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Abstract. We show that the laws of scaling limits of nearcritical percolation explo-
ration paths with different parameters are singular with respect to each other. This
generalises a result of Nolin and Werner, using a similar technique. As a corollary,
the singularity can even be detected from an infinitesimal initial segment. More-
over, nearcritical scaling limits of exploration paths are mutually singular under
scaling maps.

1. Introduction

One break-through of the mathematical theory of two-dimensional percolation
was in 2001, when Smirnov proved the conformal invariance of the scaling limit
of critical percolation interfaces on the triangular lattice. This paved the way for
describing this limit by a Schramm-Loewner-Evolution and for determining various
crossing probabilities. Thus nowadays the scaling limit of critical percolation is
quite well understood. But there are also nearcritical scaling limits. These are
obtained by choosing the probability for a site being open depending on the mesh
size slightly different from the critical one, but converging to it in a well-chosen
speed. These nearcritical limits are by far not as well understood as the critical
ones. Garban et al. (2013b) showed that, in the quad-crossing space, there indeed
exist nearcritical limits, not only limit points. But we do not use this fact, since we
are interested in the exploration paths. For that, only the existence of limit points,
not of a limit, is yet established.

Nolin and Werner (2009) showed that every nearcritical scaling limit point of
exploration paths is singular with respect to an SLE6 curve, i.e. to the critical limit.
In the present note, we enhance this result by showing that two different nearcritical
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scaling limits are singular with respect to each other (Theorem 2.1). It is even
possible to detect the singularity by looking at an infinitesimal initial segment of
the exploration path (Corollary 2.2). Applying the main result to conformal maps,
we obtain that nearcritical scaling limits are in general not conformally invariant
or absolutely continuous. In fact, under scaling maps, they are mutually singular
(Corollary 5.1).

Interestingly, the proof of Nolin and Werner can be extended to our result. But
one has to be careful. In fact, we also give a more detailed and self-contained version
of their proof. Nevertheless, some modifications and slightly different approaches
are needed. In particular, the non-existence of an analogue to Cardy’s formula
requires some work. Namely, we need the fact that the probability of crossing a quad
with fractal boundary can be well approximated using rather weak approximations
to the quad (Lemma 4.1).

The organisation of this note is as follows. In Section 2 we introduce precisely the
model and state the main theorem, which will be proved in Section 4. But before
there is an expository section, namely Section 3. There we review some aspects of
Nolin and Werner (2009) and give some heuristics why their result as well as our
theorem should be true. Finally, in Section 5, we discuss consequences of our result
for conformal maps.

2. Notation and Statement of the Main Theorem

Let us start with the basic definitions and notations. Let Hr := {z ∈ C : |z| <
r, Im(z) > 0} be the upper half circle with radius r > 0. We work on the hexagonal
lattice with mesh size η > 0. Let Hη

r be all hexagons of size η which are entirely
contained in Hr.

We consider face percolation in Hη
r with different parameters pµ and pλ. Thereto

let µ, λ ∈ R and µη, λη ∈ R, η > 0, such that µη → µ and λη → λ as η → 0. Each
hexagon is independently of the others blue (open) with probability

pι = pιη =
1

2
+ ιη ·

η2

αη
4(1)

and otherwise yellow (closed), where we choose ι ∈ {µ, λ} depending on the desired
parameter. Here αη

4(R) is the probability that there exists four arms of alternating
colours up to (Euclidean) distance R in critical site percolation on the triangular
lattice with mesh size η. Smirnov and Werner (2001, Theorem 4) showed that

αη
4(1) = η

5
4+o(1) as η → 0. Therefore (or by using the five arm exponent) it follows

that pι → 1
2 as η → 0. As we are interested in that limit, we may hence choose

η small enough such that pι ∈ (0, 1). Thus we work on the families of probability
spaces

(

Ωη := {blue,yellow}H
η
r , P(Ωη), P ι

η :=
⊗

Hη
r

(

pιδblue + (1− pι)δyellow
)

)

η>0

with ι ∈ {µ, λ}. The choice of pι ensures that we are still in the critical window, but
obtain scaling limits different from the critical one (if ι 6= 0, of course). This follows
from Kesten’s scaling relations and can explicitly be deduced from Proposition 4 of
Nolin and Werner (2009) together with Proposition 32 of Nolin (2008), for example.

If we colour the negative real axis blue and the positive axis yellow, then there
is a unique path, called exploration path, on the hexagonal lattice starting at the
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origin and stopping η-close to the upper boundary of Hr, which has blue hexagons
to the left and yellow hexagons to the right. Let us denote this path by the random
variable

γη : (Ωη,P(Ωη)) → (Sr,B(Sr)) ,

where Sr (with Borel-σ-algebra B(Sr) induced by the metric below) is the space of
curves in Hr, i.e. equivalence classes of continuous functions [0, 1] → Hr. Two such
functions f, g represent the same curve if and only if f = g ◦ φ for some increasing
bijection φ : [0, 1] → [0, 1]. We introduce a topology on Sr via the metric

dist(f, g) := inf
φ

max
t∈[0,1]

|f(t)− g ◦ φ(t)|

where the infimum is taken over all increasing bijections φ : [0, 1] → [0, 1]. Then Sr

is a complete separable space. Let

Γι
η := γη(P

ι
η)

denote the law of γη under P ι
η, for η > 0 and ι ∈ {µ, λ}. Using a technique developed

by Aizenman and Burchard (1999), Nolin and Werner (2009, Proposition 1) showed
that the family (Γι

η)η>0 is tight, i.e. for each sequence ηk there is a subsequence
ηkl

such that Γι
ηkl

converges weakly.

For the statement of the main theorem we need, in contrast to Nolin and Werner,
a result using the Quad-Crossing Topology introduced by Schramm and Smirnov
(2011). Therefore we review that concept very briefly. For a much more detailed
account one should consult Schramm and Smirnov (2011, p. 1778f). Let D be
a domain. A quad q in D is a topological quadrilateral, i.e. a homeomorphism
q : [0, 1]2 → q([0, 1]2) ⊂ D. Let QD be the set of all quads in D. A quad q is
crossed by a percolation configuration, if the union of all blue (topologically closed)
hexagons contains a connected closed subset of q := q([0, 1]2) which intersects both
opposite sides ∂0q := q({0}× [0, 1]) and ∂2q := q({1}× [0, 1]). This event is denoted
by ⊟q ⊂ Ωη. We will further need the notations ∂1q := q([0, 1] × {0}) and ∂3q :=
q([0, 1]× {1}) for the other two sides of the quad. Moreover, let q◦ := q((0, 1)2) be
the interior and ∂q be the whole boundary of q.

Using a partial order on QD induced by crossings, one can define the set HD of
all closed lower sets S ⊂ QD. Schramm and Smirnov constructed a topology on
HD, namely the Quad-Crossing-Topology. For our purposes the following facts are
enough. There is a random variable cr : Ωη → HD which assigns each percolation
configuration the set of all crossed quads. Thus each probability measure on Ωη

induces a probability measure on HD. Moreover, the space of all probability mea-
sures on HD is tight (Schramm and Smirnov, 2011, Corollary 1.15). Finally, if P
is any limit point of the measures cr(Pµ

η ), η > 0, then P[∂cr(⊟q)] = 0 for every
quad q ∈ QD (Schramm and Smirnov, 2011, Lemma 5.1). Therefore there exists a
sequence (ηk)k∈N with limk→∞ ηk = 0 such that Pµ

ηk
[⊟q] converges as k → ∞ for

all quads q ∈ QD.
Now we are ready to state the main theorem of the present note.

Theorem 2.1. Let µ < λ be real numbers, µη → µ, λη → λ and r > 0. Let further
(ηk)k∈N be a sequence converging to zero such that Pµ

ηk
[⊟q] converges for all quads

q ∈ QHr
and such that Γµ

ηk
→ Γµ and Γλ

ηk
→ Γλ weakly for some measures Γµ and

Γλ on (Sr,B(Sr)) as k → ∞.
Then the probability measures Γµ and Γλ are singular with respect to each other.
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Γµ and Γλ are distributions of the scaling limits of the discrete exploration paths
(in the limit point sense). Let us remark that Proposition 6 of Nolin and Werner
(2009) is included in this theorem as the special case µ = µη = 0. In that case the
hypothesis on the quad crossing probabilities is always fulfilled since it follows from
Cardy’s formula. But in our case, we unfortunately do not have any analogue; that
is the reason for the additional condition.

The theorem also holds if µ > λ, i.e. if the condition on the quad crossing
probabilities holds for the larger value. In that case quite a few inequality signs
have to be switched. Thus for better readability, we restrict ourselves to the case
µ < λ.

Actually we do not need to look at the whole exploration path to detect the
singularity. In fact, it is enough to look at an infinitesimal initial segment as the
following corollary shows. We consider the space (S1,B(S1)) of curves in H1. Let

τn(γ) := inf{t ≥ 0 : |γ(t)| = 1
n}

be the first exit time of H 1
n
and

An := σ(id[0, τn], id(0) = 0)

be the σ-algebra generated by curves starting at the origin until exiting H 1
n
, n ∈ N.

Then An, n ∈ N, is decreasing. Let

A :=
⋂

n∈N

An

be their tail-σ-algebra, the σ-algebra of infinitesimal initial segments of paths start-
ing at the origin. With that notation, Theorem 2.1 implies

Corollary 2.2. Under the conditions of Theorem 2.1, the laws Γµ and Γλ restricted
to A are singular with respect to each other.

Proof : By Theorem 2.1 applied to r = 1
n , there are sets An ∈ An with Γµ[An] = 0

and Γλ[An] = 1. We set

A∗ :=
⋃

m≥1

⋂

n≥m

An .

Then A∗ ∈ A. Since countable unions or intersection of sets of probability zero
respectively one have probability zero respectively one, it follows that Γµ[A∗] = 0
and Γλ[A∗] = 1, which proves the corollary. �

We conjecture that Theorem 2.1 and its corollary also hold on other lattices.
In fact, if we can apply RSW techniques, most elements of the proof work. We
need the separation lemmas and other results of Nolin (2008), which are delicate
consequences of RSW (Nolin, 2008, Theorem 2). Thus they remain true on other
lattices, cf. Nolin (2008, Section 8.1). We further need the following bounds on arm
events. Let αη

2(ρ,R) and αη
4(ρ,R) be the probabilities of the events that at critical

percolation with mesh size η there exist two respectively four arms of alternating
colours inside an annulus with radii ρ and R (i.e., in particular, αη

4(η,R) = αη
4(R)).

We need that there are “exponents” α̂4, α̌2 > 0 and constants c, c′ > 0 such that

αη
2(ρ,R) ≥ c(ρ/R)α̌2 and αη

4(ρ,R) ≤ c′(ρ/R)α̂4

for all 0 < η ≤ ρ ≤ R and such that

2α̂4 − α̌2 > 2 . (2.1)
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Since the two arm exponent in the half plane exists and is 1 as a consequence of
RSW (see Nolin, 2008, Theorem 23, for instance), it follows that we can choose
α̌2 ≤ 1 < 2, which we also need. While the analogues to Proposition 13 and
Theorem 10 in Nolin (2008) yield the existence of such exponents also for other
lattices, inequality (2.1) is yet proven only for site percolation on the triangular
lattice (or equivalently, face percolation on the hexagonal lattice). Indeed, we can
choose α̌2 = 1

4 −β and α̂4 = 5
4 +β for any β > 0 there. Since the former inequality

is the only needed special property of the triangular lattice, we choose to write up
the proof with the exponents α̌2 and α̂4 and not with the explicit values. Hence the
results can immediately be enhanced to other lattices as soon as inequality (2.1) is
established.

3. Heuristics

This section is of expository nature and therefore not rigorous. First we review
some aspects of Nolin and Werner (2009). Then we give a heuristic explanation
why a nearcritical scaling limit should be singular with respect to the critical or to
another nearcritical scaling limit. These heuristics could in fact also be seen as an
outline of the proof. Formally, this section is not needed for the remainder of the
article.

Let us recall some of our notation: P ι
η denotes the probability measure of near-

critical percolation with parameter ι ∈ R, i.e. a site is open with probability

pι =
1

2
+ ι ·

η2

αη
4(η, 1)

.

Moreover, the random variable γη denotes the exploration path and Γι
η its law

under P ι
η.

A basic concept of nearcritical percolation is the introduction of a characteristic
length. Below that length, the Russo-Seymour-Welsh Theory (RSW) is still valid.
This means that the probability that a set is crossed by the percolation configuration
(in some specific way) does only depend on the shape of the set, but not on its size
– as long as this size is below the characteristic length. In the set-up considered
in this article, the mesh size of the lattice and the nearcritical probabilities are
chosen such that the characteristic length is of order one. Thus RSW techniques
are applicable.

The first result of Nolin and Werner (2009, Proposition 1) shows tightness of the
laws of the exploration paths. We shortly outline their proof. It is an application
of Aizenman and Burchard (1999, Theorem 1.2). Let us denote the annulus around
x with radii ρ < R by A(x, ρ,R). RSW considerations imply that there exist some
constants c, α > 0 such that

P ι
η

[

γη crosses A(x, ρ,R)] ≤ c(ρ/R)α

uniformly for all η ≤ ρ ≤ R. Using the BK Inequality, it follows that, for all k ∈ N,

P ι
η

[

γη crosses A(x, ρ,R) k times] ≤ ck(ρ/R)αk .

Therefore the hypothesis of Aizenman and Burchard (1999, Theorem 1.2) is fulfilled
and tightness follows. This means that for each sequence ηk there is a subsequence
ηkl

such that Γι
ηkl

converges weakly.
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Nolin and Werner also determined the Hausdorff dimension of any sub-sequential
scaling limit of the critical and nearcritical exploration paths. It is 7/4 in both cases,
see Nolin and Werner (2009, Proposition 3). The proof is based on RSW techniques
and the knowledge of the two-arm exponent of critical percolation.

The perhaps most important result of Nolin and Werner (2009) is Proposition 6.
It states that the law of any nearcritical sub-sequential limit is singular with respect
to the law of an SLE6 curve, which is the critical limit. As already mentioned, we
enhance this result in the present note and show that Γµ⊥Γλ, where Γι is a limit
point of Γι

η, ι ∈ {µ, λ}. In the following, we heuristically argue why these theorems
hold.

Let us consider an equilateral triangle ∆ of size δ. The scale δ should be an
intermediate one, i.e η ≪ δ ≪ 1. We assume that the exploration path γη entered
the triangle somewhere in the middle of the triangle’s bottom line and is at time
σ somewhere in the middle of the triangle. If that is the case, we say that the
triangle is good for γη. We even look at the following stronger event: Conditionally
on γη[0, σ], we ask whether γη exists the triangle on the right part of the bottom
line. In that case we call the triangle even very good for γη. This events are
schematically drawn in Figure 3.1.

γ(σ)
?

Figure 3.1. A (maybe
very) good triangle

γ

Figure 3.2. A pivotal
site with four arms

We estimate the difference of the probability of being very good, conditionally on
γη[0, σ], under P

λ
η and under Pµ

η . Thereto we use the standard monotone coupling
of percolation with different parameters p ∈ [0, 1] (for all hexagons not discovered
by γη[0, σ]). Thus the set ω(p) of blue hexagons at level p increases. If a good
triangle ∆ is very good for γη(ω(p

λ)), but not for γη(ω(p
µ)), then there exists a

site x in the triangle which is pivotal for some crossing event and switched from
yellow to blue, cf. Figure 3.2. It is pivotal, iff there are four arms of alternating
colours from x to some described parts of the boundary. Therefore we conclude

Pλ
η

[

∆ is very good for γη | γη[0, σ]
]

− Pµ
η

[

∆ is very good for γη | γη[0, σ]
]

= P
[

∆ is very good for γη(ω(p
λ)) but not for γη(ω(p

µ)) | γη[0, σ]
]

≈ P
[

∃x ∈ ∆ \ γη[0, σ] : four arms from x to ∂∆, x switched between pµ and pλ
]
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Since the crossing event is increasing, the latter event can happen only for one
x inside the triangle. Since there are around (δ/η)2 sites inside the triangle, we
conclude

P
[

∃x ∈ ∆ \ γη[0, σ] : four arms from x to ∂∆, x switched between pµ and pλ
]

≈ (δ/η)2αη
4(η, δ)(p

λ − pµ)

= (δ/η)2αη
4(η, δ) (λ − µ) η2/αη

4(η, 1) ,

where we used in the last step that

pλ − pµ = 1
2 + λη2/αη

4(η, 1)−
1
2 − µη2/αη

4(η, 1) = (λ− µ) η2/αη
4(η, 1) .

Now λ−µ ≍ 1 and quasi-multiplicativity, i.e. αη
4(η, 1) ≍ αη

4(η, δ)α
η
4(δ, 1), and finally

αη
4(δ, 1) → δ5/4 yield

(δ/η)2αη
4(η, δ) (λ − µ) η2/αη

4(η, 1) ≈ δ2/αη
4(δ, 1) ≈ δ3/4 .

Thus we established the estimate

Pλ
η

[

∆ very good for γ | ∆ good for γ
]

− Pµ
η

[

∆ very good for γ | ∆ good for γ
]

≈ δ3/4

for every triangle ∆ of scale δ.
We will use this estimate to evaluate the expectation of the random variable

Zδ(γ) := #{very good triangles of scale δ for γ}

−Eµ[#{very good triangles of scale δ for γ}] .

Since the Hausdorff dimension of the exploration path is 7/4, it touches approxi-
mately δ−7/4 triangles. By RSW, the number of good triangles is of the same order
of magnitude. Therefore we conclude

Eµ[Zδ] = δ−7/4 · 0 = 0 and Eλ[Zδ] ≈ δ−7/4 · δ3/4 = δ−1 .

Though the events being good or very good of different triangles are not indepen-
dent, we can conclude using a martingale approach that

Varµ[Zδ] ≤ δ−7/4 and Varλ[Zδ] ≤ δ−7/4 .

Now by Chebyshev’s inequality, it follows that

Pµ[Zδ > δ−15/16] ≤ δ15/8 Varµ[Zδ] ≤ δ15/8δ−7/4 = δ1/8

and

Pλ[Zδ < δ−15/16] ≈ Pλ
[

Zδ − Eλ[Zδ] < δ−15/16 − δ−1
]

≤
(

δ−15/16(1− δ−1/16)
)−2

Varλ[Zδ] ≤ δ1/8 .

Now we choose a sequence of scales (δn)n such that δ
1/8
n is summable. Then the

Lemma of Borel-Cantelli implies

Pµ[Zδn(γ) > δ−15/16
n for infinitely many n] = 0

and

Pλ[Zδn(γ) < δ−15/16
n for infinitely many n] = 0 .

As the complements of these events are disjoint, the mutual singularity of Γµ =
γ(Pµ) and Γλ = γ(Pλ) follows.
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4. Proof of the Main Theorem

We partition the rigorous proof of Theorem 2.1 in four subsections. In Section 4.1
we prove a lemma which is also of independent interest. It states that we can
approximate the probability of crossing a quad even if it has fractal boundary and
if we use quite weak approximations to it. In Section 4.2 we look at one mesoscopic
triangle, whereas in Section 4.3 we give estimates for many mesoscopic triangles.
Finally, in Section 4.4, we consider the continuum limit to conclude the proof of
Theorem 2.1.

4.1. A Quad Crossing Lemma. We say that a sequence (qn)n∈N of quads converges
in the kernel (or Caratheodory) sense to a quad q with respect to some z0 ∈ C, if

• z0 ∈ q◦n for all n ∈ N and z0 ∈ q◦,
• for every z ∈ q◦ there exists a neighbourhood of z which is contained in all
but finitely many q◦n (and in q◦),

• for each z ∈ ∂q there exist zn ∈ ∂qn with zn → z and
• qn(i, j) → q(i, j) for (i, j) ∈ {0, 1}2.

This is the usual kernel convergence for domains with the additional requirement
that the corners of the quads converge. We further need the following condition,
which is illustrated in Figure 4.3:

∀ ε > 0 ∃n0 ∈ N ∀n ≥ n0, i ∈ {0, 1, 2, 3} :

Uε(∂iq) ∩
(

q ∪ Uε(∂i−1q) ∪ Uε(∂i+1q)
)

contains a path connecting

∂i−1qn and ∂i+1qn not intersecting ∂iqn

(4.1)

Here and in the following, Uε(·) denotes the ε-neighbourhood. We use cyclic

∂0qn

∂1qn

∂2qn

∂3qn

∂0q

∂1q

∂2q

∂3q

Uǫ(∂1q)

separating path

Figure 4.3. Quads q (solid) and qn (dashed) satisfying condition
(4.1) with the neighbourhood of ∂1q (fine dotted) and a separating
path (strong dashed)
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indexes, i.e. 3 + 1 ≡ 0. The condition demands that ∂iqn is not close to any other
side of qn or q inside the quad for a long time. Thus inside q, ∂iqn is close to ∂iq.
But note that there may be parts of ∂iqn far away from ∂iq and even ∂q outside q.

Lemma 4.1. Let some quads qn, n ∈ N, converge in the kernel sense to a quad q as
n → ∞ (with respect to some z0). Assume further that condition (4.1) is fulfilled.
Let Pη, η > 0, be any (near-)critical probability measures, i.e. Pη = P ι

η for any
bounded sequence (ιη)η ⊂ R.

Then for all ρ > 0 there exist n0 ∈ N and η0 > 0 such that for all n ≥ n0 and
η ≤ η0

Pη

[

⊟ qn △⊟ q
]

≤ ρ ,

where △ denotes the symmetric difference.

Let us remark that we do not impose any smoothness conditions on the boundary
of the quad. Otherwise, we could just use the 3-arm-exponent in the half plane.
We further remark that the proof relies only on RSW techniques. Thus the lemma
is valid on any lattice where RSW works.

In order to prove Lemma 4.1, we want to apply Lemma A.1 of Schramm and
Smirnov (2011). It states that if two quads differ only at one side by some ζ, then
the probability of the symmetric difference of the corresponding crossing events is
small. More precisely, a slightly simplified version reads as follows in our notation.

Let d > 0. There exists a positive function ∆(ζ) such that ∆(ζ) →
0 as ζ → 0 and the following estimates hold. If two quads q, q′ of
diameter at least d satisfy for some ζ < d/2
(i) [. . .] or
(ii) q′ ⊂ q, ∂0q

′ = ∂0q, ∂1q
′ ⊂ ∂1q, ∂3q

′ ⊂ ∂3q and each point on
∂2q

′ can be connected to ∂2q by a path in q of diameter at most
ζ, or

(iii) q′ ⊂ q, ∂0q
′ ⊂ ∂0q, ∂1q

′ = ∂1q, ∂2q
′ ⊂ ∂2q and and each point

on ∂3q
′ can be connected to ∂3q by a path in q of diameter at

most ζ,
then for all η < ζ

Pη

[

⊟ q△⊟ q′
]

≤ ∆(ζ) .

For the sake of completeness, we shortly outline how one can prove that. Let two
quads q, q′ satisfy condition (iii). If ⊟q△⊟q′ happens, there exists a yellow vertical
crossing of q and two blue arms from a disk of radius ζ to ∂0q

′ and ∂2q
′. If we

condition on the left-most yellow vertical crossing, percolation on the right of it is
still unbiased. Therefore we can apply RSW, yielding that the probability of an
arm from a disk of radius ζ to ∂2q

′ tends to 0 as ζ → 0, as desired. The details are
properly written up in Schramm and Smirnov (2011).

Proof of Lemma 4.1. First we claim that for each ε > 0 there exists an n0 ∈ N such
that for all n ≥ n0 the following holds:

• |qn(i, j)− q(i, j)| < ε for each (i, j) ∈ {0, 1}2

• for any z ∈ ∂iq there exist zn ∈ ∂iqn with |z − zn| < ε, i ∈ {0, 1, 2, 3} and
• q \ Uε(∂q) ⊂ qn

Note the uniformity and that z and zn belong to the same side. Indeed, the first
item is obvious from the kernel convergence. The second item can be fulfilled by
covering ∂iq with finitely many balls of radius ε/2 (Condition (4.1) with ε/2 ensures
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that the zn’s belong to the correct side). Finally, using compactness, a finite sub-
cover of the covering of q \ Uε(∂q) by the neighbourhoods used in the definition of
the kernel convergence yields the third item.

Let ε > 0. We will specify ε depending on ρ later on. Let n ≥ n0, where n0 is
associated to ε such that the claim and condition (4.1) hold with this n0. We need
a further scale ε̃ = εα ≫ ε for some α > 0 specified below. For i ∈ {0, 1, 2, 3}, let uε̃

i

be a closed curve, homeomorphic to a circle, around ∂iq, which stays between the
ε̃- and the 2ε̃-neighbourhood of ∂iq. We try to avoid that some of the uε̃

i intersect
each other outside the 2ε̃-neighbourhoods of the quad-corners. If this is not possible
(for example, when q contains a slit), we treat the affected regions as different.

We label the corners of the quad q with a = q(0, 1), b = q(0, 0), c = q(1, 0) and
d = q(1, 1). Now we define some points on the curves uε̃

i near the corners. Starting
at some point of uε̃

0 near b and moving along uε̃
0 outside q (i.e. in counter-clockwise

direction), let ab the first hit point of uε̃
0 ∩ uε̃

3. Similarly, let ad the first hit point
of uε̃

0 ∩ uε̃
3 starting near d and moving along uε̃

3 outside q (i.e. now in clockwise
direction). Analogously we define the points ba, bc, cb, cd, dc and da. The notation
should be interpreted as follows: a point ef (with e, f ∈ {a, b, c, d}) is near to the
corner e, but on the way to f on the curve uε̃ outside q. These definitions are
illustrated in Figure 4.4.

a
ab

ad

b

ba bc

c

cb

cd

d

dc

da

uε̃
0

uε̃
1

uε̃
2

uε̃
3

Figure 4.4. Quads q (solid) and qn (dashed) with the ε-neigh-
bourhood of q (wide dotted), the curves uε̃

i (fine dotted) of q and
the marked points

We use these points and curves to define the following quads. They are schemat-
ically drawn in Figure 4.5 below. We define the quads by giving the corners and
the sides. We do not specify the parametrisations, since they are irrelevant. Let q0

be defined by the corners ad, bc, cb and da with the following sides: Let ∂0q
0 consist

of the part of uε̃
0 between ad and bc which intersects q̄. The side ∂1q

0 consists of
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the part of uε̃
1 between bc and cb which stays outside q̄. The side ∂2q

0 shall consist
of the part of uε̃

2 between cb and da which intersects q̄. And finally, let ∂3q
0 consist

of the part of uε̃
3 between da and ad which stays outside q̄. We abbreviate this

definition by

q0 =
[

ad –i– bc –o– cb –i– da –o–
]

Here we give the corners and the sides between them. An “–o–” indicates that the
corresponding side consists of the part of uε̃

i between the given corners which stays
outside q̄, whereas an “–i–” denotes that the part of uε̃

i which intersects q̄ is used.
With this notation we further define the quads

q1 =
[

ad –i– bc –o– cd –o– dc –o–
]

q2 =
[

ab –o– ba –o– cd –o– dc –o–
]

q3 =
[

ab –o– ba –o– cd –o– dc –i–
]

q4 =
[

ab –o– ba –i– cd –o– dc –i–
]

which are schematically drawn in Figure 4.5.

ad da

bc cb

ab

ba

dc

cd

q0 q1 q2 q3 q4

Figure 4.5. Schematic drawing of the quads q0, q1, q2, q3 and q4

Then

⊟q0△⊟ q4 ⊆
3
⋃

i=0

⊟qi△⊟ qi+1

and each pair (qi, qi+1), i = 0, 1, 2, 3, satisfies condition (ii) or (iii) of Lemma A.1
in Schramm and Smirnov (2011) as cited above with ζ = 4ε̃ (for i = 1, 3, the sides
∂0 and ∂2 as well as the sides ∂1 and ∂3 have to be interchanged). We conclude for
η < ε̃

Pη

[

⊟ q0△⊟ q4
]

≤ f(ε̃)

for some function f with f(ε̃) → 0 as ε̃ → 0.
Now we want to link the previous observation to the event of interest. By the

construction of the quads q0 and q4, every crossing of q4 contains a crossing of q
and every crossing of q contains one of q0, i.e. ⊟q4 ⊆ ⊟q ⊆ ⊟q0. This statement
is only almost true, if we consider qn instead of q, since qn may have excursions
outside Uε̃(q̄), i.e. in general ⊟q4 6⊆ ⊟qn 6⊆ ⊟q0. But as ∂qn will come 4ε-close to
itself after leaving Uε(∂q), we can control the events ⊟qn \ ⊟q0 and ⊟q4 \ ⊟qn, as
follows. Mind that we now use the ε-neighbourhoods. We will need the distance
between ε and ε̃ to control some arm events below.

Let us cover Uε(∂q) with finitely many balls of radius ε centred at points zj,
j ∈ J . We need at most cε−2 many balls, with some numerical constant c > 0.
Assume that there exists x ∈ ∂iqn \ Uε(q), i.e. some part of ∂iqn is far away from
q. Then we claim that there exist j ∈ J and x1, x2 ∈ U2ε(zj) ∩ ∂iqn such that x
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lies in between x1 and x2 on ∂iqn. Indeed, let ∂iqn|1 respectively ∂iqn|2 be the part
of ∂iqn ∩ Uε(∂iq) before respectively after x, and let Uk := Uε(∂iqn|k), k ∈ {1, 2}.
Then ∂iq ⊆ U1 ∪ U2, since for all z ∈ ∂iq there exists zn ∈ ∂iqn with |zn − z| < ε
(second item above), i.e. zn ∈ ∂iqn|1 ∪ ∂iqn|2. Thus U1 ∩ U2 6= ∅. Therefore there
exists j ∈ J with Uε(zj)∩U

1∩U2 6= ∅. We conclude that there are yk ∈ Uε(zj)∩U
k

and xk ∈ ∂iqn|k with |yk − xk| < ε, which implies |xk − zj | < 2ε, k ∈ {1, 2}, as
claimed.

Now if ⊟qn \ ⊟q0 happens, each crossing of qn must leave q0 between bc and cb
or between da and ad. By the geometry of qn, explained in the claim above, the
crossing is forced to re-enter some ball B2ε(zj) with zj ∈ q0 after leaving q0 (at
least ε̃ away from ∂q). Furthermore, it must reach the paths whose existence is
postulated in condition (4.1) for i = 0, 2. Thus it reaches the ε-neighbourhoods of
∂0q and ∂2q, which are of distance at least ε̃ − 2ε of the ball. Thus the crossing
induces four blue arms inside the annulus centred at zj with radii 2ε and ε̃ − 2ε.
Moreover, there must exist two yellow arms inside this annulus preventing q0 being
crossed. The event ⊟q4\⊟qn is treated similarly, or by duality, considering a yellow
vertical crossing of qn which does not induce a vertical crossing of q4. Therefore,
we conclude

(

⊟ qn \⊟q0
)

∪
(

⊟ q4 \⊟qn
)

⊆
⋃

j∈J

A6(zj , 2ε, ε̃− 2ε) ,

where A6(z, ̺, R) denotes the event that there exist six arms, not all of them of the
same colour, inside the annulus centred at z of radii ̺ and R. By standard RSW
techniques, we have for η < ̺

Pη

[

A6(z, ̺, R)
]

≤ (̺/R)2+ν

for some ν > 0 (i.e. the polychromatic 6-arm-exponent is larger than 2). Recall
that ε̃ = εα for some α > 0. Therefore ε̃− 2ε ≥ 1

2ε
α for small α. It follows that

Pη

[

⋃

j∈J

A6(zj , 2ε, ε̃− 2ε)
]

≤ cε−2 · ( 2ε
ε̃−2ε )

2+ν ≤ cεν−2α−να ,

which tends to zero as ε → 0 for sufficiently small α > 0.
Summing up, we have

⊟qn△⊟ q ⊆
(

⊟ q0△⊟ q4
)

∪
⋃

j∈J

A6(zj , 2ε, ε̃− 2ε)

and therefore for η < ε

Pη

[

⊟ qn△⊟ q
]

≤ f̃(ε)

for some function f̃ with f̃(ε) → 0 as ε → 0.

To conclude the proof, given ρ > 0, we choose ε > 0 such that f̃(ε) ≤ ρ, η0 = 1
2ε

and n0 ∈ N associated to ε as above. �

Remark 4.2. Just convergence in the kernel sense is not enough, as the following
counterexample shows. Let q be the quad q : [0, 1]2 → [0, 1]2, q(z) = z, and let
quads qn be given by

qn := [0, 1]2 \ ( 1n , 1]× ( 1
n ,

2
n ), ∂iqn = ∂iq, i ∈ {0, 1, 3},

and ∂2qn consisting of the boundary part between (1, 0) and (1, 1).
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Then qn converge in the kernel sense to q. But if P 0.5
η denotes the critical

percolation measure, then
P 0.5
η (⊟q) = 1

2 ,

whereas
P 0.5
η (⊟qn) → 1

as η → 0 with η ≍ 1/n. RSW yields the last assertion considering concentric
(quarter-)annuli around (0, 0) with radii 2/n · 2k and 2/n · 2k+1, 0 ≤ k ≤ c logn.
Thus a condition like (4.1) is necessary for Lemma 4.1.

4.2. One Mesoscopic Triangle. Now we begin with the proof of Theorem 2.1. Us-
ing the same basic ideas, we more or less follow the set-up of the proof of Nolin
and Werner (2009, Proposition 6). But now and then we take slightly different
approaches for various reasons. In particular, we work longer with the discrete
exploration paths.

Let us fix a sequence (ηk)k∈N fulfilling the hypothesis of the theorem. As ex-
plained before stating the theorem, such a sequence does exist. In the following, we
omit the subscript k of ηk and simply write η for an element of the chosen sequence.
The limit η → 0 is always to be understood along the sequence (ηk)k.

First we need some definitions. Consider a small equilateral triangle t of size δ
which is contained in Hr. The size δ shall be some mesoscopic size, intermediate
between the mesh size η and the size r of the domain.

According to Figure 4.6, we define the open rectangle r = r(t) to be the whole
dotted area, the closed segments l = l(t), m = m(t) and b = b(t) to be the lower,
the middle respectively the upper “line” of r as well as the smaller triangle t′ just
like in Nolin and Werner (2009, p. 814), to which we also refer for exact definitions.
But note that the exact definitions are not that important for the proof.

t

t′ r

l

m

b

Figure 4.6. Definition
of r, m, b and t′

t
a0a2 a1

γ(σ)

∂0

∂1∂1

∂1

∂2 ∂3

Figure 4.7. Definition
of γ(σ), ai and ∂i

Given a curve γ ∈ Sr, let σ = σ(t, γ) be its first hitting time of t \ r or the first
hitting time of l after hitting m, whatever happens first. If γ(σ) ∈ b we say that
the triangle t is good for the curve γ. Let us denote this event by G(t, γ).

If a triangle t is good for a curve γ, we define the following. Let a0 = a0(t) be
the right corner of t′, a1 = a1(t, γ) be the right-most point and a2 = a2(t, γ) the



242 Simon Aumann

left-most point on m ∩ γ[0, σ]. We further define the set d = d(t, γ) as the union
of the connected component of t′ \ γ[0, σ] which has the top boundaries of t′ on its
boundary, and the components of r\(t′∪γ[0, σ]) which touch the former component
between a2 and a1. Then d(t, γ) is a simply connected set whose boundary consists
of ∂t′\(a2, a1) and some points of γ[0, σ]. We partition its boundary as follows. Let
∂0(t, γ) be the part of the boundary between a1 and a0, ∂1(t, γ) the part between a0

and a2, ∂2(t, γ) the prime ends between a2 and γ(σ) and finally ∂3(t, γ) the prime
ends between γ(σ) and a1 (all in counter-clockwise direction). With these boundary
parts, one can consider d(t, γ) as some quad. These definitions are illustrated in
Figure 4.7. Note that they depend on the curve γ only up to time σ.

Now we define the event VG(γ, t) that the triangle t is very good for γ: it holds if
t is good for γ and if, after time σ, γ hits ∂0(t, γ) before ∂1(t, γ). Note that all these
definitions are analogous to Nolin and Werner (2009, p. 814). We only decreased the
indices of ∂i to be consistent with the quad notation introduced above. We further
enlarged the set d a little bit to ensure the observation in the next paragraph.

When we apply these definitions to the discrete exploration paths γη, we adjust
them to the discrete setting: All sets shall be unions of hexagons, a point is consid-
ered as a hexagon and γη[0, σ] shall be the exploration path up to time σ together
with the touching blue and yellow hexagons. If t is good for γη, the event VG(t, γη)
is equivalent to the existence of a blue crossing from ∂0 to ∂2 inside d(t, γη), i.e. to
⊟d(t, γη). This observation is ensured by the slight enlargement of d. Without it,
the exploration path could bypass some blue crossings using hexagons below m.

In the following lemma we estimate the difference between the Pλ
η - and the Pµ

η -
probability of the event that the exploration path is very good for some triangle
conditioned on the path up to time σ. We state (and use) this lemma only in the
discrete setting. By this means, we avoid having to consider a limit simultaneously
in the event and in the conditioning – which is tricky. Let us recall that δ is the
mesoscopic size of the triangle t, that γη : Ωη → Sr is the exploration path and
that α̂4 is the exponent bounding the probability of a four arm event from above.

Lemma 4.3. The following estimate holds for all very small β > 0 and for all
small enough δ and η ≪ δ on the event G(t, γη):

Pλ
η

[

VG(t, γη) | γη[0, σ]
]

− Pµ
η

[

VG(t, γη) | γη[0, σ]
]

≥ δ2−α̂4+β .

Here and in the following, η ≪ δ means for all η < η0 where η0 depends on δ.
In fact, η0 = cδ for some universal constant c > 0 will be enough.

Proof : We follow the corresponding part of the proof of Nolin and Werner (2009,
p. 816). Let η > 0 be small. We couple the percolation configurations in a monotone

manner such that the set of blue hexagons increases. More precisely, let P̂ be the
uniform measure on Ω̂η := [0, 1]H

η
r , and for p ∈ [0, 1] let the random variable

ω(p) : Ω̂η → Ωη be defined by (ω(p)(ω̂))x = blue iff ω̂x ≤ p for x ∈ Hη
r and

ω̂ = (ω̂x)x ∈ Ω̂η.
Given γη[0, σ] and G(t, γη), the event VG(t, γη) only depends on the hexagons

inside d(t, γη) since it is equivalent to ⊟d(t, γη). Moreover, given γη[0, σ], percola-
tion inside d(t, γη) is still unbiased, i.e. we may use all percolation techniques there,
for instance RSW and the separation lemmas.

Suppose now that t is good for γη. We conclude

Pλ
η

[

VG(t, γη) | γη[0, σ]
]

− Pµ
η

[

VG(t, γη) | γη[0, σ]
]

= P̂ [Eη] ,
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where Eη is the event that there exists a blue crossing from ∂0(t, γη) to ∂2(t, γη) in
d(t, γη) for ω(p

λ), but not for ω(pµ).
In order to prove the proposed estimate, we can restrict ourselves to the following

sub-event of Eη. For a hexagon x inside a deterministic rhombus of size 0.1δ inside
d(t, γη) (away from the boundary) and for p ∈ [pµ, pλ], let us consider the event
that x is pivotal for the existence of the desired crossing. In that case there are
four arms of alternating colours from x to the boundary of d(t, γη). Its probability
is bounded from below by C αη

4(δ) for some constant C > 0, uniformly in x, p and
η ≪ δ. This is a consequence of the separation lemmas, RSW and the uniform
estimates for arm events, which are still valid in the nearcritical regime (cf. e.g.
Nolin, 2008). As the crossing event is increasing, the event that x is pivotal and
switched from yellow to blue at p (i.e. ω̂x = p), can happen only for one hexagon

x and for one p. Therefore, the P̂ -probability that this occurs for some x in the
rhombus and for some p ∈ [pµ, pλ], which is clearly a sub-event of Eη, is larger than

Cαη
4(δ) (

0.1δ
η )2 (pλ − pµ) .

Using

pλ − pµ = 1
2 + ληη

2/αη
4(1)−

1
2 − µηη

2/αη
4(1) = (λη − µη) η

2/αη
4(1) (4.2)

we estimate

P̂ [Eη] ≥ C αη
4(δ)(

0.1δ
η )2 (pλ − pµ)

(4.2)
= C′ δ2η−2 αη

4(δ) [α
η
4(1)]

−1η2(λη − µη)

≥ C′′ δ2[αη
4(δ, 1)]

−1(λ − µ+ o(1))

≥ δ2−α̂4+β ,

the latter if δ is small enough, depending on β, C′′ and the o(1)-term. Quasi-multi-
plicativity yields the last but one line. The lemma follows. �

Remark 4.4. Using the ratio limit theorem Garban et al. (2013a, Proposition 4.9.)
(stating limη→0 α

η
4(δ)/α

η
4(1) = δ−5/4) instead of quasi-multiplicativity, we could

have concluded on the hexagonal lattice that

Pλ
η

[

VG(t, γη) | γη[0, σ]
]

− Pµ
η

[

VG(t, γη) | γη[0, σ]
]

≥ Cδ
3
4

for small enough δ and η ≪ δ on G(t, γη), for some constant C > 0 independent of
η and δ.

Remark 4.5. Though the proof of Lemma 4.3 is almost the same as the corre-
sponding part of Nolin and Werner (2009), it contains the main reason, why their
Proposition 6 expands to Theorem 2.1: it is the quite trivial equation (4.2). This
equation shows that the distance between two different nearcritical probabilities is
– up to constants – the same as the distance between a nearcritical and the critical
probability. In fact,

pλ − pµ ≍
η2

αη
4(1)

≍ pnearcritical − pcritical

as η → 0.
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4.3. Many Mesoscopic Triangles. We continue the proof of Theorem 2.1 similar to
Nolin and Werner (2009, p. 816) by looking at a whole bunch of small triangles.
Thereto let δ ≫ η > 0. Later on we will send η – and finally even δ – to zero, but
in this subsection δ and η are fixed. Using a triangular grid of mesh size 4δ, we
place a circle of radius δ at each site and put an equilateral triangle of size δ in its
centre. This defines N = N(δ) ≍ δ−2 deterministic triangles on the whole domain.
We fix some very small β > 0 and set M = M(δ) := ⌊δ−2+α̌2+β⌋, where α̌2 is the
exponent bounding the two arm probability from below.

Given the discrete exploration path γη, we assign each triangle t its hitting time
σ(t, γη) as defined at the beginning of the proof. If a triangle is not hit at all,
we set σ(t, γη) = 1. We arrange the N triangles in the order t1, . . . , tN such that
σ1 ≤ σ2 ≤ . . . ≤ σN where σk = σ(tk, γη). Note that these inequalities are strict
unless σk = σk+1 = 1. We further introduce the σ-Algebras on Ωη

Fk := σ(γη[0, σk+1]) , k ∈ {0, . . . , N − 1}

and FN = FN+1 := σ(γη [0, 1]). Note the shift in the index and the very different
meaning of the two letters σ in that formula. Let us remark that we can already
decide at time σk whether the triangle tk is good or not, i.e. G(tk, γη) ∈ Fk−1.
Moreover, VG(tk, γη) ∈ Fk since if tk is good, the status very good is decided at the
next hitting of the triangle’s boundary and thus before hitting the next triangle at
time σk+1.

Instead of defining a random variable which resembles the quantity Z of Nolin
and Werner (2009, p. 817) right now, we develop a discrete analogue. With that
approach we can explicitly estimate some variances. To this end, we define the
bounded random variables Ωη → R

Xδ,ι
η,n :=

n
∑

k=1

1G(tk,γη)

(

1VG(tk,γη) − P ι
η[VG(tk, γη) | Fk−1]

)

for n ∈ {0, . . . , N} and ι ∈ {µ, λ}. Moreover, Xδ,ι
η,N+1 := Xδ,ι

η,N . By the remark

in the previous paragraph, Xδ,ι
η,n is Fn-measurable. In fact, it is a martingale with

respect to P ι
η since

EP ι
η

[

1G(tn,γη)

(

1VG(tn,γη) − P ι
η[VG(tn, γη) | Fn−1]

)

| Fn−1

]

=

= 1G(tn,γη)

(

EP ι
η
[1VG(tn,γη) | Fn−1]− P ι

η[VG(tn, γη) | Fn−1]
)

= 0 .

But we will need a slightly different martingale. To this end, we define for a ∈ N0

Ta := inf
{

n ∈ N0 :

n
∑

k=1

1G(tk,γη) ≥ a
}

∧ (N + 1) .

Then {Ta = n} ∈ Fn−1 for all n ∈ {1, . . . , N+1} and a ∈ N0 (with F−1 := {∅,Ωη}).
Thus Ta is a “pre-visible stopping time”, i.e. Ta is FTa−1-measurable. As (Ta)a∈N0

is a non-decreasing sequence of bounded stopping times, the Optional Sampling
Theorem implies that

(

Xδ,ι
η,Ta

)

a∈N0
is an (FTa

)a∈N0-martingale with respect to P ι
η .

It follows that

EP ι
η

[

Xδ,ι
η,Ta

]

= 0
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and

VarP ι
η

[

Xδ,ι
η,Ta

]

=

a−1
∑

ã=0

VarP ι
η

[

Xδ,ι
η,Tã+1

−Xδ,ι
η,Tã

]

≤
a−1
∑

ã=0

1 = a

since the absolute value of the increments is at most one. Indeed, as Ta counts the
number of good triangles, all addends between Tã and Tã+1 are zero.

Now we look at the processes stopped at time TM . By Chebyshev’s inequality
it follows that

Pµ
η

[

Xδ,µ
η,TM

≥ δ−1+ 1
2 α̌2

]

≤ δ2−α̌2 VarPµ
η
[Xδ,µ

η,TM

]

≤ δ2−α̌2 ·M ≤ δ2−α̌2 ·δ−2+α̌2+β = δβ.

Moreover, we have by Lemma 4.3 on the event that there are at least M good
triangles, i.e. on {TM ≤ N}

Xδ,µ
η,TM

= Xδ,λ
η,TM

+

TM
∑

k=1

1G(tk,γη)

(

Pλ
η [VG(tk, γη) | Fk−1]− Pµ

η [VG(tk, γη) | Fk−1]
)

≥ Xδ,λ
η,TM

+

TM
∑

k=1

1G(tk,γη) · δ
2−α̂4+

β
2

= Xδ,λ
η,TM

+M · δ2−α̂4+
β
2 ≥ Xδ,λ

η,TM
+ δα̌2−α̂4+2β

for small enough δ and η ≪ δ. Therefore

Pλ
η

[

Xδ,µ
η,TM

≤ 1
2δ

α̌2−α̂4+2β , TM ≤ N
]

≤ Pλ
η

[

Xδ,λ
η,TM

+ δα̌2−α̂4+2β ≤ 1
2δ

α̌2−α̂4+2β
]

= Pλ
η

[

Xδ,λ
η,TM

≤ − 1
2δ

α̌2−α̂4+2β
]

≤ 4 δ2α̂4−2α̌2−4β VarPλ
η
[Xδ,λ

η,TM
]

≤ 4 δ2α̂4−2α̌2−4β ·M ≤ 4 δ2α̂4−α̌2−2−3β .

Thus we arrived at

Lemma 4.6. The following estimates hold:

Pµ
η

[

Xδ,µ
η,TM

≥ δ−1+ 1
2 α̌2

]

≤ δβ

whereas

Pλ
η

[

Xδ,µ
η,TM

≤ 1
2δ

α̌2−α̂4+2β
]

≤ 4 δ2α̂4−α̌2−2−3β + Pλ
η

[

TM = N + 1
]

for all small enough δ and η ≪ δ. �

Let us remark that 2α̂4 − α̌2 − 2 − 3β > 0 for small β by inequality (2.1). The
main ingredient to Lemma 4.6 was the estimate of the variance. For ι ∈ {µ, λ}, we

estimated the variance of Xδ,ι
η,TM

with respect to P ι
η using a martingale structure.

But this approach did not yield an estimate of the variance of Xδ,µ
η,TM

with respect

to Pλ
η (mind the λ and the µ), which, together with the corresponding expectation,

would have been nice for the second statement of Lemma 4.6. Instead we used a
point-wise estimate of Xδ,µ

η,TM
−Xδ,λ

η,TM
.

One could be tempted to simply estimate the variance by independence since the
considered triangles are disjoint. But this account is tricky since the exploration
path obviously depends on its past, and therefore the events G(tk, γη) respectively
VG(tk, γη), k ∈ {1, . . . , N}, are not independent. Moreover, the exploration path
could enter, leave and re-enter the bottom half of the rectangle r of some triangle
while making a different triangle good and possibly very good in the meantime.
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Hence we chose the martingale approach described above which does not use any
geometric information. Alternatively, it may be possible to estimate the variance
with some ideas used in the proof of Lemma 4.7 below.

We still have to look at the event {TM = N +1}, i.e. at the event that there are
less than M = ⌊δ−2+α̌2+β⌋ good triangles to benefit from the second estimate of
Lemma 4.6.

Lemma 4.7. There are a function J with J(δ) → ∞ as δ → 0 and a numerical
constant C0 ∈ (0, 1) such that

Pλ
η

[

TM = N + 1
]

= Pλ
η

[

N
∑

k=1

1G(t,γη) < M
]

≤ (1 − C0)
J(δ)

for small enough δ and η ≪ δ.

Proof : We follow the rough outline in Nolin and Werner (2009, p. 816f) using
ideas of the proof of their Proposition 2. We choose J = J(δ) such that δβ =
c5(r2

−J )2−α̌2 with some constant c5 > 0 specified below. The reason for that
choice will become clear later on. Since α̌2 < 2, J(δ) tends to infinity as δ → 0.

We use the notation f(η, δ, j) ≍ g(η, δ, j) to indicate that there are numerical
constants c, c′ > 0 such that ∃ δ0 > 0 ∀ δ < δ0 ∃ η0 > 0 ∀ η < η0 ∀ j ∈ {0, . . . , ⌊J⌋}:

c f(η, δ, j) ≤ g(η, δ, j) ≤ c′ f(η, δ, j) .

Below we will need a statement similar to item (3) in Nolin and Werner (2009,
p. 803), namely

n
∑

k=1

kαη
2(δ, 4δk) ≍ n2αη

2(δ, 4δn) . (4.3)

Since it is harder to cross a larger annulus, we have in one direction
n
∑

k=1

kαη
2(δ, 4δk) ≥

n
∑

k=1

kαη
2(δ, 4δn) ≥

1
2n

2αη
2(δ, 4δn) .

The other direction follows using quasi-multiplicativity:
n
∑

k=1

k
αη
2(δ, 4δk)

αη
2(δ, 4δn)

≤ C

n
∑

k=1

k
1

αη
2(4δk, 4δn)

≤ C

n
∑

k=1

k
(4δn

4δk

)α̌2

≤ C

n
∑

k=1

k
n

k
= Cn2

since α̌2 ≤ 1.
Now we begin with the actual proof. We choose 0 < δ < δ0 and 0 < η < η0 for

some appropriate δ0 > η0 > 0. Let us recall that our domain is the half-circle Hr

with radius r > 0. We consider the following half-annuli:

Bj := Hr2−j \Hr2−j−1 j ∈ {0, . . . , ⌊J⌋} ,

If δ and β are small enough, then δ < 2−10c−1
5 δβ = 2−10(r2−J )2−α̌2 ≤ r2−J−10

by the choice of J and α̌2 ≤ 1. Thus there are some triangles in the half-annuli.
Let Tj be the set of all triangles which are contained in Bj and whose distance
from the boundary of Bj is at least r2−j−3. Tj consists of ≍ r22−2jδ−2 triangles.
For a triangle t ∈ Tj , let G′

j(t) be the event that there are a blue and a yellow
arm originating at b(t), crossing r(t), staying inside Bj and finally ending at the
negative respectively positive real axis. If G′

j(t) is fulfilled, then t is good for γη,
i.e. G′

j(t) ⊂ G(t, γη).
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Now we want to estimate the probability of G′
j(t). Note that G′

j(t) implies

A2(t, δ, r2
−j−3), the event that there exist two arms of different colour inside

the annulus with radii δ and r2−j−3 centred at the centre of t. Conversely if
A2(t, δ, r2

−j−3) with some specified separated landing sequences is fulfilled and if
some deterministic rectangles of fixed aspect ratio are crossed, then G′

j(t) occurs.
By the arm separation lemmas and RSW it follows that

Pλ
η

[

G′
j(t)

]

≍ Pλ
η

[

A2(t, δ, r2
−j−3)] ≍ αη

2(δ, r2
−j) .

Let the random variable Gj be the number of triangles t ∈ Tj that fulfil G′
j(t).

We want to estimate the probability that Gj is quite small. Thereto we apply the
second moment method. While the first moment is immediately estimated:

EPλ
η
[Gj ] =

∑

t∈Tj

Pλ
η [G

′
j(t)] ≍

∑

t∈Tj

αη
2(δ, r2

−j) ≍ r22−2jδ−2αη
2(δ, r2

−j) ,

the second moment is more involved. Let t, t̃ ∈ Tj be two different triangles. Let
‖t; t̃‖ denote the distance of their centres. If both events G′

j(t) and G′
j(t̃) occur,

then there are two crossings of different colour in each of the the following three
annuli: the annulus around t with radii δ and 1

2‖t; t̃‖, the annulus around t̃ with

radii δ and 1
2‖t; t̃‖, and finally the annulus around the centre between the two

triangles with radii 2‖t; t̃‖ and r2−j−3. Since these annuli are disjoint, it follows
that

Pλ
η [G

′
j(t) ∩G′

j(t̃)] ≤ c1 · α
η
2(δ,

1
2‖t; t̃‖) · α

η
2(δ,

1
2‖t; t̃‖) · α

η
2(2‖t; t̃‖, r2

−j−3) .

Here and in the following, c1, c2, . . . , c7 > 0 are numerical constants. Using quasi-
multiplicativity, we conclude

EPλ
η

[

G2
j

]

=
∑

t∈Tj

Pλ
η [G

′
j(t)] +

∑

t6=t̃∈Tj

Pλ
η [G

′
j(t) ∩G′

j(t̃)]

≤ EPλ
η

[

Gj

]

+ c2
∑

t6=t̃∈Tj

αη
2(δ, 4δ

⌊

1
8δ ‖t; t̃‖

⌋

) · αη
2(δ, r2

−j) .

Since the triangles were placed using a triangular grid of mesh size 4δ, there
are at most c3 · k triangles in Tj at distance 4δk from some fixed triangle for
k ∈ {1, . . . , ⌊r2−j/δ⌋} and no triangles further away. This, equation (4.3) and the
estimate of the first moment imply

EPλ
η

[

G2
j

]

− EPλ
η

[

Gj

]

≤ c2
∑

t∈Tj

⌊r2−j/δ⌋
∑

k=1

c3 k α
η
2(δ, 4δ k) · α

η
2(δ, r2

−j)

≍ EPλ
η
[Gj ] · ⌊r2

−j/δ⌋2αη
2(δ, 4δ⌊r2

−j/δ⌋) ≍ EPλ
η
[Gj ]

2 .

As (note that 1
2 and M will become relevant later on)

1
2EPλ

η
[Gj ] ≥ c4r

22−2jδ−2αη
2(δ, r2

−j) ≥ c5r
22−2jδ−2

(

δ/(r2−j)
)α̌2

= c5
(

r2−jδ−1
)2−α̌2 ≥ c5

(

r2−Jδ−1
)2−α̌2

= δβδ−2+α̌2 ≥ M ≥ 1

by our choice of J and M = ⌊δ−2+α̌2+β⌋, we conclude

EPλ
η

[

G2
j

]

≤ c6 EPλ
η

[

Gj

]2
+ EPλ

η

[

Gj

]

≤ c7 EPλ
η

[

Gj

]2
.
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Since

E[X ] = E
[

X1X< 1
2E[X] +X1X≥ 1

2E[X]

]

≤ 1
2E[X ] + E

[

X1X≥ 1
2E[X]

]

and therefore
(

1
2E[X ]

)2
≤ E

[

X1X≥ 1
2E[X]

]2
≤ E

[

X2
]

· P
[

X ≥ 1
2E[X ]

]

holds for any non-negative random variable X , we conclude

Pλ
η

[

Gj ≥
1
2EPλ

η
[Gj ]

]

≥
EPλ

η
[Gj ]

2

4EPλ
η
[G2

j ]
≥ C0

for the numerical constant C0 := (4c7)
−1 ∈ (0, 1).

As Gj depends only on the hexagons inside Bj and as these sets are pairwise
disjoint, it follows that

Pλ
η

[

Gj <
1
2EPλ

η
[Gj ] for all j ∈ {0, . . . , ⌊J⌋}

]

≤ (1− C0)
J+1 .

Now we link the former event to the event of interest to conclude the proof. On
the one hand, we have

Gj ≤
N
∑

k=1

1G(tk,γη)

for all j ≤ J since every triangle t with G′
j(t) is good for γη. On the other hand,

we already estimated for all j ≤ J :
1
2EPλ

η
[Gj ] ≥ M .

Therefore we conclude

Pλ
η

[

N
∑

k=1

1G(t,γη) < M
]

≤ Pλ
η

[

Gj <
1
2EPλ

η
[Gj ] for all j ≤ J

]

≤ (1− C0)
J+1 ,

which completes the proof. �

In fact, this lemma is the only place where we used the fact that we have a
straight boundary near the starting point of the exploration path. Therefore it was
possible to define the sets Bj such that the estimates above hold uniformly for all
j. A smooth boundary would also have been sufficient, but for a fractal boundary
additional ideas are necessary.

4.4. Continuum Limit. Now we want to pass to the limit. Thereto we will need
the following convergence lemma. Let us remark, that Nolin and Werner could just
rely on Cardy’s formula for their convergence results whereas we will have to use
Lemma 4.1.

Lemma 4.8. Let T be a finite set of triangles in Hr. Then there exists a set
N ⊂ Sr with

Γι[N ] = 0 , ι ∈ {µ, λ} ,

and such that for all γ ∈ N c the following holds: If γn, n ∈ N, is a sequence in Sr

with dist(γn, γ) → 0 as n → ∞, then for all triangles t ∈ T

1G(t,γn) → 1G(t,γ) , 1VG(t,γn) → 1VG(t,γ)

as n → ∞ and for all ρ > 0 there exist n0 ∈ N and η0 > 0 such that for all n ≥ n0

and η ≤ η0
∣

∣1G(t,γn)P
ι
η

[

⊟ d(t, γn)
]

− 1G(t,γ)P
ι
η

[

⊟ d(t, γ)
]∣

∣ ≤ ρ
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for ι ∈ {µ, λ}.

Proof : Let N be the set of all curves γ which – for some triangle t ∈ T – hit
an end point of b(t) or a0(t) or only touch b(t) or the boundary of t′ without
crossing them. Then we claim that RSW implies that Γι[N ] = 0, ι ∈ {µ, λ}.
Indeed, considering concentric annuli around any deterministic point yields that
γ hits that point with Γι-probability zero. And if γ touches any deterministic
straight line (without crossing it), then there are three macroscopic (i.e. of size r)
arms of alternating colours originating at some point on the line going to one of
its sides. Since the 3-arm half-plane exponent is larger than 1 (in fact, it is 2 by
RSW considerations, see Nolin (2008, Theorem 23), for instance), this event has
Γι-probability zero. As N consists of finitely many such events, the claim follows.

For the remainder of the proof let γ ∈ N c, let γn converge to γ in the dist-metric
and let t ∈ T .

Suppose that t is good for γ. Since dist(γn, γ) → 0, i.e. γn[0, 1] → γ[0, 1] in
the Hausdorff sense, and since γ crosses b at σ and does not hit an end point of b
(because of γ ∈ N c), t is also good for γn for all large enough n. Conversely, if t is
good for γn for all large n, it is also good for γ. Now let t be good for γ and for γn

for all large n. Since γ crosses ∂0 ∪ ∂1 at the first hitting and since γ does not hit
a0, the status of being very good is identical for γ and for γn for all large enough n.
Thus we have shown that 1G(t,γn) → 1G(t,γ) and 1VG(t,γn) → 1VG(t,γ) as n → ∞.

For the last assertion let ρ > 0. We can assume that t is good for γ and for γn for
all large n. Since d(t, γ) is defined as the connected component of t′ \ γ[0, σ] which
contains a point near the tip of t together with some components also defined by
γ[0, σ] and as dist(γn, γ) → 0, we conclude that d(t, γn) converge in the kernel sense
to d(t, γ). Furthermore, dist(γn, γ) → 0 implies condition (4.1). Thus Lemma 4.1
yields that there are n0 ∈ N and η0 > 0 such that for all n ≥ n0 and η ≤ η0

∣

∣

∣
P ι
η

[

⊟ d(t, γn)
]

− P ι
η

[

⊟ d(t, γ)
]

∣

∣

∣
≤ P ι

η

[

⊟ d(t, γn)△ ⊟ d(t, γ)
]

≤ ρ

which implies the last assertion since G(t, γn) and G(t, γn) for all large n simulta-
neously hold. �

Inspired by the random variables Ta and X defined on Ωη, we define the following
random variables, but on Sr this time. We still have η ≪ δ fixed and we use the
triangles defined above. Given a curve γ ∈ Sr we arrange them in the order
t1, . . . , tN according to their hitting time as above. Recall that M = ⌊δ−2+α̌2+β⌋.
We define

T := inf{n ∈ N :

n
∑

k=1

1G(tk,·) ≥ M} ∧ (N + 1)

and

Zδ,µ
η :=

T
∑

k=1

1G(tk,·)

(

1VG(tk,·) − Pµ
η

[

⊟ d(tk, ·)
])

on Sr. Finally we define, letting η → 0 now,

Zδ,µ := lim
η→0

Zδ,µ
η =

T
∑

k=1

1G(tk,·)

(

1VG(tk,·) − lim
η→0

Pµ
η

[

⊟ d(tk, ·)
])

,

which resembles the quantity Z in Nolin and Werner (2009, p. 817). The limit
exists for all curves γ ∈ Sr since we have chosen the subsequence (ηk)k∈N with the
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property that the limit of the crossing probabilities of any quad exists. Note that
we defined these random variables only for the parameter µ and not for λ, since we
will only need the versions with µ.

Lemma 4.9. The laws Zδ,µ
η (Γι

η) converge weakly to Zδ,µ(Γι) as η → 0, for ι ∈
{µ, λ}.

Proof : Let ι ∈ {µ, λ}. We use Skorokhod’s representation theorem to construct
the following coupling. Let (Ω̄, Ā, P̄ ) be a suitable probability space and let γ̄, γ̄η :
Ω̄ → Sr , η > 0, random variables such that γ̄η → γ̄ P̄ -a.s. (in the dist-metric) as
η → 0 and such that Γι = γ̄(P̄ ) and Γι

η = γ̄η(P̄ ), η > 0. From Lemma 4.8 it follows
that

Zδ,µ
η ◦ γ̄η → Zδ,µ ◦ γ̄ P̄ -a.s.

since P̄
[

γ̄−1[N c]
]

= Γι[N c] = 1 and since every ingredient converges on γ̄−1[N c].
In particular note that Lemma 4.8 implies that if we choose any sequence n(η) such
that n(η) → ∞ as η → 0, then

lim
η→0

1G(t,γn(η))P
µ
η

[

⊟ d(t, γn(η))
]

= lim
n→∞

lim
η→0

1G(t,γn)P
µ
η

[

⊟ d(t, γn)
]

,

since the double limit is uniform in n and η. Therefore 1G(t,γ̄η)P
ι
η[⊟d(t, γ̄η)] con-

verges on γ̄−1[N c].
Let f : R → R be a continuous and bounded function. By the Dominated

Convergence Theorem, we conclude
∫

f d
(

Zδ,µ
η (Γι

η)
)

=

∫

f(Zδ,µ
η ◦ γ̄η) dP̄ →

∫

f(Zδ,µ ◦ γ̄) dP̄ =

∫

f d
(

Zδ,µ(Γι)
)

as η → 0. Thus the Portmanteau Theorem yields the desired weak convergence. �

For that Lemma it is crucial that the limit of Zδ,µ
η does exist, which is ensured

by the choice of the sequence ηk in the very beginning. For the definition of Zδ,µ,
in principle, it is possible to use the limes superior. But then there are problems
showing the weak convergence since the sequence used to determine the limes su-
perior may depend on γ. The results in Schramm and Smirnov (2011) allowed us
to choose the same sequence for all curves.

Now we give the link between the results on the discrete paths and the con-
vergence lemmas to conclude the proof of Theorem 2.1. The key is the following

connection between the random variables Xδ,µ
η,TM

, Zδ,µ
η and γη. On the event that

a triangle t is good for the discrete exploration path γη, it is very good if and only
if the quad d(t, γη) is crossed. Therefore

Xδ,µ
η,TM

= Zδ,µ
η ◦ γη

by their definitions. We conclude Zδ,µ
η (Γι

η) = Zδ,µ
η (γη(P

ι
η)) = (Zδ,µ

η ◦ γη)(P
ι
η) =

Xδ,µ
η,TM

(P ι
η). Now Lemma 4.6 yields

Γµ
η

[

Zδ,µ
η ≥ δ−1+ 1

2 α̌2
]

= Pµ
η

[

Xδ,µ
η,TM

≥ δ−1+ 1
2 α̌2

]

≤ δβ

and

Γλ
η

[

Zδ,µ
η ≤ 1

2δ
α̌2−α̂4+2β

]

≤ 4δ2α̂4−α̌2−2−3β + Pλ
η

[

TM = N + 1
]

.

With Lemma 4.9 and the Portmanteau Theorem we conclude

Γµ
[

Zδ,µ > δ−1+ 1
2 α̌2

]

≤ lim inf
η→0

Γµ
η

[

Zδ,µ
η > δ−1+ 1

2 α̌2
]

≤ δβ
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and

Γλ
[

Zδ,µ < 1
2δ

α̌2−α̂4+2β
]

≤ lim inf
η→0

Γλ
η

[

Zδ,µ
η < 1

2δ
α̌2−α̂4+2β

]

≤ 4δ2α̂4−α̌2−2−3β + (1 − C0)
J(δ) ,

where J(δ) and C0 are chosen according to Lemma 4.7.
Because of inequality (2.1), namely 2α̂4− α̌2 > 2, we can now choose a sequence

δn, n ∈ N, converging fast enough to zero such that the bounds on the right hand
sides are summable. Then the Borel-Cantelli Lemma yields

Γµ[Zδn,µ > δ
−1+ 1

2 α̌2
n for infinitely many n] = 0

and

Γλ[Zδn,µ < 1
2δ

α̌2−α̂4+2β
n for infinitely many n] = 0 .

Because of inequality (2.1) again, we have 1− 1
2 α̌2 < α̂4 − α̌2 − 2β, which implies

δ−1+ 1
2 α̌2 < 1

2δ
α̌2−α̂4+2β

for δ < 1 small enough. Thus we conclude

Γλ[Zδn,µ > δ
−1+ 1

2 α̌2
n for infinitely many n] = 1 .

Therefore we detected an event which has probability zero under Γµ, but probability
one under Γλ. This concludes the proof of Theorem 2.1.

Let us remark that we used inequality (2.1) only in the very last paragraph.
In fact, this is the only place where we need a property proven only for of the
hexagonal lattice, namely the values of two critical exponents.

5. Consequences for Conformal Maps

The critical scaling limit is conformally invariant. Does a similar statement hold
for nearcritical limits? We can use the result above to give a negative answer to
that question.

Let D be a domain and f : D → D̃ be a conformal map. We consider percolation
with pµη = 1

2 +µ ·η2/αη
4(1) in both domains. Let a ∈ ∂D and ã := f(a). We impose

some corresponding boundary colours near a and ã. Let γη respectively γ̃η be the
discrete exploration paths starting at a respectively at ã. If γη(P

µ
η ) → Γµ and

γ̃η(P̃
µ
η ) → Γ̃µ weakly, we consider the following question: How are the laws f(Γµ)

and Γ̃µ related? We give an answer in the special case considering a scaling map
on Hr for some r > 0.

Corollary 5.1. Let D = Hr for some r > 0 and let f : D → D̃ be the scaling map
with factor σ ∈ R+, i.e. f(z) = σz. Assume γη(P

µ
η ) → Γµ, γ̃η(P̃

µ
η ) → Γ̃µ weakly

and that P̃µ
η (⊟q̃) converge as η → 0 for every quad q̃ in D̃.

If σ = 1 or µ = 0, f(Γµ) and Γ̃µ are identically distributed. But if σ 6= 1 and

µ 6= 0, the laws f(Γµ) and Γ̃µ are singular with respect to each other.

Proof : The statement is clear if σ = 1 since then f is the identity map. If µ = 0 we
are in the well-known critical case. Thus we may assume σ 6= 1 and µ 6= 0. Let ωη

be a realization of percolation in D with mesh size η and pµη = 1
2 +µη2/αη

4(1). Then
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f(ωη) is a realization of percolation in D̃ with mesh size ση =: ζ. Each hexagon of
f(ωη) is blue with probability

p′ζ =
1

2
+ µ

η2

αη
4(1)

=
1

2
+ µ

αση
4 (1)

σ2αη
4(1)

·
(ση)2

αση
4 (1)

=
1

2
+ µσ

5
4 (1 + o(1))σ−2 ·

ζ2

αζ
4(1)

,

where we used αση
4 (1) = αη

4(σ
−1) and the ratio limit theorem Garban et al. (2013a,

Proposition 4.9.) stating limη→0 α
η
4(δ)/α

η
4(1) = δ−5/4. Therefore f(ωη) is a re-

alization of percolation in D̃ with mesh size ζ and pλζ = 1
2 + λζ · ζ2/αζ

4(1) where

λζ → µσ−3/4 =: λ 6= µ. Therefore f(Pµ
ζ/σ) = P̃λ

ζ . Note that γ̃ζ ◦f = f ◦γζ/σ by the

definition of the exploration paths. Thus γ̃ζ(P̃
λ
ζ ) = γ̃ζ(f(P

µ
ζ/σ)) = f(γζ/σ(P

µ
ζ/σ)).

As we assumed that γη(P
µ
η ) converge weakly to Γµ, it follows that γ̃ζ(P̃

λ
ζ ) converge

weakly to f(Γµ) =: Γ̃λ since f is continuous.

On the other hand, γ̃η is the discrete exploration path of percolation in D̃ with

pµη = 1
2 +µ · η2/αη

4(1), whose law converges weakly to Γ̃µ. By Theorem 2.1, Γ̃µ and

f(Γµ) are singular with respect to each other (even if µσ− 3
4 < µ by the remark in

the second paragraph after stating the theorem). �
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