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Abstract. We consider Galton-Watson trees with Bin(d, p) offspring distribution.
We let T∞(p) denote such a tree conditioned on being infinite. For d = 2, 3 and
any 1/d ≤ p1 < p2 ≤ 1, we show that there exists a coupling between T∞(p1) and
T∞(p2) such that P(T∞(p1) ⊆ T∞(p2)) = 1.

1. Introduction

We start with a somewhat informal motivation of the paper, and give formal
definitions below. For any d ≥ 2 and 0 < p < 1 we let T (p) = T (p, d) denote a
Galton-Watson tree, with binomial offspring distribution, with parameters p, d. For
fixed d ≥ 2 and 0 < p1 < p2 < 1, a trivial coupling argument allows us to couple
the trees T (p1) and T (p2) such that P(T (p1) ⊆ T (p2)) = 1. A natural question to
ask is whether this property is preserved if we condition the trees on being infinite;
if we let T∞(p) denote a sample of T (p) conditioned on being infinite, is it the case
that there exists a coupling of T∞(p1) and T∞(p2), where 1/d ≤ p1 < p2 < 1, such
that

P(T∞(p1) ⊆ T∞(p2)) = 1? (1.1)

The case p1 = 1/d warrants an explanation given below.
A finite version of this was proved by Luczak and Winkler (2004) (see Theorem

1.2 below for a precise statement of their result). Their result will be a key ingre-
dient of the proof of our main result. The analogue of (1.1) for Poisson offspring
distribution was proven by Lyons et al. (2008). It is natural to ask whether such
a result would hold for any (parametrized) offspring distribution for which the un-
conditioned trees can be appropriately coupled. Example 1.1 shows that the answer
is no. This counterexample is a variant of the one by Janson (2006), used to prove
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that the finite version of (1.1) does not hold for general offspring distributions (see
also the remark after Theorem 1.2).

Example 1.1. Consider a Galton Watson tree T (r) with the following offspring
distribution. Any individual in the tree has 0, 1 or 2 children with probability
1/2 − 2r, r and 1/2 + r respectively, where r ∈ [0, 1/4]. It is not hard to see that
for 0 ≤ r1 < r2 ≤ 1/4, we can couple the constructions of T (r1) and T (r2) so that
P(T (r1) ⊆ T (r2)) = 1. Furthermore, if we let A be the event that the root has
exactly one offspring, we see that

P(A||T (r)| = ∞) =
P(|T (r)| = ∞|A)P(A)

P(|T (r)| = ∞)
= P(A) = r.

Thus, for r1 < r2, the probability that the root has only one offspring is larger for
T (r2) conditioned on survival than for T (r1) conditioned on survival. Therefore,
(1.1) cannot hold for this offspring distribution.

Similar questions can be asked about percolation clusters on graphs. One of the
most interesting cases is the corresponding problem for bond-percolation on Z

d; see
Open problem 4.3 at the very end of the paper. In this paper we will study the case
of Galton-Watson trees with binomial offspring for d = 2, 3. It is an open problem
whether this result holds also for d ≥ 4 (see Section 4).

We proceed to give some definitions needed for the statements of the main results.
Let Td be the rooted, ordered, labeled tree, in which every vertex including the root
has exactly d children ordered from left to right. Hence, Td is a regular tree in which
every vertex has degree d+1 except for the root, which has degree d. We will let o
denote the root, and the labeling of Td is done in the natural way, so that we identify
the vertex set V (Td) with the set {o}⋃∞

n=1{1, . . . , d}n. For any two elements u =

(u1, . . . , uk), v = (v1, . . . , vl) ∈ V (Td) \ {o} we let (u, v) = (u1, . . . , uk, v1, . . . , vl)
denote the concatenation of u and v. For i ∈ {1, . . . , d}, we will allow a slight abuse
of notation, by writing (u, i) instead of (u, (i)) for (u1, . . . , uk, i). Furthermore, for
any u ∈ V (Td) we let (u, o) = (o, u) = u so that in particular, (o, o) = o. We
will use the natural edge set for T

d and all other trees, but since the edge set is
determined by the vertex set, it will not play any part in the analysis. We will
therefore only refer to a tree by its vertex set.

A subtree of T
d is defined to be a connected subgraph of T

d. For any such
subtree T, we will let V (T ) denote the vertex set. Furthermore, we let |T | denote
the number of vertices of T, and we call this the size of T . We let ck = ck(d) denote
the number of subtrees T such that o ∈ V (T ) and |T | = k. For example, c3(2) = 5
and c2(d) = d. For u ∈ V (Td) and a subtree T, let T u denote the subtree (of T )
with vertex set V (T u) := {v ∈ V (T ) : v = (u,w) for some w ∈ V (Td)}. Note that
if u 6∈ V (T ), we get that T u = ∅. Informally, T u is simply the tree consisting of u
and the descendants of u that belongs to T. We also define H(T u) := {w ∈ V (Td) :
(u,w) ∈ V (T u)}, which is simply a shift of T u, mapping u to o. For i ∈ {1, . . . , d}
we sometimes abuse notation and write T i instead of T (i).

For d ≥ 2 and 0 < p < 1, perform site percolation (see Grimmett (1999) for a
general overview on percolation) with density p on T

d. We consider the resulting
random subgraph of Td, and let T (p) be the component of the root. If the root
is removed in the percolation procedure, we take T (p) = ∅. It is clear that T (p) is
the family tree of a Galton-Watson process with a Bin(d, p) offspring distribution
(see Athreya and Ney (1972) for a general overview on Galton-Watson processes),
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except that here, we allow this family tree to be the empty set, which is only a
matter of convenience. We denote the distribution of T (p) by T (p). Define ηk(p) :=
P(|T (p)| = k) for 0 ≤ k ≤ ∞, (note that we include the case k = ∞). It is not hard
to check that

ηk(p) = ckp
k(1− p)(d−1)k+1, (1.2)

if k < ∞. For 1 ≤ k < ∞, let Tk be uniformly chosen among the subtrees T,
such that o ∈ V (T ) and |T | = k. Let the distribution of Tk be denoted by Tk. It
is not hard to check that the distribution of T (p), conditioned on the event that
|T (p)| = k, is also Tk (in particular, it is independent of p). Sometimes, it will be
convenient to think of the empty set as the tree of size 0, and then we will use the
notation T0 = ∅.

It is well known, that for p > 1/d, P(|T (p)| = ∞) > 0. For such p > 1/d,
let T∞(p) denote a random subtree of Td whose distribution equals that of T (p),
conditioned on the event |T (p)| = ∞. It is also well known that P(|T (1/d)| = ∞) =
0. However, one can still define an infinite critical random tree T∞(1/d) in a natural
way. This random tree is the so-called incipient infinite cluster (see Kesten (1986)
or Angel et al. (2008)) on T

d. In order to define this, let (Zi)i≥1 be an i.i.d. sequence
such that P(Zi = j) = 1/d for j ∈ {1, . . . , d}. Furthermore, let (Ti,j(1/d))i≥1,1≤j≤d

be an i.i.d. sequence, independent of (Zi)i≥1, and such that Ti,j(1/d) ∼ T (1/d) for
every i, j. Informally, we will let T∞(1/d) be the tree consisting of a single infinite
line (backbone) determined by the sequence (Zi)i≥1, and onto this line we attach
the trees (Ti,j(1/d))i≥1,1≤j≤d in the appropriate places. Formally, we let

V (T∞(1/d)) := {o}
∞
⋃

i=1

{(Z1, . . . , Zi)}
⋃

j∈{1,...,d}\{Zi}

⋃

u∈Ti,j(1/d)

{(Z1, . . . , Zi−1, j, u)},

where for i = 1, we let (Z1, . . . , Zi−1, j, u) = (j, u). Observe that if for some i, j we
have Ti,j(1/d) = ∅, then this will not make any contribution to the vertex set of
T∞(1/d). For p ≥ 1/d, we denote the distribution of T∞(p) by T∞(p).

For any two subtrees S, T of Td, we write S ⊆ T if S is a subgraph of T . As
mentioned above, in Luczak and Winkler (2004), the following theorem was proved,
which we restate here since it will be crucial for proving our main results.

Theorem 1.2 (Luczak, Winkler). For any d ≥ 2, there exists a coupling of (Tk)k≥0

(where Tk ∼ Tk for every 0 ≤ k < ∞) such that

P(T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tl ⊂ · · · ) = 1. (1.3)

Furthermore, using this coupling, we have that
∞
⋃

k=0

Tk ∼ T
∞
(1/d). (1.4)

Remark: As mentioned above, it is proved in Janson (2006) that equation (1.3)
does not hold for general offspring distributions.

Theorem 1.3 is natural in light of Theorem 1.2 and is the main result of this
paper.

Theorem 1.3. For d = 2, 3 and 1/d ≤ p1 < p2 ≤ 1 there exists a coupling of
T∞(p1) and T∞(p2) (where T∞(p1) ∼ T∞(p1) and T∞(p2) ∼ T∞(p2)) such that

P(T∞(p1) ⊂ T∞(p2)) = 1.
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Remark: As mentioned before, the corresponding result for Galton-Watson
trees with Poisson offspring distributions was proved in Lyons et al. (2008).

We also prove the following very natural theorem.

Theorem 1.4. For d = 2, 3, 1/d ≤ p ≤ 1 and any k, there exists a coupling of Tk

and T∞(p), (where Tk ∼ Tk and T∞(p) ∼ T∞(p) ) such that

P(Tk ⊂ T∞(p)) = 1.

Remark: Of course Theorem 1.4 is a trivial corollary of Theorems 1.2 and 1.3.
However, in d = 2, we first prove Theorem 1.4 and use it to prove Theorem 1.3.
When d = 3, the main effort will be to prove Theorem 1.3 for the special case
p1 = 1/3, from which Theorem 1.4 then follows. In turn, Theorem 1.4 will then be
used to prove Theorem 1.3 for every 1/3 < p1 < p2 ≤ 1.

The outline of the rest of the paper is as follows. All results for d = 2 are proved
in Section 2 while the results for d = 3 are proved in Section 3. In Section 4, we
present some open problems.

2. The case d = 2

We start with a preliminary result which will be useful to us. In Luczak and
Winkler (2004), it is proved that

ck(d) =

(

dk
k

)

(d− 1)k + 1
.

The following lemma is an easy consequence of this, and is therefore left without
proof.

Lemma 2.1. For any d, the sequence (ck−1/ck)k≥1 decreases in k, and furthermore

lim
k→∞

ck−1

ck
=

1

d

(

d− 1

d

)d−1

.

Remark: By maximizing p(1 − p)d−1 (with respect to p), it follows from (1.2)
that

P(|T (p)| = k)

P(|T (p)| = k − 1)
=

ck
ck−1

p(1− p)d−1 ≤ 1,

so that P(|T (p)| = k) is decreasing in k. We conclude, for future reference, that for
any l ≤ k and any p,

ck−l

ck
≥
(

1

d

(

d− 1

d

)d−1
)l

≥
(

p(1− p)d−1
)l
. (2.1)

We assume throughout the rest of this section that d = 2 and p ≥ 1/2. Further-
more, any tree in the rest of this section will be a subtree of T2.

Informally the main idea is as follows. Consider a tree T∞ ∼ T∞(p) and the two
subtrees T 1

∞, T 2
∞. One of these will necessarily be infinite, while the other may be

finite. Thus, one way of generating T∞ should be to start with a root o, then to pick
one of the children (1), (2) with equal probability and attach an independent copy
from T∞(p) to it. Then, we use another random tree T ∗(p) (with a very particular
distribution), and attach this tree to the second child. This is made precise in
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Lemma 2.2. This lemma can then be used to prove Theorem 1.4. In Lemma 2.3,
we prove that for any 1/2 ≤ p1 < p2 ≤ 1, we can take |T ∗(p1)| ≤ |T ∗(p2)|, which
will allow us to prove Theorem 1.3.

We start by constructing T ∗(p). To that end, let (Tk)k≥1 be a sequence of random
trees such that Tk ∼ Tk for every k, and let T∞(p) ∼ T∞(p). Furthermore, let U ∼
U([0, 1]) be independent of (Tk)k≥1 and T∞(p). If U ≤ 2pη0(p), we let T ∗(p) = ∅,
while if

∑k−1
l=0 2pηl(p) < U ≤∑k

l=0 2pηl(p) for some 1 ≤ k < ∞, we let T ∗(p) = Tk,
and otherwise we let T ∗(p) = T∞(p). We observe that P(|T ∗(p)| = k) = 2pηk(p)
for k < ∞, and that P(|T ∗(p)| = ∞) = pη∞(p). Indeed, an elementary argument
shows that η∞(p) = p(1− (1− η∞(p))2), so that η∞(p) = (2p− 1)/p when p > 1/2,
while η∞(1/2) = 0. Therefore we have that pη∞(p) +

∑∞
k=0 2pηk(p) = pη∞(p) +

2p(1− η∞(p)) = 1. Note that if |T ∗(p)| > 0, we have that o ∈ V (T ∗(p)). We denote
the distribution of T ∗(p) by T ∗(p).

We can now prove the following easy lemma.

Lemma 2.2. For p ≥ 1/2, let (X,T∞(p), T ∗(p)) be three independent random
variables, where T∞(p) ∼ T∞(p), T ∗(p) ∼ T ∗(p) and X ∈ {1, 2} is such that P(X =

1) = P(X = 2) = 1/2. Define the tree T̃ (p) by letting

V (T̃ (p)) = {o}
⋃

u∈V (T∞(p))

{(X,u)}
⋃

v∈V (T∗(p))

{(3−X, v)}. (2.2)

We have that T̃ (p) ∼ T∞(p).

Remark. Thus, T̃ (p) is constructed by starting with a root, and then attaching
the tree T∞(p) either to the left or to the right of the root depending on the value
of X, and then attaching T ∗(p) to the other side.

Proof. Recalling the notation of Section 1, we see that for k < ∞,

P(|T 1(p)| = k, |T 2(p)| = ∞| |T (p)| = ∞)

= P(|T 1(p)| = ∞, |T 2(p)| = k | |T (p)| = ∞)

=
pη∞(p)ηk(p)

η∞(p)
= pηk(p) =

1

2
2pηk(p)

= P(X = 2, |T ∗(p)| = k, |T∞(p)| = ∞) = P(|T̃ 1(p)| = ∞, |T̃ 2(p)| = k)

= P(|T̃ 1(p)| = k, |T̃ 2(p)| = ∞),

(2.3)

since obviously P(|T∞(p)| = ∞) = 1. We also have that for p > 1/2,

P(|T 1(p)| = ∞, |T 2(p)| = ∞| |T (p)| = ∞) =
pη∞(p)η∞(p)

η∞(p)
= pη∞(p)

= P(|T ∗(p)| = ∞, |T∞(p)| = ∞) = P(|T̃ 1(p)| = ∞, |T̃ 2(p)| = ∞).

Note that in the case p = 1/2, only (2.3) is relevant. We conclude that (|T̃ 1(p)|,
|T̃ 2(p)|) and (|T 1

∞(p)|, |T 2
∞(p)|) have the same joint distribution. It is not hard to

see, that if |T 1
∞(p)| = k, then the conditional distribution ofH(T 1

∞(p)) is Tk. By con-

struction, if |T̃ 1(p)| = k, then also H(T̃ 1(p)) ∼ Tk. Furthermore, it is elementary to
show that if |T 1

∞(p)| = ∞, then the conditional distribution of H(T 1
∞(p)) is T∞(p).

By construction, if |T̃ 1(p)| = ∞, then also H(T̃ 1(p)) ∼ T∞(p). We can therefore

conclude that (T̃ 1(p), T̃ 2(p)) and (T 1
∞(p), T 2

∞(p)) have the same joint distribution,
from which the statement follows. �
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Remark. The crucial part in the argument was to show that (|T̃ 1(p)|, |T̃ 2(p)|)
and (|T 1

∞(p)|, |T 2
∞(p)|) had the same joint distribution. From this it followed quite

easily that also (T̃ 1(p), T̃ 2(p)) and (T 1
∞(p), T 2

∞(p)) had the same joint distribution.
Similar situations will occur throughout the paper.

We can now prove Theorem 1.4 for d = 2.
Proof of Theorem 1.4 for d = 2. We will prove the statement through induction
in k, so we start by noting that the statement is trivial for k = 0, 1. Fix k ≥ 1, and
assume that the statement holds for any l ≤ k.

Let Lk+1 be a random variable such that

P(Lk+1 = l) =







2 clck−l

ck+1
if 0 ≤ l < k − l,

clck−l

ck+1
if l = k − l

0 otherwise.

When d = 2, the numbers ck are the Catalan numbers. It is an elementary exercise,
to show that the above probabilities sum to one. Let L∗ be a random variable such
that P(L∗ = l) = 2pηl(p) for any 0 ≤ l < ∞ and P(L∗ = ∞) = pη∞(p). These
probabilities sum to one as explained when we defined T ∗(p). We observe that by
(2.1),

2pηl(p) = 2clp
l+1(1− p)l+1 ≤ 2

clck−l

ck+1
.

Using this, it is not hard to see that we can in fact couple Lk+1 and L∗ such that
P(Lk+1 ≤ L∗) = 1.

We will construct Tk+1 and T̃ (p) so that Tk+1 ∼ Tk+1, T̃ (p) ∼ T∞(p) and

Tk+1 ⊂ T̃ (p). Informally, the tree Tk+1 is constructed by taking a root, and then
attaching two subtrees onto it. The size of the smallest of these subtrees is Lk+1,
while the other will have size k − Lk+1. By using L∗ (coupled with Lk+1 so that

Lk+1 ≤ L∗) to simultaneously construct T̃ (p) we will make sure that Tk+1 ⊂ T̃ (p).
By the use of Lk+1 and L∗, it will be straightforward to check, using Lemma 2.2,

that the distributions of Tk+1 and T̃ (p) are as claimed.
In order to give the formal construction, we consider the random variables

(Lk+1, L
∗, T0,1, T1,1, . . . , Tk,1, T∞,1(p), T0,2, T1,2, . . . , Tk,2, T∞,2(p), X, (Tl,3)l≥0),

on a common probability space. The five groups (Lk+1, L
∗), (T0,1, T1,1, . . . ,

Tk,1, T∞,1(p)), (T0,2, T1,2, . . . , Tk,2, T∞,2(p)), X and (Tl,3)l≥0 of random variables
are independent of each other. Furthermore, they have the following joint distribu-
tions.

• Lk+1, L
∗ are coupled so that Lk+1 ≤ L∗.

• For i = 1, 2, T0,i, T1,i, . . . , Tk,i, T∞,i(p) have marginal distributions T0,i = ∅,
Tl,i ∼ Tl for every 1 ≤ l ≤ k, and T∞,i(p) ∼ T∞(p). Furthermore, they are
coupled so that T1,i ⊂ · · · ⊂ Tk,i ⊂ T∞,i(p). Such a coupling exists by
Theorem 1.2 and the induction hypothesis.

• X ∈ {1, 2} is such that P(X = 1) = P(X = 2) = 1/2.
• The elements of the sequence (Tl,3)l≥0 have marginal distributions T0,3 = ∅,
Tl,3 ∼ Tl for every 1 ≤ l < ∞. Furthermore, they are coupled so that
T0,3 ⊂ T1,3 ⊂ · · · ⊂ Tl,3 ⊂ · · · . This is possible by Theorem 1.2.
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On this probability space we construct Tk+1 and T̃ (p) as follows. Let

V (Tk+1) =

{

{o}⋃u∈V (TLk+1,3)
{(X,u)}⋃v∈V (Tk−Lk+1,1)

{(3−X, v)} if L∗ < ∞,

{o}⋃u∈V (TLk+1,1)
{(X,u)}⋃v∈V (Tk−Lk+1,2)

{(3−X, v)} if L∗ = ∞,

and

V (T̃ (p)) =

{

{o}⋃u∈V (TL∗,3)
{(X,u)}⋃v∈V (T∞,1(p))

{(3−X, v)} if L∗ < ∞,

{o}⋃u∈V (T∞,1(p))
{(X,u)}⋃v∈V (T∞,2(p))

{(3−X, v)} if L∗ = ∞.

Informally, we use X to determine which of the children of the root will be given
the smallest number of offspring. If L∗ < ∞, then we attach finite subtrees to this
child for both Tk+1 and T̃ (p), while if L∗ = ∞, we attach an infinite subtree to

T̃ (p) and a finite to Tk+1. We note that by construction Tk+1 ⊂ T̃ (p). This can
easily be checked case by case.

As mentioned above, the use of L∗ makes sure that T̃ (p) is constructed as in

Lemma 2.2. By that lemma, we conclude that T̃ (p) ∼ T∞(p). It only remains to
show that Tk+1 ∼ Tk+1. It is easily checked that for T ∼ Tk+1, min(|T 1|, |T 2|)
has the same distribution as Lk+1. From this we conclude that (|T 1|, |T 2|) and
(|T 1

k+1|, |T 2
k+1|) have the same joint distribution. Furthermore, for i = 1, 2 and

conditional on the event |T i| = l, we get that T i ∼ Tl. This follows as in the
proof of Lemma 2.2, see also the remark thereafter. We conclude that indeed
Tk+1 ∼ Tk+1. �

Recall the definition of L∗ = L∗(p) in the proof of Theorem 1.4 above. We will
use our next lemma to prove Theorem 1.3.

Lemma 2.3. Let 1/2 ≤ p1 < p2. There exists a coupling of L∗(p1) and L∗(p2) such
that P(L∗(p1) ≤ L∗(p2)) = 1.

Proof. Observe that for any k < ∞, 2pηk(p) = 2ckp
k+1(1 − p)k+1, which is

decreasing in p when p ≥ 1/2. Hence, for every k < ∞,

k
∑

j=0

2p2ηj(p2) ≤
k
∑

j=0

2p1ηl(p1). (2.4)

The statement follows easily from (2.4) and the definition of L∗(p). �

We can now prove Theorem 1.3 in the case of d = 2, by using Lemma 2.3 and
Theorem 1.4.

Proof of Theorem 1.3 in the case of d = 2.
Let ((Xu, L

∗
u(p1), L

∗
u(p2), (Tl,u)l≥0, T∞,u(p1), T∞,u(p2)))u∈V (T2) be an i.i.d. collec-

tion, indexed by V (T2), and with the following distribution. The marginal distri-
butions of the random variables (Xu, L

∗
u(p1), L

∗
u(p2), (Tl,u)l≥0, T∞,u(p1), T∞,u(p2))

are as indicated by the notation, they are explained on multiple occasions above.
For fixed u ∈ V (T2) the joint distribution is as follows:

• Xu is independent of the other random variables.
• L∗

u(p1), L
∗
u(p2) are independent of the other random variables and coupled

so that P(L∗
u(p1) ≤ L∗

u(p2)) = 1. This is possible by Lemma 2.3.
• (Tl,u)l≥0, T∞,u(p2) are independent of the other random variables and cou-
pled so that T0,u ⊂ T1,u ⊂ · · · ⊂ Tl,u · · · ⊂ T∞,u(p2). This is possible by
Theorems 1.2 and 1.4.
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• T∞,u(p1) is independent of the other random variables.

We will use the random variables above to construct a sequence (Sn(p1),
Sn(p2))n≥0 of pairs of trees such that Sn(p1) ⊂ Sn(p2) for every n. We will then
show that the limiting objects S∞(pi) is such that S∞(pi) ∼ T∞(pi) for i = 1, 2
and S∞(p1) ⊂ S∞(p2), thus proving the theorem. The construction will be per-
formed in steps, and to that end we use an ordering of V (T2). We simply let
o < (1) < (2) < (1, 1) < (1, 2) < (2, 1) < · · · , and proceed in the natural way. Let
U0 = {o} and S0(p1) = S0(p2) = {o}.

Before we give the formal construction of (Sn(p1), Sn(p2))n≥0, let us explain the
idea. Assume therefore that n−1 steps of the procedure has been performed. Then,
Un−1 will be the set of leaves of Sn−1(p1) that eventually will have infinitely many
descendants. In fact, as we will see below, if we were to attach independent copies of
trees with distribution T∞(pi) to Sn−1(pi) at all of the vertices of Un−1, we would get
a tree which again would have distribution T∞(pi). We let un be the smallest vertex
of Un−1 (in the ordering of V (T2)), and then we use Xun

to pick one of the children
of un. If L

∗
un

(p1) < ∞ then we use that TL∗

un
(p1),un

⊂ TL∗

un
(p2),un

and attach these

trees to the vertex (un, Xun
) in Sn(p1) and Sn(p2) respectively. For convenience,

we abuse the notation somewhat and write TL∗

un
(p2),un

for TL∗

un
(p2),un

(p2) when

L∗
un
(p2) = ∞. We also attach (un, 3 −Xun

) to Sn(pi) and create Un by removing
un from Un−1 and adding (un, 3−Xun

) (and thereby designating (un, 3−Xun
) to

eventually have an infinite number of descendants). If instead L∗
un
(p1) = ∞, then

we attach the vertices (un, Xun
) and (un, 3−Xun

) to both Sn(p1) and Sn(p2) and
get Un by removing un from Un−1 and adding (un, Xun

) and (un, 3 − Xun
). The

gain is that we then have Sn(p1) ⊆ Sn(p2) and that attaching independent copies
of trees with distribution T∞(pi) to Sn(pi) at all of the vertices of Un, we would get
a tree which again would have distribution T∞(pi) (because of Lemma 2.2).

Formally, the construction at step n ≥ 1 consists of the following:
Let un = min{u ∈ V (T2) : u ∈ Un−1}, and for i = 1, 2, set

V (Sn(pi)) =























V (Sn−1(pi))
⋃

v∈V (TL∗

un
(pi),un

){(un, Xun
, v)}⋃{(un, 3−Xun

)}
if L∗

un
(p1) < ∞

V (Sn−1(pi))
⋃{(un, Xun

)}⋃{(un, 3−Xun
)}

if L∗
un

(p1) = ∞,

and

Un =

{

(Un−1 \ {un})
⋃{(un, 3−Xun

)} if L∗
un

(p1) < ∞
(Un−1 \ {un})

⋃{(un, Xun
)}⋃{(un, 3−Xun

)} if L∗
un
(p1) = ∞.

It is elementary to check, using the itemized description above, that for every n we
have that Sn(p1) ⊆ Sn(p2).

Furthermore, for i = 1, 2 we define S̃n(pi) by

V (S̃n(pi)) = V (Sn(pi))
⋃

u∈Un

⋃

v∈V (T∞,u(pi))

{(u, v)}.

Thus, we get S̃n(pi) from Sn(pi) by attaching, to every u ∈ Un, an independent

tree with distribution T∞(pi). We claim that S̃n(pi) ∼ T∞(pi) for every n (which is
basically the reason for introducing them) which we prove by induction. Consider
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therefore S̃1(p1). We see that P
(

min
(

|S̃1
1(p1)|, |S̃2

1(p1)|
)

= k
)

= P(L∗
o(p1) = k) =

2p1ηk(p1). If L
∗
o(p1) < ∞ then U1 = {(3 − Xo)} while if L∗

o(p1) = ∞ then U1 =
{(1), (2)}. Therefore, by attaching independent trees with distribution T∞(pi) at

all u ∈ U1, we see that S̃1(p1) is constructed as T̃ (p1) in the statement of Lemma

2.2, and by that lemma we have that S̃1(p1) ∼ T∞(p1).

Assume now that for some fixed n, S̃n(p1) ∼ T∞(p1). We construct Sn+1(p1)
from Sn(p1) by performing the above construction at un+1. Thus, when performing

the constructions of S̃n(p1) and S̃n+1(p1) (from Sn(p1) and Sn+1(p1) respectively)
we can attach the same independent trees with distribution T∞(p1) at every u ∈
Un \ {un+1}. When performing the rest of the construction of S̃n+1(p1) at the

children of un+1 that belongs to Un+1, we claim that H(S̃
un+1

n+1 (p1)) ∼ T∞(p1)

(here, S̃
un+1

n+1 (p1) should be thought of as (S̃n+1(p1))
un+1 , that is, as a subtree of

S̃n+1(p1)). Therefore, we can in fact take S̃n(p1) = S̃n+1(p1), and so we only need

to check that H(S̃
un+1

n+1 (p1)) ∼ T∞(p1). However, this follows as for S̃1(p1) since

we have that H(S̃
un+1

n+1 (p1)) is constructed as T̃ (p1) in the statement of Lemma 2.2,

and by that lemma we get that H(S̃
un+1

n+1 (p1)) ∼ T∞(p1). The same argument shows

that also S̃n(p2) ∼ T∞(p2) for every n.
Define S∞(pi) by

V (S∞(pi)) =

∞
⋃

m=1

∞
⋂

n=m

V (S̃n(pi)) =

∞
⋃

n=1

V (Sn(pi)),

so that S∞(p1) ⊂ S∞(p2). For any finite A ⊂ T
2, let max(A) = max{v ∈ V (T2) :

v ∈ A} where the maximum is taken with respect to the ordering of V (T2), and let
N(A) = |{u ∈ V (T2) : u ≤ max(A)}|. We get that for any n ≥ N(A),

P(A ⊂ S∞(pi)) = P(A ⊂ Sn(pi)) = P(A ⊂ S̃n(pi)),

and since S̃n(pi) ∼ T∞(pi), the distribution of S∞(pi) equals T∞(pi) on any cylinder
event, and so we conclude that S∞(pi) ∼ T∞(pi). �

3. The case d = 3

As the title suggests, we will assume throughout this section that d = 3, and
also that p ≥ 1/3. Furthermore, we want to use similar notation as in Section 2,
and therefore we consider the definitions of Section 2 void. For instance, when we
in this section refer to a tree with distribution T∞(p), we are implicitly assuming
that d = 3.

The approach of this section is similar to when d = 2. Consider now a tree
T∞ ∼ T∞(p) and the three subtrees T 1

∞, T 2
∞, T 3

∞. One of these will necessarily
be infinite, while the other ones may be finite. Thus, one way of generating T∞
should be to start with a root o, then to pick one of the children (1), (2), (3) with
equal probability and attach an independent copy from T∞(p) to it. Then, we use
random trees T ∗(p), T ∗∗(p) (with a very particular joint distribution), and attach
these trees to the other children. This is made precise in Lemma 3.3. In Lemma
3.4, we then prove that for any 1/3 ≤ p1 < p2 ≤ 1, we can couple T ∗(pi), T ∗∗(pi) so
that |T ∗(p1)| ≤ |T ∗(p2)| and |T ∗∗(p1)| ≤ |T ∗∗(p2)|. We can then use this together
with Theorem 1.2 to prove Theorem 3.5 which is the special case of Theorem 1.3
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where p1 = 1/3. From this, we can then prove Theorem 1.4, and in turn Theorem
1.3.

Our first aim of this section is to arrive at a result that is the analogue of Lemma
2.2, but for d = 3. To that end, we will need two technical lemmas, Lemma 3.1 and
Lemma 3.2. Observe that η∞(p) = p(1 − (1 − η∞(p))3) = p(3η∞(p) − 3η∞(p)2 +
η∞(p)3). It follows that pη∞(p)2 − 3pη∞(p) + 3p− 1 = 0, from which we conclude
that

η∞(p) =
1

2

(

3−
√

4

p
− 3

)

=
3
√
p−√

4− 3p

2
√
p

. (3.1)

Consider the function

f(p) :=

√
3p− 1

1−√
3p(1− η∞(p))

=

√
3p− 1

1−
√
3
2 (

√
4− 3p−√

p)
.

The reason for introducing f(p) will become clear later, it will play a crucial part in
this section. We can now state the first of the two previously announced lemmas.

Lemma 3.1. We have that limp↓1/3 f(p) = 1, f(1) =
√
3− 1 and that f ′(p) < 0 if

1/3 < p ≤ 1. Therefore 0 ≤ f(p) ≤ 1 for every p ∈ [1/3, 1].

Proof. The statement that f(1) =
√
3− 1 is trivial.

Using the standard expansion
√
3p = 1+ (3p− 1)/2 +O((3p− 1)2), and similar

expressions for
√
4− 3p and

√
p, we get that

lim
p↓1/3

f(p) = lim
p↓1/3

(3p− 1)/2 +O((3p− 1)2)

(3p− 1)/2 +O((3p− 1)2)
= 1,

proving the first part of the statement. Furthermore,

f ′(p) =

3
2
√
3p
(1−

√
3
2 (

√
4− 3p−√

p))− (
√
3p− 1)(−

√
3
2 ( −3

2
√
4−3p

− 1
2
√
p ))

(1−
√
3
2 (

√
4− 3p−√

p))2
,

so that f ′(p) < 0 iff

0 >
1√
p
(1−

√
3

2
(
√

4− 3p−√
p))− (

√

3p− 1)(
3

2
√
4− 3p

+
1

2
√
p
)

=
2
√
4− 3p−

√
3(4 − 3p−√

4− 3p
√
p)− (

√
3p− 1)(3

√
p+

√
4− 3p)

2
√
4− 3p

√
p

=
3
√
4− 3p− 4

√
3 + 3

√
p

2
√
4− 3p

√
p

.

Therefore, we need to show that 3
√
4− 3p <

√
3(4 − √

3p). A straightforward
calculation shows that this condition is the same as 9p2−6p+1 > 0, which is easily
seen to be true for p > 1/3. �

We will now give the construction of the pair of random trees (T ∗(p), T ∗∗(p))
mentioned above. Let (Tk,1)k≥0, (Tk,2)k≥0, T∞,1(p), T∞,2(p), U1, U2 be independent
random variables with the following marginal distributions:

U1, U2 ∼ U [0, 1], Tk,i ∼ Tk and T∞,i(p) ∼ T∞(p) for i = 1, 2.

We let, for every k < ∞,

V (T ∗(p)) =

{

Tk,1 if
∑k−1

l=0

√
3pηl(p) < U1 ≤∑k

l=0

√
3pηl(p),

T∞,1(p) if
√
3p(1− η∞(p)) < U1.
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Furthermore, we define the conditional distribution of T ∗∗(p), given T ∗(p) by, for
every k < ∞,

V (T ∗∗(p)) =











































Tk,2

if
∑k−1

l=0

√
3pηl(p) < U2 ≤∑k

l=0

√
3pηl(p),

and |T ∗(p)| < ∞,

or if
∑k−1

l=0

√
3pηl(p)f(p) < U2 ≤∑k

l=0

√
3pηl(p)f(p),

and |T ∗(p)| = ∞

T∞,2(p)
if

√
3p(1− η∞(p)) < U2, and |T ∗(p)| < ∞,

or if 1− pη∞(p)2

1−√
3p(1−η∞(p))

< U2 and |T ∗(p)| = ∞.

We have the following lemma.

Lemma 3.2. The pair (T ∗(p), T ∗∗(p)) is well defined.

Proof. We need to show that all the claimed probabilities are nonnegative,
and that the appropriate sums add to one. We have that

∑∞
l=0 P(|T ∗(p)| = l) =

∑∞
l=0

√
3pηl(p) =

∑∞
l=0

√
3clp

l+1/2(1 − p)2l+1, by (1.2). This sum is easily seen to
be maximized when p = 1/3, when it takes the value 1. Since

∑∞
l=0

√
3pηl(p) =√

3p(1 − η∞(p)), it follows that T ∗(p) is well defined. This also proves that the
conditional distribution of T ∗∗(p), given the event that |T ∗(p)| < ∞, is well defined.

It remains to prove that also the conditional distribution of T ∗∗(p), given the
event that |T ∗(p)| = ∞, is well defined. It follows from Lemma 3.1 and the first
paragraph of this proof, that

∞
∑

l=0

P(|T ∗∗(p)| = l| |T ∗(p)| = ∞) =

∞
∑

l=0

√

3pηl(p)f(p) ≤ f(p) ≤ 1.

Furthermore, by the calculation leading up to (3.1),

∞
∑

l=0

√

3pηl(p)f(p) =
√

3p(1− η∞(p))

√
3p− 1

1 −√
3p(1 − η∞(p))

=
1−√

3p(1− η∞(p))− (3pη∞(p)− 3p+ 1)

1−√
3p(1− η∞(p))

= 1− pη∞(p)2

1−√
3p(1− η∞(p))

.

We conclude that
∑∞

l=0 P(|T ∗∗(p)| = l| |T ∗(p)| = ∞) + P(|T ∗∗(p)| = ∞| |T ∗(p)| =
∞) = 1 and that all the terms of this sum are nonnegative. �

We let the joint distribution of the pair (T ∗(p), T ∗∗(p)) be denoted by T ∗,∗∗(p).
We can now present the analogue of Lemma 2.2.

Lemma 3.3. Let X1, X2, X3, T
∗(p), T ∗∗(p), T∞(p) be random variables such that

• X1, X2, X3 ∈ {1, 2, 3} are independent of the other random variables, and
(X1, X2, X3) is a uniformly chosen permutation of (1, 2, 3).

• T ∗(p), T ∗∗(p) are independent of the other random variables, and
(T ∗(p), T ∗∗(p)) ∼ T ∗,∗∗(p).

• T∞(p) is independent of the other random variables, and T∞(p) ∼ T∞(p).

Define the tree T̃ (p) by letting

V (T̃ (p)) = {o}
⋃

u∈V (T∗(p))

{(X1, u)}
⋃

v∈V (T∗∗(p))

{(X2, v)}
⋃

w∈V (T∞(p))

{(X3, w)}.

We have that T̃ (p) ∼ T∞(p).
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Proof. We start by showing that (|T̃ 1(p)|, |T̃ 2(p)|, |T̃ 3(p)|) and (|T 1
∞(p)|,

|T 2
∞(p)|, |T 3

∞(p)|) have the same joint distribution.
Let (i1, i2, i3) be any permutation of (1, 2, 3). We have that for any k1, k2 < ∞

and T (p) ∼ T (p),

P(|T i1(p)| = ∞, |T i2(p)| = k1, |T i3(p)| = k2 | |T (p)| = ∞) =
pη∞(p)ηk1 (p)ηk2(p)

η∞(p)

= pηk1(p)ηk2(p),

P(|T i1(p)| = ∞, |T i2(p)| = ∞, |T i3(p)| = k1 | |T (p)| = ∞) =
pη∞(p)2ηk1(p)

η∞(p)

= pη∞(p)ηk1(p),

P(|T i1(p)| = ∞, |T i2(p)| = ∞, |T i3(p)| = ∞| |T (p)| = ∞) =
pη∞(p)3

η∞(p)

= pη∞(p)2.

Furthermore, we have that

P(|T̃ i1(p)| = ∞, |T̃ i2(p)| = k1, |T̃ i3(p)| = k2)

= P(X1 = i2, X2 = i3, |T ∗(p)| = k1, |T ∗∗(p)| = k2)

+P(X1 = i3, X2 = i2, |T ∗(p)| = k2, |T ∗∗(p)| = k1)

=

√
3pηk1(p)

√
3pηk2(p)

3
= pηk1(p)ηk2 (p).

We also see that

P(|T̃ i1(p)| = ∞, |T̃ i2(p)| = ∞, |T̃ i3(p)| = ∞)

= P(|T ∗| = ∞, |T ∗∗| = ∞) = (1 −
√

3p(1− η∞(p)))
pη∞(p)2

1−√
3p(1− η∞(p))

= pη∞(p)2.

Finally,

P(|T̃ i1(p)| = ∞, |T̃ i2(p)| = ∞, |T̃ i3(p)| = k1)

= P(X1 = i3, |T ∗(p)| = k1, |T ∗∗(p)| = ∞)

+P(X2 = i3, |T ∗(p)| = ∞, |T ∗∗(p)| = k1)

=
1

3

(

√

3pηk1(p)(1 −
√

3p(1 − η∞(p)))

+(1−
√

3p(1− η∞(p)))
√

3pηk1(p)f(p)
)

=

√
3pηk1(p)

3
(1−

√

3p(1 − η∞(p)))(1 + f(p)) = pη∞(p)ηk1(p),

by the definition of f(p). The conclusion that (T̃ 1(p), T̃ 2(p), T̃ 3(p)) and (T 1
∞(p),

T 2
∞(p), T 3

∞(p)) have the same joint distribution follows as in Lemma 2.2, see also
the remark thereafter. �

Define the distribution of the pair of random variables (L∗(p), L∗∗(p)) by letting
P(L∗(p) = k, L∗∗(p) = l) = P(|T ∗(p)| = k, |T ∗∗(p)| = l) for every 0 ≤ l, k ≤ ∞.
Note that we allow both k and l to be infinite. Our next lemma is the analogue of
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Lemma 2.3 for d = 3. It is here that the function f(p) and Lemma 3.1 comes to
full use.

Lemma 3.4. Let 1/3 ≤ p1 < p2 ≤ 1. There exists a coupling of (L∗(p1), L∗∗(p1))
and (L∗(p2), L∗∗(p2)) such that

P(L∗(p1) ≤ L∗(p2), L
∗∗(p1) ≤ L∗∗(p2)) = 1.

Proof. We will prove the statement by considering the construction of
(T ∗(p), T ∗∗(p)) in Lemma 3.2 for p1 and p2 simultaneously. We will show that
this results in |T ∗(p1)| ≤ |T ∗(p2)| and |T ∗∗(p1)| ≤ |T ∗∗(p2)|, and then we will
simply let L∗(pi) = |T ∗(pi)| and L∗∗(pi) = |T ∗∗(pi)| for i = 1, 2.

Observe that by (1.2), we have that for any l < ∞,
√
3pηl(p) =

√
3clp

l+1/2(1 −
p)2l+1, which is clearly decreasing in p for p ≥ 1/3. Consider the use of the random
variable U1 in the construction of Lemma 3.2. It follows immediately, that by using
the same random variable U1, for both T ∗(p1) and T ∗(p2), the construction yields
|T ∗(p1)| ≤ |T ∗(p2)|.

We now need to consider three cases depending on the values of |T ∗(p1)| and
|T ∗(p2)|.
Case 1 (|T ∗(p1)| ≤ |T ∗(p2)| < ∞): This case is treated exactly as when coupling
|T ∗(p1)| and |T ∗(p2)|. We conclude that by using the same random variable U2 for
both T ∗∗(p1) and T ∗∗(p2), we can couple |T ∗∗(p1)| and |T ∗∗(p2)| so that |T ∗∗(p1)| ≤
|T ∗∗(p2)|.
Case 2 (|T ∗(p1)| < ∞ and |T ∗(p2)| = ∞): By Lemma 3.1, f(p2) ≤ 1, and so,
∑k

l=0 f(p2)
√
3p2ηl(p2) ≤

∑k
l=0

√
3p2ηl(p2) ≤

∑k
l=0

√
3p1ηl(p1). As above, by using

the same random variable U2 for both T ∗∗(p1) and T ∗∗(p2), the construction yields
|T ∗∗(p1)| ≤ |T ∗∗(p2)|.
Case 3 (|T ∗(p1)| = |T ∗(p2)| = ∞): By Lemma 3.1, f(p2) ≤ f(p1), and so,
∑k

l=0 f(p2)
√
3p2ηl(p2) ≤ ∑k

l=0 f(p1)
√
3p1ηl(p1). Again, by using the same ran-

dom variable U2 for both T ∗∗(p1) and T ∗∗(p2), the construction yields |T ∗∗(p1)| ≤
|T ∗∗(p2)|. �

We can now prove Theorem 1.3 in the case of d = 3, by using Lemma 3.4 and
Theorem 1.2. In the case d = 2, we could use Theorem 1.4 to prove Theorem 1.3.
Here, we have to do things slightly differently, since we do not (yet) have a version
of Theorem 1.4 for d = 3. As mentioned, we will therefore start by proving the
special case p1 = 1/3.

Theorem 3.5. Let d = 3 and 1/3 < p ≤ 1. There exists a coupling of T∞(1/3)
and T∞(p) (where T∞(1/3) ∼ T∞(1/3) and T∞(p) ∼ T∞(p)) such that

P(T∞(1/3) ⊂ T∞(p)) = 1.

Proof. It will be convenient in what follows to set p1 = 1/3 and p2 = p. We will
however only use the notation p1 implicitly in formulas involving pi for i = 1, 2 and
write 1/3 in all other places.

Let

((X1,u, X2,u, X3,u), (L
∗
u(1/3), L

∗∗
u (1/3), L∗

u(p2), L
∗∗
u (p2)), (3.2)

(Tl,1,u)l≥0, (Tl,2,u)l≥0, T∞,u(1/3), T∞,u(p2))u∈V (T3)

be an i.i.d. collection, indexed by V (T3). Furthermore, for any u ∈ V (T3),
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(i) The random variables (X1,u, X2,u, X3,u) have the joint distribution as de-
scribed in the statement of Lemma 3.3, and they are independent of all the
other random variables.

(ii) (L∗
u(1/3), L

∗∗
u (1/3), L∗

u(p2), L
∗∗
u (p2)) are independent of the other random vari-

ables, the pairs (L∗
u(1/3), L

∗∗
u (1/3)) and (L∗

u(p2), L
∗∗
u (p2)) have joint distribu-

tions as in their constructions, and they are coupled so that L∗
u(1/3) ≤ L∗

u(p2)
and L∗∗

u (1/3) ≤ L∗∗
u (p2). This is possible by Lemma 3.4.

(iii) For any u, Tl,1,u ∼ Tl. Furthermore, the collection (Tl,1,u)l≥0, is independent
of the other random variables and coupled so that T0,1,u ⊂ T1,1,u ⊂ · · · . This
is possible by Theorem 1.2.

(iv) For any u, Tl,2,u ∼ Tl. Furthermore, the collection (Tl,2,u)l≥0, is independent
of the other random variables and coupled so that T0,2,u ⊂ T1,2,u ⊂ · · · .
Again, this uses Theorem 1.2.

(v) T∞,u(1/3) ∼ T∞,u(1/3) and T∞,u(p2) ∼ T∞,u(p2) are independent of each
other and all the other random variables.

We take the ordering of V (T3) to be the natural one, i.e. we let o < (1) < (2) <
(3) < (1, 1) < (1, 2) · · · . Let Vn(T

3) be the set that consist of the n first elements
in the ordering of V (T3).

Before we give the formal construction, let us briefly explain the idea. Similar
to when d = 2, we will use the random variables of (3.2), to construct a sequence
(Sn(1/3), Sn(p2))n≥0 of pairs of trees such that Sn(1/3) ⊆ Sn(p2) for every n. Of
course, here we have one more child to deal with. The main difference is that when
d = 2, we could divide the construction into cases depending on L∗(p1) since we
had Theorem 1.4 at our disposal. In doing this, we made sure that both Sn(p1)
and Sn(p2) were constructed in the, for us, appropriate way. Here, we have to
divide the analogous construction into cases depending on L∗(p2) and L∗∗(p2) (i.e.
we use p2 instead of p1) and in doing that, we can show that the limit S∞(p2)
has distribution T∞(p2). However, in the absence of a version of Theorem 1.4 for
d = 3, we will have to work a bit harder when it comes to Sn(1/3). In fact, we
will not have that S∞(1/3) ∼ T∞(1/3). Instead, for every n, we will use Sn(1/3)
to construct yet another random tree S̄n(1/3) ∼ T∞(1/3) such that for every n,
S̄n(1/3)

⋂

Vn(T
3) ⊂ S∞(p2). The statement will then follow.

Let U0 = {o}, and S0(1/3) = S0(p2) = {o}.We assume that Sn−1(1/3), Sn−1(p2)
and Un−1 have been constructed. Step n ≥ 1 consists of the following: Let un =
min{u ∈ V (T3) : u ∈ Un−1}, and for i = 1, 2 let V (Sn(pi)) be equal to

V (Sn−1(pi))
⋃

v∈V (TL∗

un
(pi),1,un

){(un, X1,un
, v)}

⋃

w∈V (TL∗∗

un
(pi),2,un

){(un, X2,un
, w)}⋃{(un, X3,un

)} if
L∗
un

(p2) < ∞,
L∗∗
un

(p2) < ∞

V (Sn−1(pi))
⋃

v∈V (TL∗

un
(pi),1,un

){(un, X1,un
, v)}

⋃{(un, X2,un
)}⋃{(un, X3,un

)}
if

L∗
un

(p2) < ∞,
L∗∗
un

(p2) = ∞

V (Sn−1(pi))
⋃{(un, X1,un

)}
⋃

w∈V (TL∗∗

un
(pi),2,un

){(un, X2,un
, w)}⋃{(un, X3,un

)} if
L∗
un

(p2) = ∞,
L∗∗
un

(p2) < ∞

V (Sn−1(pi))
⋃{(un, X1,un

)}⋃{(un, X2,un
)}⋃{(un, X3,un

)} if
L∗
un

(p2) = ∞,
L∗∗
un

(p2) = ∞,
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and let

Un =















































Un−1 \ {un}
⋃{(un, X3,un

)} if L∗
un
(p2), L

∗∗
un
(p2) < ∞

Un−1 \ {un}
⋃{(un, X2,un

)}⋃{(un, X3,un
)}
if L∗

un
(p2) < ∞, L∗∗

un
(p2) = ∞

Un−1 \ {un}
⋃{(un, X1,un

)}⋃{(un, X3,un
)}
if L∗

un
(p2) = ∞, L∗∗

un
(p2) < ∞

Un−1 \ {un}
⋃{(un, X1,un

)}⋃{(un, X2,un
)}⋃{(un, X3,un

)}
if L∗

un
(p2) = L∗∗

un
(p2) = ∞.

Here, we abuse notation in that TL∗

un
(p2),1,un

= TL∗

un
(p2),1,un

(p2) whenever

L∗
un
(p2) = ∞ and similarly for L∗∗

un
(p2). As mentioned above, the conditions are

in terms of L∗
un

(p2) and L∗∗
un
(p2), while in d = 2, the corresponding conditions

were in terms of L∗
un
(p1). If we would have had a version of Theorem 1.4 for

d = 3, we could have coupled the sequence (Tl,1,u)l≥0 with another random tree
T∞,1,u(p2) ∼ T∞(p2) such that Tl,1,u ⊂ · · · ⊂ T∞,1,u(p2). Then, much as when
d = 2, we could have divided the construction into cases depending on L∗

un
(p1)

and L∗∗
un
(p1), and proceeded analogously. The effect of this change in approach is

described and dealt with below. Note also that by construction, Sn(1/3) ⊆ Sn(p2)
for every n, this can easily be checked case by case using (ii) above.

For i = 1, 2 we define S̃n(pi) by

V (S̃n(pi)) = V (Sn(pi))
⋃

u∈Un

⋃

v∈V (T∞,u(pi))

{(u, v)}. (3.3)

As when d = 2, we want to show that S̃n(p2) ∼ T∞(p2) for every n. Consider first

S̃1(p2). By the use of the random variables L∗
o(p2), L

∗∗
o (p2), we see that S̃1(p2) is

constructed as T̃ (p2) in Lemma 3.3. Therefore, S̃1(p2) ∼ T∞(p2).

Assume now that for some fixed n, S̃n(p2) ∼ T∞(p2). We construct Sn+1(p2)
from Sn(p2) by performing the above construction at un+1. Thus, when perform-

ing the constructions of S̃n(p2) and S̃n+1(p2) (from Sn(p2) and Sn+1(p2) respec-
tively) we can attach the same independent trees with distribution T∞(p2) at ev-

ery u ∈ Un \ {un+1}. When performing the rest of the construction of S̃n+1(p1)

at the children of un+1 that belongs to Un+1, we claim that H(S̃
un+1

n+1 (p1)) ∼
T∞(p1). Therefore, we can in fact take S̃n(p1) = S̃n+1(p1), and so we only need

to check that H(S̃
un+1

n+1 (p1)) ∼ T∞(p1). However, this follows as above since we

have that H(S̃
un+1

n+1 (p2)) is constructed as T̃ (p2) in Lemma 3.3, and by that lemma

H(S̃
un+1

n+1 (p2)) ∼ T∞(p2).
By defining S∞(p2) through

V (S∞(p2)) =

∞
⋃

m=0

∞
⋂

n=m

V (S̃n(p2)) =

∞
⋃

n=0

V (Sn(p2)),

we get that S∞(p2) ∼ T∞(p2) exactly as when d = 2.

However, the tree S̃n(1/3) is not distributed in accordance with Lemma 3.3.

It is in fact ”too big” and therefore S̃n(1/3) does not have distribution T∞(1/3).

To see this, consider S̃1(1/3) and assume that L∗
o(1/3) < ∞, L∗

o(p2) = ∞ while
L∗∗
o (1/3) < ∞, L∗∗

o (p2) < ∞ so that U1 = {(X1,o), (X3,o)}. Since (X1,o) ∈ U1,
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we have by construction that H(S̃
(X1,o)
1 (1/3)) = T∞,(X1,o)(1/3) ∼ T∞(1/3). How-

ever, in order for S̃1(1/3) to be constructed as in Lemma 3.3, we should have

let H(S̃
(X1,o)
1 (1/3)) ∼ TL∗

o(1/3)
. This is an effect of using L∗

un
(p2), L

∗∗
un

(p2) in the
construction (necessitated by the absence of Theorem 1.4).

The strategy is to ’prune’ the tree S̃n(1/3), without losing the inclusion property
that we desire. Informally, we want to replace the trees that are too big by other
trees of the correct size. To that end, for any k ≥ 2 and u = (u1, . . . , uk), let
u− = (u1, . . . , uk−1). If k = 1 we let u− = o. We let

Vn ={v ∈
n
⋃

k=0

Uk : v = (v−, X1,v−), L∗
v−(1/3) < ∞, L∗

v−(p2) = ∞}

⋃

{v ∈
n
⋃

k=0

Uk : v = (v−, X2,v−), L∗∗
v−(1/3) < ∞, L∗∗

v−(p2) = ∞}.

It is convenient to think of Vn as the set of vertices that needs to be pruned.
Note that in the example of S̃1(1/3) above, V1 = {(X1,o)}. For v ∈ Vn, either
v = (v−, X1,v−) or v = (v−, X2,v−) and we let Lv = L∗

v−
(1/3) in the first case and

Lv = L∗∗
v−

(1/3) in the second. Thus, Lv is the size that the subtree of v should
have been given if we had followed the construction of Lemma 3.3.

We will perform the pruning in steps. Therefore, let k = |Vn| and v1 < v2 <
· · · < vk be the elements of Vn. Define the sequence (S̄n,i(1/3))

k
i=1 of pruned trees

in the following way. The first subtree to be pruned is the one corresponding to
vk i.e. S̃vk

n (1/3). We have that H(S̃vk
n (1/3)) ∼ T∞(1/3) by the construction. This

follows as when showing that S̃n(p2) ∼ T∞(p2), and uses that no descendants of v
belongs to Vn.

We will remove S̃vk
n (1/3), and replace it by a tree of size Lvk . Therefore, we

extend our probability space by adding a random tree Tn,vk,Lvk
with distribution

TLvk
and coupled with S̃vk

n (1/3) so that Tn,vk,Lv
⊂ H(S̃vk

n (1/3)). This is possible
due to Theorem 1.2. Furthermore, we can take Tn,vk,Lvk

to be independent of

every other random variable of (3.2) (except Lvk), which is associated to a vertex
w ∈ V (T3) for which there does not exist any u ∈ V (T3) such that w = (vk, u).
In other words, Tn,vk,Lvk

only depends on Lvk and the random variables used to

construct S̃vk
n (1/3). The first pruning step is then

V (S̄n,1(1/3)) =



V (S̃(1/3)) \
⋃

u∈V (T3)

{(vk, u)}





⋃

u∈Tn,vk,Lvk

{(vk, u)}.

In words, we first delete vk and all its descendants and then add the appropriate
smaller tree.

We now proceed in the obvious manner, and assume therefore that we have
performed i pruning steps. We add to our probability space a tree Tn,vk−i,Lvk−i

∼
TLvk−i

, such that Tn,vk−i,Lvk−i
⊂ H(S̃

vk−i

n,i (1/3)), which only depends on Lvk−i

and the random variables used to construct S̃
vk−i

n,i (1/3). Here, S̃
vk−i

n,i (1/3) should

be thought of as (S̃n,i(1/3))
vk−i , that is, as a subtree of S̃n,i(1/3). We use similar
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notation below. Set

V (S̄n,i+1(1/3)) =



V (S̄n,i(1/3)) \
⋃

u∈V (T3)

{(vk−i, u)}





⋃

u∈Tn,vk−i,Lvk−i

{(vk−i, u)},

and define S̄n(1/3) through V (S̄n(1/3)) = V (S̄n,k(1/3)).
By our construction, S̄n(1/3) ∼ T∞(1/3) for every n. To see this, consider first

S̄1(1/3). By the construction of S̃1(1/3) and our pruning procedure, the size of

the subtrees S̄
X1,o

1 (1/3), S̄
X2,o

1 (1/3), S̄
X3,o

1 (1/3) are L∗
o(1/3), L

∗∗
o (1/3) and ∞ re-

spectively. Thus, by Lemma 3.3, H(S̄1(1/3)) ∼ T∞(1/3). Assume that for fixed n,

S̄n(1/3) ∼ T∞(1/3). Consider S̃n+1(1/3), and assume first that Vn+1 does not in-

clude any children of un+1. This means that the size of the subtrees S̄
X1,un+1

n+1 (1/3),

S̄
X2,un+1

n+1 (1/3), S̄
X3,un+1

n+1 (1/3) are L∗
un+1

(1/3), L∗∗
un+1

(1/3) and ∞ so that by Lemma

3.3, H(S̄
un+1

n+1 (1/3)) ∼ T∞(1/3). In case Vn+1 does include a child of un+1, then by
the first one or two steps of the pruning procedure (depending on whether there
are one or two children of un+1 in Vn+1), H(S̄

un+1

n+1 (1/3)) has been replaced by a
subtree which has distribution T∞(1/3). The fact that the children of un+1 that
belongs to Vn+1 are the first to be addressed in the pruning procedure follows by
the definition of Vn+1 and the ordering of V (T3). By continuing the pruning pro-

cedure simultaneously for both S̃n(1/3) and S̃n+1(1/3), we see that we can in fact
take S̄n(1/3) = S̄n+1(1/3).

By the above construction and pruning procedure, we get that

S̄n(1/3)
⋂

Vn(T
3) ⊂ Sn(1/3)

⋂

Vn(T
3) ⊂ Sn(p2)

⋂

Vn(T
3) = S∞(p2)

⋂

Vn(T
3).

(3.4)

To conclude the theorem, let γn be the measure on {0, 1}T3 × {0, 1}T3

with
marginal distributions T∞(1/3) and T∞(p2) such that γn(ξ(Vn(T

3)) ≤ η(Vn(T
3))) =

1. The existence of γn follows from (3.4). Here, we identify a tree T and an element

ξT ∈ {0, 1}T3

by letting ξT (v) = 1 iff v ∈ T. Since {0, 1}T3 × {0, 1}T3

is compact,
there exists a subsequential limiting measure γ with marginal distributions T∞(1/3)
and T∞(p2) such that γ(ξ(V (T3)) ≤ η(V (T3))) = limn γ(ξ(Vn(T

3)) ≤ η(Vn(T
3))) =

1. By Strassen’s theorem, it follows that there exists random trees S∞(1/3) ∼
T∞(1/3), S∞(p2) ∼ T∞(p2), such that P(S∞(1/3) ⊂ S∞(p2)) = 1. �

Proof of Theorem 1.4 for d = 3. It follows from applying Theorems 1.2 and
3.5. �

Proof of Theorem 1.3 when d = 3. The argument for 1/3 < p1 < p2 ≤ 1 is very
similar to the proof of Theorem 3.5 and we will therefore only address the necessary
adjustments.

(1) We change (iii) to state that:
(iii’) (Tl,1,u)l≥0, and T∞,1,u(p2) are independent of the other random

variables and coupled so that T0,1,u ⊂ T1,1,u ⊂ · · · ⊂ T∞,1,u(p2). This is
possible by using Theorem 1.4.

Here, T∞,1,u(p2) is added to (3.2). The coupling exists, since for (Tl)l≥0,
T∞(1/3) and T∞(p2) (with obvious distributions) we can couple these so
that T0 ⊂ T1 ⊂ · · · ⊂ T∞(1/3) ⊂ T∞(p2), using Theorems 1.2 and 3.5. We
change (iv) similarly.

(2) When constructing Sn(pi) and Un, we change all conditions concerning
L∗(p2) and L∗∗(p2) to the corresponding conditions for L∗(p1) and L∗∗(p1).
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(3) We skip the entire pruning procedure and instead proceed as in the case
d = 2.

�

4. Open problems

We present some open problems.

Open Problem 4.1. Is it possible to generalize the results of this paper to all d ≥ 4?

Remark: Central to the case d = 3 was to find the “right” function f(p) that
allowed us to construct the relevant couplings, i.e. a construction as in Lemma 3.3,
yielding the analogue of Lemma 3.4. Presumably, the approach of this paper could
then work to solve the problem. However, already in d = 4, the analogue of this
procedure becomes much more complicated.

Open Problem 4.2. For which classes of parametrized offspring distributions can
one obtain results such as in this paper?

Remark: From Lyons et al. (2008) we know that it is possible in the case of
Poisson offspring distributions.

Open Problem 4.3. Consider bond percolation on Z
d with p > pc. Consider the

open cluster of the origin, conditioned on being infinite, and denote a sample of
such a cluster by C∞(p). Is it the case that for any pc < p1 < p2 ≤ 1 there exists a
coupling of C∞(p1) and C∞(p2) such that P(C∞(p1) ⊂ C∞(p2)) = 1?

Acknowledgements. I would like to thank Russ Lyons for suggesting the prob-
lem and for many useful discussions. I would also like to thank Indiana University
for supporting my visit there, a visit during which this project started. Finally,
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