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Abstract. We consider a random walk in a random environment (RWRE) on
the strip of finite width Z × {1, 2, . . . , d}. We prove both quenched and averaged
large deviation principles for the position and the hitting times of the RWRE.
Moreover, we prove a variational formula that relates the quenched and averaged
rate functions, thus extending a result of Comets, Gantert, and Zeitouni for nearest-
neighbor RWRE on Z

1. Introduction

In this paper we will study the large deviations of a random walk in a random
environment (RWRE) on the strip Z× [d] where we use the notation [d] to denote
the finite set {1, 2, . . . , d}. A point (k, i) ∈ Z × [d] will be said to be at height i
of level k in the strip. We will be interested in RWRE on the strip that can move
at most one level to the left or right. In this case, the model of RWRE on the
strip can be described as follows. An environment ω is given by three sequences of
d× d matrices. That is ω = {ωn}n∈Z = {(qn, rn, pn)}n∈Z, where qn, rn and pn are
non-negative d×d matrices for each n such that qn+ rn+ pn is a stochastic matrix
for every n ∈ Z. That is,∑

j∈[d]

(qn(i, j) + rn(i, j) + pn(i, j)) = 1, ∀i ∈ [d], n ∈ Z.

For a fixed environment ω, we can define the RWRE starting at (x, i) ∈ Z× [d] to

be the Markov chain ξn with distribution P
(x,i)
ω defined by P

(x,i)
ω (ξ0 = (x, i)) = 1
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and

P (x,i)
ω (ξn+1 = (m, j) | ξn = (k, i)) =


qk(i, j) if m = k − 1

rk(i, j) if m = k

pk(i, j) if m = k + 1

0 otherwise.

(1.1)

That is, the matrices qk, rk and pk give the one-step transition probabilities for
jumping to the level to the left of level k, within level k, and to the right of level

k, respectively. P
(x,i)
ω is called the quenched law of the RWRE, and expectations

with respect to this law are denoted E
(x,i)
ω . We can also define the averaged law of

the RWRE by first choosing the environment randomly. To make this precise, let

Σ = {(q, r, p) ∈ Rd×d
+ × Rd×d

+ × Rd×d
+ : (q + r + p)1 = 1}

denote the set of all transition probabilities for a fixed level of the strip so that
Ω = ΣZ is the set of all possible environments ω on the strip. Let F be the Borel
σ-algebra on Ω, and let η be a probability measure on (Ω,F). Then the averaged
law of the RWRE is defined by

P(x,i)
η (·) = Eη

[
P (x,i)
ω (·)

]
where Eη denotes expectation with respect to the distribution η on the random

environment ω. Expectations with respect to the averaged law P(x,i)
η of the RWRE

will be denoted E(x,i)
η . Often times we will start the RWRE at a location (0, i) in

level 0 of the strip. However, we may also chose to start the RWRE at a random
height i ∈ [d] instead. To this end, for a fixed environment ω and a probability

distribution π on [d] we will define Pπ
ω (·) =

∑
i π(i)P

(0,i)
ω (·). That is, the RWRE

starts at (0, i) with probability π(i). The corresponding averaged law will be de-
noted Pπ

η . At times we will even allow π = π(ω) to depend on the environment ω

in a measurable way so that Pπ
η (·) =

∫
Ω
Pπ
ω (·) η(dω) is still well defined. Naturally,

Eπ
ω and Eπ

η will denote the corresponding quenched and averaged expectations.
The first results for RWRE on a strip were in Bolthausen and Goldsheid (2000),

where a criterion was given for the RWRE to be recurrent or transient to the
left/right. Subsequently, Goldsheid proved a law of large numbers and a quenched
central limit theorem Goldsheid (2008) and independently Roiterstein also proved
a law of large numbers and an averaged central limit theorem for the RWRE Roi-
tershtein (2008). We note that since the strip is bounded in the second coordinate,
the law of large numbers and the central limit theorems are proved for the first
coordinate of the RWRE. That is, if we write ξn = (Xn, Yn) then the law of large
numbers proved in Goldsheid (2008); Roitershtein (2008) states that there exists a
v0 ∈ [−1, 1] such that

lim
n→∞

Xn

n
= v0, Pπ

η - a.s. (1.2)

In both Goldsheid (2008) and Roitershtein (2008), this law of large numbers for
Xn/n was deduced from a law of large numbers for hitting times. For any x ∈ Z
let Tx = inf{n ≥ 0 : Xn = x} be the hitting time of the level {x} × [d] for the
random walk. It was shown in Goldsheid (2008); Roitershtein (2008) for RWRE on
the strip that are recurrent or transient to the right that

lim
n→∞

Tn

n
= 1/v0, Pπ

η - a.s., (1.3)
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where we interpret 1/v0 = ∞ if v0 = 0. The main goal of this paper is to study
asymptotics of probabilities of large deviations away from the laws of large numbers
in (1.2) and (1.3). That is, we will prove large deviation principles for both Tn/n
and Xn/n under both the quenched and averaged laws. Moreover, we will give a
variational formula relating the respective quenched and averaged large deviation
rate functions.

Large deviations of RWRE on Z and Zd have been studied previously using
a number of different approaches Greven and den Hollander (1994); Comets et al.
(2000); Varadhan (2003); Zerner (1998); Rassoul-Agha (2004); Yilmaz (2009, 2010);
Peterson and Zeitouni (2009). Some of these results on Zd allow for bounded step
sizes Varadhan (2003); Yilmaz (2009, 2010) and thus would apply to certain RWRE
on the strip (see Appendix A below). However, in these papers the quenched and
averaged large deviation principles are proved using different approaches and thus it
is very difficult to compare the quenched and averaged rate functions. In contrast,
Comets et al. (2000) develops a unified approach for studying both quenched and
averaged large deviations of nearest-neighbor RWRE on Z that not only proves
quenched and averaged large deviation principles for Xn/n and Tn/n but also gives
a variational expression relating the quenched and averaged rate functions. In this
paper we will adapt the approach of Comets et al. (2000) to the case of RWRE on
the strip. We note that the results in Comets et al. (2000) were later generalized
in Dembo et al. (2004) to the model of nearest-neighbor RWRE on Z with holding
times, and at times we will borrow from ideas in Dembo et al. (2004) as well. The
main difference from the one-dimensional case is that the random walk can enter a
new level at any height and thus the differences of hitting times Tk − Tk−1 are no
longer independent under the quenched measure which makes it difficult to study
the asymptotics of the quenched moment generating functions Eπ

ω [e
λTn1{Tn<∞}].

This is overcome by keeping track of both the hitting times and the heights at
which the random walk enters a level so that Eπ

ω [e
λTn1{Tn<∞}] can be represented

using products of random (ω-dependent) matrices. We then use some ideas from
Furstenberg and Kesten (1960) to obtain formulas for the asymptotics of these
products. As in Comets et al. (2000), understanding the asymptotics of the moment
generating functions of the hitting times is the key to deriving large deviation
principles for both the hitting times and the speed of the random walk.

1.1. Main Results. Before stating our main results, we need to first introduce some
assumptions on the environment. Our first assumption is that the distribution
on environments is spatially ergodic with respects to shifts of the Z-coordinate.
Recalling that ωn = (qn, rn, pn), let θ : Ω → Ω be the natural left shift operator
defined by (θω)k = ωk+1.

Assumption 1. The sequence {ωn}n∈Z is stationary and ergodic under the measure
η on environments. That is, the dynamical system (Ω,F , η, θ) is stationary and
ergodic.

For technical reasons we will also need some strong ellipticity assumptions on
the environments.
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Definition 1.1. For any κ > 0, let Σκ ⊂ Σ be the set of transition probabilities
(q, r, p) from a given level that satisfy∑

j

q(i, j) ≥ κ, and
∑
j

p(i, j) ≥ κ, ∀i ∈ [d] (1.4)

and

((I − r)−1q)(i, j) ≥ κ, and ((I − r)−1p)(i, j) ≥ κ, ∀i, j ∈ [d]. (1.5)

Moreover, define Ωκ = ΣZ
κ so that environments ω ∈ Ωκ satisfy the uniform ellip-

ticity assumptions (1.4) and (1.5) at every level in the strip.

Assumption 2. There exists a κ > 0 such that η(ω ∈ Ωκ) = 1.

Remark 1.2. The uniform ellipticity assumptions (1.4) and (1.5) have simple prob-
abilistic interpretations. For any environment ω ∈ Ωκ,

P (k,i)
ω (X1 = k − 1) ≥ κ, P (k,i)

ω (X1 = k + 1) ≥ κ, ∀k ∈ Z, i ∈ [d],

and

P (k,i)
ω (Tk−1 < Tk+1, YTk−1

= j) ≥ κ, P (k,i)
ω (Tk+1 < Tk−1, YTk+1

= j) ≥ κ,

for all k ∈ Z and i, j ∈ [d]. Also, note that for any environment ω ∈ Ωκ the state
space Z× [d] for the random walk is irreducible.

Remark 1.3. Assumption 2 is slightly stronger than the uniform ellipticity assump-
tions made in Goldsheid (2008) where the condition (1.4) is replaced by the as-
sumption that

∑
j(p(i, j) + q(i, j)) ≥ κ for every i ∈ [d].

As in Comets et al. (2000), the key to proving the quenched large deviation
principle will be the derivation of a formula for the asymptotic quenched logarithic
moment generating function of Tn. In particular, we will show that there is a
deterministic function Λη(λ) such that

lim
n→∞

1

n
logEπ

ω

[
eλTn1{Tn<∞}

]
= Λη(λ), η - a.s., (1.6)

where the limit does not depend on the initial distribution π for the starting height.
In Section 3 we will prove the existence of the above limit, give a formula for Λη(λ),
and show that Λη(λ) is differentiable. From this, the following quenched large
deviation principle follows in the standard way.

Theorem 1.4. For a distribution η on environments satisfying Assumptions 1 and
2, define

Jη(t) = sup
λ
{λt− Λη(λ)}. (1.7)

Then, for η-a.e. environment ω and any initial distribution π for the starting height
at level 0 (even depending on the environment), Tn/n satisfies a weak large deviation
principle under the measure Pπ

ω with rate function Jη. That is, for any open G

lim inf
n→∞

1

n
logPπ

ω (Tn/n ∈ G) ≥ − inf
t∈G

Jη(t),

and for any compact F

lim sup
n→∞

1

n
logPπ

ω (Tn/n ∈ F ) ≤ − inf
t∈F

Jη(t). (1.8)
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Remark 1.5. Recall that a (strong) large deviation principle means that the large
deviation upper bound holds for all closed F as well. We can only claim a weak
large deviation principle since it may be the case that limt→∞ Jη(t) = inft Jη(t) > 0.
However, we will show in Lemma 4.5 below that if the random walk is recurrent or
transient to the right then inft Jη(t) = 0, and thus in these cases Theorem 1.4 can
easily be strengthened to a full large deviation principle under Pπ

ω .

To prove the averaged large deviation principle for the hitting times we will
need a more restrictive assumption on the distribution η on environments. Let
M1(Ωκ) be the set of probability distributions on the set of environments Ωκ, and
let Ms

1 (Ωκ) (and Me
1 (Ωκ)) denote the set of stationary (ergodic) distributions η on

environments; that is, {ωn} is a stationary (ergodic) under η.

Assumption 3. The distribution η ∈ Me
1 (Ωκ) satisfies a process level large devia-

tion principle on the space M1(Ωκ) equipped with the topology of weak convergence
of probability measures. That is,

Ln =
1

n

n−1∑
k=0

δθkω (1.9)

satisfies a large deviation principle with rate function h(·|η), the specific relative
entropy with respect to η.

We will say that a distribution η ∈ Ms
1 (Ω) on environments is locally equiv-

alent to the product of its marginals if for all n ≥ 1 the joint distribution of
(ω1, ω2, . . . , ωn) is absolutely continuous with respect to the product measure ηn0 ,
where η0 is the marginal of ω0 under the measure η.

Assumption 4. The distribution η on environments is locally equivalent to the
product of its marginals, and for every stationary measure α ∈ Ms

1 (Ωκ) there exists
a sequence αn ∈ Me

1 (Ωκ) of ergodic measures such that αn → α (in the topology of
weak convergence of probability measures) and h(αn|η) → h(α|η).

Remark 1.6. Assumptions 3 and 4 were also made for the averaged large deviation
principles in in Comets et al. (2000) and Dembo et al. (2004). Also, it is known
that Assumptions 3 and 4 are satisfied if η is a Gibbs measure on Ωκ with summa-
ble, translation invariant interaction potential (see Theorem 4.1 and Lemma 4.8 in
Föllmer (1988)). In particular, Assumptions 3 and 4 hold if η is an i.i.d. measure
on environments.

Our next main result is a large deviation principle for the hitting times under
the averaged measure. It is intuitively clear that the averaged rate function should
be less than or equal to the corresponding quenched rate function. This is because
under the quenched measure large deviations occur due to atypical behavior from
the random walk, but under the averaged measure large deviations can occur due
to some combination of the choice of an atypical environment and the walk doing
some atypical behavior (thus making the averaged large deviation probabilities
decay more slowly). The following Theorem extends the variational formula in
Comets et al. (2000) relating the quenched and averaged rate functions that makes
the above intuition precise.

Theorem 1.7. Let the distribution on environments η satisfy Assumptions 2, 3
and 4. Then, for any initial distribution π the hitting times Tn/n satisfy a weak
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large deviation principle under the measure Pπ
η with convex, lower semicontinuous

rate function

Jη(t) := inf
α∈Me

1 (Ωκ)
(Jα(t) + h(α|η)). (1.10)

Continuing to follow the approach of Comets et al. (2000), we will use Theorems
1.4 and 1.7 to deduce quenched and averaged large deviation principles for Xn/n.
In order to do this we will need not only a large deviation principle for Tn/n but
also for T−n/n. However, since we have made no assumptions about recurrence
or transience in the statements of Theorems 1.4 and 1.7, an obvious symmetry
argument implies large deviation principles for T−n/n as well. To make this precise
we introduce the following notation.

Definition 1.8. For any environment ω ∈ Ω let ωInv denote the environment
induced by reflecting the strip Z× [d] in the first coordinate. That is,

(qn(ω
Inv), rn(ω

Inv), pn(ω
Inv)) = (p−n(ω), r−n(ω), q−n(ω)), ∀n ∈ Z.

Moreover, for any distribution η ∈ M1(Ω), let η
Inv be the induced distribution on

ωInv.

With this notation it is clear that Theorems 1.4 and 1.7 imply quenched and
averaged large deviation principles for T−n/n with rate functions JηInv and JηInv ,
respectively. We are now ready to state the quenched and averaged large deviation
principles for the speed Xn/n of the RWRE.

Theorem 1.9. Let the distribution on environments η satisfy Assumptions 1 and
2. Then, for any initial distribution π (even depending on the environment) Xn/n
satisfies a large deviation principle under the measure Pπ

ω with deterministic, lower
semicontinuous, convex rate function

Iη(x) =


xJη(1/x) x > 0

limt→∞ Jη(t)/t x = 0

|x|JηInv(1/|x|) x < 0.

Remark 1.10. It is not clear from the formula above that Iη(x) is continuous at x =
0. However, part of the proof of Theorem 1.9 will be to show that limt→∞ Jη(t)/t =
limt→∞ JηInv(t)/t.

Our final main result is the corresponding averaged large deviation principle for
Xn/n.

Theorem 1.11. Let the distribution on environments η satisfy Assumptions 2 -
4. Then, for any initial distribution π, Xn/n satisfies a large deviation principle
under the measure Pπ

η with lower semicontinuous rate function

Iη(x) =


xJη(1/x) x > 0

Iη(0) x = 0

|x|JηInv(1/|x|) x < 0.

Remark 1.12. Again, part of the proof of Theorem 1.9 will be showing that Iη as
defined above is continuous at x = 0. Naturally, the variational formula (1.10)
implies a corresponding variational formula for Iη(x). The only difficulty is proving
the variational formula at x = 0; see (6.22) below.
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The structure of the paper is as follows. In Section 2 we introduce the matrices
Φk(λ) which are quenched moment generating functions for hitting times that also
take into account the height at which the random walk enters a level. Then, in
Section 3 we use these matrices to compute the asymptotic log moment generating
function Λη(λ) for hitting times as well as a formula for Λ′

η(λ). In Sections 4
and 5 we prove the quenched and averaged large deviation principles for hitting
times, and then in Section 6 we show how to transfer these to obtain quenched and
averaged large deviation principles for Xn/n. We conclude the paper with a short
appendix on RWRE on Z with bounded jumps. It is well known that such RWRE
with bounded jumps can be interpreted as a special case of RWRE on a strip. In
Appendix A we examine a natural class of RWRE with bounded jumps to which
the results in this paper apply, and we show how to modify the proofs in this paper
to RWRE with bounded jumps that do not satisfy the strong uniform ellipticity
assumptions in Assumption 2.

1.2. Notation. Before beginning with the proofs of the main results, we will in-
troduce some notation that will be used throughout the paper. For vectors x =
(x1, . . . , xd) ∈ Rd, let ‖x‖∞ = maxi |xi| and ‖x‖1 =

∑
i |xi| be the standard `∞

and `1 norms, respectively. Also, let a norm on d× d matrices be given by

‖A‖ = max
i

∑
j

|Ai,j |.

If the entries of A are non-negative then ‖A‖ = maxi eiA1, where the vectors
{ei}i∈[d] are the standard basis vectors for Rd. We will use this fact without mention
at several points throught the paper. Note that matrix norm defined in this way is
the `1 operator norm acting on row vectors to the left and the `∞ operator norm
acting on column vectors to the right. In particular, for any row vector x and
column vector y we have |xAy| ≤ ‖x‖1‖A‖‖y‖∞.

2. Quenched moment generating functions

As mentioned in the introduction, they key point in proving the quenched large
deviation principle for the hitting times is to prove the limit (1.6) which gives
the exponential asymptotics of the quenched moment generating functions of the
hitting times. In this section, we will prepare the foundation for proving the limit
in (1.6) by introducing some useful notation and deriving some uniform upper and
lower bounds on the quenched moment generating functions.

For any environment ω, λ ∈ R and k ∈ Z let Φk(λ) be the d × d matrix with
entries given by

Φk(λ)(i, j) := E(k,i)
ω

[
eλTk+11{Tk+1<∞, YTk+1

=j}

]
, i, j ∈ [d].

Lemma 2.1. There exists a constant λcrit = λcrit(η) ≥ 0 such that if λ < λcrit

then Φk(i, j)(λ) < ∞ for all i, j ∈ [d] and k ∈ Z, η-a.s., and if λ > λcrit then
Φk(i, j)(λ) = ∞ for all i, j ∈ [d], and k ∈ Z, η-a.s.
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Proof : Obviously, Φ0(λ)(i, j) < ∞ for all i, j ∈ [d] if λ ≤ 0. Thus, we only need to
consider λ > 0, in which case Assumptions 2 implies that

Φ0(λ)(j, k) ≥ E(0,j)
ω

[
eλT11{T−1<T1<∞, YT−1

=i, YT1
=k}

]
≥ κeλ

∑
l∈[d]

Φ−1(λ)(i, l)Φ0(λ)(l, k) (2.1)

≥ κ2e2λ
∑
l∈[d]

Φ−1(λ)(i, l), ∀i, j, k ∈ [d]. (2.2)

It follows that ‖Φ0(λ)‖ < ∞ implies that ‖Φ−1(λ)‖ < ∞ and thus

{‖Φ0(λ)‖ < ∞} =
∩
n≤0

{‖Φn(λ)‖ < ∞}, η - a.s.

Since
∩

n≤0{‖Φn(λ)‖ < ∞} is invariant under (right) shifts of the environment and

the distribution η on environments is ergodic, we can conclude that η(‖Φ0(λ)‖ <
∞) ∈ {0, 1} for any λ ∈ R. Define λcrit = λcrit(η) := sup{λ : η(‖Φ0(λ)‖ < ∞) = 1}.
By the monotonicity of ‖Φ0(λ)‖ in λ we have that ‖Φ0(λ)‖ < ∞ for all λ < λcrit and
η-a.e. environment ω. Since η is shift invariant we also have ‖Φn(λ)‖ < ∞ for all
n ∈ Z, λ < λcrit, η-a.s. On the other hand, if λ > λcrit, then ‖Φ−1(λ)‖ = ∞, η-a.s.
However, maximizing (2.2) over i we obtain that Φ0(λ)(j, k) ≥ κ2e2λ‖Φ−1(λ)‖ = ∞
for any j, k ∈ [d]. Again, since η is shift invariant, this implies that Φn(j, k)(λ) = ∞
for all n ∈ Z, j, k ∈ [d], η-a.s. �

Remark 2.2. Note that the above lemma does not say whether or not ‖Φn(λ)‖ is
finite when λ = λcrit. However, it will follow from the proof of Lemma 2.4 below
that ‖Φn(λcrit)‖ < ∞ for all n. In fact, Lemma 2.4 will even give a uniform upper
bound on the entries of Φn(λcrit).

Next, we would like to prove upper and lower bounds on the entries of Φk(λ)
when λ ≤ λcrit. To this end, we first need the following Lemma which follows easily
from the uniform ellipticity assumptions on the environment.

Lemma 2.3. For any κ ∈ (0, 1/2) there exists an integer Nκ < ∞ such that for
all ω ∈ Ωκ

P (k,i)
ω (Tk+1 ≤ Nκ, YTk+1

= j) ≥ κ/2, P (k,i)
ω (Tk−1 ≤ Nκ, YTk−1

= j) ≥ κ/2,

for all k ∈ Z and i, j ∈ [d].

Proof : Obviously it is enough to prove the lower bounds when starting in level
k = 0. For a random walk started at a point (0, i) in level 0 of the strip, let
τ = T1 ∧ T−1 be the exit time of level 0. Conditions (1.4) and (1.5) imply that

P (0,i)
ω (τ > 1) ≤ 1− 2κ, ∀i ∈ [d], (2.3)

and

P (0,i)
ω (ξτ = (1, j)) ≥ κ, P (0,i)

ω (ξτ = (−1, j)) ≥ κ, ∀i, j ∈ [d]. (2.4)

Note that iterating the lower bound (2.3) implies that P
(0,i)
ω (τ > N) < (1 − 2κ)N

for any non-negative integer N . Therefore,

P (0,i)
ω (T1 ≤ N, YT1 = j) ≥ P (0,i)

ω (ξτ = (1, j))− P (0,i)
ω (τ > N)

≥ κ− (1− 2κ)N .
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Similarly, P
(0,i)
ω (T−1 ≤ N, YT−1 = j) ≥ κ− (1−2κ)N , and letting Nκ = d log(κ/2)

log(1−2κ)e
completes the proof of the lemma. �

The following lemma which gives uniform upper and lower bounds on the entries
of Φk(λ) will be crucial throughout the remainder of the paper.

Lemma 2.4. If η satisfies Assumptions 1 and 2, then for any λ ≤ λcrit there exists
a constant cλ ∈ (0, 1] (depending only on λ and the choice of κ in Assumption 2)
such that

η

(
cλ ≤ Φ0(λ)(i, j) ≤

1

cλ
, ∀i, j ∈ [d]

)
= 1. (2.5)

If in addition η is locally equivalent to the product of its marginals and we denote
by Ση the support of ω0 = (q0, r0, p0) under η, then it follows that

cλ ≤ Φ0(λ, ω)(i, j) ≤
1

cλ
, ∀ω ∈ ΣZ

η , i, j ∈ [d], λ ≤ λcrit(η). (2.6)

Proof : For the remainder of the proof, fix a κ > 0 that satisfies Assumption 2
(i.e., η(ω ∈ Ωκ) = 1). First we prove the almost sure upper and lower bounds on
Φ0(λ)(i, j) in (2.5). For the lower bound, since eλT1 ≥ (eλNκ ∧ 1) on the event
{T1 ≤ Nκ} we have that

Φ0(λ)(i, j) ≥ E(0,i)
ω

[
eλT11{T1≤Nκ, YT1=j}

]
≥
(
eλNκ ∧ 1

)
P (0,i)
ω (T1 ≤ Nκ, YT1 = j) ≥

(
eλNk ∧ 1

)
κ/2,

(2.7)

where the last inequality follows from Lemma 2.3. For an upper bound, first note
that Φ0(λ)(i, j) ≤ 1 if λ ≤ 0. Thus, we only need to prove a uniform upper bound
when λ ∈ (0, λcrit]. To this end, note that (2.1) implies that

Φ0(λ)(j, k) ≥ κeλΦ−1(λ)(i, j)Φ0(λ)(j, k), ∀i, j, k ∈ [d].

If λ < λcrit then Φ0(λ)(j, k) ∈ (0,∞) and we may cancel these terms from both sides
of the above inequality to obtain that Φ−1(λ)(i, j) ≤ (1/κ)e−λ ≤ 1/κ. Since the
law η on environments is shift invariant, the same uniform upper bound holds for
Φ0(λ)(i, j) with probability one. Finally, since Φ0(λ)(i, j) ≤ (1/κ) for all λ < λcrit,
the monotone convergence theorem implies that Φ0(λcrit)(i, j) ≤ (1/κ), η-a.s. This
completes the proof of (2.5) with cλ = κ

2 (e
λNκ ∧ 1). Moving now to the proof of

(2.6), note that the argument above giving the lower bound on the entries of Φ0(λ)
only depends on the fact that ω ∈ Ωκ, and since obviously ΣZ

η ⊂ Ωκ the lower
bound in (2.6) also holds. To prove the upper bound in (2.6) we first introduce
some notation. For any M < ∞ let Φk,M (λ) be the “truncated” quenched moment
generating functions defined by

Φk,M (λ)(i, j) = E(k,i)
ω

[
eλTk+11{Tk+1≤M,YTk+1

=j}

]
. (2.8)

It is easy to see that Φk,M (λ) depends on the environment ω through ω(−M,0] where

we use the notation ω(k,`] := (ωk+1, ωk+2, . . . , ω`) ∈ Σ`−k for any environment ω
and any k < `. Moreover, the function ω 7→ Φ0,M (λ, ω)(i, j) from Ωκ → R is
continuous for any fixed M < ∞ and i, j ∈ [d] since the quenched expectation
in (2.8) can be expressed as a sum over finitely many paths. Thus, for any fixed
M < ∞, i, j ∈ [d] and λ ≤ λcrit(η) the set

GM,i,j,λ = {ω ∈ Ωκ : Φ0,M (λ, ω)(i, j) > 1/cλ}
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is an open subset of ΣZ. Fix λ ≤ λcrit(η), and assume for contradiction that there
exists ω̂ ∈ ΣZ

η and i, j ∈ [d] with Φ0(λ, ω̂)(i, j) > 1/cλ. Then by monotone conver-

gence, ω̂ ∈ GM,i,j,λ for all M large enough. Since the open set GM,i,j,λ intersects ΣZ
η

and since GM,i,j,λ is σ(ω(−M,0])-measurable, it follows that (η|0)M (GM,i,j,λ) > 0.
However, since η is locally equivalent to the product of its marginals this implies
that η(GM,i,j,λ) = η|(−M,0](GM,i,j,λ) > 0 as well. Thus, 1/cλ < Φ0,M (λ)(i, j) ≤
Φ0(λ)(i, j) with η-positive probability. Since this contradicts (2.5), this proves that
the upper bound (2.6) does indeed hold. �

Remark 2.5. Note that the above proof shows that κ/2 ≤ Φ0(λ)(i, j) ≤ (1/κ)e−λ

for all λ ∈ [0, λcrit]. A priori there is nothing preventing λcrit from being infinite.
However, since κ/2 ≤ (1/κ)e−λ for λ ∈ (0, λcrit] we can conclude that λcrit ≤
− log(κ2/2).

Remark 2.6. It will be important below to note that (for M large enough) we
can give uniform upper and lower bounds on the entries of the truncated mo-
ment generating functions Φk,M (λ) as well. It is obvious from the definitions that
Φk,M (λ)(i, j) ≤ Φk(λ)(i, j) so that the same uniform upper bound holds for any
M < ∞. Moreover, the argument in (2.7) giving the uniform lower bound on the
entries of Φk(λ) gives the same lower bound on the entries of Φk,M (λ) if M ≥ Nκ.
That is,

cλ ≤ Φ0,M (λ)(i, j) ≤ 1

cλ
, ∀ω ∈ ΣZ

η , i, j ∈ [d], λ ≤ λcrit(η), and M ≥ Nκ. (2.9)

3. The quenched logarithmic moment generating function for hitting
times

In this section we will prove that the limit limn→∞
1
n logEπ

ω [e
λTn1{Tn<∞}] exists

almost surely and is equal to a deterministic function Λη(λ). Moreover, we will
derive a probabilistic formulation of both Λη(λ) and its derivative. We begin by
expressing the moment generating function of Tn in terms products of the matrices
Φk(λ). For ease of notation we introduce the notation

Φ[m,n](λ) =

n∏
k=m

Φk(λ), for any m ≤ n.

With this notation, it is easy to see that Eπ
ω [e

λTn1{Tn<∞}] = πΦ[0,n−1](λ)1, where
on the right side π = (π(1), π(2), . . . , π(d)) is a row vector and 1 is a column vector
of all 1’s. To identify the limit of n−1 log(πΦ[0,n−1](λ)1), we first need the following
Lemma.

Lemma 3.1. If for some λ ∈ R and ω ∈ Ω there exists a c > 0 such that 1/c ≤
Φk(λ)(i, j) ≤ 1/c for all k ∈ Z, i, j ∈ [d], then there exists a sequence of vectors
{µn(λ, ω)}n∈Z such that

sup
06=π≥0

∣∣∣∣ πΦ[m,n−1](λ)

πΦ[m,n−1](λ)1
− µn(λ, ω)

∥∥∥∥
1

≤ 2(1− c4)n−m−1

c4
, ∀n ∈ Z, m ≤ n− 1.

(3.1)

Remark 3.2. The vectors µn(λ, ω) are necessarily non-negative with entries sum-
ming to 1 and thus can be viewed as probability distributions on [d] that depend
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on the environment ω. For convenience of notation we will often suppress the
dependence on ω and just write µn(λ) instead.

Corollary 3.3. Let η be a measure on environments satisfying Assumptions 1 and
2. Then the sequence of vectors {µn(λ)}n∈Z from Lemma 3.1 is an ergodic sequence.

Proof : Lemma 2.4 implies that the conditions of Lemma 3.1 are satisfied for λ ≤
λcrit and η-a.e. environment ω with c = cλ. Thus (3.1) implies that

µn(λ) = lim
m→−∞

eiΦ[m,n−1](λ)

eiΦ[m,n−1](λ)1
, η - a.s.,

where the limit doesn’t depend on the choice of i ∈ [d]. This shows that µn(λ) =
µn(λ, ω) is a deterministic function of the environment that commutes with shifts
of the environment in the sense that µn(λ, ω) = µ0(λ, θ

nω). Since the environment
ω is ergodic by assumption, it follows that µn(λ) is ergodic as well. �

We postpone for the moment the proof of Lemma 3.1 and instead show how
Corollary 3.3 can be used compute the limit of n−1 logEπ

ω [e
λTn1{Tn<∞}].

Lemma 3.4. For a distribution η on environments satisfying Assumptions 1 and
2, define

Λη(λ) =

{
Eη[log(µ0(λ)Φ0(λ)1)] λ ≤ λcrit

∞ λ > λcrit.

Then for any distribution π on [d] for the height of the starting location of the walk
(π can even be random depending on ω),

lim
n→∞

1

n
logEπ

ω

[
eλTn1{Tn<∞}

]
= Λη(λ), ∀λ, η - a.s. (3.2)

Proof : First, we claim that it is enough to prove (3.2) holds η-a.s. for any fixed λ,
and thus for η-a.e. environment the limit holds for all rational λ. It will be shown
below that the function Λη(λ) is continuous on (−∞, λcrit] (this will follow from the
fact that λ 7→ µ0(λ) is continuous), and since the left side of (3.2) is a monotone
function of λ for every n we can conclude that for η-a.e. environment the limit in
(3.2) holds for all λ. Since Eπ

ω [e
λTn1{Tn<∞}] is finite if and only if λ ≤ λcrit, it is

enough to consider the case when λ ≤ λcrit. For a fixed λ ≤ λcrit note that

logEπ
ω

[
eλTn1{Tn<∞}

]
= log(πΦ[0,n−1](λ)1)

= log(πΦ0(λ)1) +

n−1∑
k=1

log

(
πΦ[0,k](λ)1

πΦ[0,k−1](λ)1

)

= log(πΦ0(λ)1) +
n−1∑
k=1

log

(
πΦ[0,k−1](λ)

πΦ[0,k−1](λ)1
Φk(λ)1

)

=:
n−1∑
k=0

log(zkΦk(λ)1), (3.3)

where the last equality is used to define the vectors zk. Note that from the formulas
for zk given above it is clear that for k large we should be able to approximate zk
by µk(λ). Indeed, (3.1) implies that ‖zk − µk(λ)‖1 ≤ 2

c4λ
(1− c4λ)

k−1. Now, for any
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probability vector µ on [d], Lemma 2.4 implies that

µΦk(λ)1 =
∑
i,j

µ(i)Φk(λ)(i, j) ≥ cλd.

Then since | log(x)− log(y)| ≤ |x−y|
a for any x, y ≥ a, it follows that

| log(µk(λ)Φk(λ)1)− log(zkΦk(λ)1)| ≤
1

cλd
|µk(λ)Φk(λ)1− zkΦk(λ)1|

≤ 1

cλd
‖µk(λ)− zk‖1‖Φk(λ)‖

≤ 2

c6λ
(1− c4λ)

k−1, (3.4)

where in the last inequality we used ‖Φk(λ)‖ ≤ d/cλ which follows from the upper
bound on the entries of Φk(λ) in (2.5). Combining (3.3) and (3.4) we see that∣∣∣∣∣ 1n logEπ

ω [e
λTn1{Tn<∞}]−

1

n

n−1∑
k=0

log(µk(λ)Φk(λ)1)

∣∣∣∣∣ ≤ 1

n

n−1∑
k=0

2

c6λ
(1− c4λ)

k−1

≤ 2(1− c4λ)
−1

c10λ n
, (3.5)

and since the expression on the right vanishes as n → ∞ it is enough to evaluate the
limit of the second sum on the left side. However, since the environment ω is ergodic
it follows that {µk(λ)Φk(λ)1}k∈Z is ergodic as well since both µk(λ) and Φk(λ) are
functions of the shifted environment θkω. Thus Birkhoff’s ergodic theorem implies
that

lim
n→∞

1

n

n−1∑
k=0

log(µk(λ)Φk(λ)1) = Eη[log(µ0(λ)Φ0(λ)1)], η - a.s.

Combining this with (3.5) finishis the proof of the lemma. �

We now return to the proof of the existence of the vectors µn(λ) and the asso-
ciated error bounds as stated in Lemma 3.1.

Proof of Lemma 3.1: The key to the proof of Lemma 3.1 is the following Lemma
from Bolthausen and Goldsheid (2000).

Lemma 3.5 (Lemma 9 in Bolthausen and Goldsheid, 2000). Let Gn, n = 1, 2, . . .
be a sequence of d× d matrices with all positive entries, and for any r ≥ 2 let

ρr = min
i,j,k

Gr(i, j)Gr−1(j, k)∑
` Gr(i, `)Gr−1(`, k)

.

If
∑∞

r=2 ρr = ∞ then there exists a vector ~v = (v(1), v(2), . . . , v(d)) with strictly
positive entries adding to 1 such that for any n ≥ 2

GnGn−1 · · ·G1 = Dn


 | | |

v(1) v(2) · · · v(d)
| | |

+ εn

 ,

where Dn is a d× d positive diagonal matrix and εn is a d× d matrix with ‖εn‖ ≤∏n
r=2(1− dρr).
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For fixed ω ∈ Ω, λ ∈ R, and c > 0 satisfying the assumptions of Lemma 3.1 and
for n ∈ Z fixed, we will apply Lemma 3.5 with Gk = Φn−k(λ). The representation
of the product GkGk−1 · · ·G1 from Lemma 3.5 implies that

eiGkGk−1 · · ·G1

eiGkGk−1 · · ·G11
=

~v + eiεk
1 + eiεk1

.

The uniform upper and lower bounds on the entries of Φn−k(λ) = Gk imply that
ρr ≥ c4/d for all r ≥ 2, and so the matrix εk has norm ‖εk‖ ≤ (1−c4)k−1 for k ≥ 2.
Thus, it follows that for any i ∈ [d] and k ≥ 2,∥∥∥∥ eiGkGk−1 · · ·G1

eiGkGk−1 · · ·G11
− ~v

∥∥∥∥
1

≤ ‖~v‖1
∣∣∣∣ 1

1 + eiεk1
− 1

∣∣∣∣+ ‖eiεk‖1
|1 + eiεk1|

≤ 2‖εk‖
1− ‖εk‖

≤ 2(1− c4)k−1

1− (1− c4)k−1
≤ 2(1− c4)k−1

c4
.

Since ‖eiG1/(eiG11)‖1 = ‖~v‖1 = 1 and 2/c4 > 2, the above error bound also
holds when k = 1. Finally, since for any non-negative vector π 6= 0 and any non-
negative matrix A, the vector πA/(πA1) is a convex combination of the vectors
{eiA/(eiA1)}i∈[d], it follows that

sup
06=π≥0

∥∥∥∥ πGkGk−1 · · ·G1

πGkGk−1 · · ·G11
− ~v

∥∥∥∥
1

≤ 2(1− c4)k−1

c4
, ∀k ≥ 1.

This completes the proof of Lemma 3.1 with µn(λ, ω) = ~v. �

3.1. Differentiability of Λη(λ). For any environment ω and i ∈ [d], let

Λω,i,n(λ) =
1

n
logE(0,i)

ω [eλTn1{Tn<∞}].

For any fixed i ∈ [d], n ≥ 1 and ω, the function Λω,i,n(λ) is strictly convex and
differentiable (analytic even) on (−∞, λcrit). Since Λω,i,n(λ) → Λη(λ) as n → ∞,
it follows that Λη(λ) is a convex function on (−∞, λcrit) but a priori we cannot
conclude that Λη(λ) is differentiable on (−∞, λcrit). If we can show that Λ′

ω,i,n(λ)
converges uniformly on compact intervals then it will follow that Λη(λ) is differen-
tiable and that Λ′

η(λ) = limn→∞ Λ′
ω,i,n(λ) (see Rudin, 1976, Theorem 7.17).

For any k ≥ 1, define τk = Tk − Tk−1 when Tk−1 < ∞ and τk = ∞ otherwise, so
that Tn =

∑n
k=1 τk. Then, it’s easy to see that for λ < λcrit,

Λ′
ω,i,n(λ) =

1

n

(
E

(0,i)
ω [Tne

λTn1{Tn<∞}]

E
(0,i)
ω [eλTn1{Tn<∞}]

)
=

1

n

n∑
k=1

E
(0,i)
ω [τke

λTn1{Tn<∞}]

E
(0,i)
ω [eλTn1{Tn<∞}]

.

Let Φ′
k(λ) be the term-by-term derivative of the matrix Φk(λ). That is,

Φ′
k(λ)(i, j) = E(k,i)

ω

[
Tk+1e

λTk+11{Tk+1<∞, YTk+1
=j}

]
.

Then, with this notation we have that

Λ′
ω,i,n(λ) =

1

n

n∑
k=1

eiΦ[0,k−2](λ)Φ
′
k−1(λ)Φ[k,n−1](λ)1

eiΦ[0,n−1](λ)1
. (3.6)

To approximate (3.6) we want to approximate Φ[k,n−1](λ)1 in both the numera-
tor and denominator. These terms will grow or decrease exponentially, but if we
normalize them they converge. To show this we need the following lemma.
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Lemma 3.6. If for some λ ∈ R and ω ∈ Ω there exists a c > 0 such that 1/c ≤
Φk(λ)(i, j) ≤ 1/c for all k ∈ Z, i, j ∈ [d], then there exists a sequence of non-
negative vectors {νk(λ)}k∈Z such that∥∥∥∥ Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1
− νk(λ)

∥∥∥∥
∞

≤ 2(1− c4)n−k−1

c4
, ∀k < n. (3.7)

Moreover, if η satisfies Assumptions 1 and 2 then νk(λ) exists with probability 1
for all λ ≤ λcrit and the sequence {νk(λ)}k∈Z is ergodic.

Proof : For any matrix A, let At denote the transpose of A. Then,(
Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1

)t

=
1tΦn−1(λ)

tΦn−2(λ)
t · · ·Φk+1(λ)

tΦk(λ)
t

1tΦn−1(λ)tΦn−2(λ)t · · ·Φk+1(λ)tΦk(λ)t1
.

Then similarly to the proof of Lemma 3.1, the proof of (3.7) follows by applying
Lemma 3.5 with Gj = (Φk+j−1(λ))

t. The final claims in the statement of Lemma
3.6 follow as in the proof of Corollary 3.3. �

We’ll also need a uniform upper bound on ‖Φ′
k(λ)‖ for λ < λcrit.

Lemma 3.7. For any λ < λcrit, there exists a constant dλ < ∞ such that

η (‖Φ′
0(λ)‖ ≤ dλ) = 1.

Proof : Since a uniform bound on the entries of the matrix Φ′
0(λ) implies a uniform

bound on the matrix norm it is enough to show a uniform bound on the entries of
Φ′

0(λ). Since for any i, j ∈ [d], Φ0(λ)(i, j) is a convex function of λ we have that

Φ′
0(λ)(i, j) ≤

Φ0(λcrit)(i, j)− Φ0(λ)(i, j)

λcrit − λ
≤ (1/cλcrit

)− cλ
λcrit − λ

, (3.8)

where the last inequality follows from Lemma 2.4. �

Having laid the necessary groundwork, we are ready to prove that Λη(λ) is
differentiable and give a formula for the derivative.

Lemma 3.8. If the distribution η on environments satisties Assumptions 1 and 2,
then Λη(λ) is continuously differentiable on (−∞, λcrit) and

Λ′
η(λ) = Eη

[
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)

]
, ∀λ < λcrit.

Proof : As mentioned above, it is enough to show that

lim
n→∞

Λ′
ω,i,n(λ) = Eη

[
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)

]
, η - a.s., (3.9)

and that the convergence is uniform in λ on compact subsets of (−∞, λcrit). To
this end, we first note that since Λ′

ω,i,n(λ) is continuous and non-decreasing in λ,
uniform convergence on compact subsets will follow from pointwise convergence

if we can show that the proposed limit Eη

[
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)

]
is also continuous in

λ. Since we can uniformly bound each of the terms inside the expectation, it is
enough to show that each of these terms is continuous in λ. It is obvious from their
definitions as quenched expectations that Φ0(λ) and Φ′

0(λ) are continuous in λ, but
we need to prove that µ0(λ) and ν1(λ) are continuous in λ. To show that µ0(λ)
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is continuous in λ, first note that for any λ, λ′ ≤ λcrit and any n ≥ 1, the error
bounds in (3.1) imply that

‖µ0(λ)− µ0(λ
′)‖1 ≤ 2

c4λ
(1− c4λ)

n−1 +
2

c4λ′
(1− c4λ′)n−1

+

∥∥∥∥ eiΦ[−n,−1](λ)

eiΦ[−n,−1](λ)1
−

eiΦ[−n,−1](λ
′)

eiΦ[−n,−1](λ′)1

∥∥∥∥
1

.

Since the proof of Lemma 2.4 shows that the constants cλ are continuous in λ, we
obtain that

lim
λ′→λ

‖µ0(λ)− µ0(λ
′)‖1 ≤ 4

c4λ
(1− c4λ)

n−1, ∀λ ≤ λcrit.

Since this holds for any n ≥ 1, taking n → ∞ shows that λ 7→ µ0(λ) is continuous,
η-a.s. A similar argument shows that ν1(λ) is continuous, η-a.s., and thus that the
right side of (3.9) is continuous for λ < λcrit.

It remains to prove the pointwise convergence in (3.9). To this end, note that
the terms in the sum on the right of (3.6) can be re-written (for 2 ≤ k ≤ n− 1) as

eiΦ[0,k−2](λ)Φ
′
k−1(λ)Φ[k,n−1](λ)1

eiΦ[0,n−1](λ)1

=

(
eiΦ[0,k−2](λ)

eiΦ[0,k−2](λ)1

)
Φ′

k−1(λ)
(

Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1

)
(

eiΦ[0,k−2](λ)

eiΦ[0,k−2](λ)1

)
Φk−1(λ)

(
Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1

) . (3.10)

We would like to approximate the numerator and the denominator of the fraction on
the right by µk−1(λ)Φ

′
k−1(λ)νk(λ) and µk−1(λ)Φk−1(λ)νk(λ), respectively. Equa-

tions (3.1), (3.7) and Lemma 3.7 imply that there exists a constant C depending
on λ such that∣∣∣∣( eiΦ[0,k−2](λ)

eiΦ[0,k−2](λ)1

)
Φ′

k−1(λ)

(
Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1

)
− µk−1(λ)Φ

′
k−1(λ)νk(λ)

∣∣∣∣
≤
∥∥∥∥ eiΦ[0,k−2](λ)

eiΦ[0,k−2](λ)1
− µk−1(λ)

∥∥∥∥
1

‖Φ′
k−1(λ)‖‖νk(λ)‖∞

+

∥∥∥∥ eiΦ[0,k−2](λ)

eiΦ[0,k−2](λ)1

∥∥∥∥
1

‖Φ′
k−1(λ)‖

∥∥∥∥ Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1
− νk(λ)

∥∥∥∥
∞

≤ C(1− c4λ)
k∧(n−k), (3.11)

and similarly there is a constant C ′ (also depending on λ) such that∣∣∣∣( eiΦ[0,k−2](λ)

eiΦ[0,k−2](λ)1

)
Φk−1(λ)

(
Φ[k,n−1](λ)1

1tΦ[k,n−1](λ)1

)
− µk(λ)Φk−1(λ)νk(λ)

∣∣∣∣
≤ C ′(1− c4λ)

k∧(n−k). (3.12)

The error bounds in (3.11) and (3.12) allow us to approximate the numerator and
denominator from (3.10) separately, but in order to approximate the ratio we also
need to obtain an upper bound on the numerator terms and a lower bound on the
denominator terms. Lemma (3.7) gives a uniform upper bound on the numerator
terms, and if we denote the denominator by µΦk−1(λ)ν then since the vectors µ
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and ν are both non-negative with entries summing to 1, Lemma 2.4 implies that
the denominator of the right side of (3.10) is bounded below by∑

i,j∈[d]

µ(i)Φk−1(λ)(i, j)ν(j) ≥
∑

i,j∈[d]

µ(i)cλν(j) = cλ.

Thus, with these upper bounds on the numerator and lower bounds on the denom-
inator we can combine (3.10), (3.11) and (3.12) to conclude that for some constant
C ′′ < ∞ depending on λ that∣∣∣∣eiΦ[0,k−2](λ)Φ

′
k−1(λ)Φ[k,n−1](λ)1

eiΦ[0,n−1](λ)1
−

µk−1(λ)Φ
′
k−1(λ)νk(λ)

µk−1(λ)Φk−1(λ)νk(λ)

∣∣∣∣ ≤ C ′′(1− c4λ)
k∧(n−k).

This is enough to imply that

lim
n→∞

Λ′
ω,i,n(λ) = lim

n→∞

1

n

n∑
k=1

µk−1(λ)Φ
′
k−1(λ)νk(λ)

µk−1(λ)Φk−1(λ)νk(λ)

= Eη

[
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)

]
, η - a.s.,

where the last equality follows from Birkhoff’s ergodic theorem. �

3.2. Truncated log moment generating functions. For certain parts of the proofs of
the main results, it will be important to have modified versions of the previous
results in this section when the moment generating functions Φk(λ) are replaced
by the truncated versions Φk,M (λ) as defined in (2.8). In the following we will use
the notation Φ[m,n],M (λ) = Φm,M (λ)Φm+1,M (λ) · · ·Φn,M (λ) for any m ≤ n. First,
we prove corresponding results for truncated versions of µn(λ) and νn(λ) exist.

Lemma 3.9. For every ω ∈ Ωκ, M ≥ Nκ, λ ∈ R, and n ∈ Z, there exist vectors
µn,M (λ) and νn,M (λ) such that

µn,M (λ) = lim
m→−∞

eiΦ[m,n−1],M (λ)

eiΦ[m,n−1],M (λ)1
, and νn,M (λ) = lim

m→∞

Φ[n,m],M (λ)1

1tΦ[n,m],M (λ)1
,

where the limit in the definition of µn,M (λ) doesn’t depend on i ∈ [d]. If in addi-
tion η satisfies Assumptions 1 and 2 then the sequences µn,M (λ) and νn,M (λ) are
ergodic, and for any λ ≤ λcrit(η) the error bounds

sup
06=π≥0

∣∣∣∣ πΦ[m,n−1],M (λ)

πΦ[m,n−1],M (λ)1
− µn,M (λ)

∥∥∥∥
1

≤ 2(1− c4λ)
n−m−1

c4λ
, ∀m < n, (3.13)

and ∣∣∣∣ Φ[n,m],M (λ)1

1tΦ[n,m],M (λ)1
− νn,M (λ)

∥∥∥∥
1

≤ 2(1− c4λ)
m−n

c4λ
, ∀n ≤ m, (3.14)

hold for η-a.e. environment ω, where the cλ are the constants from Lemma 2.4.
Moreover,

lim
M→∞

µn,M (λ) = µn(λ), and lim
M→∞

νn,M (λ) = νn(λ), η - a.s., ∀λ ≤ λcrit(η).

Proof : The key to the proofs of Lemmas 3.1 and 3.6 were the uniform upper and
lower bounds on the entries of Φk(λ) from Lemma 2.4. However, as noted in Remark
2.6 above, for M ≥ Nκ and λ ≤ λcrit(η) the same uniform upper and lower bounds
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holds for the entries of Φk,M (λ) and Φk(λ). Moreover, there are uniform upper and
lower bounds on the entries of Φk,M (λ) when λ > λcrit(η) as well since

eλκ ≤ eλP (0,i)
ω (T1 ≤ M, YT1 = j) ≤ Φ0,M (λ)(i, j) ≤ eλM ,

for all ω ∈ Ωκ, λ > 0, and M > Nκ. This shows that the limits defining µn,M (λ)
and νn,M (λ) exist. Moreover, since the uniform and lower bounds are the same for
Φk(λ) and Φk,M (λ) when λ ≤ λcrit(η) the error bound in (3.13) is the same as the
one in (3.1).

Finally, we will show that µn,M (λ) → µn(λ) (the proof that νn,M (λ) → νn(λ) is
similar). Since the entries of µn,M (λ) are bounded, let Mk → ∞ be a subsequence
where the limit exists and denote the limit by µ∗

n(λ). By Lemma 3.1, for any ε > 0
we can be choose m = m(n, ε, λ) < n so that any probability distribution π on [d]
satisfies ∥∥∥∥ πΦ[m,n−1](λ)

πΦ[m,n−1](λ)1
− µn(λ)

∥∥∥∥
1

< ε. (3.15)

Now, for this m fixed there exists a further subsequence M ′
k of Mk such that

limk→∞ µm,M ′
k
(λ) also exists, and we will denote this limit by µ∗

m(λ). The definition

of µk,M (λ) ensures that

µm,M (λ)Φ[m,n−1],M (λ)

µm,M (λ)Φ[m,n−1],M (λ)1
= µn,M (λ),

and by taking limits of this equality along the subsequence M ′
k we obtain that

µ∗
m(λ)Φ[m,n−1](λ)

µ∗
m(λ)Φ[m,n−1](λ)1

= µ∗
n(λ).

Finally, applying (3.15) with π = µ∗
m(λ) we can conclude that ‖µ∗

n(λ)−µn(λ)‖1 < ε.
Since ε > 0 was arbitrary we conclude that µ∗

n(λ) = µn(λ) and so any subsequential
limit of µn,M (λ) must equal µn(λ). �

Next, we prove a truncated version of Lemmas 3.4 and 3.8.

Lemma 3.10. For any distribution π (even depending on ω) for the height of the
initial location of the random walk, and for η-a.e. environment ω,

lim
n→∞

1

n
logEπ

ω

[
eλTn1{τk≤M,k=1,2,...n}

]
= Eη [log (µ0,M (λ)Φ0,M (λ)1)] =: Λη,M (λ).

Λη,M (λ) is convex in λ and continuously differentiable for all λ ∈ R with

Λ′
η,M (λ) = Eη

[
µ0,M (λ)Φ′

0,M (λ)ν1,M (λ)

µ0,M (λ)Φ0,M (λ)ν1,M (λ)

]
.

Moreover, limM→∞ Λη,M (λ) = Λη(λ) for all λ ∈ R and limM→∞ Λ′
η,M (λ) = Λ′

η(λ)
for all λ < λcrit.

Proof : Since we can represent the expectation as a matrix product by

Eπ
ω

[
eλTn1{τk≤M,k=1,2,...n}

]
= πΦ0,M (λ)Φ1,M (λ) · · ·Φn−1,M (λ)1,

the proof that the limit exists and the formula for the limit is the same as in the
proof of Lemma 3.4 and depends only on the uniform upper and lower bounds on the
entries of Φk,M (λ). Similarly, the proof of the formula for Λ′

η,M (λ) is essentially

unchanged from the proof of Lemma 3.8. To show that Λη,M (λ) → Λη(λ), first
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note that Φ0,M (λ) → Φ0(λ) as M → ∞ by the monotone convergence theorem. If
λ ≤ λcrit, then Lemma 3.9 and the bounded convergence theorem imply that

lim
M→∞

Eη [log(µ0,M (λ)Φ0,M (λ)1)] = Eη [log(µ0(λ)Φ0(λ)1)] , ∀λ ≤ λcrit.

For λ > λcrit we need to show that limM→∞ Λη,M (λ) = ∞. To this end, note that

Λη,M (λ) ≥ Eη

min
i∈[d]

log

∑
j∈[d]

Φ0,M (λ)(i, j)

 .

Then, since Φ0,M (λ) ↗ Φ0(λ) asM ↗ ∞ and
∑

j∈[d] Φ0(λ)(i, j) = ∞ for any i ∈ [d]

when λ > λcrit, the monotone convergence theorem implies that Λη,M (λ) ↗ ∞.
To prove that Λ′

η,M (λ) → Λ′
η(λ) for λ < λcrit, first note that µ0,M (λ) → µ0(λ),

ν1,M (λ) → ν1(λ), Φ0,M (λ) → Φ0(λ) and Φ′
0,M (λ) → Φ′

0(λ) as M → ∞ for any

λ < λcrit. The uniform bounds in (2.9) and the proof of Lemma 3.7 give uniform
upper bounds on the entries of Φ′

0,M (λ) that do not depend on M . Combining

this with (2.9) and the fact that µ0,M (λ) and ν1,M (λ) are non-negative with entries
summing to 1, we conclude by the bounded convergence theorem that

lim
M→∞

Eη

[
µ0,M (λ)Φ′

0,M (λ)ν1,M (λ)

µ0,M (λ)Φ0,M (λ)ν1,M (λ)

]
= Eη

[
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)

]
.

�

4. Proof of the quenched LDP for hitting times

Having proved the necessary facts about the quenched log moment generating
function Λη(λ), we will now give the details of the proof of the quenched LDP for
hitting times as stated in Theorem 1.4. We will begin by first collecting a few
necessary facts about the rate function Jη (recall that Jη was defined in (1.7) as
the Legendre dual of Λη).

Lemma 4.1. Let t0 = t0(η) and t∗ = t∗(η) be defined by

t0 = lim
λ→0−

Λ′
η(λ) and t∗ = lim

λ→λ−
crit

Λ′
η(λ). (4.1)

Then Jη is finite, convex and continuous on [1,∞), decreasing on [1, t0] and non-
decreasing on [t0,∞). Moreover,

Jη(t) =


supλ≤0(λt− Λη(λ)) if t ∈ [1, t0]

supλ≥0(λt− Λη(λ)) if t ∈ [t0, t
∗]

λcritt− Λη(λcrit) if t ≥ t∗.

(4.2)

Remark 4.2. Note that t0 = t∗ if λcrit = 0 and that t0 = Λ′
η(0) < t∗ if λcrit > 0.

Proof : The main thing that needs to be proved is that limλ→−∞ Λ′
η(λ) = 1. To

this end, note that Assumption 2 implies that

κneλn ≤ Pπ
ω (Xn = n)eλn ≤ Eπ

ω [e
λTn1{Tn<∞}] ≤ eλn, ∀λ ≤ 0.

Thus, it follows that

λ+ log(κ) ≤ Λη(λ) ≤ λ, ∀λ ≤ 0, (4.3)

and since Λη(λ) is convex and differentiable this implies that limλ→−∞ Λ′
η(λ) = 1.

The conclusions of the Lemma then follow easily from the fact that Jη(t) is the
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Legendre transform of Λη(λ). Indeed, since Λη is continuously differentiable, for
any t ∈ (1, t∗) there exists a λt < λcrit such that Λ′

η(λt) = t. Note that this choice
of λt ensures that Jη(t) = λtt − Λη(λt). From this, it is straightforward to prove
the stated properties of Jη. �

The next Lemma shows that the parameter t0 defined in (4.1) also has an im-
portant probabilistic meaning.

Lemma 4.3. If the random walk is recurrent or transient to the right, then for any
initial distribution π for the starting height of the random walk

lim
n→∞

Tn/n = t0, Pπ
η - a.s.

Remark 4.4. In light of the law of large numbers for hitting times in (1.3) we can
conclude that t0 = 1/v0, where v0 is the limiting speed for the RWRE.

Proof : First, we claim that the formula for Λ′
η(λ) in Lemma 3.8 implies that

t0 = lim
λ→0−

Eη

[
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)

]
= Eη

[
µ0(0)Φ

′
0(0)ν1(0)

µ0(0)Φ0(0)ν1(0)

]
. (4.4)

If Eη[‖Φ′
0(0)‖] < ∞ then this follows from the dominated convergence theorem

since
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)
≤ ‖Φ′

0(λ)‖
cλ

≤ ‖Φ′
0(0)‖
c−1

, ∀λ ∈ [−1, 0].

On the other hand, it can be shown that the uniform bounds on the entries of Φk(λ)
in (2.5) imply that all of the entries of µ0(λ) and ν1(λ) are in [c2λ/d, 1/(c

2
λd)], and

so
µ0(λ)Φ

′
0(λ)ν1(λ)

µ0(λ)Φ0(λ)ν1(λ)
≥ (c4λ/d

2)‖Φ′
0(λ)‖

‖Φ0(λ)‖
≥

c4−1‖Φ′
0(λ)‖

d2
, ∀λ ∈ [−1, 0].

Therefore, if Eη[‖Φ′(0)‖] = ∞ then it follows from the monotone convergence
theorem that both sides of (4.4) are infinite. Since we are assuming that the
random walk is recurrent or transient to the right then the matrices Φk(0) are all
stochastic, and thus νk(0) =

1
d1 for all k ∈ Z. Therefore, the formula for t0 in (4.4)

simplifies to

t0 = Eη

[
µ0(0)Φ

′
0(0)1

µ0(0)Φ0(0)1

]
= Eη

[
µ0(0)Φ

′
0(0)1

µ0(0)1

]
= Eη [µ0(0)Φ

′
0(0)1] = Eη

[
Eµ0(0)

ω [T1]
]
. (4.5)

Finally, the proof of the law of large numbers for Tn/n in Roitershtein (2008) gives
a formula for the limit, and translating this formula into our notation we obtain

lim
n→∞

Tn

n
= Eη

[
Eµ0(0)

ω [T1]
]
, Pπ

η - a.s.

�

The following lemma characterizes the zero set of the rate function Jη(t) and
is consistent with the corresponding result for nearest-neighbor RWRE in Comets
et al. (2000).

Lemma 4.5. The quenched rate function for the hitting times Jη has the following
properties.

(1) If limn→∞ Xn = −∞, then inft Jη(t) > 0.
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(2) If the RWRE is recurrent or transient to the right, then
(a) If v0 = 0, then Jη(t) > 0 for all t < ∞ but inft Jη(t) = limt→∞ Jη(t) =

0.
(b) If v0 > 0 and λcrit(η) = 0 then Jη(t) = 0 ⇐⇒ t ≥ t0 = 1/v0.
(c) If v0 > 0 and λcrit(η) > 0, then Jη(t) = 0 ⇐⇒ t = t0 = 1/v0.

Proof : To prove the first part of the Lemma, note that inft Jη(t) = −Λη(0) and so
we need to show that Λη(0) < 0 when the RWRE is transient to the left. To this
end, note that if the RWRE is transient to the left then Pπ

ω (T1 < ∞) < 1 for η-a.e.
environment ω and any distribution π on the starting height (here we are using
Assumption 2). Therefore,

Λη(0) = Eη[log(µ0(0)Φ0(0)1)] = Eη[logP
µ0(0)
ω (T1 < ∞)] < 0.

The second part of the Lemma follows easily from the fact that Jη(t) is the Legendre
transform of the differentiable function Λη(λ), the fact that t0 = 1/v0, and the
definition of t0 in (4.1). �

4.1. Upper bound. Since we are only proving a weak large deviation principle, the
properties of Jη in Lemma 4.1 imply that to prove the quenched large deviation
upper bound it will be enough to show that

lim sup
n→∞

1

n
logPπ

ω (Tn ∈ [nt,∞)) ≤ − sup
λ≥0

(λt− Λη(λ)), ∀t ∈ [t0,∞), η - a.s.,

(4.6)
and

lim sup
n→∞

1

n
logPπ

ω (Tn ≤ nt) ≤ − sup
λ≤0

(λt− Λη(λ)), ∀t ∈ [1, t0], η - a.s. (4.7)

To show (4.6), Chebychev’s inequality implies that for any λ ≥ 0,

Pπ
ω (Tn ≥ [nt,∞)) ≤ e−λntEπ

ω

[
eλTn1{Tn<∞}

]
.

Then, applying Lemma 3.4 and then optimizing over λ ≥ 0 proves (4.6). The proof
of (4.7) is similar and therefore ommitted.

4.2. Lower bound. For the proof of the quenched large deviations lower bound we
will need the following Lemma.

Lemma 4.6. If t > 1, then for all M > t + 2 there exists a λt,M such that
Λ′
η,M (λt,M ) = t.

Proof : Since Λη,M (λ) is convex and continuously differentiable, it is enough to show
that

lim
λ→−∞

λt− Λη,M (λ) = −∞ and lim
λ→∞

λt− Λη,M (λ) = −∞, ∀t ∈ (1,M − 2).

(4.8)
As in (4.3), Assumption 2 implies that Λη,M (λ) ≥ λ + log κ for all λ ≤ 0. This is
enough to prove the first limit in (4.8) for t > 1. To prove the second limit in (4.8),
for any λ ≥ 0 and any distribution π on [d] note that

Eπ
ω [e

λT11{T1≤M}] ≥ eλ(M−2)Pπ
ω (T1 ∈ [M − 2,M ]) ≥ eλ(M−2)κM ,

where the last inequality follows from Assumption 2. This implies that Λη,M (λ) ≥
λ(M − 2)+M log κ for all λ ≥ 0 which is enough to prove the second limit in (4.8)
when t < M − 2. �
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For the large deviations lower bound, it will be enough to show that

lim
δ→0

lim inf
n→∞

Pπ
ω (|Tn − nt| < nδ) ≥ −Jη(t), ∀t > 1, η - a.s. (4.9)

We will follow a change of measure argument that is a minor modification of the
one in Comets et al. (2000, pp. 76-78). Fix M > max{Nκ, t + 2} and λ ∈ R, and
define the probability measure Qλ,M

ω,n on paths up to time Tn with τk ≤ M for all
k ≤ n by

dQλ,M
ω,n

dPπ
ω

=
1

Zn,ω,λ,M
eλTn1{τk≤M,k=1,2,...n}, (4.10)

where Zn,ω,λ,M = Eπ
ω

[
eλTn1{τk≤M,k=1,2,...n}

]
. Then,

Pπ
ω (|Tn − nt| < nδ) ≥ Pπ

ω (|Tn − nt| < nδ, τk ≤ M, k = 1, 2, . . . , n)

= Zn,ω,λ,MEQλ,M
ω,n

[
e−λTn1{|Tn−nt|<nδ}

]
≥ Zn,ω,λ,Me−λ(nt±δn)Qλ,M

ω,n (|Tn − nt| < nδ), (4.11)

where the ± sign in the last line depends on whether or not λ ≥ 0. Then, since
Lemma 3.10 implies that limn→∞ n−1 logZn,ω,λ,M = Λη,M (λ) we conclude that

lim inf
n→∞

1

n
logPπ

ω (|Tn − nt| < nδ)

≥ −λ(t± δ) + Λη,M (λ) + lim inf
n→∞

1

n
logQλ,M

ω,n (|Tn − nt| < nδ).

(4.12)

Now, let λt,M be chosen as in Lemma 4.6 so that Λ′
η,M (λt,M ) = t. We claim that

this choice of λt,M implies that

lim
n→∞

Qλt,M ,M
ω,n (|Tn − nt| < nδ) = 1, ∀δ > 0. (4.13)

To see this, note that for any h > 0 Chebychev’s inequality and the definition of
Qλ,M

ω,n imply that

Qλt,M ,M
ω,n (Tn > n(t+ δ))

= e−hn(t+δ) 1

Zn,ω,λt,M ,M
Eπ

ω

[
e(λt,M+h)Tn1{τk≤M,k=1,2,...n}

]
.

Then, Lemma 3.10 implies that

lim sup
n→∞

1

n
logQλt,M

ω,n (Tn ≥ n(t+ δ)) ≤ −h(t+ δ)− Λη,M (λt,M ) + Λη,M (λt,M + h).

Since Λ′
η,M (λt,M ) = t, then for h > 0 small enough (depending on δ) the right side

above is strictly negative and so Q
λt,M
ω,n (Tn ≥ n(t+δ)) decays exponentially fast in n.

A similar argument shows that that Q
λt,M
ω,n (Tn ≤ n(t−δ)) also decays exponentially

fast in n and thus (4.13) holds. If we define Jη,M (t) = supλ(λt − Λη,M (λ)) to
be the Legendre dual of Λη,M , then the choice of λt,M implies that Jη,M (t) =
λt,M t− Λη,M (λt,m). Therefore, (4.12) and (4.13) imply that

lim
δ→0

lim inf
n→∞

1

n
logPπ

ω (|Tn − nt| < nδ) ≥ − lim
δ→0

(Jη,M (t)± δλt,M ) = −Jη,M (t).

Λη,M (λ) is non-decreasing in M , and therefore Jη,M (t) is non-increasing in M .
Thus, in order to finish proof of (4.9) we need to prove that

lim
M→∞

Jη,M (t) = Jη(t). (4.14)
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Since Jη,M (t) is non-increasing in M , we can define Jη,∞(t) := limM→∞ Jη,M (t) ≥
Jη(t). Note that it follows from Lemma 4.6 that Jη,∞(t) < ∞ for any t > 1.
Then, for any t > 1 and M < ∞ define KM,t := {λ : λt − Λη,M (λ) ≥ Jη,∞(t)}.
Since Λη,M (λ) is non-decreasing in M , it follows that the sets KM,t are nested and
decreasing. Also, (4.8) implies that KM,t is compact for all large M . Therefore, we
can conclude that there exists a λt,∞ ∈

∩
M KM,t, and thus

Jη,∞(t) ≤ lim
M→∞

λt,∞t− Λη,M (λt,∞) = λt,∞t− Λη(λt,∞) ≤ Jη(t).

Since we showed previously that Jη,∞(t) ≥ Jη(t), this completes the proof of (4.14)
and thus also the proof of the large deviations lower bound.

5. Proof of the averaged LDP for hitting times

The main goal of this section is to prove the averaged large deviation principle
for the hitting times as stated in Theorem 1.7. However, before giving the proof of
Theorem 1.7 we must first study some properties of the rate function Jη(t).

5.1. Properties of the averaged rate function for hitting times. Recall that the av-
eraged rate function for hitting times is defined by the variational formula in (1.10)
involving the specific relative entropy function h(·|η). It is known that h(α|η) < ∞
only if α ∈ Ms

1 (Ωκ), but it will be useful below to show that there is an even smaller
subset of Ms

1 (Ωκ) where the specific relative entropy is finite. To this end, let Mη

denote the set of stationary measures α with suppα ⊂ ΣZ
η (recall the definition of

Ση from Lemma 2.4).

Lemma 5.1. If η is locally equivalent to the product of its marginals, then h(α|η) <
∞ implies that α ∈ Mη = {α ∈ Ms

1 (Ωκ) : suppα ⊂ ΣZ
η}.

Proof : Recall that the specific relative entropy h(α|η) is defined by h(α|η) =
supn

1
nH(α|η)

∣∣
Gn

, where Gn = σ(ωx, x = 1, 2, . . . n) and H is the general relative

entropy function defined by

H(σ|π) =

{∫
f log f dπ if f = dσ

dπ exists

∞ otherwise.

If α /∈ Mη then it is clear that α((ω1, ω2, . . . , ωn) ∈ Σn
η ) < 1 for some n < ∞,

and since η is locally equivalent to the product of it’s marginals this implies that
α is not absolutely continuous with respect to η when restricted to Gn. Thus
h(α|η) ≥ H(α|η)

∣∣
Gn

= ∞. �

We will also need the following lemma which extends the definition of Λη(λ) in
Lemma 3.4 from ergodic to stationary measures.

Lemma 5.2. Let α ∈ Ms
1 (Ωκ), then we can define

Λα(λ) =

{
Eα [log(µ0(λ)Φ0(λ)1)] if λ ≤ λcrit(α)

∞ otherwise,

where λcrit(α) = sup{λ : α(‖Φ0(λ)‖ < ∞) = 1}. Moreover, if α ∈ Mη then
λcrit(α) ≥ λcrit(η), and for any initial distribution π (even depending on the envi-
ronment ω)

lim
n→∞

Eα

[
1

n
logEπ

ω

[
eλTn1{Tn<∞}

]]
= Λα(λ). (5.1)
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Proof : Since α is stationary, it is a convex combination of ergodic measures on
Ωκ (see Varadhan, 2001, Theorem 6.6). Then since Λη(λ) is well defined for each
η ∈ Me

1 (Ωκ) it is clear that the definition of Λα(λ) above makes sense since the
vectors µ0(λ) are defined α-a.s. when λ ≤ λcrit(α). Also, since the uniform bounds
on Φ0(λ) only depend on the fact that ω ∈ Ωκ and ‖Φk(λ)‖ < ∞ for all k, then it
follows that cλ ≤ Φ0(λ)(i, j) ≤ 1/cλ for all λ ≤ λcrit(α), α-a.s. Following the proof
of Lemma 3.4, we see that these uniform bounds imply that (3.5) still holds α-a.s.
In particular, taking expectations of (3.5) gives∣∣∣∣ 1nEα

[
logEπ

ω [e
λTn1{Tn<∞}]

]
− Λα(λ)

∣∣∣∣ ≤ 2

(1− c4λ)c
10
λ n

, (5.2)

from which (5.1) follows easily. �

Lemma 5.3. If η satisfies Assumptions 3 and 4, then the map

(λ, α) 7→ Eα[log(µ0(λ)Φ0(λ)1)] = Λα(λ)

is continuous on (−∞, λcrit(η))×Mη and lower semicontinuous on (−∞, λcrit(η)]×
Mη, where Mη ⊂ M1(Ωκ) is equipped with the induced topology of weak convergence
of probability measures.

Proof : Recall the definition of the truncated moment generating functions Φk,M (λ)
given in (2.8). For any M,n < ∞ and i ∈ [d] it is easy to see that the function

(λ, α) 7→Eα

[
1

n
log(eiΦ[0,n−1],M (λ)1)

]
= Eα

[
1

n
logE(0,i)

ω

[
eλTn1{τk≤M,k=1,2,...n}

]]
=: Λα,M,n,i(λ)

(5.3)

is jointly continuous on R ×Mη since the inner quenched expectation can be ex-
pressed as the sum over finitely many possible paths. We would like to show that if
(λ, α) ∈ (−∞, λcrit(η)) ×Mη then Λα(λ) can be approximated by Λα,M,n,i(λ) for
sufficiently large n and M . To this end, we first need to be able to give a uniform
error bound on the difference between the entries of Φk(λ) and Φk,M (λ).

0 ≤ Φk(λ)(i, j)− Φk,M (λ)(i, j)

= E(k,i)
ω

[
eλTk+11{M<Tk+1<∞, YTk+1

=j}

]
≤ e(λ−λcrit(η))ME(k,i)

ω

[
eλcrit(η)Tk+11{Tk+1<∞, YTk+1

=j}

]
.

Therefore, Lemma 2.4 implies that

‖Φk(λ)− Φk,M (λ)‖ ≤ e(λ−λcrit(η))M
2d

κ
, ∀λ ≤ λcrit(η), ω ∈ ΣZ

η .

Using this bound and the fact that ‖Φk,M (λ)‖ ≤ ‖Φk(λ)‖ ≤ 2d/κ we can then
obtain that

‖Φ[0,n−1](λ)− Φ[0,n−1],M (λ)‖

≤ n

(
2d

κ

)n

e(λ−λcrit(η))M , ∀λ ≤ λcrit(η), ω ∈ ΣZ
η .

(5.4)
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Assumption 2 implies that eiΦ[0,n−1],M (λ)1 ≥ κneλn. Since | log(x) − log(y)| ≤
(1/δ)|x− y| for x, y ≥ δ, this together with (5.4) implies that∣∣log(eiΦ[0,n−1](λ)1)− log(eiΦ[0,n−1],M (λ)1)

∣∣
≤ 1

κneλn
∣∣eiΦ[0,n−1](λ)1− eiΦ[0,n−1],M (λ)1

∣∣
≤ n

(
2d

κ2eλ

)n

e(λ−λcrit(η))M ,

for all λ ≤ λcrit(η) and all ω ∈ ΣZ
η . Combining this with (5.2) we can conclude that

for any λ < λcrit(η) and α ∈ Mη,

|Λα(λ)− Λα,M,n,i(λ)| ≤
2

n(1− c4λ)c
10
λ

+

(
2d

κ2eλ

)n

e(λ−λcrit(η))M .

Thus, by first taking n sufficiently large and then takingM large enough (depending
on n) we can approximate Λα(λ) uniformly well by Λα,M,n,i(λ) on the set [λ′, λ′′]×
Mη for any λ′ ≤ λ′′ < λcrit(η). Since (λ, α) 7→ Λα,M,n,i(λ) is jointly continuous
this then implies that (λ, α) 7→ Λα(λ) is also jointly continuous as claimed. Finally,
to prove lower semicontinuity at (λcrit(η), α), let (λn, αn) → (λcrit(η), α). Since
λ 7→ Λα′(λ) is non-decreasing and continuous for any α′ ∈ Mη, it follows that

lim inf
n→∞

Λαn(λn) ≥ lim
δ→0

lim
n→∞

Λαn(λcrit(η)− δ) = lim
δ→0

Λα(λcrit(η)− δ) = Λα(λcrit(η)).

Note that in the second to last equality we used the continuity away from λcrit(η)
that we proved above. �

Recall that the averaged rate function is defined by the variational representation
in (1.10). The key to proving the averaged large deviation principle with this
variational formula for the rate function is the following lemma which gives an
alternative formula for Jη(t) as a Legendre transform.

Lemma 5.4. Let the distribution on environments η satisfy Assumptions 2 - 4.
Then,

Jη(t) = sup
λ
{λt−Λη(λ)}, where Λη(λ) := sup

α∈Ms
1 (Ωκ)

{Λα(λ)− h(α|η)} . (5.5)

Moreover, Λη(λ) is a convex, non-decreasing, lower semicontinuous function and
Λη(λ) < ∞ if and only if λ ≤ λcrit(η).

Before giving the proof of Lemma 5.4, note that together with standard proper-
ties of Legendre transforms it implies the following Corollary.

Corollary 5.5. Let the distribution on environments η satisfy Assumptions 2 - 4.
Then, Jη(t) is a convex function in t and

inf
s≤t

Jη(s) = sup
λ<0

{λt−Λη(λ)} (5.6)

and if λcrit(η) > 0 then

inf
s≥t

Jη(s) = sup
0≤λ<λcrit(η)

{λt−Λη(λ)} . (5.7)
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Proof : The fact that Jη(t) is a convex function follows from the representation in
(5.5) of Jη(t) as the Legendre transform of Λη(λ). The equalities (5.6) and (5.7)
follow from standard properties of Legendre transforms and are thus ommitted (for
more details see the proof of the corresponding equalities in the proof of Proposition
3 in Dembo et al., 2004). �
Proof of Lemma 5.4: Since Λα(λ) is convex and non-decreasing in λ for any α ∈
Ms

1 (Ωκ), it follows thatΛη(λ) is also convex and non-decreasing in λ. The definition
of Λη(λ) implies that Λη(λ) ≥ Λη(λ), and thus it follows that Λη(λ) = ∞ for any
λ > λcrit(η). On the other hand, if λ ≤ λcrit(η) then

Λη(λ) = sup
α∈Mη

{Λα(λ)− h(α|η)} ≤ sup
α∈Mη

Λα(λ) ≤ log(d′/cλ),

where the first equality follows from the fact that h(α|η) = ∞ for α /∈ Mη and the
last equality follows from the uniform upper bound in (2.6) on the entries of Φ0(λ)
for environments ω ∈ ΣZ

η . This shows that the domain of Λη(λ) is (−∞, λcrit(η)].
For any α ∈ Mη the function λ 7→ Λα(λ) is continuous on (−∞, λcrit(η)] (continuity
follows from Lemma 5.3 when on (−∞, λcrit(η)) and by monotone convergence at
λ = λcrit(η)). Since Λη(λ) is the supremum of a family of continuous functions this
implies that Λη(λ) is lower semicontinuous.

We have thus shown the claimed properties of Λη(λ) and it remains to show
that Jη(t) is the Legendre transform of Λη(λ). First, note that the supremum in
the definition of Λη(λ) can be restricted to α ∈ Mη by Lemma 5.1. Next, we claim
that

sup
λ

{λt−Λη(λ)} = sup
λ≤λcrit(η)

inf
α∈Mη

{λt− Λα(λ) + h(α|η)}

= inf
α∈Mη

sup
λ≤λcrit(η)

{λt− Λα(λ) + h(α|η)} . (5.8)

The restriction of the supremum to λ ≤ λcrit(η) in the first equality is justified by
the fact that Λη(λ) = ∞ for λ > λcrit(η) and the interchange of the supremum
and infimum in the second equality above follows from a minimax theorem in Sion
(1958, Theorem 4.2’) since the function (λ, α) 7→ λt − Λα(λ) + h(α|η) is concave
in λ, convex in α, and the set Mη is compact. To finish the proof of the lemma,
we need to show that the infimum in (5.8) can be restricted to α ∈ Me

1 (Ωκ). To
this end, first note that since the function α 7→ h(α|η) + supλ<λcrit(η){λt− Λα(λ)}
is lower semicontinuous and the set Mη is compact, there exists an α′ ∈ Mη

that achieves the infimum in (5.8). As in the proof of Lemma 4.1, the uniform
ellipticity assumptions imply that Λη(λ) ≥ λ + log κ for all λ ≤ 0. Thus, for any
t > 1 the supremum in (5.8) can be restricted to λ ≥ Kt := log κ/(t − 1). Since
λ 7→ λt − Λα′(λ) is concave there exists a pair (α′, λ′) ∈ Mη × [Kt, λcrit(η)] such
that

inf
α∈Mη

sup
λ≤λcrit(η)

{λt− Λα(λ) + h(α|η)} = λ′t− Λα′(λ′) + h(α′|η). (5.9)

By Assumption 4 there exists a sequence of ergodic measures αn → α′ with
h(αn|η) → h(α′|η). For each αn let λn ∈ [Kt, λcrit(η)] be such that

sup
λ≤λcrit(η)

{λt− Λαn(λ)} = λnt− Λαn(λn).

Thus, by passing to a subsequential limit we can assume without loss of generality
that λn → λ∗ for some λ∗ ∈ [Kt, λcrit(η)]. Finally, by the lower semicontinuity
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proved in Lemma 5.3 we can conclude that

inf
α∈Me

1 (Ωκ)
sup

λ≤λcrit(η)

{λt− Λα(λ) + h(α|η)} ≤ lim inf
n→∞

λnt− Λαn(λn) + h(αn|η)

≤ λ∗t− Λα′(λ∗) + h(α′|η). (5.10)

Combining (5.9) and (5.10) we conclude that

inf
α∈Me

1 (Ωκ)
sup

λ≤λcrit(η)

{λt− Λα(λ) + h(α|η)}

≤ inf
α∈Ms

1 (Ωκ)
sup

λ<λcrit(η)

{λt− Λα(λ) + h(α|η)} .

Since the reverse inequality is trivial, recalling (5.8) we can conclude for t > 1 that

sup
λ
{λt−Λη(λ)} = inf

α∈Me
1 (Ωκ)

sup
λ<λcrit(η)

{λt− Λα(λ) + h(α|η)}

= inf
α∈Me

1 (Ωκ)
{Jα(t) + h(α|η)}

= Jη(t).

It is easy to see that both sides of (5.5) are infinite when t < 1 since Λη(λ) ≤ λ
for λ ≤ 0 and Jα(t) = ∞ for t < 1 and any α. Thus, it remains only to show that
(5.5) holds when t = 1. We will show this by a slight variation in the minimax
argument used above in the case when t > 1. First, note that since Λη(λ) is convex
and λ+ log κ ≤ Λη(λ) ≤ λ for λ ≤ 0, it follows that

sup
λ
{λ−Λη(λ)} = lim

λ→−∞
{λ−Λη(λ)}. (5.11)

Secondly, note that the continuity of α 7→ Λα(λ) implies that the supremum in the
definition of Λη(λ) can be restricted to α ∈ Me

1 (Ωκ) if λ < λcrit(η) (Note that here
we are also using Assumption 4 here to approximate the entropy for stationary α
by entropy of ergodic α.). Combining these two facts we obtain that

sup
λ
{λ−Λη(λ)} = sup

λ≤−1
inf

α∈Me
1 (Ωκ)

{λ− Λα(λ) + h(α|η)} . (5.12)

For convenience of notation define fη(λ, α) = λ− Λα(λ) + h(α|η). Note that as in
(5.11), the upper and lower bounds on Λα(λ) in (4.3) imply that

sup
λ
{λ− Λα(λ)} = lim

λ→−∞
{λ− Λα(λ)}, ∀α ∈ Ms

1 (Ωκ). (5.13)

Thus, we can define fη(−∞, α) = limλ→−∞ fη(λ, α) so that we may write

sup
λ
{λ−Λη(λ)} = sup

λ∈[−∞,−1]

inf
α∈Me

1 (Ωκ)
f(λ, α).

Since [−∞,−1] is compact, and fη(λ, α) is continuous in λ for α ∈ Me
1 (Ωκ) fixed

we can apply the minimax theorem Sion (1958, Theorem 4.2) to conclude that

sup
λ
{λ−Λη(λ)} = inf

α∈Me
1 (Ωκ)

sup
λ∈[−∞,−1]

{λ− Λα(λ) + h(α|η)}

= inf
α∈Me

1 (Ωκ)
{Jα(1) + h(α|η)} = Jη(1).

(5.14)

(Note that we are applying a different minimax theorem here than we did above.)
Therefore, the representation in (5.5) holds when t = 1 as well. �



Large deviations for RWRE on a strip 27

The final property of the averaged rate function Jη(t) that we will consider is
a characterization of the zero set. Lemma 4.5 gives a description of where the
quenched rate function for hitting times Jη(t) is zero. A consequence of Lemma 5.3
is that the averaged rate function has the same zero set.

Lemma 5.6. If the measure η on environments satisfies Assumptions 2, 3 and
4, then Jη(t) = 0 ⇐⇒ Jη(t) = 0. In particular, if the RWRE is recurrent or
transient to the right then Jη(t) is non-increasing on [1, 1/v0] and non-decreasing
on [1/v0,∞).

Proof : Obviously from the definition of the averaged rate function in (1.10), it
follows that Jη(t) ≤ Jη(t) for all t and so Jη(t) = 0 implies that Jη(t) = 0 also.
On the other hand, assume for contradiction that Jη(t) > 0 but Jη(t) = 0. Then,
there exists a sequence αn ∈ Me

1 (Ωκ) of ergodic measures such that Jαn(t) → 0
and h(αn|η) → 0 as n → ∞. If h(αn|η) → 0, then it must be true that αn → η.
However, if Jη(t) > 0 then there exists a λ′ < λcrit(η) such that λ′t − Λη(λ

′) > 0,
and thus Lemma 5.3 implies that

lim inf
n→∞

Jαn(t) ≥ lim inf
n→∞

λ′t− Λαn(λ
′) = λ′t− Λη(λ

′) > 0.

Since this contradicts the claim that Jαn(t) → 0 as n → ∞ this completes the proof
that the zero sets of Jη and Jη are identical. The final claim follows from the fact
that Jη(t) is a non-negative convex function and Jη(1/v0) = Jη(t0) = 0. �

5.2. Upper bound. As in the quenched case, the key to proving the large deviation
uppper bound is computing the asymptotics of the averaged log moment generating
functions of Tn.

Lemma 5.7. Let the distribution on environments η satisfy Assumptions 2, 3 and
4. Then,

lim sup
n→∞

1

n
logEπ

η

[
eλTn1{Tn<∞}

]
≤ Λη(λ), ∀λ < λcrit(η).

Proof : We begin by noting that

1

n
logEπ

η

[
eλTn1{Tn<∞}

]
=

1

n
logEη

[
Eπ

ω

[
eλTn1{Tn<∞}

]]
=

1

n
logEη

[
exp

{
logEπ

ω

[
eλTn1{Tn<∞}

]}]
.

Then, since we can approximate logEπ
ω

[
eλTn1{Tn<∞}

]
by
∑n−1

k=0 log(µk(λ)Φk(λ)1)
with uniform error bounds given in (3.5) it follows that∣∣∣∣∣ 1n logEπ

η

[
eλTn1{Tn<∞}

]
− 1

n
logEη

[
exp

{
n−1∑
k=0

log(µk(λ)Φk(λ)1)

}]∣∣∣∣∣
≤ 2

(1− c4λ)c
10
λ n

.

(5.15)

Moreover, recalling the definition of the empirical process Ln in (1.9), we can re-
write the sum inside the second expectation on the left as

n−1∑
k=0

log(µk(λ)Φk(λ)1) = n

∫
Ω

log(µ0(λ)Φ0(λ)1)Ln(dω). (5.16)
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Recall that Ln satisfies a large deviation principle on M1(Ωκ) with rate function
h(·|η). Then Lemma 5.3 allows us to apply a version of Varadhan’s Lemma (Lemma
4.3.6 in Dembo and Zeitouni, 1998) to conclude that for any λ < λcrit(η)

lim sup
n→∞

1

n
logEη

[
exp

{
n

∫
Ω

log(µ0(λ)Φ0(λ)1)Ln(dω)

}]
≤ sup

α∈Ms
1 (Ωκ)

{Λα(λ)− h(α|η)} .
(5.17)

Combining (5.15), (5.16) and (5.17) and recalling the definition of Λη(λ) in (5.5)
finishes the proof of the Lemma. �

We are now ready to prove the large deviation upper bound for Theorem 1.7.
Since the rate function Jη(t) is convex and we are only proving a weak large de-
viation principle, it is enough to prove the large deviation upper bound for the
left and right tails of the hitting times. To this end, note that Pπ

η (Tn ≤ nt) ≤
e−λntEπ

η [e
λTn1{Tn<∞}] for any λ < 0. Thus, Lemma 5.7 and Corollary 5.5 imply

that

lim
n→∞

1

n
logPπ

η (Tn ≤ nt) ≤ − sup
λ<0

{λt−Λη(λ)} = − inf
s≤t

Jη(s).

The large deviation upper bound for the right tails is proved similarly. In particular,
since Pπ

η (Tn ∈ [nt,∞)) ≤ e−λntEπ
η [e

λTn1{Tn<∞}] for any λ ≥ 0, then Lemma 5.7
and Corollary 5.5 imply that

lim sup
n→∞

1

n
logPπ

η (Tn ∈ [nt,∞)) ≤ − sup
λ∈[0,λcrit(η))

{λt−Λη(λ)} = − inf
s≥t

Jη(s).

5.3. Lower bound. To prove the averaged large deviation lower bound for hitting
times it will be enough to show that

lim
δ→0

lim inf
n→∞

1

n
logPπ

η (|Tn − nt| < nδ) = −Jη(t), ∀t > 1.

To this end, recall the definition of Qλ,M
ω,n from (4.10) in the proof of the quenched

large deviation lower bound for hitting times. Qλ,M
ω,n is a distribution on paths of

the random walk up to time Tn that depends on the environment ω and so for
any ergodic measure α on environments we may define the corresponding averaged
measure Qλ,M

α,n (·) = Eα

[
Qλ,M

ω,n (·)
]
. Now, let Fn,M := σ({τk}nk=1, {ωx}n−1

x=−M+1) and

Fω
n,M := σ({ωx}n−1

x=−M+1). Then it is easy to see that

H(Qλ,M
α,n |Pπ

η )
∣∣
Fn,M

= H(α|η)
∣∣
Fω

n,M

+

∫
Ω

H(Qλ,M
ω,n |Pπ

ω )
∣∣
Fn,M

α(dω), (5.18)

where in the above H(·|·) is the relative entropy function. The definition of the
measure Qλ,M

ω,n implies that

H(Qλ,M
ω,n |Pπ

ω )
∣∣
Fn,M

= EQλ,M
ω,n

[λTn]− logEπ
ω [e

λTn1{τk≤M,k=1,2,...n}].

Then as in the proof of the quenched large deviation lower bound, choosing λt,M

as in Lemma 4.6 and then applying (4.13) and Lemma 3.10 we obtain that

lim
n→∞

1

n

∫
Ω

H(Qλt,M ,M
ω,n |Pπ

ω )
∣∣
Fn,M

α(dω) = λt,M t− Λα,M (λt,M ) = Jα,M (t).
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Note that in taking this limit we used the fact that the measure Qλ,M
ω,n is constructed

so that Qλ,M
ω,n (Tn/n ≤ M) = 1. Then, since lim supn→∞ n−1H(α|η)

∣∣
Fω

n,M

≤ h(α|η)
we conclude from (5.18) that

lim
n→∞

1

n
H(Qλt,M ,M

α,n |Pπ
η )
∣∣
Fn,M

= Jα,M (t) + h(α|η).

Finally, since (4.13) implies that limn→∞ Q
λt,M ,M
ω,n (|Tn − tn| < δn) = 1 for any

δ > 0, it follows from Comets et al. (2000, Lemma 7) that

lim inf
n→∞

1

n
logPπ

η (|Tn − tn| < δn) ≥ −{Jα,M (t) + h(α|η)} .

This inequality holds for any δ > 0, M < ∞ and α ∈ Me
1 (Ωκ). Thus we conclude

that

lim
δ→0

lim inf
n→∞

1

n
logPπ

η (|Tn − tn| < δn) ≥ − inf
α∈Me

1 (Ωκ)
lim

M→∞
{Jα,M (t) + h(α|η)}

= − inf
α∈Me

1 (Ωκ)
{Jα(t) + h(α, η)}

= −Jη(t),

where the second equality follows from (4.14). This completes the averaged large
deviations lower bound for hitting times.

6. Transferring a LDP from Tn/n to Xn/n

Having proved the quenched and averaged large deviation principles for the hit-
ting times, we now use these to prove quenched and averaged large deviation prin-
ciples for the speed Xn/n of the random walk. We begin by defining what will be
the quenched and averaged rate functions for the speed.

Iη(x) =


xJη(1/x) x > 0

λcrit(η) x = 0

|x|Jη(1/|x|) x < 0

and Iη(x) =


xJη(1/x) x > 0

λcrit(η) x = 0

|x|Jη(1/|x|) x < 0.

(6.1)

Lemma 6.1. If the distribution η on environments satisfies Assumptions 1 and
2, then the function Iη as defined in (6.1) is continuous and convex on [−1, 1].
Moreover, if λcrit > 0 then Iη(x) = 0 if and only if x = v0 while if λcrit = 0 then
Iη(x) = 0 if and only if x is in the closed interval between 0 and v0.

Lemma 6.2. If the distribution η on environments satisfies Assumptions 2-4 then
the function Iη as defined in (6.1) is continuous and convex on [−1, 0] and [0, 1] sep-
arately. Moreover, the averaged rate function has the same zero set as the quenched
rate function: Iη(x) = 0 ⇐⇒ Iη(x) = 0.

Remark 6.3. Since Iη(x) is non-negative, it follows that Iη(x) is convex on all of
[−1, 1] if λcrit(η) = Iη(0) = 0. We suspect that Iη(x) is a convex function even
when λcrit(η) > 0, but are currently unable to prove this with our techniques.
Nonetheless, convexity of the rate function is not needed to prove the averaged
large deviation principle for Xn/n. It is likely that the techniques of Varadhan
(2003) which were later generalized in Rassoul-Agha (2004) can be used to give
another proof of the averaged large deviation principle for RWRE on the strip and
show that indeed the rate function is convex.
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Proof of Lemma 6.1: If f(x) is a convex function, then x 7→ xf(1/x) is also convex.
Thus, the definition if Iη implies that Iη is continuous and convex on [−1, 0) and
(0, 1] separately. We still need to show that Iη is continuous and convex at the
origin. The continuity at the origin will follow from the following two facts.

lim
t→∞

Jη(t)/t = λcrit(η) and λcrit(η) = λcrit(η
Inv). (6.2)

The first assertion in (6.2) follows easily from the fact that Jη(t) is the Legendre
transform of the convex function Λη(λ) and Λη(λ) < ∞ if and only if λ ≤ λcrit(η).
To prove the second assertion in (6.2), define the matrices Φ̄n(λ) by

Φ̄n(λ)(i, j) = E(n,i)
ω

[
eλTn−11{Tn−1<∞, YTn−1

=j}

]
.

Note that Φ̄n(λ)(ω) is Φ−n(λ)(ω
Inv) and thus Lemma 2.1 (see also Remark 2.2 and

Lemma 2.4) implies that

E(0,i)
ω

[
eλT−11{T−1<∞}

]
< ∞ ⇐⇒ λ ≤ λcrit(η

Inv). (6.3)

Now, for any n ≥ 1,

E(0,i)
ω

[
eλTn1{Tn<∞}

]
≥ E(0,i)

ω

[
eλTn1{T−1<Tn<∞}

]
≥
∑
j

E(0,i)
ω

[
eλT−11{T−1<Tn, YT−1

=j}

]
Φ−1(λ)(j, i)E

(0,i)
ω

[
eλTn1{Tn<∞}

]
.

If λ ≤ λcrit(η), then Lemma 2.4 implies that E
(0,i)
ω [eλTn1{Tn<∞}] < ∞ and that

Φ−1(λ)(j, i) ≥ cλ for all j ∈ [d]. Thus, we obtain that

E(0,i)
ω

[
eλT−11{T−1<Tn}

]
≤ 1/cλ ∀n ≥ 1, i ∈ [d], λ ≤ λcrit(η).

The monotone convergence theorem then implies that E
(0,i)
ω [eλT−11{T−1<∞}] ≤

1/cλ for any i ∈ [d] and λ ≤ λcrit(η). Applying this to (6.3) we obtain that
λcrit(η) ≤ λcrit(η

Inv). The reverse inequality follows from a symmetric argument.
To show that Iη(x) is convex at x = 0 it is enough to show that Iη(−x) + Iη(x) ≥
2Iη(0) = 2λcrit for any x > 0. However, since Jη(t) ≥ λcritt−Λη(λcrit) for any t we
have that

Iη(−x) + Iη(x) = xJηInv(1/x) + xJη(1/x) ≥ 2λcrit − x
{
ΛηInv(λcrit) + Λη(λcrit)

}
.

Therefore, convexity at the origin will follow if we can show that ΛηInv(λcrit) +
Λη(λcrit) ≤ 0. To see this, first note that for any n ≥ 1 and λ ≤ λcrit,

E(0,i)
ω

[
eλT−n1{Tn<T−n<∞}

]
=
∑

j,l∈[d]

{
E(0,i)

ω

[
eλTn1{Tn<T−n, YTn=j}

]
×E(n,j)

ω

[
eλT01{T0<∞, YT0

=l}

]
E(0,l)

ω

[
eλT−n1{T−n<∞}

]}
.

Choosing i = in(ω) that minimizes E
(0,i)
ω

[
eλT−n1{T−n<∞}

]
we obtain that

1 ≥
∑

j,l∈[d]

E(0,in)
ω

[
eλTn1{Tn<T−n, YTn=j}

]
E(n,j)

ω

[
eλT01{T0<∞, YT0=l}

]
(6.4)

For any k > −n and λ ≤ λcrit, define the matrices Φ
(n)
k (λ) by

Φ
(n)
k (λ)(i, j) = E(k,i)

ω

[
eλTk+11{Tk+1<T−n, YTk+1

=j}

]
.
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With this notation, taking logarithms in (6.4) and dividing by n we can write

0 ≥ 1

n
log
(
ein

(
Φ

(n)
0 (λ) · · ·Φ(n)

n−1(λ)
) (

Φ̄n(λ) · · · Φ̄1(λ)
)
1
)

=
1

n
log
(
einΦ

(n)
0 (λ) · · ·Φ(n)

n−1(λ)1
)
+

1

n
log
(
πnΦ̄n(λ) · · · Φ̄1(λ)1

)
, (6.5)

where

πn =
einΦ

(n)
0 (λ) · · ·Φ(n)

n−1(λ)

einΦ
(n)
0 (λ) · · ·Φ(n)

n−1(λ)1
.

Now, recall the definition of the matrices Φn,M (λ) from (2.8) and note that

Φk,M (λ)(i, j) ≤ Φ
(n)
k (λ)(i, j) ≤ Φk(λ)(i, j) when M ≤ k + n. Then Lemmas 3.4

and 3.10 imply that

lim
n→∞

1

n
log
(
einΦ

(n)
0 (λ) · · ·Φ(n)

n−1(λ)1
)
= Λη(λ), η - a.s. (6.6)

Also, as in the proof of Lemma 3.4 we can show that

sup
π

∣∣∣∣∣ 1n log
(
πΦ̄n(λ) · · · Φ̄1(λ)1

)
− 1

n

n∑
k=1

log(µ̄k(λ)Φ̄k(λ)1)

∣∣∣∣∣ ≤ 2

n(1− c4λ)c
10
λ

,

where µ̄k(λ)(ω) = µ−k(λ)(ω
Inv). Thus, we can conclude that

lim
n→∞

1

n
log
(
πnΦ̄n(λ) · · · Φ̄1(λ)1

)
= Eη

[
log(µ̄0(λ)Φ̄0(λ)1)

]
= ΛηInv(λ), η - a.s. (6.7)

Applying (6.6) and (6.7) to (6.5) implies that Λη(λ) + ΛηInv(λ) for any λ ≤ λcrit

which, as noted above, shows that Iη is convex at x = 0. Finally, we note that the
claimed properties of the zero set of Iη follow from the corresponding properties for
the zero sets of Jη and JηInv which can be deduced from Lemma 4.5. �

Proof of Theorem 6.2: As with the quenched case, convexity on [−1, 0) and (0, 1]
separately follows from the convexity of Jη(t) and JηInv(t). Since Lemma 5.4 shows
that Jη(t) is the Legendre transform of Λη(λ) and since Λη(λ) < ∞ if and only if
λ ≤ λcrit(η), it again follows that

lim
t→∞

Jη(t)
t

= λcrit(η).

Since the same is true with η replaced by ηInv and since λcrit(η) = λcrit(η
Inv), this

proves that Iη(x) continuous at x = 0. The continuity at x = 0 also allows us to
extend the convexity of Iη(x) to the closed intervals [−1, 0] and [0, 1] separately.
Finally, the fact that Iη(x) and Iη(x) have the same zero sets follows from the
corresponding property for Jη(t) and Jη(t) in Lemma 5.6. �

In addition to the properties of Iη and Iη that we proved above, the crucial tool
in transferring the large deviations from Tn/n to Xn/n will be the following lemma
which gives a uniform quenched large deviations upper bound for slowdowns.

Lemma 6.4. Assume the distribution η satisfies Assumptions 1 and 2 and that the
RWRE is recurrent or transient to the right. Then,

lim sup
n→∞

1

n
log

{
max

i
sup
ω∈Ωη

P (0,i)
ω

(
inf
m≥n

Xm ≤ 0

)}
≤ −Iη(0), (6.8)
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where Ωη ⊂ Ω is the support of the distribution η.

Remark 6.5. A similar statement for RWRE on Z with holding times was proved in
Dembo et al. (2004, Lemma 4). The main difference in Lemma 6.4 is that the need
to take the maximum over the initial starting height i as well. The proof below is
essentially an adaptation of the proof in Dembo et al. (2004) but we present it here
for completeness and to complete some minor gaps in the proof from Dembo et al.
(2004).

Proof : For notational convenience, let σn = inf{m ≥ n : Xm ≤ 0} and

βn(ω) = max
i

P (0,i)
ω (σn < ∞), and αn = sup

ω∈Ωη

βn(ω).

With this notation, the statement of the lemma is that lim supn→∞
1
n logαn ≤

−Iη(0). We will first show that

lim
n→∞

1

n
logαn = lim

n→∞

1

n
log βn(ω)

= lim
n→∞

1

n
logP (0,i)

ω (σn < ∞), ∀i ∈ [d], η - a.s. (6.9)

The proof will then be finished by deriving quenched large deviation estimates for

P
(0,i)
ω (σn < ∞). First of all, note that the uniform ellipticity in Assumption 2

implies that

P (0,i)
ω (σn < ∞) ≥ κ2P (0,j)

ω (σn−2 < ∞) ≥ κ2P (0,j)
ω (σn < ∞), ∀i, j ∈ [d].

¿From this it is easy to see that βn+k(ω) ≥ κ2βn(ω)βk(ω) for all n, k ≥ 1. This
super-multipicative property, combined with the fact that βn(ω) ≥ κn for all n ≥ 1,
is enough to show that the limit

B(ω) := lim
n→∞

1

n
log βn(ω)

exists, and B(ω) ∈ [log κ, 0]. Moreover, since βn(ω) ≥ P
(0,i)
ω (σn < ∞) ≥ κ2βn(ω)

for any i ∈ [d], the third limit in (6.9) is also equal to B(ω). To prove the first
equality in (6.9), first note that it’s obvious that B(ω) ≤ lim infn→∞ n−1 logαn.
Let A := lim supn→∞ n−1 logαn. Then for any fixed k ≥ 1, it can be shown that
there exists a nk ≥ k, ω(k) ∈ Ωη and `k ≥ 1 such that

1

nk
log
{
max

i
P

(0,i)

ω(k) (σnk
< `k)

}
> A− 1

k
.

Since for fixed n, ` < ∞ the mapping ω 7→ maxi P
(0,i)
ω (σn < `) is continuous on

Ωη, we conclude that for every k ≥ 1 there exists a relatively open subset Gk ⊂ Ωη

such that η(ω ∈ Gk) > 0 and

1

nk
log

{
max

i
sup
ω∈Gk

P (0,i)
ω (σnk

< `k)

}
> A− 1

k
.

Since η(ω ∈ Gk) > 0 and η is an ergodic measure on environments, it follows
that for any k and η-a.e. environment ω there exists a dk = dk(ω) ≤ 0 such that
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θ−dkω ∈ Gk. Then,

βn(ω) ≥ κdkP
(0,j)

θ−dkω
(σn < ∞)

≥ κdk

{
κ2 max

j
P

(0,j)

θ−dkω
(σnk

< `k)

}dn/nke

≥ κdk

{
κ2enk(A− 1

k )
}dn/nke

.

Therefore, we can conclude for η-a.e. environment and any fixed k that

B(ω) = lim
n→∞

1

n
log βn(ω) ≥

2 log κ

nk
+A− 1

k
.

Taking k → ∞ we conclude that B(ω) ≥ A = lim supn→∞ n−1 logαn. We have
thus shown that the three limits in (6.9) all equal the constant A. It remains to
show that A ≤ −Iη(0). This is obviously true when λcrit(η) = Iη(0) = 0, and so we
need only to consider the case when λcrit(η) > 0. Recall that t0(η) = Λ′

η(λ) < ∞
when λcrit(η) > 0. Since λcrit(η) = λcrit(η

Inv) > 0 this implies that t0(η), t0(η
Inv) <

∞ and that Jη(t) and JηInv(t) are non-decreasing on [t0(η),∞) and [t0(η
Inv),∞),

respectively. For convenience of notation let P
(k,∗)
ω (·) = maxj P

(k,j)
ω (·). Then, for

any i ∈ [d], K < ∞ and 0 < u < 1
t0(η)

∧ 1
t0(ηInv) ,

P (0,i)
ω (σn < ∞) ≤ P (0,i)

ω

(
Tdnue ≥ n

)
+ P (dune,∗)

ω (T0 ∈ [n,∞))

+
∑

uK<k,`≤K

{
P (0,i)
ω

(
Tdnue ∈

[
(k−1)n

K , kn
K

))
×P (dnue,∗)

ω

(
T0 ∈

[
(`−1)n

K , `n
K

))
βdn(1− k+`

K )e(ω)
}
,

(6.10)

where by convention we let β−m(ω) = 1 for any m ≥ 0. Note that in the last sum
above we have restricted k, ` > uK since otherwise the probabilities inside the sum
are zero. Next we derive large deviation upper bounds for all of the terms on the
right side of (6.10). For the first term on the right, Theorem 1.4 implies that

lim sup
n→∞

1

n
P (0,i)
ω

(
Tdnue ≥ n

)
≤ −uJη

(
1

u

)
= −Iη (u) ,

where in the first inequality we used that 1/u > t0(η). Similarly, we claim that

lim sup
n→∞

1

n
P (dnue,∗)
ω (T0 ∈ [n,∞)) ≤ −uJηInv

(
1

u

)
= −Iη (−u) . (6.11)

Note that (6.11) does not follow directly from Theorem 1.4 since the starting lo-
cation of the random walk is changing with n. However, it can be shown that the
proof of Theorem 1.4 still carries through in this case. Indeed, the key to the large
deviation upper bound is the computation of the asymptotics of the quenched log
moment generating function, and as was shown above in (6.7),

lim
n→∞

n−1 logE(n,j)
ω [eλT01{T0<∞}] = ΛηInv(λ).
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¿From this the proof of (6.11) is standard. Finally, in the same way it can be shown
that for fixed k, `

lim sup
n→∞

1

n
log
{
P (0,i)
ω

(
Tdnue ∈

[
(k−1)n

K , kn
K

))
×P (dnue,∗)

ω

(
T0 ∈

[
(`−1)n

K , `n
K

))
βdn(1− k+`

K )e(ω)
}

≤ −

{
inf

t∈[ k−1
Ku , k

Ku ]
uJη(t) + inf

t∈[ `−1
Ku , `

Ku ]
uJηInv(t)

}
+

(
1− k + `

K

)
+

A

≤ −
{
uJη

(
k

Ku

)
+ uJηInv

(
`

Ku

)}
+

(
1− k + `

K

)
+

A+ u∆u,K , (6.12)

where the error term ∆u,K vanishes as K → ∞ for any fixed u (this follows from
the fact that Jη and JηInv are uniformly continuous on [1, 1/u]). For the terms
inside the braces in (6.12) we have

uJη

(
k

Ku

)
+ uJηInv

(
`

Ku

)
=

k

K
Iη

(
Ku

k

)
+

`

K
Iη

(
−Ku

`

)
≥ k + `

K
Iη(0),

where the last inequality follows from the convexity of Iη. Since we are trying to
show that A ≤ −Iη(0), we may assume for contradiction that A + Iη(0) > 0 in
which case

(6.12) ≤ −k + `

K
Iη(0) +

(
1− k + `

K

)
+

A+ u∆u,K

≤ u∆u,K +

{
−Iη(0) if k + ` ≥ K

A− 2u(Iη(0) +A) if k, ` > uK, and k + ` < K.

Combining all of the above large deviation estimates for the terms on the right side

of (6.10) and using the fact that A = limn→∞ n−1 logP
(0,i)
ω (σn < ∞), we obtain

that

A ≤ max {−Iη (−u) , −Iη (u) , −Iη(0), A− 2u(Iη(0) +A)}+ u∆u,K .

Letting K → ∞ we get the same inequality without the last term since ∆u,K → 0
for u fixed. Since we assumed for contradiction that Iη(0) + A > 0, the last term
in the maximum is strictly less that A, and thus the maximum must be attained
by one of the first three terms. Then taking u → 0 we conclude that A ≤ −Iη(0),
contradicting our previous assumption that A > −Iη(0). �

6.1. Proof of Theorem 1.9. We are now ready to prove the quenched large deviation
principle for Xn/n as stated in Theorem 1.9. Note that by symmetry, we may
assume that η is such that the RWRE is recurrent or transient to the right so that
v0 ≥ 0. Since Iη(x) is non-increasing on [−1, v0] and non-decreasing on [v0, 1], to
prove the large deviation upper bound it is enough to show that

lim sup
n→∞

1

n
logPπ

ω (Xn ≥ xn) ≤ −Iη(x), η - a.s. ∀x ≥ v0, (6.13)

and

lim sup
n→∞

1

n
logPπ

ω (Xn ≤ xn) ≤ −Iη(x), η - a.s. ∀x ≤ v0, (6.14)
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To prove (6.13), note that Theorem 1.4 implies that

lim sup
n→∞

1

n
logPπ

ω (Xn ≥ xn) ≤ lim sup
n→∞

1

n
logPπ

ω (Tdxne ≤ n)

≤ −x inf
t≤1/x

Jη(t) = −xJη(1/x) = −Iη(x), ∀x ≥ v0,

where the second to last equality follows from the fact that Jη is non-increasing on
(−∞, t0] and t0 = 1/v0 (see Lemmas 4.1 and 4.3).

To prove corresponding large deviation upper bounds for the left tails note that
for any x > 0 and a fixed K < ∞, by decomposing according to the hitting time
Tbxnc we obtain

Pπ
ω (Xn ≤ xn) ≤ Pπ

ω (Tbxnc ≥ n)+
K∑

k=1

Pπ
ω

(
Tbxnc ∈

[
(k − 1)n

K
,
kn

K

))

×

{
max

i
P

(0,i)

θbnxcω

(
inf

t≥n(1− k
K )

Xt ≤ 0

)}
.

(6.15)

Lemma 6.4, together with Theorem 1.4, then implies that for x ∈ (0, v0],

lim sup
n→∞

1

n
logPπ

ω (Xn ≤ xn)

≤ −min

{
x inf

t≥1/x
Jη(t), min

k≤K

{
inf

t∈[ k−1
Kx , k

Kx ]
xJη(t) +

(
1− k

K

)
Iη(0)

}}

= −min

{
xJη

(
1
x

)
, min
k≤K

{
inf

s∈[ k−1
K , k

K ]
sIη(x/s) + (1− s) Iη(0)−

(
k

K
− s

)
Iη(0)

}}

≤ −min

{
Iη(x), min

k≤K

{
inf

s∈[ k−1
K , k

K ]
Iη(x)−

(
k

K
− s

)
Iη(0)

}}

= −Iη(x) +
1

K
Iη(0), (6.16)

where in the first equality we used that inft≥1/x Jη(t) = Jη(1/x) since Jη(t) is non-
decreasing on [1/v0,∞), and in the second to last line we use the fact that Iη(x)
is convex in x. Finally, letting K → ∞ proves (6.14) when x ∈ (0, v0]. Similarly, if
x < 0 then {Xn ≤ xn} ⊂ {Tbxnc ≤ n} and by decomposing according to the hitting
time Tbxnc we obtain

Pπ
ω (Xn ≤ xn)

≤
K∑

k=1

Pπ
ω

(
Tbxnc ∈

(
(k − 1)n

K
,
kn

K

]){
max

i
P

(0,i)

θbnxcω

(
inf

t≥n(1−k/K)
Xt ≤ 0

)}
.
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¿From this, the quenched large deviation principle for T−n/n together with Lemma
6.4 implies that

lim sup
n→∞

1

n
logPπ

ω (Xn ≤ xn)

≤ −min
k≤K

{
inf

t∈[ k−1
K|x| ,

k
K|x| ]

|x|JηInv(t) +

(
1− k

K

)
Iη(0)

}

= −min
k≤K

{
inf

s∈[ k−1
K , k

K ]
sIη(x/s) + (1− s)Iη(0)−

(
k

K
− s

)
Iη(0)

}

≤ −min
k≤K

{
inf

s∈[ k−1
K , k

K ]
Iη(x)−

(
k

K
− s

)
Iη(0)

}

= −Iη(x) +
1

K
Iη(0). (6.17)

Again, letting K → 0 proves (6.14) for x < 0. Finally, since Pπ
ω (Xn ≤ 0) ≤

Pπ
ω (infm≥n Xm ≤ 0), Lemma 6.4 implies that (6.14) holds for x = 0 as well. This

completes the proof of the large deviation upper bound in Theorem 1.9. For the
large deviation lower bound, it is enough to show that

lim
δ→0

lim inf
n→∞

1

n
logPπ

ω (|Xn − xn| < δn) ≥ −Iη(x), η - a.s., ∀x ∈ R. (6.18)

To show this when x 6= 0, since |Xk −Xk−1| ≤ 1 for all k ≥ 1 it follows that

Pπ
ω (|Xn − xn| < δn) ≥ Pπ

ω

(
|Tbxnc − n| < δn− 1

)
.

Then (6.18) follows easily from the quenched large deviation principle for Tn/n
when x > 0 or from the quenched large deviation principle for T−n/n when x < 0.
To show (6.18) for x = 0, note that the continuity of Iη implies that for any ε > 0
there exists a δ0 = δ0(ε) > 0 such that Iη(δ/2) < Iη(0) + ε for all δ ∈ (0, δ0).
Applying (6.18) with x = δ/2 implies that there exists a δ′ < δ/2 such that

lim inf
n→∞

1

n
logPπ

ω (|Xn| < δn) ≥ lim inf
n→∞

1

n
logPπ

ω (|Xn − δn/2| < δ′n)

≥ −Iη(δ/2)− ε > −Iη(0)− 2ε.

Since ε > 0 was arbitrary, this proves (6.18) for x = 0 and thus finishes the proof
of the quenched large deviations lower bound for Xn/n.

6.2. Proof of Theorem 1.11. To prove the averaged large deviations lower bound
for Xn/n it is enough to show that

lim
δ→0

lim inf
n→∞

1

n
logPπ

η (|Xn − nx| < nδ) ≥ −Iη(x), ∀x ∈ (−1, 1), (6.19)

As in the quenched case, when x 6= 0 this follows from Theorem 1.7 and the fact
that

Pπ
η (|Xn − xn| < δn) ≥ Pπ

η

(
|Tbxnc − n| < δn− 1

)
, ∀x 6= 0, δ > 0.

The same argument as in the quenched case then shows that (6.19) can be extended
to x = 0 by the fact that Iη(x) is continuous at x = 0.
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To prove the matching large deviation upper bound we will show below that it
is enough to prove that

lim sup
n→∞

1

n
logPπ

η (Xn ≥ xn) ≤ −Iη(x), ∀x ≥ v0, (6.20)

and

lim sup
n→∞

1

n
logPπ

η (Xn ≤ xn) ≤ −Iη(x), ∀x ≤ v0. (6.21)

As with the quenched large deviation principle for Xn/n we will assume without
loss of generality that the RWRE is recurrent or transient to the right. Then, the
upper bound for right tails (6.20) follows easily from Theorem 1.7 since

lim sup
n→∞

1

n
logPπ

η (Xn ≥ xn) ≤ lim sup
n→∞

1

n
logPπ

η (Tdxne ≤ n)

≤ −x inf
t≤1/x

Jη(t) = −xJη(1/x) = −Iη(x),

where we used the fact that Jη(t) is non-increasing on (−∞, t0] and t0 = 1/v0.
To prove (6.21) for x ∈ (0, v0], taking expectations of (6.15) implies that for any

fixed K ≥ 1

Pπ
η (Xn ≤ xn) ≤ Pπ

η (Tbxnc ≥ n)+
K∑

k=1

Pπ
η

(
Tbxnc ∈

[
(k−1)n

K , kn
K

))
×

{
sup
ω∈Ωη

max
i

P (0,i)
ω

(
inf

t≥n(1−k/K)
Xt ≤ 0

)}
.

Then, applying Theorem 1.7 and Lemma 6.4 (and the fact that Iη(0) = Iη(0) =
λcrit(η)) and repeating the steps in (6.16) we obtain that for any x ∈ (0, v0],

lim sup
n→∞

1

n
logPπ

η (Xn ≤ xn)

≤ −min

{
x inf

t≥1/x
Jη(t), min

k≤K

{
inf

t∈[ k−1
Kx , k

Kx ]
xJη(t) + (1− k

K )Iη(0)

}}

= −Iη(x) +
1

K
Iη(0).

Then, taking K → ∞ proves (6.21) when x > 0. The proof of (6.21) when x < 0
is similar, mimicing the steps in (6.17) and using the averaged large deviation
principle for T−n/n instead. Finally, (6.21) holds when x = 0 by Lemma 6.4. We
still need to show that indeed (6.20) and (6.21) imply the general large deviations
upper bound

lim sup
n→∞

1

n
logPπ

η (Xn/n ∈ F ) ≤ − inf
x∈F

Iη(x), for all closed F.

In order for this to be true, it is necessary that the averaged rate function Iη(x)
is non-increasing on [−1, v0] and non-decreasing [v0, 1]. If λcrit(η) = 0 then this is
obvious since Iη(x) is convex, non-negative, and Iη(v0) = 0. On the other hand, if
λcrit(η) > 0 then we need a different argument since we don’t have a direct proof
that Iη(x) is convex. Since Iη(0) = λcrit(η) > 0 it follows that v0 6= 0 and so we
may assume without loss of generality that v0 > 0. Since Iη(x) is non-negative
and convex on [0, 1], Iη(x) is non-decreasing on [v0, 1] and non-increasing on [0, v0].
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It remains only to show that Iη(x) is non-increasing on [−1, 0]. To this end, fix
x < y ≤ 0. Then, (6.21) and (6.19) imply that

−Iη(x) ≤ lim
δ→0

lim inf
n→∞

1

n
logPπ

η (|Xn − nx| < nδ)

≤ lim sup
n→∞

1

n
logPπ

η (Xn ≤ yn) ≤ −Iη(y),

and so Iη(x) is indeed non-increasing on [−1, 0]. We close the discussion of the
averaged large deviation principle for Xn/n by noting that the variational formula
for Jη(t) in (1.10) implies a corresponding variational formula Iη(x). Indeed, we
claim that

Iη(x) = inf
α∈Me

1 (Ωκ)∩Mη

{Iα(x) + |x|h(α|η)}. (6.22)

Recall from Lemma 5.1 that h(α|η) = ∞ for α /∈ Mη, and thus for x 6= 0 the
infimum in (6.22) can be extended to α ∈ Me

1 (Ωκ). Then, (6.22) follows easily from
(1.10) and the formula for Iη(x) when x 6= 0. To show (6.22) when x = 0 note that

inf
α∈Me

1 (Ωκ)∩Mη

Iα(0) = inf
α∈Me

1 (Ωκ)∩Mη

λcrit(α) = λcrit(η),

where the last equality follows from Lemma 5.2.

Appendix A. RWRE with bounded step sizes

It is well known that RWRE on a strip can be thought of as a generalization of
RWRE on Z with bounded jumps. Indeed, if a RWRE on Z has jump sizes of at most
d ≥ 2, then by identifying points (k, i) ∈ Z× [d] with the point x = kd+i−1 ∈ Z we
can interpret the random walk as occuring on the strip. However, not all natural
RWRE on Z with bounded jumps satisfy the uniform ellipticity in Assumption 2
when thought of as RWRE on a strip. In particular, there have been several results
on what we will call (L,R)-RWRE Key (1984); Brémont (2002, 2004); Hong and
Wang (2013); Hong and Zhang (2010); that is, RWRE on Z with jumps of at most
L steps to the left and at most R steps to the right. We will consider (L,R)-RWRE
that satisfy the following uniform ellipticity assumption

η (Pω(X1 ∈ [−L,R]) = 1) = 1, and η (Pω(X1 = z) ≥ κ, ∀z ∈ [−L,R]\{0}) = 1.
(A.1)

(Note that the second requirement in (A.1) allows, but does not require, the pos-
sibility that the RWRE may stay at its current location with positive probability.)
Such random walks can be viewed as a random walk on the strip Z × [d] with
d = max{L,R}. If L = R = d, then it is easy to see that Assumption 2 is satisfied.
On the other hand, if L 6= R then Assumption 2 is not satisfied. For instance, if
L > R when we translate the model to the strip Z× [L] we have that∑

j

pk(i, j) = 0, ∀i ∈ [1, L−R], and
∑
i

pk(i, j) = 0, ∀j ∈ [R+ 1, L].

Thus both (1.4) and (1.5) are violated for such RWRE. The most crucial way in
which we used Assumption 2 was in the proofs of the existence of the vectors
µn(λ) and νn(λ) where we used that the matrices Φk(λ) have entries bounded
uniformly below. For RWRE on the strip Z × [L] coming for (L,R)-RWRE on Z
with L > R it follows that P(0,i)

η (T1 < ∞, YT1 = j) = 0 for all j ∈ [R + 1, L].
Thus, Φk(λ)(i, j) = 0 if j ∈ [R+ 1, L]. On the other hand, all other entries can be
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uniformly bounded below away from zero. In fact the ellipticity assumptions imply
that Φk(λ)(i, j) ≥ κLeλL for all j ∈ [1, R]. We will show how these facts can be
used to prove Lemmas 3.1 and 3.6 for such RWRE on the strip. For convenience of
notation, we will write the matrices Φk(λ) in block matrix notation as

Φk(λ) =

(
Ak(λ) 0
Bk(λ) 0

)
where Ak(λ) is an R×R matrix and Bk(λ) is (L−R)×R matrix. As noted above,
the entries of Ak(λ) and Bk(λ) can be uniformly bounded away from 0. Also,
a similar argument as in the proof of Lemma 2.4 shows that the entries can be
uniformly bounded above for each λ ≤ λcrit(η). That is, there exists some cλ > 0
such that

cλ ≤ Ak(λ)(i, j), Bk(λ)(i, j) ≤
1

cλ
. (A.2)

If we adopt the notation A[k,n](λ) = Ak(λ)Ak+1(λ) · · ·An(λ) for k ≤ n then it is
clear that

Φ[k,n](λ) =

(
A[k,n](λ) 0

Bk(λ)A[k−1,n] 0

)
(A.3)

By the uniform bounds (A.2) on the entries of Ak(λ) we can conclude from Lemma
3.5 that there exists a vector µ̃n(λ) ∈ RR with non-negative entries summing to 1
such that

sup
06=π≥0

∥∥∥∥ πA[m,n−1](λ)

πA[m,n−1](λ)1
− µ̃n(λ)

∥∥∥∥
1

≤ 2(1− c4λ)
n−m−1

c4λ
, ∀m < n. (A.4)

Now, let µn(λ) = (µ̃n(λ),0) ∈ RL (i.e., append the vector µ̃n(λ) with L− R zeros
at the end). Then, it follows from the block matrix representation (A.3) that∥∥∥∥ eiΦ[m,n−1](λ)

eiΦ[m,n−1](λ)1
− µn(λ)

∥∥∥∥
1

≤


∥∥∥ eiA[m,n−1](λ)

eiA[m,n−1](λ)1
− µ̃n(λ)

∥∥∥
1

if i ∈ [1, R]∥∥∥ eiBmA[m+1,n−1](λ)

eiBmA[m+1,n−1](λ)1
− µ̃n(λ)

∥∥∥
1

if i ∈ [R+ 1, L]

≤ 2(1− c4λ)
n−m−2

c4λ
,

where the last inequality follows from (A.4) with π = ei when i ∈ [1, R] and
with π = eiBm(λ) when i ∈ [R + 1, L]. The proof of the existence of νn(λ) with
corresponding error bounds is similar but slightly more involved. First of all, note
that since the entries of Ak(λ) are uniformly bounded above and below, for every
k ∈ Z there exists a σk(λ) ∈ RR such that

‖σk,n(λ)− σk(λ)‖1 ≤ 2

c4λ
(1−c4λ)

n−k, where σk,n(λ) =
A[k,n](λ)1

1tA[k,n](λ)1
for k ≤ n.

(A.5)
Let σ̃k,n(λ) and σ̃k(λ) denote vectors in RL formed by adding L − R zeros to the
end of σk,n(λ) and σk(λ), respectively. Then, using the block matrix representation
in (A.3) it can be shown that

Φ[k,n](λ)1

1tΦ[k,n](λ)1
=

Φk(λ)σ̃k+1,n(λ)

1tΦk(λ)σ̃k+1,n(λ)
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Since (A.5) implies that σ̃k+1,n → σ̃k+1 as n → ∞, it follows that

lim
n→∞

Φ[k,n](λ)1

1tΦ[k,n](λ)1
=

Φk(λ)σ̃k+1(λ)

1tΦk(λ)σ̃k+1(λ)
=: νk(λ).

Finally, the error bounds in (A.5) and the uniform bounds on the non-zero entries
of Φk(λ) can be used to show that for any k ≤ n∥∥∥∥ Φ[k,n](λ)1

1tΦ[k,n](λ)1
− νk(λ)

∥∥∥∥
∞

=

∥∥∥∥ Φk(λ)σ̃k+1,n(λ)

1tΦk(λ)σ̃k+1,n(λ)
− Φk(λ)σ̃k+1(λ)

1tΦk(λ)σ̃k+1(λ)

∥∥∥∥
∞

≤ C(1− c4λ)
n−k−1,

where the constant C depends only on λ. Having shown the existence of the vectors
µk(λ) and νk(λ) as well as error bounds similar to (3.1) and (3.7), one can adapt
the rest of the proofs of the quenched and averaged large deviation principles for
Tn/n and Xn/n with a few minor technical modifications. The details are left to
the interested reader.
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Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages
101–203. Springer, Berlin (1988). MR983373.

H. Furstenberg and H. Kesten. Products of random matrices. Ann. Math. Statist.
31, 457–469 (1960). MR0121828.

I. Goldsheid. Linear and sub-linear growth and the CLT for hitting times of a
random walk in random environment on a strip. Probab. Theory Related Fields
141 (3-4), 471–511 (2008). MR2391162.

http://www.ams.org/mathscinet-getitem?mr=MR1796029
http://www.ams.org/mathscinet-getitem?mr=MR1920108
http://www.ams.org/mathscinet-getitem?mr=MR2060456
http://www.ams.org/mathscinet-getitem?mr=MR1785454
http://www.ams.org/mathscinet-getitem?mr=MR2044672
http://www.ams.org/mathscinet-getitem?mr=MR1619036
http://www.ams.org/mathscinet-getitem?mr=MR983373
http://www.ams.org/mathscinet-getitem?mr=MR0121828
http://www.ams.org/mathscinet-getitem?mr=MR2391162


Large deviations for RWRE on a strip 41

A. Greven and F. den Hollander. Large deviations for a random walk in random
environment. Ann. Probab. 22 (3), 1381–1428 (1994). MR1303649.

W. Hong and H. Wang. Intrinsic branching structure within (L-1) random walk in
random environment and its applications. Infin. Dimens. Anal. Quantum Probab.
Relat. Top. 16 (1), 1350006, 14 (2013). MR3071458.

W. Hong and L. Zhang. Branching structure for the transient (1, R)-random walk in
random environment and its applications. Infin. Dimens. Anal. Quantum Probab.
Relat. Top. 13 (4), 589–618 (2010). MR2754319.

E.S. Key. Recurrence and transience criteria for random walk in a random envi-
ronment. Ann. Probab. 12 (2), 529–560 (1984). MR735852.

J. Peterson and O. Zeitouni. On the annealed large deviation rate function for
a multi-dimensional random walk in random environment. ALEA Lat. Am. J.
Probab. Math. Stat. 6, 349–368 (2009). MR2557875.

F. Rassoul-Agha. Large deviations for random walks in a mixing random environ-
ment and other (non-Markov) random walks. Comm. Pure Appl. Math. 57 (9),
1178–1196 (2004). MR2059678.

A. Roitershtein. Transient random walks on a strip in a random environment. Ann.
Probab. 36 (6), 2354–2387 (2008). MR2478686.

W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York,
third edition (1976). International Series in Pure and Applied Mathematics.
MR0385023.

M. Sion. On general minimax theorems. Pacific J. Math. 8, 171–176 (1958).
MR0097026.

S.R.S. Varadhan. Probability theory, volume 7 of Courant Lecture Notes in Math-
ematics. New York University Courant Institute of Mathematical Sciences, New
York (2001). ISBN 0-8218-2852-5. MR1852999.

S.R.S. Varadhan. Large deviations for random walks in a random environment.
Comm. Pure Appl. Math. 56 (8), 1222–1245 (2003). Dedicated to the memory
of Jürgen K. Moser. MR1989232.

A. Yilmaz. Quenched large deviations for random walk in a random environment.
Comm. Pure Appl. Math. 62 (8), 1033–1075 (2009). MR2531552.

A. Yilmaz. Averaged large deviations for random walk in a random environment.
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