractional Brownian Motion when ¢ =1 and 0 < d < 1/2. It is non Gaussian and
called Rosenblatt process when ¢ = 2 and 1/4 < d < 1/2. The marginal distribution of Z, 4(¢) at t =1 is
called the Hermite distribution of index ¢. It is called a Rosenblatt distribution when ¢ = 2.

The multiple integral (2.17) is defined in Appendix B. The symbol flé/q indicates that one does not integrate
on the diagonal u; = u;, j # i. The integral is well-defined when (2.16) holds or equivalently when,

1<qg<1/(1-2d),
because then it has finite L? norm. This process is self-similar with self-similarity parameter
H=dg+1-q/2=06(q) +1/2 € (1/2,1),

that is for all a > 0, {Z,a(at)}ier and {a” Z, 4(t)}:cr have the same finite dimensional distributions,
see Taqqu (1979).
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3. Main results

We shall now state the main results and discuss them. They are proved in the following sections. We
start with the assumptions

Assumptions A {W;;, j > 1,k € Z} are the multidimensional wavelet coefficients defined by (2.7) , where
(i) {Xi}iez is a stationary Gaussian process with mean 0, variance 1 and spectral density f satisfy-
ing (1.2).
(ii) G is a real-valued function whose Hermite expansion (1.4) satisfies condition (2.5), namely gy <
1/(1 — 2d), and whose coefficients in Hermite expansion satisfy the following condition: for any
A>0,
cg =0((g)%e ™) asq— oco. (3.1)
(iii) the wavelet filters (h;);>1 and their asymptotic Fourier transform heo satisfy (W-a)—(W-c) with M
vanishing moments. See details in Appendix C.
We shall focus on the asymptotic behavior of the scalogram for two basic classes of functions G.
e The first class involves functions G with Hermite rank greater or equal to 2 and with two consecutive
terms in the Hermite expansion, both of which having long—range dependence. The result is stated
in Theorem 3.1.
e The second class involves functions G with Hermite rank equal to 1 with no two consecutive terms
with long-range dependence. The results are stated in Theorems 3.3 and 3.5.
Other classes are left for future work.

3.1. G has a Hermite rank greater or equal to 2. Consider functions G of the form

C2 Cqe Cqpy+1
G({E) = EHQ(‘T) 4+t QTOO!HWO (iE) + queo+1(x) I
where ¢; = 0. Some of the ¢, ¢ > 2 may be zero as well. More precisely assume that
q =2, (3.2)

that is, that the Hermite rank of G is 2 or more. Also assume that (a) there exists two consecutive terms
and that (b) both are long range dependent. Assumption (a) implies that the set I in (2.12) is not empty.
Since the index g, (see (2.14)) of the first of these two consecutive terms could be gg > 2, we have qp, > 2.
The index of the second of these consecutive terms is gz, + 1 > 3. Assumption (b) will be satisfied if this
second term is long-range dependent, that is

Qo +1<1/(1-2d), (3.3)
by (2.4). We note that this situation implies the following boundaries for the parameter d:
1/3<d<1/2,
as indicated in (2.16).
Set
v=2q,+1—2q. (3.4)

The following theorem provides the limit of (2.8) for two different cases, depending on whether the limit
of n;lfy;-’ when j — +oo is null or infinite. It involves K > 0 defined in (1.3), go in (1.7), d(q) is defined
n (2.1), €y in (2.14). The integer M is the number of vanishing moments of the wavelet filters and appears
in Appendix C.

Theorem 3.1. Suppose that Assumptions A hold with M > K + 0(qo). Suppose moreover that the Hermite
expansion of G satisfies (3.2) and (3.3).

Then two limits in distribution of the centered multidimensional scalogram S,, ; in (2.8), suitably nor-
malized, are possible. They involve the Hermite processes in Definition 2.1 evaluated at time t = 1. The
coefficients involve £y and the multidimensional deterministic vector Ly, whose entries [Lq(//;/&oo)]g:l)...,m
are defined as

~ [P0 (us + - +ug) > 77, —24
Lo(he oo) = : 3724 duy - - - dug 3.5
oheeo) /Rq g + - - + ug 2K };[1|U| uy - - - dig (3.5)
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which is finite for any g < 1/(1 — 2d). Then
(a) If nj <~ then, as j,n; — oo,

2
_ _ — L ¢ *
pl =20, 20 Hg (£) m [£*(0)Lyy—1] Za,a(1) .

b) If v¥ < n; then, as j,n; — oo,
rY] J J J

Cquy Cquy+1

n(_kzd)/zv_—(é(qzo)+6(qeo+1)+2K)§ () '
qey:

j j njg 2 f*(o)q/z0+1/2 Lq,, Z1,a(1) .

Remarks.

1. Using (C.6) with M > K and o > 1/2, the integral in (3.5) is finite for any positive integer
g < 1/(1—2d), see Lemma 5.1 in Clausel et al. (2012). Thus, under Conditions (3.2) and (3.3), the
vectors Lg,—1 and Lg, appearing in the limits of Cases (a) and (b) have finite entries.

2. In case (a), the limit is a deterministic vector times the non-Gaussian Rosenblatt random variable
Z3.4(1), that is, the Rosenblatt process Z 4(t) defined in (2.17) and evaluated at time ¢t = 1. In
case (b), the limit is a deterministic vector times the Gaussian random variable Z; 4(1), that is,
Fractional Brownian motion Z; 4(t) defined in (2.17) and evaluated at time ¢ = 1.

3. In the case where n; ~ Co7y} as j — oo for some Cp > 0, the scalogram is asymptotically a linear
combination of a Rosenblatt and a Gaussian variable. Indeed, using the results of Section 6, one can
see that the scalogram is the sum of two terms having the same order, both converging in the L?
sense respectively to a Rosenblatt and a Gaussian variable.

Proof: This theorem is proved in Section 7.1. O

In the framework of wavelet analysis as in Moulines et al. (2007), we have ; = 27 and the number n = n;
of wavelet coefficients available at scale index j, is related both to the number N of observations Yy, -, Yy
of the time series Y and to the length T of the support of the analyzing wavelet. More precisely, one has
(see Moulines et al. (2007) for more details),

n;=29(N-T+1)-T+1]=2"7N+0(1), (3.6)

where [z] denotes the integer part of « for any real . Note that the assumption n; — oo when j — oo is
equivalent to N — oo faster than 27. Moreover, for any v > 0,

nj <2 = 27IN < 29 «= N < 270D when N — oo . (3.7)

Examples. We now illustrate Theorem 3.1 through three examples:
(i) G = H,, with g9 > 2.
(ii) G =Hyy + Hyyy1 with go > 2, g0 +1 < 1/(1 — 2d).
(i) G = Hyy + Hyyy1 + Hyg, with g0 > 2, g0 +1 < 1/(1 — 2d) and with ¢1 — (go + 1) > 2, that is,
J = {(qO + 1>(I1)}
In all cases, the integer gy denotes the Hermite rank of G.
Let us elaborate on the conditions on d and the resulting limits for these examples. For simplicity, we
assume that the scalogram S, ; is univariate.

Example (i). When G = H,, with go > 2, I and J are both empty. Since I is empty one can regard ¢y and
consequently ¢q, and v as infinity, which suggests that we are in case (a), independently of the growths of n;
versus 7; as j — oo. The asymptotic behavior of the scalogram of this example is treated by Theorem 3.1
in Clausel et al. (2014) under the condition gg < 1/(1 — 2d). Indeed, the obtained rate of convergence is
the same as in case (a) of Theorem 3.1 and the limit is also Rosenblatt. This also corresponds to the limit
obtained by Bardet and Tudor in the case where Y itself is the Rosenblatt process (see Theorem 4 of Bardet
and Tudor (2010)).

Example (ii). Suppose G = Hy, + Hgo41, with go > 2 and ¢o +1 < 1/(1 — 2d). Then J is empty and
I = {qo}. The Hermite rank of G is go and thus coincides with gg,. As a consequence, by (3.4), v = 1. Let
us use Eq. (3.7) to relate the asymptotic behavior to the number of observation N and the analyzing scale
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index j. Since v = 1, we get that the asymptotic behavior of the scalogram S,; ; depends on whether, as
7, N — oo, _ _
N<2¥ orif 2% < N .
Let us explain how these two regimes show up in the limit. The wavelet coefficients of Y can be expanded
as follows
1
Wi =W 4w+t

where Wj(%’), Wj(zfﬂ) belong respectively to the chaos of order gy and gg + 1. Then,

W2 = (W2 + e 02) + (2w @ wiget D)
The term [Wj(fff)]Q behaves as in the case G = H,, and is asymptotically Rosenblatt as proved in Clausel
et al. (2014). The term [I/T/'j(‘iﬁ'l)]2 is asymptotically negligible as proved in Proposition 5.1. The term
Wj(i“)Wj(‘f:H), on the other hand, turns out to be asymptotically Gaussian. The asymptotic behavior of the

scalogram then depends on whether the Rosenblatt term or the Gaussian term is leading. This depends on
the limit of N/2%7. Hence, both limits stated in Theorem 3.1 may occur:

e If 272/ N — 0, the term corresponding to [ng’iO)]Q is leading and the scalogram S, ; of Y is asymp-
totically Rosenblatt.

o If 2727N — oo, the terms corresponding to W](iO)W;%’+1) are leading and the scalogram S, ; of YV’
is asymptotically Gaussian.

Example (iii). Suppose G = Hy, + Hyy41 + Hy, with go > 2, go+1 < 1/(1 —2d) and ¢1 — (g0 + 1) > 2.
Then I = {qo}, J = {(q0,91), (90 + 1,q1)}. Observe that in this case, .J is not involved in the limit of Sy, ;
and the behavior of the scalogram is similar to that of Example (ii). Thus, the two limits of Theorem 3.1
may occur.

3.2. The Hermite rank of G equals 1. Here we assume that
o=1 ¢<1/(1-2d) and ¥{H=oc. (3.8)

In particular, £y = oo implies ¢1 > go+2 = 3 and thus this condition implies d > 1/3, thus d € (1/3,1/2). By
definition of £y in (2.14), the last condition in (3.8) means that there are no terms with consecutive indices
in the Hermite expansion. Thus

c c
G:61H1+£qu+ﬁ[{q2+...

¢!
where for any ¢ € £, qo41 — q¢ > 2. In this case the following critical index plays an important role :
1
=24 —. 3.9

It will also be useful to relate the number of available wavelet coeflicients n = n; to 7/ where v takes the
following three values :

Vi (3.10)

1—2d)(q; — 1 1—2d a=l ifg >3
( )(ql ) vy = ((J1 _1)7 1/3 — {ql?) 1 QI

TI-(-2d)(q—1) % 2d-1/2 o ifg=3.
As shown in the following lemma, the relations between v4, v, and v3 depend on whether ¢ < ¢f or g1 > ¢7 :

Lemma 3.2.

o If g1 < qf then v1 < vy < 3.

o Ifq1 > qf then vs < vy < vy (in particular we have v < 00).
Proof: First observe that

(1—2d)(q1 — 1) (1—2d)(q1 — 1) 1
ST 0—2d@ -1 2T za-iz T Mog<i-(-2@-1)

V1

1—(2d—3)

< 1
g <l+ Y

=q .
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Now, if g1 > 3 then

(1—2d)(q1 — 1) q—1 2d — 3 2d — 3
= < = < -3 < <~ <3 =q;
V2 2d— 1/2 BEn—3 ¢ 1—2d = BLSPt Ty T
and, since ¢f > 3, the case ¢; = 3 can only happen for ¢; < ¢f, and yields vy < 0o = v3. O

The next theorems indicate the limits in the various cases. We first consider the case where ¢, is lower
than the critical index g¢j.

Theorem 3.3. Suppose that Assumptions A hold with M > K + d. Suppose moreover that the Hermite
expansion of G satisfies (5.8) and assume that g1 < qf, where qf is defined in (3.9).

Then three limits of the multidimensional scalogram S,, ; in (2.5), suitably normalized, are possible :

(a) If nj < 7' then as j,m; — oo,

ny/2y; G5, 8 G N

J njsJ
where I' is defined as
2

Li o = 47m(f*(0))? / Z A 4 2pm|~2(E+D) [Bi}mﬁif,m](A +2pm)| dX, 1<id,i <m. (3.11)
T |peZ
(b) If v < nj and either vz = 0o or n; < v;* then as j,nj — o0
(1-28(q1—1))/2, ~(0(9)+2K)g (L) 201¢q,
nJ ,y] nj,J (ql . 1)'[
¢) If vs < 0o and v* < n; then as j,n; — oo,
j g j

FHO)] @ TDPLy Zy, 1 4(1)

— 02
n;_2d7;2(6(QI)+K)Sn,-,j (_>5) ﬁ [f*(O)]ql Ly, 1 Zo.a(1) .
Remark 3.4. In case (c), the limit is a deterministic vector times the non-Gaussian Rosenblatt random
variable Z3 4(1). In case (b), the limit is a deterministic vector times a Hermite random variable of order
g1 —1 > 3—1 = 2, which can be represented by a multiple Wiener integral of order 3 or more (see
Definition 2.1).

In the case where n; ~ Co'y}’a as j — oo for some Cy > 0, the scalogram is asymptotically a linear com-
bination of a Rosenblatt and a Hermite random variable. This is because, up to an equality in distribution,
it is the sum of two terms both converging in L? after normalization (see Section 6). On the other hand if
n; ~ Cofy;l as j — oo for some Cy > 0, the situation is complicated. This is because the scalogram is the
sum of two terms of same order, one converging in L? to a Hermite random variable, the other converging
only in law to a Gaussian random variable.

Proof: This theorem is proved in Section 7.2. O
We now consider the case where ¢; is greater than the critical exponent g .

Theorem 3.5. Suppose that Assumptions A hold with M > K + d. Suppose moreover that the Hermite
expansion of G satisfies (5.8) and assume that g1 > qf, where qf is defined in (3.9).

Then two limits of the multidimensional scalogram gn’j in (2.8), suitably normalized, are possible :

(a) If ny <~ then as j,n; — oo,

1/2 —(2d+2K)q (£)
nj/ Y4 (2d+ )Snj,j = EN(0,T),
where I is as in Theorem 3.3 (a).
(b) If v <y then as j,n; — oo,
2
— —2(8 < (L) ¢ *
njl Qd’Yj 2( (Q1)+K)Sn7j o % I (0)]Q1 Ly, 1 Z24(1) .
(@ —1)!
Remark 3.6. As in the case of Theorem 3.3, the case where n; ~ 007;’2 as j — 0o, seems quite complicated
to deal with.
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Proof: This theorem is proved in Section 7.2. O

Example. We now illustrate Theorem 3.3 and 3.5. Our setting is still that of Moulines et al. (2007) as
above.
The memory parameter d is assumed to belong to (3/8,1/2). Consider the case where

G == Hl -|— qu 5
with 3 < ¢1 < 1/(1 —2d). We will prove in the sequel that the wavelet coefficients of Y can be expanded as
Wj,k — W(l) + W(‘h) ,

(41)

where W(k is Gaussian and W belongs to the chaos of order g;. Then,

1172 = [W 1)72 W q1)12 W 1 1% q1
J.k [ j(,k)] [ j(,k )] 2 j(,k) j(,k )
T'he empirical mean of the terms [V[/j(,lk)]

The empirical mean of the terms [Wj(il)]

behaves as in the Gaussian case and is asymptotically Gaussian.
2 behaves as in the case G = H,, with ¢; > 2 and is asymptotically

Rosenblatt. Finally the empirical mean of the terms 2W;’1k) Wﬁ;) belongs to the chaos of order ¢; — 1 > 2.
The asymptotic behavior of the scalogram then depends on which of the three terms is leading.
To see what happens, let N be as before the number of observations and assume that v; = 27. Let
nj ~ N277 as j — oo as in (3.6). Distinguish two cases : ¢1 < ¢i and g1 > ¢} where ¢} is defined in (3.9).
If ¢1 < ¢f, the three possibilities stated in Theorem 3.3 can occur :
o if 277+t N 5 0 as N, j — oo, then the term corresponding to [I/Vj(lk)]2 is leading and the scalogram
Sn;,j of the process {Y;}cz is asymptotically Gaussian (case (a)).
o if 277 HDN 5 050 and 277+ N — 0 as N, j — oo, then the term corresponding to 2Wj(1k)W(q1)

gk
is leading and the scalogram S, ; of {Y;} belongs asymptotically to the chaos of order ¢, — 1 > 2

(case (b)).
o if 277t N 5 o0 as N,j — oo, then the term corresponding to [Wj(ff)]2 with ¢; > 3 is leading
and the scalogram S, ; of {Y;} is asymptotically Rosenblatt (case (c)).
If we now assume that ¢; > ¢}, we are in the setting of Theorem 3.5 and the term corresponding to

QW]'(,lk) Wj(il) is always negligible. Then only two different situations can occur :

e if 277"+t N 5 0 as N, j — 0o, then the term corresponding to [Wj(}k)]2 is leading and the scalogram
Sn;,j of {Y} is asymptotically Gaussian (case (a)).

o if 277 +tUN 5 o0 as N,j — oo, then the term corresponding to [ng,il)]Q is leading and the
scalogram S,,. ; of {Y;} is asymptotically Rosenblatt (case (b)).

4. The basic decomposition

Our goal is to investigate the asymptotic behavior of §”j _; as defined in (2.8) when j — 4o00. Asin Clausel
et al. (2014), our main tool will be the Wiener-Ité chaos expansion of §n]. ,; which involves multiple stochastic

integrals fq7 q=1,2,.... These are defined in Appendix B. In this case, the situation is more complex than
in the case G = Hy, since as proved in Clausel et al. (2012), the wavelet coefficients W , defined in (2.7),
admit an expansion into Wiener chaos as follows :

s C
Win=> q{wf,ﬂ , (4.1)
g=1

where W§q) is a multiple integral of order ¢. Then, using the same convention as in (2.9), we have

0o 2
wi=2 () (v’ +2ZZC‘?Cq W (+2)

q=1 q’'=2 q=1

where the convergence of the infinite sums hold in L!(£) sense.
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Each W§q,2 is a multiple integral of order g of some multidimensional kernel f;gg, that is
W = T,(£19) . (4.3)

Now, using the product formula for multiple stochastic integrals (B.8), one gets, as shown in Proposition 4.2
that, for any (n, j) € N2,

n—1
— 1
Snj =~ ) Wik —E[WJ]
k=0
00 2 q—1 2
S B e
=1 \ T p=0 P
= Seger = (0 (€ i
q &9’ 4,9 ,p
L YR ()() s 0
q'=2 q=1 p=0
where, for all ¢,¢’ > 1 and 0 < p < min(q, q’), S(q’qu’p) is of the form

Sglq,]q ) _ q+q _2p(g£q,]q ,p)) . (4.5)

We call ¢ + ¢’ — 2p the order of the summand S(q 4P)  For any n,J,q,q ,p, the function g(q a'p) &), &€ =

(€1, Eqrq—2p) € RITY =22 is defined for every p,q,q as
n—1
1 o
gy P =3 (EUEAL) - (46)
k=0

where the operation ®, is defined in (B.9) for each entry. The expansion in Wiener chaos of §n$j implies
that

S., - QS(I ,1,0) +E(0) +2(1) +§J(2) +§JS’3 7 (4.7)
with
0 _ § () st
Zoi= D ( 72 < ) Sui " “8)
LeL, qp#l a
¢ & q q ( )
(1) qe; Cae ' 1 qeq 5,905 5P
D=2 ) QZIQZZ' pl(]?)(Pz)S’jl 2 o
(b1,2)eT 7717 127 p=0
1
c1¢q, I\ (ae) q(tiaep)
m-n 3 Sy a()) (1) st
: ! "I
telizme 1 p=0 \P/AP
) Z <Clc;]z S(l’qu’o) 4 CquzS(l,qg,l)> , (410)
telizme N U ’ (@~ 1)

B) _ Cae _ Cqetl Qe+ 1Y (arae+1.p)
B =2y Wl,z (M) (") st (411)

ver 4
The sets £, I and J are defined in (2.1())7 (2.12) and (2.13) respectively and the index my, defined in (2.15),
is such that ¢, > 3.
Let us comment on the decomposition (4.7). The sum ZSE contains terms of the form ng,jq,p ) that is
multiple integrals of order 2(¢ — p). Then this sum, after subtracting its expectation, has only summands of
order 2,4,6,... in the Wiener chaos.

The sum E( ) contains multiple integrals of orders g+¢ —2p with ¢ # 1, ¢ # 1, p < gA¢ and |¢g—¢'| > 2.

That means that all the summands in 2513

are of order greater than or equal to 2.
The sum Ef; contains multiple integrals of orders ¢ + ¢’ —2p with ¢ =1, ¢’ > ¢, > 3 and p =0 or 1.

All the summands in Efi are then of order greater than or equal to g, —1 > 2.



Higher order chaotic limits of wavelets scalograms 991

The last sum E( ; contains terms of the form S(q’qu’p ). that is multiple integrals of order g+ (g+1)—2p =

2q+1—2p. When p=4q,q+ 14 q—2g=1, thus one can have components in the first Wiener chaos, that
is Gaussian terms.

We will see that 2(0) + 2513 will converge to a non-Gaussian limit, more precisely to a random variable
in the second Wiener chaos. The sum Efg will also converge to a non-Gaussian limit, more precisely to a

random variable in the Wiener chaos of order ¢,,,, — 1. Finally ES)- will tend to a Gaussian limit.

Remark 4.1. Tt is the presence of 2( )- which creates the possibility of having as limit a multiple integral of
order greater than 2. Thus, starting w1th a process

G(Xy) = Hi(Xy) + Hg, (X)
with ¢1 > 4, then ¢, = ¢1 and one may obtain as limit of the scalogram a Hermite process of order

q1—123.

Let us formalize the above decomposition of S,, ; and give a more explicit expression for the function

giq]q P) n (4.6). The next proposition is a generalization of Proposition 6.1 of Clausel et al. (2014).

Proposition 4.2. For all j, {W ;}rez is a weakly stationary sequence. Moreover, for any (n,j) € N2,

S,.; can be expressed as (/./) where the infinite sums converge in the L*(Q) sense. The function g(q’q P) (€),
§=(&,. - &qrq—2p) € RI+T=2P jp (4.5), equals

g'gzq,)]q ) (g) = (’YJ {51 +--+ £q+ql—2p} q+q \/ gz ]]-( ) gz (412)
X R 4+ €y Egpia + " Eorar—p) -

Here f denotes the spectral density of the underlying Gaussian process X and

n—1 i
1 ) 1 — elnu
D, = — e -~ ~ 4.1
=5 X = oy (413)

denotes the normalized Dirichlet kernel. Finally, for £&1,&2 € R, if p # 0,

%p)(&h&z):/(_m)p (Hf ) OO0+ )R A+ A, — &) AP (4.14)

and, if p =0,
R (1, 6) = B9 €)R (&) (4.15)
Notation. To simplify the notation, for any integer p and qi,...,q, € Z we shall denote by ¥, . ., the
Caort i — CP function defined, for all y = (y1,...,Yg 4+..44¢,) € COTT% by
q1 q1+4q2 qi+-+aqp
qu,...,qp Zyz, Z Yiy- oy Z Yi . (416)
i=q1+1 i=q1++gp-1+1
Note that, for p = 1, one simply has ,(y) =y1 + -+ + yq-
With this notation, (4.5) and (4.14) become respectively
S(q o = q+q’72p (D © Xgtq—2p(7j X fﬂ( ®(q+q ) x ’A";p) © E‘I*P#}’*p) ) (4.17)
G = [ EOm,0 e <K><EP<A> —&) A, p£0, (118)
where o denotes the composition of functions, A = (A, -+, A,) and f®P(X) = f(A1)--- f(\,) is written as a

tensor product.

Proof of Proposition /.2: For sake of simplicity we can assume that W is a vector of length m = 1 since
the case m > 2 can be deduced by applying the case m = 1 to each entries. We must give an expansion in
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Wiener chaos of the one dimensional scalogram S,, ; — E(S,, ;) in our setting. Using (1.10), (4.2), (4.3) and
the product formula (B.8) of Proposition B.1, we have as in Proposition 6.1 of Clausel et al. (2014)

Sn,j = Z Zq;(/]| Z ( )( ) q+q'—2p (gq(zq}q 7p)) ) (4.19)

q,9'=1
where
, 1 n—1 B
D PV
k=0
By (B.7),
. ™ 1/2
F8(€) = exp oy (k7€) (A 0 34(6)) (£51(€)* 187, () ¢ e RY. (4.20)

Ifg+q —2p#0,let E= (&1, ,&grq—2p). Asin Clausel et al. (2014) using (B.9), we get that g(q 4P) g g
function with ¢ + ¢ — 2p variables given by

gfff p)( ZeXPOEq+q/—2p ikv;€) \[]1( )] ®q+q 721)(5) qu —pa'—p(&) -
" =o

The Dirichlet kernel D,, appears when one computes the sum %EZ;S exp 0X g/ —2p(ikvy;€). This implies
the formula (4.12).

In addition, the chaos of order zero appears in the expression (4.19) of S, ; in the terms with p =g = ¢’
since Iq+q:,2p = Io. In this case, a similar argument as in Clausel et al. (2014) leads to

o0 2

I € & c
2 (gl o B = 2 o < EWEP) = EWiol’) = E(Sns)
q=1 '

(q") p

by (4.1) and (4.2). Therefore, in the univariate case m = 1, S,, ; = Sy, ; —E(S,, ;) can be expressed as stated
n (4.4). The generalization to the case m > 2 is straightforward. O

We prove in Section 6 that

2
e The leading term of 2(0) + 2(1) is (= 01),S(q°’q°’q°_1) (see Propositions 6.1 and 6.2) where

* q1 if qo = 1’
o= { qo otherwise. (4.21)

Note that S(q";-’q(*”qsil) always is in the 2nd Wiener chaos.
e The leading term of E( ) MSS?’"O’D (see Propositions 6.3 and 6.4), which is in the (g, —1)-

S g — 1!
th Wiener chaos.

e The leading term of Z( is QWS(qEU’qIOH’WU) (see Propositions 6.5 and 6.6), which is Gauss-
0 ,

ian.

Hence, for the two classes of functions considered in Sections 3.1 and 3.2, we have to compare at most

four terms: SS}’;’O), Sgé’qé’qg_l)7 ngéo’qeoﬂ’p) S(l’qmo’ )

Rosenblatt, Gaussian and in the chaos of order ¢, — 1.
Our three theorems are based on the study of the asymptotic behavior of each sum (see Section 6 below).

We first establish some preliminary results.

which are respectively asymptotically Gaussian,

5. Preliminary results

5.1. L? bounds. To identify the leading terms, using the same approach than in Clausel et al. (2014) we

will give an upper bound for the L? norm of the multidimensional terms ng’jq,’p ), q,q',p defined in (4.5)
and (4.17). Here, the main difficulty is that unlike the case where G = H,,, we have to deal with an infinity
of terms. We have also to obtain more precise bounds than in Clausel et al. (2014). In the following, for any
random vector Z, the L?(Q) norm of Z is denoted by

1zl = (E [|Z%)"* . (5.1)
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(Recall that |Z| denotes the Euclidean norm of Z.) Our goal in this section is to specify how ||S(q /) Il2

depends on ¢, ¢ and p. The difficulty is that the sum Sn’j contains long—memory and short—-memory terms
having then different normalization factors. To recover all the cases, we shall use not only d;(q) and §(q)
defined in (2.1) but also

5 (q) = max(~6(g),0), q>0. (5.2)
so that 0 =04 —0_ and 04, d_ are nonnegative. In particular, 6(0) = 04 (0) =1/2 and 0_(0) = 0.

As in Clausel et al. (2014), the expression (4.17) of S(q]q ?) involves the kernel & I<.',] ) defined in (4.18) and
we have to distinguish the two cases p # 0 and p = 0. The following notations will be used in the sequel.
For any s € Z; and d € (0,1/2), set

S

Ag(a) = H(ai!)l_Qd, Va = (a1, -~ ,as) € N°. (5.3)

i=1

For any ¢,q',p > 0, set

ala,q'p) = {If}i;l(l —01(g—p)—0+(¢' —p),1/2) iii i 8 (5.4)
B(g,p) = max (64(p) +d+(¢ —p) = 1/2,0) (5.5)
B'(¢,4',p) = max (204 (p) + 61 (¢ —p) +d4(¢" —p) = 1,-1/2) . (5.6)
Notice that for any ¢ > 0, 8(¢,0) = d4(q). Define the function € on Z, as
= {) sl et o

The index K is defined in (1.3) and the index M is defined in (C.3), and, as noted in Appendix C, the filter
h;(t) has null moments of order 0,1,...,M — 1.

Proposition 5.1. Under Assumptions A, the following bounds hold:
(i) There exists some C > 0 such that, for alln,v; >2and1<qg<¢ and1l<p<min(q,¢ — 1),

1/2 2K

HS(q,q »p) o < (¢ —p, p)1/2A2(q —p,p)

% [nfoz(q,q ,p),.Yﬂ (g:4".p) + n71/2 B(q p)+,3(q ,p)] (5.8)

/
x (log )"+ ~20) (log 1,920
(it) If M > K +max(61(q),0+(q")), there exists some C > 0 such that n,v; > 2 and 1 < ¢ < ¢,

/, + _ 5 5 ’ (d'

”Siqul 0)H2 < . Al(q)1/2A1(q’)1/2n 1/2,yj2K+ +(@)+ +(Q)(10g,yj) @) (5.9)
Proof: Proposition 5.1 extends Proposition 7.1 in Clausel et al. (2014). Its proof follows the same lines, see
Appendix A for details. (]

The following result will be sufficient to find the leading term in Section 6.

Corollary 5.2. Under Assumptions A, if M > K +max(d4(q),0+(q")), then here exists some C > 0 whose
value depends only on d and f* such that for alln,j >2,1<q<¢q and 0 < p <min(g,q¢ — 1),

! atd’ —al(q.q’ _
IS9Py < C*F Ag(q — p,p) V2 Ao (g — p.p)t/ P (@0 D) (10g )= (49 —2P)

2K+B(q,p)+B(

X T (logv;)*(7) . (5.10)

Proof: We observe that, for all 1 < p < ¢ < ¢, 5'(¢,¢,p) < B(gq,p) + 8(¢',p) and a(q,q’,p) < 1/2. Hence
the term between brackets in the right-hand side of (5.8) is bounded by n—o,4'p) x WJQKHa(q’pHB(q ) This
gives (5.10) in the case p > 1. The case p = 0 is obtained by using (5.9) and computing A2(gq,0) = A1(q),

a(Qaq/aO)_l/Qa B((L )_6-‘1-( )and B(q70)_6+( ) U
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5.2. Asymptotic behavior of the leading terms. We now investigate the exact asymptotic behavior of the
terms that will turn out to be leading in the sum (4.4).

Let us first suppose that the bounds in Proposition 5.1 are sharp enough to determine which terms are
leading. Since v; — 0o and n = n; — oo, those for which the bounds have the largest exponents (g, p) and
B(q',p) and the lowest exponent a(q,q’,p) are more likely to dominate, in particular, if 6 (p), d+(q¢ — p),
0+(q" = p),04+(p) +01(q —p) —1/2, 64(p) + 04(¢' —p) —1/2 and 1/2 — (1 = d,.(q — p) — 04 (¢' — p)) are all
positive. Using (2.4), if p > 0, this happens for 0 < p,q —p, ¢ —p,q,¢,¢ —p+ ¢ —p < 1/(1 — 2d), that is
(taking ¢ < ¢’ without loss of generality),

0<p<qg<q¢d<1/(1—-2d) and 0<q+q¢ —2p<1/(1—-2d). (5.11)

In particular, for such a triplet (p,q,q’), we have e(¢') = (¢ + ¢’ — 2p) = 0 so that bounds in (5.8) and (5.9)

involving logarithms will not appear in these terms. We shall check afterwards (in Section 6) that indeed,
(1,1,0)

in all the cases we consider, either such a term is leading in the sum (4.4), or the leading term is Snj y

(g =¢ =1 and p =0). The bounds established in Proposition 5.1 will be sharp enough for this goal.
This is why, in the following, we shall only determine the asymptotic behaviors of ng’}j’o) and of S%’?j P)
under Condition (5.11), when j,n; — co.

Proposition 5.3. Suppose that Assumptions A hold with M > K + 6(1) = K + d and that vy, is even for
all j. Let (n;) be any diverging sequence of integers. Then as j — 0o,

/272 OG0 ) g ) (5.12)
where T' is defined by (3.11).
Proof: This is a direct application of Theorem 3.1 case (a) in Clausel et al. (2014). O

We now consider the case where Condition (5.11) is satisfied.

Proposition 5.4. Let q,q" and p be non-negative integers such that (5.11) holds. Assume that Assumptions
A hold with M > K and let (n;) be any diverging sequence of integers. Then, as j — 00,

—5(g—p)—6(g’ — — 1 ,q'p) (£) * !
(le’Yj)l d(qg—p)—d(q p),yj 2(K+ (p))squj,qj D) o [f (O)}(q"_q )/2 L, Zq+q’72p,d(1) 7 (5.13)

where Zqyq—op,a is the Hermite process defined in (2.17) and Ly, is defined in (5.5).

Proof: The proof follows the same line as the proof of Proposition 8.1 in Clausel et al. (2014). Therefore
we only explain how to adapt this proof to our setting. Set r = ¢ + ¢’ — 2p. Using (4.17) and that, for all
g € L*(R"),

I.(g) £ (ny) 2L (g(-/ (7)) .

we have

, d —r/2T T
sgg; P L (ny;) 2T (D 0 Sgrgr—ap(-/n) X (L)) 27 (/1) X £5) (5.14)

where, for all £ € R”,
®r ~
£;(nv;€) = \/? (&) x "gp) °Xq—pa—p(§) -
The rest of the proof consists in proving the L? convergence of the It6 integral in (5.14), adequately nor-
malized. This is done in the proof of Proposition 8.1 in Clausel et al. (2014) with ¢ —p =¢' —p =1 (hence

r = 2). The same proof applies in our setting but results in a multiple integral of order r with » > 2. In
particular, if r > 2 the asymptotic limit is not Rosenblatt but an r-order Hermite process. O

6. Leading terms

Recall the decomposition (4.7) of §n,j using sums 21(3}, 25}%, 2;22 and 25132 The aim of this section is
1) 5@ 56

B TID NP Y under the conditions

to identify the leading terms of the three following sums : 253 ;2
specified in Sections 3.1 and 3.2.
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6.1. Leading term of X, () it E(l) Recall that the two sums £° .. 20 are defined in equations (4.8),

nj,j? ng.j
(4.9) and that ¢, deﬁned in (4. )l) equals ¢ if gg = 1 and equalb Qo otherwise Therefore qg > 2. We
2
shall prove that, if ¢ < 1/(1 — 2d), the main term in Egg) E(l), is

—(1—2d) _2(5(q3)+K
ny (1720, 20035+ 1)

@ 1),5(% 590~ 1), and has rate

. The following proposition is used to show that the remainder terms are negligible.
Proposition 6.1. Suppose that Assumptions A hold with M > K + 6(q3) and that
qa <1/(1_2d)7

where g is defined in (/.21). Let (n;) be a diverging sequence. Then, when j — 0o,

@w—-2 2 N\ 2
—2d_—2(8(q8)+K € q 54455
n]l 24% (8(ag)+E) Z ;1;) 217!( 0) ||S$quo,jqo p)”2 =0, (6.1)
=0 (a5!) p
_od_ —2(8(¢X)+K — qe \qes
-2, 20+ 3 Z ( > Istese? ), | o, (6.2)
teLl,qe>q5 p=0
ey
—2d_—2(5(g5)+K Cqe, Cqe, Qe ) (dez ') 1 glae aesp)

e DY qeil Qez Z ( 1>( 2> IS,y 5= ll2 | =0 (6.3)

(L1,62)€J

Proof: We first note that, since g3 > 2 by definition and ¢ < 1/(1 — 2d) by assumption, we have 1/4 < d <
1/2.

As in the proofs of Proposition 4.2, we prove the result in the case where m = 1 without loss of generality.
We thus use non bold faced symbols.

We first prove (6.1). Since there is a finite number of terms in the sum appearing on the left-hand side
of (6.1), it is sufficient to show that each term converges to 0. Let p € {0,...,q5—2}. We apply Corollary 5.2
with ¢ = ¢’ = ¢§. Since ¢§ < 1/(1 — 2d) and thus e(¢§) = 0, Inequality (5.10) reads

,),J—Q(é(qo +K)||S(<Io 240 m)H < 0% Ao(ql — p,p)n~ a(qg,95.p) (log n)5(2(q8*p)) ,yj?(ﬂ(qé,p)—&qé)) _
By (8.8) and (8.11) in Lemma 8.3, we have a(qg, ¢f,p) > min(2(1 — 2d),1/2) and 5(q3,p) < d+(q5) = 0(q5)-
Hence,
7;2(5(110 +K)HS 9+40 5P) 2 Cq0A2( —p,p)n — min(2(1—2d),1/2) (log n)a(Q(qé—p)) )
Since d € (1/4,1/2), we have n~ ™n(2(1-2d),1/2)(]og 1) ((2%—P)) = o(n2?=1), Thus Inequality (6.1) holds.
We now prove (6.2). We apply (5.10), in the cases ¢ =¢' = ¢, 0<p<qg—-2andg=¢ =q, p=q — 1,
successively. Then for some C' > 0, for any ¢ € £ such that ¢; > ¢ and for any 0 < p < g — 2 one has,

§ K —a e ¢ — p)—8(q5
; —2(3(g5)+ )HS(!M th)H < quzAz(qZ . p,p)n (qe,9¢,P) (log n) (2(ge—p)) 7]?(5(‘1@ P) (qo))(log 'Vj)3
On the other hand, since d > 1/4, £(2) = 0. Thus in the case where p = gy — 1, the exponent of logn
vanishes. Moreover, in this case, by (8.9) in Lemma 8.3, a(qs, q¢,p) = min(1 — 2d,1/2) = 1 — 2d. In the
alternative case p < gy — 1, we use (8.8) in Lemma 8.3, which gives
n—aeae.p) (log n)€(2(qup)) < -~ min(2(1-2d),1/2) (log n)a(z(th)) < p2d-1 7

for n large enough, since 2(1 — 2d) > 1 — 2d and 1/2 > 1 — 2d. Hence in all the cases, the terms in n can
be bounded by C’n?4=1. As for the terms in v;, we use that, by (8.11) in Lemma 8.3, 8(qs, p) < 04 (qr) <
d+ (g5 + 1), since ¢z > ¢4 + 1 and §; is non-increasing. Hence we get that

—2(5(g3)+K
v 2(6(g0)+ )||S£g§7q£’p)||2 < C%Ay(qq

2d—1 2(5+(QS+1)—5(QS))(
J

—p,p)n®¥ 7ty log;)*
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where C' > 0 may have changed from the previous line. Hence, summing over ¢ € £ such that g > ¢35 and
all pe€ {0,...,q0 — 1}, we get that

qe—1
_ —2(8(gi)+K
nl 2d,yj 2(8(g0)+K) ( ) HS(QLW,P)M

qe>q5 p=0
400 qe—1

< AT (10g ) Z Zp'( ) As(qe —p,p) . (6.4)

{=1

Observe now that

~+o00 2 qe—1 (H 2
a_ g !( >A )
Y () dale—pp)

p=0

ang’ ! ,
c C a+q
-y |q|| q' <Q> <Q)c # Molq —p.p)/*Aald’ — p.p)"?

q,q'>1 p=0 P p

Since Condition (3.1) holds, Lemma 8.6 implies that :

+oo qe—1
Z ’”Zﬂ( ) As(qe —p,p) < 00 (6.6)
=

Finally we observe that, since d(gg) > 0(g5 + 1) and d(gg) > 0, we have

2(84 (g5 +1)—5(ag
YRG0 (16 1,93 0 (6.7)
as 7; — 0o0. Hence (6.6) and (6.7) imply that Inequality (6.2) holds.
We finally prove that (6.3) holds. Inequality (5.10) for (€1,¢2) € J with ¢ = qo,,¢' = q¢, and p < qq,
implies that

72(6(QS)+K) ||S(‘H1 14y ,D) HQ
n,j —

’}/j )1/2

(g0, = p, )" *Aa(qe, — pop
w p—0(aey,qe5,p) (log n)E(QZl'HHz —2p) ,7]_6(‘121717)"!‘5(‘122 ,p)—25(q6)<log ,yj)3 . (6.8)

We first bound the terms that depend on n. First suppose that p = q;, and qo, = q¢, + 2. In this case,
the exponent of logn vanishes, since £(2) = 0 for d > 1/4, and by (8.6) in Lemma 8.3, the exponent of n
a(qe,,qe,,p) > 1 — 2d. Hence, in this case, the terms in n are bounded by n??=1. Otherwise, if p < qe, Or
qe, > qo, + 2, we observe that for (¢1,¢2) € J, we have p < ¢p, — 3 and hence, by definition of « in (5.4) and
since 4 is non-increasing,

alqe,, Gy, p) > 1/2 = 07(3) = min(1/2,1/2 — (3d — 1)) > 1 —2d ,

since 1/4 < d < 1/2. Whatever the exponent of logn, we again obtain that the terms in n are bounded by
n??=1 up to a multiplicative constant:
sup n—(ae;,qe5,P) (log n)s(qzl+qz2—2p) -0 (n2d71) ] (6.9)
(£1,2)€J,0<p<qe,
We now bound the terms that depend on «; in (6.8). By (8.11) in Lemma 8.3, we have 5(g,p) < d4+(gq) for
0 < p <q. Thus B(qe,,p) + B(qe,,p) — 6(q}) < d4+(qe,) + 9+ (qe,) — 26(gg)- Since ¢ is non—increasing, ge, > ¢
and qr, > gs, +2 we deduce that 3 (qs,) < 0+ (q3) = 0(g3) and o (qr,) < 04 (g5 +2) < d(g3). Hence the
exponent of v; is bounded by a negative constant and

Blaey :p)+B(aey 717)_25(‘13)(

sup logv;)®> =0 asj— oco. (6.10)

(€1,62)€J,0<p<qq,

In view of (6.8), (6.9) and (6.10), the proof of (6.3) follows from the bound
qey

2
C C, qg, +a
S et e T (Y st v <o, o)

|
(L1,l2)€] Qer- des i=1
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which follows from the inequality

|C | |C qe tae i 2
Z qzl' ng a7 Z p H A2 Qe —p,p)]1/2
(6 i)yed qe,! qe,! =0 pate}
\cq| lew] s (4 VAL (o )12
< Y o p! (27TC) 5 Aolq - p,p)*Asd’ — p.p)
q,9'>1 p=0 p p
and from Lemma 8.6 with Condition (3.1). This concludes the proof. O
We now focus on the leading term of the sum E;Oj)’j + Egllj{ i

Proposition 6.2. Under the same assumptions as Proposition 0.1, we have, as j — oo,

2
1-2d_—2(8(a3)+K) (0) @) &) Ca e nyag
0 (e, ) [

Proof: We apply Proposition 5.4 with ¢ = ¢’ = ¢ and p = ¢} — 1. Since
26(1) +26(qp — 1) — 1= 25(gp5)

Zoa(1) . (6.12)

we get that

2
e o .
i 20010 s O 2 i) 4 l( s (00 L1 | Zoa(1) - (6.13)

2 (2m
b (G- DF " ]

The left-hand side in (6.13) corresponds to the term ¢ = ¢ and p = ¢§ — 1 of Efg_)’j in (4.8). The terms
of E(O),. with ¢ = ¢f and p < ¢} — 1 are gathered in the left-hand side of (6.1). The terms of 2(0)7- with

q¢ > ¢ are gathered in the left-hand side of (6.2). Finally the left-hand side of (6.3) corresponds to E( )
in (4.8). Hence, by Proposition 6.1, all these terms are negligible and (6.12) holds. D

6.2. Leading term of 2( . In this section, we investigate the asymptotical behavior of the sum E ; defined

n (4.10). We shall prove that, if ¢, < 1/(1 — 2d), the leading term of this sum is °1%amq S(1 -qmo’ 2 and
( P Gme g Yy

(Qmo 71)'
has rate n;(l_zé(qmo_1))/27?(q’"'°)+d+2K. To this end we first show that the remainder terms are negligible.

Proposition 6.3. Assume that Assumptions A hold with M > K + d and that
Qme < 1/(1 —2d),

where ¢, s defined by (2.15).
Let (n;) be a diverging sequence. Then, as j — 0o,

1/2—6(gmy—1) —06(qmy)—d—2K C1C 1,q¢,0
ny! o Amo Ty Tom > 7;”||s;jg.f Na | =0, (6.14)
£>mg

E C1Cq, (1,g¢,1)
(qZ ) || n;,J 2) ( )

>myg

n;/276(Q7n071)7‘;6((17”0)7(172[( (
Proof: Observe that §;(1) = d. We apply (5.10) in Corollary 5.1 with ¢ = 1 and ¢’ = ¢¢. Thus there exists
some C' > 0 such that for any ¢ > my

—6(gmy)—d—2K ac, agtl —d —1/2_5+(qe)—5(qm

20 TR (a0, < G (gt 1/2d 12 (a0 o)
Since by assumption ¢, < 1/(1 — 2d), we have &(gm,) = 0 and 04 (gm,) = 0(¢m,). Thus, if £ = myg, the
terms involving «y; vanish in the right-hand side of (6.16). If ¢ > mg, we have 61 (q¢) < 0(¢m,) and these
terms are o(1) as j — oo. Hence, for j large enough, and for any ¢ > my,

log ’yj)ge(qe) . (6.16)

1/2=6(qmy—1)  —6(gmy)—d—2K qe,0 agtl —d —06(qmg—1
nj/ (gmy )7]' (@mg) ||Sn]¢;z )H2SC 5 (qe!)1/2 dnj (@my )



998 Clausel et al.

Using that §(¢m, — 1) > 6(gm,) > 0, and that, by Condition (3.1),

>

£=myg

N27d < oo,

we obtain the limit (6.14).
We now show that (6.15) holds. Applying (5.10) with ¢ = 1, ¢’ = g and p = 1, we get that there exists
some C' > 0 such that for any ¢ > my,
qp+1 -
Hsle,jjqe,UHQ < CZT{((H _ 1)!}1/27d nfa(l,qe,l)(log n)S(Qe*l)ryjﬂ(l,l)-‘rﬂ(qbl)ﬁ-QK(log’Yj)L; ' (6.17)
The definition of o and S by Equations (5.4) and (5.5), implies that

a(17QZ7 1) = 1/2 - 5-‘,—((][ - 1)7 6(17 1) = d7 B(q[7 1) = max(d—|— 5+(Q€ - 1) - 1/230) .
Since £ > myg, one has d; (¢ — 1) < 04 (gmg+1 — 1). Thus

nj—a(LlIz,l)(log nj)s(wfl) < n;/2_5+((hn0+1_1) lognj —0 (n;/2_6(Q7‘n0_1)) )

Observe now that for £ > mg, we have ¢y — 1 > ¢, and thus

B(1,1 1)+2K d+2K +max(d-+64 (gm,)—1/2,0 d42K+8(gm
7_]( )+B(qe,1)+ (log’)’j)S < /_yj ax( +(q o) / )(log%)g -0 (,_yj (q 0)) )

Now, using the last two displayed equations, (6.17) and Condition (3.1), we obtain the limit (6.15), which
concludes the proof. |

We now deduce the asymptotic behavior of 2(2)
Proposition 6.4. Under the same assumptions as Proposition 0.5, we have as j — o0
1=26(qgme —1))/2  —(6(qmy )+d+2K ) 2cicq,, .
g S S e O L Z, ), (618)
dmy )
where Ly is defined in (3.5) and Zy_1,q is the Hermite process defined in (2.17).
Proof: We apply Proposition 5.4 with ¢ =1, ¢ = g, and p = 1. For these values, since g, < 1/(1 — 2d),
Condition (5.11) is satisfied. The exponents of n and ~; in the left-hand side of (5.13) respectively read
1-0(q—p) = 0(q" = p) =1=0(0) = 6(gme — 1) = 1/2 = 0(qgm, — 1)
and
1-0(q—p) = 0(q" = p) = 2K — 20(p) = —0(qm,) — d — 2K .
Hence we get that
n(1725(qu ))/2,y7(5(qu)+d+2K)S(l »dmg 1) (£>) [f*(o)](qm0+1)/2L1qu071,d(1) . (619)

J J nj,J
Finally we observe that this term corresponds to the second term of the summand in (4.10) with index
¢ = ¢m,, up to the multiplicative constant 47TCqum0/ (gmo — 1)I.  All the other terms are negligible by
Proposition 6.3. Thus the limit (6.18) holds. O

6.3. Leading term of Eg)’j. In this section we investigate the asymptotic behavior of ES; defined in (4.11).
We first bound the sum over indices £ = ¢y and p # ¢y, and the one over indices £ > ¢y and p € {0,...,q}.
The two sums will turn out to be negligible.

Proposition 6.5. Assume that Assumptions A hold with M > K + 6(qe,) and
qe, +1<1/(1—2d). (6.20)

Let (n;) be a diverging sequence. Then, as j — oo,

qeq

1224 (§(qpy)+6(qeg +1)+2K ZC +1 Qoo \ (e +1 00:300 1,

nj ) ’Yj ( (Q//O) ((No ) ) q‘;lio (q;@ﬁp (p0> < Op )|S£lqjg qeg P)||2 =0 , (621)
0 0

p=0
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1-2d  _(§(qe,)+0(qe, +1)+2K) qu _Cqpt+1 qe\ (qe+1 (QLQz-‘rLIJ)
SRR $ Z s IS ety | 0. (6.22)
Le\{Lo} p= 04

Proof: Observe that, since g, > 1, the assumption ¢gg, + 1 < 1/(1 — 2d) implies that d € (1/4,1/2).

We first prove Inequality (6. 21) Since there is only a finite number of terms in the left hand side of
Inequality (6.21), we only have to prove that each term tends to 0. We apply Corollary 5.2 with ¢ = gy,
¢ =q, +1and p <qy — 1. For these values of ¢,¢" and p, under Condition (6.20), we have ¢(¢’) = 0, and
by (8.10) and (8.11), we have a(q,q¢',p) > min(3(1/2 — d),1/2), B(g,p) < 6+ (qe,) = 6(qr,) and (¢, p) <
04+ (qeg + 1) = 6(qey +1). Thus Equation (5.10) yields

n§1—2d)/27j—(6(qzo)+5(qeo+1)+2K)HST(zzf},qeo+l,p)||2 -0 (ﬂj_ min(1—2d,d) log(nj))
Since d € (1/4,1/2), we obtain (6.21).

We now prove (6.22). We apply Corollary 5.2 with ¢ = go, ¢ = q¢ + 1 and p < gy for some ¢ € T\ {{y}.
In this case Inequality (5.10) reads

(Ol 3l + D420 gl L)
i | 2

< Cq”2A2(qe —p.p)? Aalge + 1 — p,p) 2~ @010 Jog(n)=(act1=20)

% yéﬁ(q’z’p)_é(qlo))+(ﬁ(qe+1’p)_6(q'30+l))(1og'yj)3 . (6.23)
We observe that for n large enough,
=000t 1p) Jog ()20 t1-2p) < = (1-2d)/2 (6.24)

Indeed, on the one hand, if p = ¢y, then e(2gp+1—2p) = e(ge+qr+1—2q¢) = (1) = 0 and a(qe, qv + 1, qe) >
(1 —2d)/2 (8.7). On the other hand, if p < gy, since d > 1/4, (8.6) implies that a(qe,q¢ + 1,p) > 1 — 2d.
In addition, by (8.11) one has for any p < qs, B(qe,p) < 0+(qe). Thus, for any £ > ¢y and any p < gy,

(B(ae,p)=0(aeq))+(B(ae+1,p)=3(ge9+1)) (
J

log ,Yj)s < 7]@4—(qe)*fs(%))+(5+(Qe+1)*5(¢no+1))(log ”Yj)3

< ,yj(_(s+(q€0+l)_6(‘no))+(5+(‘ZZ0+1+1)_6(‘120+1))(log,yj)?) — 0(1) . (625)

As in the proof of Proposition 6.1, applying Lemma 8.6 with Condition (3.1), we have

Cq£+1/2|cq1/||CQF+1| qe+
e Z ()( )Am D) As(g +1-p,p)

>0

.8

Applying this, (6.23), (6.24) and (6.25), we obtain (6.22). O

The following result can now be established.
Proposition 6.6. Under the same assumptions as Proposition 0.5, we have as j — 00

_ C, C,
n;pzd)/;yj (5(6120+1)+5(QE0)+2K)21(13‘)’_ (£>) 9 qeoqeqe;ﬁl [f*(O)%“/QLq[O]Zl (1)
o!

Proof: We apply Proposition 5.4 with ¢ = ¢’ — 1 = ¢y, and p = ¢,. Indeed we have, under Condition (6.20),
0<qg=q, <qd =q,+1<1/(1—2d)and g+ ¢ —2p = qo, + qo, + 1 —2qs, = 1 < 1/(1 — 2d). Thus
Condition (5.11) holds. We obtain that, as j — oo,

(1 2d)/2'_yj_(6(410)+5(‘Z€0+1)+2K)S’fz€’3 ‘H0+17(120) (L) [f (O)q£0+1/2Lq£0]Zl,d(1) ) (626)

Using this limit, Proposition 6.5 and the definition of 2(3 in (4.11), we conclude the proof. O
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7. Proofs of Theorems 3.1, 3.3 and 3.5

7.1. Proof of Theorem 5.1. In the setting of Theorem 3.1, one has go > 2 and thus ¢; =0 and ¢ = qo > 2.
Thus 25?7 ; and Sgllj”lj’o), vanish in (4.7) and the asymptotic behavior of Sn], _j results from E;OJ)J- + ZSJ,{ ; and
Z}S})’ ; given in Proposition 6.2 and 6.6, respectively. These propositions apply because we assume (3.3) and
M > K+06(qo) in Theorem 3.1. Now the ratio of the convergence rates appearing in these propositions reads
1/2—d —(8(qey)+0(qe, +1)+K) _n\1/2—d
nj/ ,_yj deg qeq — (nj,yj u) )

Hence Case (a) of Theorem 3.1 corresponds to

@ —op (2(0)

nj,J ng,j

(1)
+=0))

and Case (b) to
=0+ 30, =0 (2] .

njsJ ng,J nj,j

The proof of Theorem 3.1 follows. |

7.2. Proof of Theorems 3.5 and 3.5. Here Condition (3.8) holds, so that ¢o =1, g1 < 1/(1 —2d) and ¢y = o0

(3)
n

(or equivalently I is an empty set). In particular 37" ; vanishes in (4.7) and the asymptotic behavior of S,

is obtained from those of ng’}j’o), ES)J,{ j +2£llj)7 ; and Egj)’ ;- Since moreover M > K+d, Proposition 5.3 applies.
Using the definition of ¢ in (4.21) we have ¢§ = q1, and since M > K +d > K + §(q¢) Propositions 6.2
also applies. Finally, observing that here mg defined in (2.15) equals 1 and that M > K + d, Proposition 6.4
applies. Thus, using (4.7), it only remains to compare the convergence rates in these propositions.

Vi

FIGURE 7.1. Pairwise comparisons of the rates of convergence of Sfllj’ylj’o) (@), 252)’ it Zfllj)’ j

(R) and Efj),j (H) in the plane «; versus n;.

We first prove Theorem 3.3. Recall that, by Lemma 3.2, since ¢; < ¢, one has
r<rvyg<vs,
where these three indices are defined in (3.10). In Figure 7.1, we provide pairwise comparisons of the rates of
convergence of Sgllj”lj’o), 253)’ it Esj)) ; and Efj), ;- We obtain domains separated by the three curves nj = 7}“,

n; = 7]'72 and n; = ’y;?’. Each curve is concerned with a pair of two terms among the three and separates
the plane (v;,n;) in two domains, where one of the two terms dominates the other. We indicated the
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dominating term by G for the asymptotically Gaussian term ST%”;’O), R for the asymptotically Rosenblatt

term ESLO]{ ;T 27(11],)’ ; and H for the term 27(2)7 ; belonging asymptotically to a chaos of order greater than 2.
We begin with the case ¢; = 3. In this case, one has v3 = co. Further Propositions 6.2 and 6.4 imply that
Eg)j)’j + Esllj), ;=0 p(Efj{ j). One has then to compare the rates of convergence of Sgllj’,lj’o) and Efj)’j. Using
the diagram, we then deduce that
o ifn; < 7;1, G dominates H and then we obtain Case (a) of Theorem 3.3 for ¢; = 3.
e if 7' < n;, H dominates G and then we obtain Case (b) of Theorem 3.3 for ¢ = 3.
(2

If ¢1 > 3, one has v3 < co and the term 253)7 it ZSJ_{ ; 18 no more always negligible with respect to Enj -

We then get three domains where one term dominates over the other two:

o nj K 'y;l: G dominates H and R, that is, the two terms =0 4 Egj),j and 25«3)4 are both negligible

ng,j
with respect to Sfé’;’o). By Proposition 5.3, we obtain Case (a) of Theorem 3.3.
o ’y;l <K nj <K 7;3: since the domain lies both on the right-hand side of the curve n; = 7;3 and on the
left-hand side of the curve n; = *yJ’»’l, H dominates R and H dominates G, hence R dominates R and

G. That is, the two terms Sfé’;’o) and 252),3‘ + Egllj{ ; are both negligible with respect to 25127_)’ ;- By
Proposition 6.4, we obtain Case (b) of Theorem 3.3.
° 7;3 < ny: since the domain lies both on the left-hand side of the curve n; = 7;3 and on the left-

hand side of the curve n; = yj’-’z, R dominates H and R dominates GG, hence R dominates H and
G. That is, the two terms S,%’;’O) and Efj)’j are both negligible with respect to 253),]‘ + Esllj),j' By
Proposition 6.2, we obtain Case (c) of Theorem 3.3.

This completes the proof of Theorem 3.3.
The proof of Theorem 3.5 is similar except that the assumption ¢; > ¢f implies that

v3 < vp <vp.

The domains of convergence are now obtained from Figure 7.2. (I
;' oS 75°
n;
I HG R/G R /H
i

FIGURE 7.2. Domains of convergence for Theorem 3.5

8. Technical lemmas

The following lemma is used in the proof of Proposition 5.1 and in that of Lemma 8.4.
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Lemma 8.1. Define, for all a >0 and 51 € (0,1),

Jia(s1:B1) =|s1]77, s1 €R, (8.1)
and, for any integer p > 2 and B = (b1, -+, 5p) € (0,1)7,
(p—1)a « P
T a(51:8) :/ / T 151 — sil =51 5| % ds,...dss, 51 €R. (8.2)
so=—(p—1)a Sp=—a;_o

Then
(i) if B+ -+ Bp >p— 1, we have

Cp(/B) i=sup sup (‘31|_(p_1_(51+"'+’6p))Jp,a(sl;ﬁ)) < 00,
a>0 |s1|<pa

(i) if 1+ -+ By, =p— 1, we have

1
C, :=sup su ———J, a(s1; <00,
#(5) 450 Jor|2pa <1+log(pa/|81|) palss ﬁ))

(111) if there exists ¢ € {2,...,p — 1} such that By + -+ + Bp =Dp — ¢, we have

1
C,(B) :=sup sup <
p( ) a>0 |s1|<pa 1+ log(pa/|81|)

() if Br+--+Bp <p—1and for all g € {1,...,p— 1}, we have B, + --- + B, # p — q, we have

Cp(B) :=sup sup (a_(p_l_(ﬁl+"'+ﬁp))Jp,a(sl;ﬂ)) <00
a>0 |s1|<pa

a(ql(51+"'+:3q1))(]p7a(31;ﬂ)) <00,

Moreover, in the case where all the components of 5 are equal to b € (0, 1), there exists a constant ¢ > 0
depending only on b such that

supc P(ph)P™t Cp(bl,) < oo, (8.3)
p>1

where 1, denotes the p—dimensional vector with all entries equal to 1.

Remark 8.2. As in Clausel et al. (2014), all the cases can be compactly written as
a=@=1= (Bt Bp)) | gy | (P=1=(Brt+Bp)) -
( - Jp,a(sl; /B))
(1 +log(pa/|s1]))

where e = 1 if there exists ¢ € {1,---,p} such that 8, +--- + 8, = p — ¢ and ¢ = 0 otherwise, and
x4 = max(x,0), x_ = max(—z,0). Now, observing that

(p—1—2pd)s = (p(1—2d) — 1) = (~25(p))4 = 25_(p) .
and, similarly, (p — 1 — 2pd)_ = 204 (p), Inequality (8.3) with b = 2d € (0, 1) implies there exists a constant
¢ > 0 depending only on d such that for any a > 0, |s1| < pa

Tp.a(s1:2d1,) < P (p)'~21a* @) |5, |72+ (1 4 log(pa/|s1]))"" (8.4)
where ¢(p) is here defined by (5.7), which corresponds to the € above in the case f1 = --- = 8, = 2d.

Cp(B) =sup sup
a>0|s1|<pa

Proof: Observe first that for all p > 1,
(p—1a
Tpalsri8) = [ 52— 81| Jpr.a(528') dsa (8.5)
so=—(p—1)a
where 8’ = (B2,...,8p). The finiteness of the bounds C,(8) for any integer p and any 8 € (0,1)? is then
proved by induction on p in the different cases in Lemma 9.3 of Clausel et al. (2014).
Finally we show the uniform bound (8.3), that is, that Cp (b, ...,b) = O(c}(p!)}~?) as p — oo for any fixed
b € (0,1). We provide a proof only in the case where 1/(1 —b) is not an integer (to avoid cases (ii) and (iii)).
The proof is similar in the other case. Hence we use the induction step described in Case 1 above. Observe
that there exists some integer py depending only on b, such that for any p > py we have (p — 1)b < p — 2,
which corresponds above to 82 + -+ - + 8, < p — 2 (case (iv)). Hence using the induction assumption (8.5),
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the finiteness of C, in case (iv) and the fact that |s1| < pa, we get that there exists some positive constant

¢ depending only on b such that,
(p—1)a
Cp1(b,---,b) qp—2=(p=1)b / s — 51| Pdso

(p—1)a
Cpi(by -+ ,b) a?~2= =D 5 (e(b)((2p — 1)a)'7?)
(c(d)p' ™" Cpei(b,...,b)) a?~ 1 PP

This yields that for any p > po(b), Cp(b,...,b) < c(b)p*~® Cp_1(b,...,b). Since this holds for any p > po(b),
the bound (8.3) follows by induction. O

Jp,a(sl; b7 e ab)

IN

The following lemma provides bounds of « and 3 defined in (5.4) and (5.5). It is used in the proofs of
Propositions 6.1, 6.3 and 6.5.

Lemma 8.3. One has
(1) Assume that d > 1/4. Then for any (q,q') € N?
inf (alg,q'sp) > 1—2d, (8.6)

0<p<min(qVvq’'—2,9Aq")

In any case,

a(g,¢,min(gVvV ¢ —1,gNqg))>1/2—4d. (8.7)

(2) For any ¢ € N
OS;ISIE—Q (a(q,q,p)) > min(2(1 — 2d),1/2) . (8.8)

Further,

al(q,q,q — 1) =min(l — 2d,1/2) . (8.9)

(8) For any q € N
inf (a(g+1,¢,p)) > min(3/2(1 — 2d),1/2) . (8.10)

0<p<qg—1

(4) For any q € N

sup (B(q,p)) < d1(q) - (8.11)
0<p<q
Proof: (1) Let us fix (¢,¢') € N and assume that ¢’ < ¢q. Since the map

m+— 04 (m) = max(dm — (m —1)/2,0) ,

is non—increasing with range in [0,1/2], one has for 0 < p < min(q — 2,¢")

a(q,q',p) = min(l = d1(q — p) = 04+(¢' — p),1/2) > min(l - 6,(2) — 1/2,1/2) .

Ifd>1/4,6:(2) =2d —1/2 and thus
Ot(q, q/ap) Z mm(l - Qda 1/2) =1-2d )

which proves (8.6). Finally, if p=¢ —1 and p < ¢,

a(q,q',p) = min(l = d4(¢ —p) = 0+(¢"' — p),1/2) = min(1 — 0, (1) — 1/2,1/2)
=min(1/2-4d,1/2)=1/2—-4d,

which proves (8.7).
(2) Let us fix ¢ € N, then for any p < g — 2,
a(q,q,p) =min(1 —d4(q —p) — d4(q —p),1/2) =2 min(1 —26,(2),1/2) .
Ifd <1/4,6.(2) =0 and we get a(q,q,p) > 1/2 > min(2(1—2d),1/2). If d > 1/4, 26 (2) = 26(2) =
4d — 1 and
a(q,q,p) 2 min(1 — (4d — 1),1/2) = min(2(1 - 2d),1/2)
which gives (8.8). To prove (8.9), we observe that if p = ¢ — 1,
a(q,q,p) = min(l —264(1),1/2) = min(1 — 2d,1/2) .
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(3) Let us fix ¢ € N, then for any p < ¢ — 1,
a(g+1,¢,p) =min(l - 6;4(¢+1—p) —04(¢—p),1/2) = min(1 - 6,(2) — 64+(1),1/2)
=min(l —d—46,(2),1/2) .
Ifd<1/4,6,(2) =0and a(g+1,q,p) > min(l — d,1/2) = 1/2. I d > 1/4, 6,(2) = 2d — 1/2
and (8.10) follows from
alqg+1,¢,p) > min(l —d — (2d — 1/2),1/2) = min(3(1 — 2d)/2,1/2) .
(4) If B(q,p) =0, then B(q,p) < §4+(q). Now consider the case where
B(g,p) = max(d4(p) +6+(¢—p) —1/2,0) >0,
that is, d4+(p) + d+(¢ —p) —1/2 > 0. In this case, d1(p) and d;+(¢ — p) are both positive (since
0 < 604(-) < 1/2) and they respectively equal d(p) and 6(¢ — p). Then we obtain
max(d(p) +04(q —p) —1/2,0) = (p) + (g —p) = 1/2=14(q) ,
which again implies (8.11).
O

The following result provides a bound of E;p ) defined in (4.14), in the case where p > 0. It is a refinement
of Lemma 10.1 of Clausel et al. (2014). It is used in the proof of Proposition 5.4.

Lemma 8.4. Suppose that Assumptions A hold and let p be a positive integer. Then there exists some C > 0
neither depending on p nor j such that for any (&1,&2) € R?,
(i) if for any s € {1,--- ,p}, s(1 —2d) # 1 then,
2(6+(p)+K)

N D(p) 124 J .
R &)= ) e @ &

(ii) if there exists s € {1,--- ,p} such that s(1 — 2d) =1, then,
757 (€, &) < CPp1)! 2 47 Tog(;) (8.13)

Remark 8.5. In Case (ii) of Lemma 8.4, we have p > 1/(1—2d), hence 0 (p) = 0. Equations (8.13) and (8.12)
can thus be written as a single bound, namely,

254 (p)+K)

~(p) - c
RP) (€1, &) < CP(p)! 2d i +7j|{£1}l)§+(”)(1 TR (log ;)@

(8.14)

where e(p) is defined by (5.7).

Proof: By (2m)-periodicity of Egp) (&1,&2) along both variables &; and &, we may take &1,& € [—7, 7. The
remainder of the proof shows that (8.14) holds for such (&1, &2).
Note that by assumption,
F) <O,
where C' > 0 only depends on f*. Using (C.11), (4.14) and (8.2) with
i =i+ )

we get

‘ (p)(gl 52)| < cP 2(K+5(P))/ pY;T Jp,’hﬂ'(ul;Zdl )d//"l
’ K+a
~pym [limy (L /g + &3NS
Then, by (8.4), there exists C' > 0 not depending on j, p such that, for all (&;,&) € [—7, 72,
P —204(p) , e(p)
- 2K+2(3(p)+5- [pa [~ P (1 + log(pryjm /| )= d
R R T e e | : Hm )
—pyr [Limy Uy /v + &)
Using that 6(p) = d4+(p) — d—(p) and the Cauchy—Schwarz inequality, to obtain (8.14), it is sufficient to show
that, for all £ € (—m, 7],
/pm |2+ P (1 + log (pyym/pa )P
S o TRV VAT SV

< Cplogp (1 +;[¢)) 72+ @ (log v;)*® (8.15)
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where C' is a positive constant.

If 5(p) > 0 the rest of the proof is similar to that of Lemma 10.1 in Clausel et al. (2014) and is thus
omitted.

We now take d4(p) = 0, so that (8.15) becomes

/”%’w (1 +log(py;7/|p )P dpm
—py,;m (1 + |’7] {/Ll/’yj + £}|)2(K+a)

The denominator in the integral is a (277;)-periodic function of iy, hence the integral over [—py;m, py;7] is
bounded by the sum of at most p + 1 integral of the form

< C plogp (logv;)* ™, (8.16)

(1 + log(py;m/|pa]))= P dps
(14 |py — y])2EH) 7

where k € Z and A(y) = [—py,;m, py;7] N (y — 7,y +v;7]. We observe that I(y) is maximal at y = 0 where
it takes value

_ [T (Lt log(pyym /)= P dp e [ (L [log(lua )P dpna
0= Ot < (L leslym) /,oo (1 + [ ) 20F)

Since the last integral in the previous display is finite for €(p) = 0,1, we finally obtain (8.16). O

I(—v;€ 4 2kvy;m)  with I(y)=/
A(y)

The following Lemma will be used when identifying the leading terms of the three sums Zilo) ) 2(2)

n,j’
and Efz :
Lemma 8.6. Condition (3.1) implies that for any C > 0,

qAg’ /
C, Cq’ a+d’ 1
E | ‘1| | q'| p! (p) <q>C’ 5 Nalg —p,p) P Aa(d — pop)F < oo, (8.17)

q,9'>1 p=0 p
where Ao is defined by (5.3).
Proof: Let C > 0. By definition of As in (5.3), we have

ang

clle ! ataq’
Z ‘ q| | q'| ! <p) <q>c 5 AQ(q—p,p)l/QAz(q/—p’p)l/Q

(¢.9’) p=0 p

=2 >

p>04q,q9’>pV1

55 )72 (g — p)!(g’ — p)] 72

=SB e €92 (g - )
p=>0 q>pV1
2
< D2 P eql €2 [(g—p)) P (8.18)
q>p>0

Using that = — 2¢ is concave, we have, for any ¢ > 0,

q 1A /g d 14
Z )bl (g —p)) " =q- ( Z<)>Sq<z
=0 =0 \P q
We deduce that, for any ¢ > 0,

p=0 p=0

Using this to bound the sum in p in (8.18) and then Condition (3.1) , we get (8.17), which concludes the
proof of Lemma 8.6. O
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Appendix A. Proof of Proposition 5.1

As in the proof of Proposition 4.2, we can take m = 1 without loss of generality. In what follows,
C1,Cs, - -+ denote positive constants which do not depend on n, j, ¢,q’, p. The following function & defined
on R, is used in the sequel,

o fd@=1 Ha=1,
e'(a) = 1yy(a) = {5’(a) =0 otherwise. -

We shall prove (i) and (ii), successively.

Proof of (i). Set r = g—p and " = ¢’ —p. The starting point of the proof is the integral expression of S(q @)

given by (4.17). Thereafter we follow the same approach as in the proof of Proposition 7.1 of Clausel (1 al.
(2014), using Lemma 8.4 to bound the kernel Ii; P) involved in the integral expression of Sn‘qu ?) instead of
Lemma 10.1 of Clausel et al. (2014), replacing 2r, (r,r), 6(p) with r+7/, (r,7'), 1+ (p) and adding if necessary
a logarithmic correction.

We obtain the following inequality, similar to (7.2) and (7.3) in Clausel et al. (2014),

?|
where, for any j,n

_ /%”T /%’TT Ty (U5 2d1,) sy (015 2d 10 ) dug doy

" )™ (14 [12)

)25+(P) ’
and where J, . x(u1;2d1,) and Jps , ~(v1;2d1,.) are defined in Lemma 8.1.
We now use (8.4) of Lemma 8.1 successively with p =7, a = 7, s1 = uy and p =1/, a = y;7, 51 = v1.
We get that

S(q’q',p)

n,j

} < 01210(])!)2(1—2(1),yj—2+25(7')-4—25(7”/)-|r45+(p),Y;;K(log,y )Qs(p)InJ : (A.2)

YT

W (L {un + o })? (14

I < CT—H( /|)1 2d,}/25 (r)+26— (7“)(

n,g =

log ;)%
/ ]]-(77rr,7rr) (Tj)]]-(fﬂ'r’mrr’) (%) ‘ul ‘725+(T) |Ul |726+(Tl)dul dv;
X

{%}D?M(P) (1_’_% {%} )25+(P) ’

B (1o o) )? (14

where £ = 3[z(r) + (1) + 22(p)].
The next step relies on the inequality |{z}| < |z| on R and on the 27—periodicity of z — {z}. We then
get that

Ly < G5 (rtp/ )12y 20 20D (109 250 5 (A.3)
with

Ji 4_/ \U1|*25+(’”)|U1\725+(”')du1 dvy
! (mymymy2 (L7 {uy + 01 )2 (14 fug [)20+ P (1 + [uy [)20+(P) 7

The bound of I~n7j is obtained using the decomposition I, i =A+ 2B with

A:/ Jua |72+ ) oy | =2+ Dy doy
A©@ (L4 {ur +v1})2 (1 + fu )25+ P (L + [0 [)20+ @) 7

and
B Z/ [y =20+ vy |20+ duy doy
© (1 +n [{ug +v1 H)2(1 + |u])25+ @) (1 + |vy )20+ @)
where
A;s) ={(u1,v1) € (f’yj7r,’yj7r)27 lug + vy — 27s| < 7},
with s € {—v;,---,7;}. This decomposition is similar to the one used in the proof of Proposition 7.1

in Clausel et al. (2014) and is obtained by partitioning (—~;m,v;7)? using the domains Ag»s).
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In the proof of Clausel et al. (2014, Proposition 7.1), bounds of A and B are provided in the case where
r=r"and §(r) > 0. It turns out that the same arguments apply in the present case and yield

_ O~ 2+20(r)+25(r) if 20, (r) + 20, (") > 1,
Cn— (log n)251,ymax(1 204 (r) =284 (r")—46+(p),0) (log 7]‘)26/2 otherwise,
B < O~y mox(1=25.()=284 () 0)+max(1-284 ()24 (900 1o 12

where

&) = 326, (a—p) +25,(q' ), < = 52 (264 () + 5. (r) + 26, (0))

o = %5'(25+(r) +25.(p)) + €' (264 (') + 264 (p)) -

Hence we obtain that there exists some C' > 0 depending only on d4(r), d4+(r'), d+(p), d such that

i ;< C(n—min(2(1—5+(r)—5+(7«')),1)(logn)zawmaxu 264 (r) =264 (r')— 46+(p),0)(10g,yj)28/2

717rlnax<172<5+(r)+a+<p>),o>+max<1—2<s+<r’>+6+<p>>,o>(logvj)zeg) ,

+no;

Observe now that for any fixed d, there exists only a finite number of possible values for 6, (r), 4+ (r'), 4+ (p)
and then a finite number of possible values for C'. Then, provided we replace C by its maximum possible
value, we can assume that C only depends on d.

The bound on I,, ; and (A.2),(A.3) then yields

q+q B ) ) e/
”S(qq ,p)” <C,? MAs(q —p,p)l/zAg(q’ —p,p )1/2 %21{7] 1464 (q—p)+5+(q' —p)+2 +(p)(10g,y,) 0

% [n—min(l—6+(q—p)—5+(q’—p),1/2)(logn) a/ymax(2—5+(q p)—64(q'—p) =26+ (p), 0)(10g,y])8/2

- 1/271_nax(1/2—5+ (g=p)—8+(p),0)+max(1/2—84 (¢’ —p)—6+(p),0) (
J

+n log'yj)eé] .

Inequality (5.8) corresponds to this bound with exponents of v;, logn and log v, simplified as follows.

The exponent of 7; is obtained by observing that —1+04 (¢—p)+91 (¢’ —p)+264(p) = (—=1/2+:(¢g—p)+
6+(p))+(=1/2+6+(¢" —p)+ 6+ (p)) and using max(—a,0)+a = max(a,0) with a = —1/2+6,(¢—p)+ 6+ (p)
and a = —1/2+ 0, (¢' — p) + 64 (p) successively.

The log exponents are obtained by observing that, since r < /| e(r) + e(r’) + 2¢(p) < 2(e(v') + e(p)) <
4e(r’ V p). In addition €'(264(m) + 204 (m’)) = 0 iff m +m’ # 1/(1 — 2d) and equals 1 otherwise. Thus
e'(204(m) 4+ 264 (m')) < e(m +m') and we get

(25, (r) + 20, () < (), and (26, (") + 20, (p)) < e(d) -
Finally, since € is non—decreasing and ¢ < ¢, ' Vp < ¢,
€'(204(r) +201(p)) +€"(201(r") + 204 (p)) + 4e(r" v p) < e(q) +e(q') +4e(q") < 6e(d) -

Proof of (ii). Here, p = 0 and thus Eg.p) = lAzg»K)@?. The same approach as in the proof of Proposition 7.2
in Clausel et al. (2014) leads to the following inequality which corresponds to (7.12) in Clausel et al. (2014) :

4’0 - (1—-2d) 2(2K+1 5 2K
EHSy(qu )‘2] <Oy v; (g+4")( )’Yj( + )In = (5 ,yj 5(q)+6(a" )+ )I (A4)
where
q7; q YiT™
I, ;= / / V) g m(usd, - d)Jg 5 (vid, -+ d)dudoy ,
=—gy;m Jo=—q' 7T
with J,,, o defined as in Lemma 8.1 and with g(u,v) defined for all (u,v) € R? by,
] 1 12(M—-K) . ) 1 12(M—-K)
g(u,v) — (1+|n{u+v}|)72 |71{u/71}| |’YJ{U/’YJ}| (A5)

[(L+ Py {a/a M)+ [y Lo/ WP
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As in the case p # 0, we can use the bound (8.4) of J,,, , and the inequality [{u}| < |u|. We get that

/ _ 57 767 ’
I,;, < C’gﬂ (q!q/!)l 2d,yj2 (29) (g")

2M—2K —25, (q)

2IM—2K—25,(q")
’ udv

'7J ’Y;

qT q'vim ”YJ{%}’
/v _ 2(M+a) (M)
“om (L al{u+o})2 (14 p2d)) T (14 |2
As in the proof of Proposition 7.2 of Clausel et al. (2014), we then obtain that

’ _ _ _ 6_ 6_ ’
Ij < CFT (qlg)! ~2tn 1y 2000 @) (A.6)

=—qv;T

The conclusion follows from (A.4) and (A.G).

Appendix B. Integral representations

It is convenient to use an integral representation in the spectral domain to represent the random processes
(see for example Major (1981); Nualart (2006)). The stationary Gaussian process { Xy, k € Z} with spectral
density (1.2) can be written as

™ P T AN px1/2 _
X@:/ ewfm(A)dW(A):/ deo\), {eN. (B.1)

This is a special case of
o) = [ o)W (o) (B2)
R

where W() is a complex—valued Gaussian random measure satisfying, for any Borel sets A and B in R,
E(W(A)) =0, E(W(A)W(B)) = |AN B| and

W(A) = W(—A) .
The integral (13.2) is defined for any function g € L?(R) and one has the isometry

/Ig )*dz .

g(z) = g(—x) .

We shall also consider multiple It6—Wiener integrals

The integral 1 (g), moreover, is real-valued if

7"

I(9) = / g0 AT O) AT ()

where the double prime indicates that one does not integrate on hyperdiagonals A; = £X;,i # j. The
integrals fq(g) are handy because we will be able to expand our non-linear functions G(Xj) introduced in
Section 1 in multiple integrals of this type.

These multiples integrals are defined for g € L2(R9, C), the space of complex valued functions defined on
RY satisfying

g(—z1, -+, —xy) = g(x1,- - ,24) for (x1, - ,24) €R?, (B.3)
2
ol = [ lgtar,-+ )P dor - day < oo (B.4)
R4
Hermite polynomials are related to multiple integrals as follows: if X = fR ) with E(X?) =

Jg lg9(@)[?dz = 1 and g(z) = g(—=) so that X has unit variance and is real-valued, then

Hy(X) = I,(g%) = / g(@1) -+ glag)dW (z1) -+ AW (z,) - (B.5)
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Since X has unit variance, one has for any ¢ € Z,

Hy(X) = H, ( [ ei“f”Q(S)dVV\(é))

- / HE ) o (1) e x fU2(8,)) AW () AV (S,) -
—m,m]d

Then by (4.1), we have

X -
W =0 (g — ) Hy(Xe) = T, (£17) (B.6)
LEZ
with
(1, &) = e wet ) s WO (g 4o e P2 (E0) - FAEIIPY L (©). (B)
because
Zei€(51+"'+54)h§K)(7jk —0) = enhettte) Z efiu(£1+--~+£q)h§K> (u)
LEZ u€e”Z
ei’ij(€1+"'+§q)h§K) (fl I €q) ,
by (C.1).

The following proposition can be found in Peccati and Taqqu (2
our complex—valued setting of a corresponding result in Nlhlldﬂ (
setting.

011), Formula (9.7.32). It is an extension to
2006) for multiple integrals in a real-valued

Proposition B.1. Let (q,q") € N2. Assume that f,g are two symmetric functions belonging respectively to
L2(R?) and L2(R?) then the following product formula holds:

qﬁqu'( ) ( /> Irq—2p([Ep9), (B.8)

where for any p € {1,--- ;qAN ¢’}

(f®p9)(tl> e q+q 7211 / f [APRRE q Py >9<tqu+1> T atq+q’72p7 —s)dps . (B,9)

Appendix C. The wavelet filters

The sequence {Y; }+cz can be formally expressed as
YV = ARG(Xy), teZ.

The study of the asymptotic behavior of the scalogram of {Y; }:cz at different scales involve multidimensional
wavelets coefficients of {G(X;)}iez and of {Y;}iez. To obtain them, one applies a multidimensional linear
filter h;(7),7 € Z = (h;¢(7)), at each scale index j > 0. We shall characterize below the multidimensional
filters h;(7) by their discrete Fourier transform :

=3 hi(n)e ™ Ae [Fma], hy(r) =

TEZ

1

- " Al iAT
o [ﬂ h;(\)e*d\, T € Z . (C.1)

The resulting wavelet coefficients W ;,, where j is the scale index and k the location are defined as
Wik =Y hj(yk =)V, = > hy(yk =) A 5G(X,), j > 0,k € Z, (C.2)
tez tez

where v; T 00 as j T oo is a sequence of non—negative scale factors applied at scale index j, for example
v = 27. We do not assume that the wavelet coeflicients are orthogonal nor that they are generated by a
multiresolution analysis. Our assumption on the filters h; = (h; ) are as follows:

(W-a) Finite support: For each ¢ and j, {h;¢(7)}rcz has finite support.
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(W-b) Uniform smoothness: There exists M > K, a > 1/2 and C' > 0 such that for all j > 0 and

A€ [—m, 7],
- Ol AM
h(\)| < —L—2 C.3
B < e (€3)
By 2m-periodicity of h; this inequality can be extended to A € R as
1/2 DY M
B0 < 01 i {AY (.4

=Tl

where {\} denotes the element of (—m,w| such that A — {\} € 27 Z.
(W-c) Asymptotic behavior: There exists a sequence of phase functions ®; : R — (—m, 7| and some non

identically zero function lAloo such that

lim (77 %0y (777 0) = e (V) (C5)

Jj—+o0
locally uniformly on A € R.
In (W-c) locally uniformly means that for all compact K C R,
sup 7;1/2@- ('y;l)\)eiq)j(/\) — lAloo()\) —0.
AeK
Assumptions (C.3) and (C.5) imply that for any A € R,
lhoo (V)] < oW
@AM

Hence ho, has entries in L?(R). We let h,, be the vector of L?(R) inverse Fourier transforms of ﬁgm, that
is

(C.6)

B (€) = §(hu)(€) = / hao(t)e "€ 47, €€ RY, ()

Ra
is defined for any f € L?(RY,C).

Observe that while ﬁj is 2m—periodic, the function HOO has non—periodic entries on R. For the connection
between these assumptions on h; and corresponding assumptions on the scaling function ¢ and the mother
wavelet ¢ in the classical wavelet setting see Moulines et al. (2007). In particular, in that case, one has

A more convenient way to express the wavelet coefficients W 5, defined in (C.2) is to incorporate the
linear filter A=% in (C.2) into the filter h; and denote the resulting filter h;K). Then

W= Wk —0G(x,) (C.8)
teZ
where - _ R
B () = (1 - e Fh;(\) (C.9)

is the discrete Fourier transform of h§K). Using (C.4) we get,

R A} MK .
RO (| < oyt/2rr il R, ji>1. 1
B0 < o o AR (C.10)

In particular, since we assume if M > K, we get
]ﬁ;%) <OV L4y, AR, > 1. (C.11)
By Assumption (C.3), h; has null moments up to order M — 1, that is, for any m € {0,--- , M — 1},
> hi(tm =0. (C.12)
teZ

Observe that AXY is centered by definition. However, by (C.12), the definition of W} ; only depends on
AMY . In particular, provided that M > K + 1, its value is not modified if a constant is added to AXY,
whenever M > K + 1.
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