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Abstract. If P is a moment-indeterminate probability distribution, then it is de-
sirable to present explicitly other distributions possessing the same moments as
P. In this paper, a method to construct an infinite family of probability densi-
ties - called the Stieltjes class - all with the same moments is presented. The
method is applicable for densities with support (0,∞) which satisfy the lower
bound: f(x) ≥ A exp{−axα} for some A > 0, a > 0 and some α ∈ (0, 1/2).

1. Introduction

Let P be an absolutely continuous probability distribution with finite moments
of all orders. If the moment problem for P has a unique solution, then P is said to
be M-determinate, otherwise it is M-indeterminate. The systematic treatment of
the moment problem is presented in the classical sources Akhiezer, 1965 and Shohat
and Tamarkin, 1943. There is a number of known criteria both for M-determinacy
and M-indeterminacy. However, in the case of M-indeterminacy, those criteria do
not advise how to find explicitly distributions different from P and with the same
moments.

Let us mention that it is exactly the M-indeterminacy property that was crucial
for constructing sets of random variables with given marginal distributions and
possessing prescribed uncorrelatedness sets, see Ostrovska (2005).

In this paper, absolutely continuous M-indeterminate distributions are consid-
ered. The goal is to start with a given probability density f of an M-indeterminate
distribution P and construct a Stieltjes class, that is, an infinite family of differ-
ent distributions all with the same moments. The answer is given in terms of the
density f and a function called ‘perturbation’.

The term ‘Stieltjes class’ was introduced in Stoyanov (2004), while the idea is
traced back to works by Stieltjes (1995), Heyde (1963), and Berg (1988). Further
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results on the Stieltjes classes along with various methods for their construction
are available in Lin and Stoyanov (2009); Ostrovska and Stoyanov (2005); Pakes
(2007); Stoyanov and Tolmatz (2005). The subject is currently under scrutiny and
new researches are constantly coming out. See, for example, Kleiber (2013b,a).
The method proposed in this article has an advantage of being applicable easily
for construction of the Stieltjes classes even for “casewise” given density functions,
when the methods involving integration are ineffective.

Let us recall the necessary notations and definitions introduced in Stoyanov
(2004).

Definition 1.1. Let f be a probability density possessing finite moments of all
orders. Let h be a measurable function on (−∞,∞) such that vraisup|h(x)| = 1.
If, for any polynomial Q, ∫

R
Q(x)h(x)f(x) dx = 0,

then h is called a perturbation of f.

In this case, we also say that the product hf has its all moments vanishing.

Definition 1.2. Given a probability density f and its perturbation h, the set

S = S(f, h) := {fε(x) : fε(x) = f(x)[1 + ε h(x)], x ∈ R, ε ∈ [−1, 1], }
is said to be a Stieltjes class for density f based on perturbation h.

Clearly, S is an infinite family of probability densities all having the same mo-
ments as f. Notice that, for a given probability density f, there exist different
Stieltjes classes based on different perturbation functions h. Trivially, a convex
combination of perturbations is again a perturbation.

For any Stieltjes class S = S(f, h), the following quantityDS :=
∫∞
−∞|h(u)|f(u) du

is said to be the index of dissimilarity of the class. Obviously, DS ∈ [0, 1]. This
index can be regarded as a global characteristic of the class S. It shows the amount
of “indeterminacy” within the class S(f, h), see Stoyanov (2004).

2. Main result and its proof

Let us have an absolutely continuous probability distribution P with support
[0,∞) and density f. It can be observed directly from Definition 1.2 that the crucial
step in the construction of a Stieltjes class for f is finding a perturbation function
h. Under certain conditions on f, this can be achieved with the help of the following
theorem.

Theorem 2.1. Suppose that for some constants A > 0, a > 0 and α ∈ (0, 1/2),
density f does not fall below the lower bound:

f(x) ≥ A exp{−axα}, x > 0. (2.1)

Let g(z) be a function which is analytic in {z : Imz ≥ 0} \ {0} with g(x) being
real for x > 0, and whose values are within the upper bound:

|g(z)| ≤ B exp{−a|z|α}, z ∈ {z : Imz ≥ 0} \ {0} for some B > 0. (2.2)

Then, the function

h(x) :=
Im g(−x)

f(x)
, x ∈ [0,∞)
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is bounded and, moreover, the product f(x)h(x), x ∈ [0,∞) has all moments van-
ishing.

Comment. A density f satisfying (2.1) corresponds to a distribution which is
M-indeterminate. This follows from the well-known Krein criterion, see Stoyanov
(2013), Section 10.

Proof : Choose real numbers 0 < r < R and consider in the upper half-plane a
closed contour L := l1 ∪ l2 ∪ l3 ∪ l4, consisting of two segments: l1 = [r,R] and
l3 = [−R,−r], and two arcs (semi-circles): l2 = {z : |z| = R, 0 < argz < π}, and
l4 = {z : |z| = r, 0 < argz < π}.

By the Cauchy Theorem∮
L

zng(z) dz = 0, n = 0, 1, 2, . . . ,

where we take positive (i.e. counterclockwise) direction of the path.
Clearly,∮

L

=

∫
l1

+

∫
l2

+

∫
l3

+

∫
l4

=: I1 + I2 + I3 + I4 with Ij =

∫
lj

, j = 1, 2, 3, 4.

We are going to show that, under condition (2.1), the integrals along the arcs
tend to 0 as r → 0 and R → ∞. Indeed, we note that

|I2| ≤ πRn+1 ·B exp{−aRα} → 0 as R → ∞.

Likewise, we get:

|I4| ≤ πrn+1B exp{−arα} → 0 as r → 0.

Therefore, passing to the limit as R → ∞, r → 0, we get∫ ∞

0

xng(x) dx+ (−1)n
∫ ∞

0

xng(−x) dx = 0, n = 0, 1, 2, . . . (2.3)

Taking the imaginary part of (2.3), one obtains:∫ ∞

0

xn [Img(−x)] dx = 0. (2.4)

We set:

h(x) :=
Im g(−x)

f(x)
for x > 0.

Then (2.4) implies immediately that h(x)f(x) has all moments vanishing. It re-
mains to show that h(x) is bounded on [0,∞). To do this, we use the bounds (2.1)
and (2.2) to obtain:

|h(x)| ≤ B

A
.

This completes the proof.
�

The next statement provides a practical way to find perturbation functions for
a given density satisfying (2.1).
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Theorem 2.2. Let f(x) be a probability density on [0,∞) possessing finite moments
of all orders and satisfying the bound (2.1). Let g(z) be a function which is analytic
in {z : Imz ≥ 0} \ {0} with g(x) being real for x > 0, and which satisfies the bound:

|g(z)| ≤ B exp{−b|z|β}, z ∈ {z : Imz ≥ 0} \ {0} (2.5)

for some B > 0, b > 0 and β ∈ (α, 1/2).
Then the function

h(x) :=
Im g(−x)

f(x)
(2.6)

is bounded on [0,∞) and, moreover, f(x)h(x) has all moments vanishing.
The proof of Theorem 2.2 is a direct consequence of Theorem 2.1, because esti-

mate (2.5) implies (2.2) with a proper choice of constant B.

Corollary 2.3. Set Mh = supx∈R |h(x)|, where h is given by (2.6). Then, the
function h(x)/Mh, x ∈ [0,∞) can serve as a perturbation for the density f.

3. Particular Stieltjes classes

In this section, examples of Stieltjes classes for some popular M-indeterminate
probability densities are presented. It should be emphasized that, since only an
estimate for the density f(x) is needed, we can easily find different classes writing
the corresponding g(z) with appropriate parameters. It is worth to point out that
some important densities, such as those for powers of exponential, normal, and
power logistic (cf. Koutras et al. (2014)) distributions possess the lower bound of
the form (2.1).

In what follows, C stands for a positive constant whose value is determined by
the norming condition for the probability density f and a perturbation function h.

Example 3.1. Let f(x) be a probability density of the form:

f(x) = C exp{−axα}, x > 0, a > 0, α ∈ (0, 1/2).

Case 1. Select g(z) = exp{− a
cosπαz

α}. Clearly, for z = |z|eiϕ, 0 ≤ ϕ ≤ π, one
has:

|g(z)| = exp{− a

cosπα
|z|α cosϕα} ≤ exp{−a|z|α}

as required by (2.2). Now,

Img(−x) = − exp{axα} sin (axα sinπα) , (3.1)

implying that the perturbation is h(x) = sin (axα sinπα) .
Case 2. Choose g(z) = zu exp{−bzβ}, u, b > 0, β ∈ (α, 1/2). Estimate (2.5) is

obviously satisfied. As g(−x) = xu exp{−ibxβπueiπβ}, one obtains:

h(x) = Cxu exp{axα − bxβ cosπβ} sin(πu− bxβ sinπβ).

Case 3. Let g(z) = exp{−bzβ ln z}, β ∈ (α, 1/2). Estimate (2.5) is satisfied
because:

|g(z)| = exp{−b|z|β ln |z| · cos(ϕβ)} exp{bϕ sin(ϕβ)|z|β}
≤ C2 exp{−b|z|β} for some C2 > 0.

Therefore, in view of Theorem 2.2,

h(x)=C exp{axα−bxβ(cos(πβ) lnx−π sin(πβ))} sin
(
bxβ(π cosπβ + lnx sin(πβ))

)
.
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Example 3.2. Let f(x) be a probability density of the form:

f(x) = Cx−u exp{−axα}, a > 0, u ∈ (0, 1), α ∈ (0, 1/2).

Obviously, this density satisfies condition (2.1) with any α′ > α.

Case 1. Given ρ > 1, set g(z) = exp{− aρ
cosπαz

α}, yielding |g(z)| ≤ exp{−aρ|z|α},
so that Theorem 2.1 is applicable. By plain calculations, the perturbation function
is:

h(x) = Cxu exp{−a(ρ− 1)xα} sin(aρxα tanπα).

Case 2. Taking g(z) = exp{−bzβ}, b > 0, β ∈ (α, 1/2), one obtains the
perturbation function as:

h(x) = C xu exp{axα − bxβ cosπβ} sin(bxβ sinπβ).

In the case b = 1 or b = 1/(cosπβ), we recover perturbation functions h1(x) and
h2(x) previously found in Stoyanov and Tolmatz (2005).

Case 3. For ρ > 1, put g(z) = zu exp{− aρ
cos(πα)z

α}. Then, for some C1 > 0, the

following estimate holds: |g(z)| ≤ |z|u exp{−aρ|z|α} ≤ C1 exp{−a|z|α}, because
ρ > 1. By virtue of Theorem 2.1, we find a perturbation function of the form:

h(x) = C exp{−a(ρ− 1)xα} sin (πu− aρxα tan(πα)) .

Remark 3.3. As a limiting case, with ρ = 1, one has: h(x) = sin(πu−axα tan(πα)).
It can be verified directly that h(x)f(x) has all vanishing moments. We notice that
this is the perturbation function hB(x) found previously in Stoyanov and Tolmatz
(2005) by different methods.

Example 3.4. Consider a case-wise defined density of the form:

f(x) =

{
c1e

s(x) if x ∈ [0, x0],
c2e

−axα

if x ∈ (x0,+∞),

where a > 0, α ∈ (0, 1/2), and s(x) is any bounded function on [0, x0]. Clearly, any
function g(z) from examples above can be used to find the perturbation h(x). It
should be pointed out that our method allows to find Stieltjes classes even though
direct computation of integrals for specific densities is rather difficult. We present
just one simple perturbation function, while the other cases can be treated in a
similar way.

Choose g(z) = exp{− a
cos(πα)z

α}. Using (3.1), we obtain:

h(x) =

{ 1
c1

exp{axα − s(x)} sin(axα sin(πα)) if x ∈ [0, x0],
1
c2

sin(axα sin(πα)) if x ∈ (x0,∞).
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