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Abstract. We consider percolation in a multiscale Boolean model. This model
is defined as the union of scaled independent copies of a given Boolean model.
The scale factor of the nth copy is ρ−n. We prove, under optimal integrability
assumptions, that no percolation occurs in the multiscale Boolean model for large
enough ρ if the rate of the Boolean model is below some critical value.

1. Introduction and statement of the main result

1.1. The Boolean model. Let d ≥ 2 and µ be a finite measure on ]0,+∞[ having µ
positive mass. Let ξ be a Poisson point process on Rd×]0,+∞[ whose intensity is
the product of the Lebesgue measure on Rd by µ. With ξ we associate a random
set Σ(µ) defined as follows:

Σ(µ) =
∪

(c,r)∈ξ

B(c, r)

where B(c, r) is the open Euclidean ball of radius r centered at c. The random
set Σ(µ) is the Boolean model with parameter µ. We shall sometimes write Σ to
simplify the notations.

The following description may be more intuitive. Let χ denote the projection
of ξ on Rd. With probability one this projection is one-to-one. We can therefore
write:

ξ = {(c, r(c)), c ∈ χ}.

Write µ = mν where ν is a probability measure. Then, χ is a Poisson point process
on Rd with density m. Moreover, given χ, the sequence (r(c))c∈χ is a sequence of
independent random variable with common distribution ν.
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1.2. Percolation in the Boolean model. Let C denote the connected component of Σ
that contains the origin. We say that Σ percolates if C is unbounded with positive
probability. We refer to the book by Meester and Roy (1996) for background on
continuum percolation. Set:

λc(µ) = inf{λ > 0 : Σ(λµ) percolates}.

One easily check that λc(µ) is finite as soon as µ has a positive mass. In Gouéré
(2008) we proved that λc(µ) is positive if and only if:∫

rdµ(dr) < ∞.

The only if part had been proved earlier by Hall (1985). For all A,B ⊂ Rd, we
write A ↔Σ B if there exists a path in Σ from A to B. We denote by S(c, r) the
Euclidean sphere of radius r centered at c :

S(c, r) = {x ∈ Rd : ‖x− c‖2 = r}.

We write S(r) when c = 0.
The critical parameter λc(µ) can also be defined as follows:

λc(µ) = sup
{
λ > 0 : P

(
{0} ↔Σ(λµ) S(r)

)
→ 0 as r → ∞

}
,

We shall need two other critical parameters:

λ̂c(µ) = sup
{
λ > 0 : P

(
S(r/2) ↔Σ(λµ) S(r)

)
→ 0 as r → ∞

}
,

λ̃c(µ) = sup
{
λ > 0 : rdP

(
{0} ↔Σ(λµ) S(r)

)
→ 0 as r → ∞

}
.

We have (see Lemma A.1) :

λ̃c(µ) ≤ λ̂c(µ) ≤ λc(µ). (1.1)

When the support of µ is bounded,

P
(
{0} ↔Σ(λµ) S(r)

)
decays exponentially fast to 0 as soon as λ < λc(µ) (see for example Meester and
Roy (1996), Section 12.10 in Grimmett (1999) in the case of constant radii or the
papers Meester et al. (1994); Menshikov and Sidorenko (1987); Zuev and Sidorenko
(1985a,b)). Therefore:

λ̃c(µ) = λ̂c(µ) = λc(µ) as soon as the support of µ is bounded. (1.2)

The unbounded case is much less understood and, even for example when µ has
exponential tail, it is not known whether the different critical parameters coincide
or not.

Remarks.

• The threshold parameter λ̂c(µ) is positive if and only if
∫
rdµ(dr) is finite

(i.e., if and only if λc(µ) is positive). See Lemma A.2.

• Using ideas of Gouéré (2008), we can check that λ̃c(µ) is positive if and
only if

xd

∫ ∞

x

rdµ(dr) → 0 as x → ∞.

If we only use results stated in Gouéré (2008), we can easily get the follow-
ing weaker statements. Let D(λµ) denote the Euclidean diameter of the
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connected component of Σ(λµ) that contains the origin. Note that λ̃c(µ)
is positive if and only if there exists λ such that:

rdP (D(λµ) ≥ r) → 0, as r → ∞. (1.3)

If E(D(λµ)d) is finite then (1.3) holds. If (1.3) holds then E(D(λµ)d−ε)
is finite for any small enough ε > 0. By Theorem 2.2 of Gouéré (2008) we
thus get the following implications:∫ +∞

0

r2dµ(dr) < ∞ implies λ̃c(µ) > 0 implies ∀ε > 0 :

∫ +∞

0

r2d−εµ(dr) < ∞.

1.3. A multiscale Boolean model. Let ρ > 1 be a scale factor. Let (Σn)n≥0 be

a sequence of independent copies of Σ(µ). In this paper, we are interested in
percolation properties of the following multiscale Boolean model:

Σρ(µ) =
∪
n≥0

ρ−nΣn. (1.4)

We shall sometimes write Σρ to simplify the notations. As before, we say that Σρ

percolates if the connected component of Σρ that contains the origin is unbounded
with positive probability.

This model seems to have been first introduced as a model of failure in geophys-
ical medias in the 80′. We refer to the paper by Molchanov et al. (1990) for an
account of those studies. For more recent results we refer to Broman and Camia
(2010); Meester and Roy (1996); Meester et al. (1994); Menshikov et al. (2001,
2003); Popov and Vachkovskaia (2002).

This model is related to a discrete model introduced by Mandelbrot (1974). We
refer to the survey by Chayes (1995) and, for more recent results, to Broman and
Camia (2008); Orzechowski (1996); White (2001).

In Menshikov et al. (2001), Menshikov, Popov and Vachkovskaia considered the
case where the radii of the unscaled process Σ0 equal 1. They proved the following
result.

Theorem 1.1 (Menshikov et al. (2001)). If λ < λc(δ1) then, for all large enough
ρ, Σρ(λµ) does not percolate.

In Menshikov et al. (2003) the same authors considered the case where the
radii are random and can be unbounded. They considered the following sub-
autosimilarity assumption on the measure µ:

lim
a→∞

sup
r≥1/2

adµ([ar,+∞[)

µ([r,+∞[)
= 0 (1.5)

with the convention 0/0 = 0. They proved the following result.

Theorem 1.2 (Menshikov et al. (2003)). Assume that the measure µ satisfies (1.5)

and that λ̃c(µ) is positive. If λ < λ̃c(µ) then, for all large enough ρ, Σρ(λµ) does
not percolate.

Note that (1.5) is fulfilled for any measure with bounded support. Because of
(1.2), Theorem 1.2 is then a generalization of Theorem 1.1.

In Gouéré (2009) we proved the following related result in which ρ is fixed.
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Theorem 1.3 (Gouéré (2009)). Let ρ > 1. There exists λ > 0 such that Σρ(λµ)
does not percolate if and only if:∫

[1,+∞[

rd ln(r)µ(r) < ∞. (1.6)

The main result of this paper is the first item of the following theorem in which,
in particular, we remove the technical assumption (1.5). The second item is easy

and already contained in Theorem 1.3. Recall that, by Lemma A.2, λ̂c(µ) is positive
as soon as

∫
rdµ(dr) is finite and therefore as soon as (1.6) holds.

Theorem 1.4.

(1) Assume (1.6). Then, for all λ < λ̂c(µ), there exists ρ(λ) > 1 such that, for
all ρ ≥ ρ(λ):

P
(
S(r/2) ↔Σρ(λµ) S(r)

)
→ 0 as r → ∞ (1.7)

and therefore Σρ(λµ) does not percolate.
(2) Assume that (1.6) does not hold. Then, for all λ > 0 and for all ρ > 1,

Σρ(λµ) percolates.

The proof is given in Section 2. The ideas of its proof and the ideas of the proofs
of Theorems 1.1 and 1.2 are given in Subsection 2.2.

The first item of Theorem 1.4 is a generalization of Theorem 1.2 and thus of

Theorem 1.1. Indeed, by (1.1), one has λ < λ̂c as soon as λ < λ̃c. Moreover, by
the second item of Theorem 1.4, (1.6) has to be a consequence of the assumptions
of Theorem 1.2. For example, one can check that (1.6) is a consequence of (1.5)
1. Alternatively, one can check that (1.6) is a consequence of λ̃c(µ) > 0 (see the
remarks at the end of Section 1.2).

Let us denote by λc(m
ρ
∞) and λ̂c(m

ρ
∞) the λc and λ̂c critical thresholds for the

multiscale model with scale parameter ρ. Theorems 1.3 and 1.4 yield the following
result:

(1) If (1.6) holds then λc(m
ρ
∞) > 0 (and actually the proof of Theorem 1.3

yields λ̂c(m
ρ
∞) > 0) for all ρ > 1 and λ̂c(m

ρ
∞) → λ̂c(µ) > 0 as ρ → ∞.

(2) Otherwise, λ̂c(m
ρ
∞) = λc(m

ρ
∞) = 0 for all ρ > 1.

Let us denote by Dρ(λµ) the diameter of the connected component of Σρ(λµ)
that contains the origin. The following result is an easy consequence of Theorem
1.4 above and Theorems 2.9 and 1.2 in Gouéré (2009).

Theorem 1.5. Let s > 0, λ > 0 and ρ > 1.

(1) If
∫
[1,+∞[

rd+sµ(dr) < ∞ and (1.7) holds, then E
(
(Dρ(λµ))s

)
< ∞.

(2) If
∫
[1,+∞[

rd+sµ(dr) = ∞ then E
(
(Dρ(λµ))s

)
= ∞.

The proof is given is Section 3.

1From (1.5) one gets the existence of a > 1 such that, for all r ≥ a, one has µ([r,+∞[) ≤
2−1a−dµ([r/a,+∞[). By induction and standard computations this yields, for all r ≥ a,

µ([r,+∞[) ≤ Ar− ln(2)/ ln(a)−d. Therefore, for a small enough η > 0, one has
∫
rd+ηµ(dr) < ∞.
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1.4. Superposition of Boolean models with different laws. Using the same arguments
as in the proof of Theorem 1.4, we could prove similar results for infinite superpo-
sitions ∪

n≥0

ρ−nΣn

where the Boolean models Σn are independent but not identically distributed. We
will not give such a result here. However, we wish to give a weaker result for the
superposition of two independent Boolean models at different scales. As we consider
only two scales the proof is easier than the proof of Theorem 1.4. The proof uses
Lemmas 2.1, 2.2 and 2.3 and is given in Section 4. The result gives some insight
on the critical threshold in the case of balls of random radii.

This result, in the case where the supports of ν1 and ν2 are bounded, is already
implicit in Meester et al. (1994) in their proof of non universality of critical covered
volume (see (1.8) below). See also Molchanov et al. (1990).

For all ρ > 1, we denote by Hρµ the measure defined by Hρµ(A) = ρdµ(ρA).
With this definition, ρ−1Σ(µ) is a Boolean model driven by the measure Hρµ.

Proposition 1.6. Let ν1 and ν2 be two finite measures on ]0,+∞[. We assume
that the masses of ν1 and ν2 are positive. Let 0 < α < 1. Then, for all ρ > 1,

λ̂c(αν1+(1−α)Hρν2) ≤ min
(
λ̂c(αν1), λ̂c((1−α)Hρν2)

)
= min

(
λ̂c(ν1)

α
,
λ̂c(ν2)

1− α

)
.

Moreover,

λ̂c(αν1 + (1− α)Hρν2) → min

(
λ̂c(ν1)

α
,
λ̂c(ν2)

1− α

)
as ρ → ∞.

The above convergence is uniform in α.

We now make some remarks about this result and about some related numerical
results. For a finite measure µ on ]0,+∞[, we denote by φc(µ) the critical covered
volume:

φc(µ) = P
(
0 ∈ Σ(λc(µ)µ)

)
= 1− exp

(
−λc(µ)

∫
vdr

dµ(dr)

)
(1.8)

where vd is the volume of the unit Euclidean ball in Rd. This is the mean volume
occupied by the critical Boolean model and this is a scale invariant quantity. Let
us assume that ν1 = ν2 = δ1. By (1.2), by Proposition 1.6 and with the above
notation we have:

φc(αδ1 + (1− α)Hρδ1) → 1− exp

(
−vdλc(δ1)min

(
1

α
,

1

1− α

))
. (1.9)

There are several numerical studies of the above critical covered volume when d = 2
and d = 3. To the best of our knowledge, the most acccurate values when d = 2
are given in Quintanilla and Ziff (2007). Let us assume henceforth that d = 2. In
Quintanilla and Ziff (2007), the authors give:

φc(δ1) = 1− exp(−v2λc(δ1)) ≈ 0.6763475(6). (1.10)

In Figure 1.1 we reproduce the graph of the critical covered volume φ(α, ρ) :=
φc(αδ1 + (1 − α)Hρδ1) as a function of α when ρ = 2, ρ = 5 and ρ = 10 (see
Quintanilla and Ziff (2007) for more results). We also represent the graph of the
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right-hand side of (1.9), that we denote by φ(α,∞), as a function of α. We use
(1.10) to get an approximate value of v2λc(δ1).
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Figure 1.1. Critical covered volume as a function of α for differ-
ent values of ρ. From bottom to top: ρ = 2, ρ = 5, ρ = 10 and the
limit as ρ → ∞.

Remarks.

• When ρ → ∞, the critical covered volume φ(·, ρ) converges to φ(·,∞) which
is symmetric: φ(α,∞) = φ(1−α,∞). When ρ is finite, the critical covered
volume may also look symmetric but Quintanilla and Ziff (2007) showed,
based on their numerical simulations and statistical analysis, that this is
not the case.

• When ρ is finite, the critical covered fraction looks concave as a function of
α. However φ(·,∞) is not concave as soon as φc(δ1) < 1− exp(−2). Based
on (1.10), φ(·,∞) is therefore not concave. As a consequence, at least for
large enough ρ, φ(·, ρ) is not concave.

• The numerical results suggests that the minimum of the critical covered
fraction is reached when all the disks have the same radius. (Equivalently,
for all ρ and all α, φ(α, ρ) ≥ φ(0, ρ) = φ(1, ρ) = φc(δ1).) There is neither a
proof nor a disproof of such a result. However, is it known that this property
does not hold in sufficiently high dimension, see Gouéré and Marchand
(2011).

• The numerical results also suggest some monotonicity in ρ. This has not
been proven nor disproven.

Acknowledgement. I thank the referee for a very careful reading of the paper.
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2. Proof of Theorem 1.4

2.1. Some notations. In the whole of Section 2, we make the following assumptions:

• µ satisfies (1.6).

• 1 < λ̂c(µ).

For all η > 0, we denote by Tηµ the measure defined by Tηµ(A) = µ(A− η). In
other words, we can build Σ(Tηµ) from Σ(µ) by adding η to each radius.

For all ρ > 1, we denote by Hρµ the measure defined by Hρµ(A) = ρdµ(ρA).
With this definition, ρ−1Σ(µ) is a Boolean model driven by the measure Hρµ. For
all n ≥ 0, we let:

mρ
n =

n∑
k=0

Hρk

µ.

With this definition and the same notation as in (1.4),

n∪
k=0

ρ−kΣk

is a Boolean model driven by mρ
n. We also let:

mρ
∞ =

∑
k≥0

Hρk

µ.

So, Σρ(µ) is a Boolean model driven by the locally finite measure mρ
∞.

Let p(a, µ) denote the probability of existence of a path from S(a/2) to S(a) in
Σ(µ):

p(a, µ) = P (S(a/2) ↔Σ(µ) S(a)).

We aim at proving that, for large enough ρ, p(a,mρ
∞) → 0 as a tends to infinity and

Σρ(µ) does not percolate. The first item of Theorem 1.4 follows by applying this
result to the measure λµ. Recall that the second item of Theorem 1.4 is contained
in Theorem 1.3.

2.2. Ideas. In this subsection we first sketch the proof of the existence of ρ and a
such that p(a,mρ

∞) is small. This gives the main ingredients of the proof of the
first item of Theorem 1.4. A full proof is given in Subsection 2.3.

We then give the ideas of the proof of Theorems 1.1 and 1.2 by Menshikov,
Popov and Vachkovskaia. Our aim is to emphasize the similarities and differencies
between the proofs.

The proof of Theorems 1.1 and 1.2 and our proof share several ideas but are
otherwise quite different. In particular, we do not use their stochastic comparison
argument and do not require the technical assumption (1.5).

Sketch of the proof of the first item of Theorem 1.4. Consider a small ε1 > 0. Fix
a small η > 0 and a large a such that (see Lemma 2.1):

p(a, Tηµ) ≤ ε1/2. (2.1)

For all n ≥ 1, write:

mρ
n = Hρmρ

n−1 + µ.

If the event {S(a/2) ↔Σ(mρ
n) S(a)} occurs, then either the event {S(a/2) ↔Tηµ

S(a)} occurs (with a natural coupling between the Boolean models) either in
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Σ(Hρmρ
n−1) ∩ B(a) one can find a component of diameter at least η. We use

this observation through its following crude consequence (see Lemma 2.2):

p(a,mρ
n) ≤ p(a, Tηµ) + Cadη−dp(η/2,Hρmρ

n−1).

By scaling and by (2.1), this yields:

p(a,mρ
n) ≤ ε1/2 + Cadη−dp(ρη/2,mρ

n−1). (2.2)

But for any ε2, any small enough ε1 and any large enough a we can find τ such
that (see Lemmas 2.3 and 2.4):

p(τa,mρ
n−1) ≤ ε2 as soon as p(a,mρ

n−1) ≤ ε1. (2.3)

An important fact is that τ does not depends on n nor on ρ, provided ρ ≥ ρ0 where
ρ0 is an arbitrary constant strictly larger than 1. Here we use assumption (1.6) to
bound error terms due to the existence of large balls.

We choose ε2 such that:

Cadη−dε2 = ε1/2.

We set ρ = 2τa/η. Then, (2.2) and (2.3) can be rewritten as follows:

p(a,mρ
n) ≤ ε1/2 + Cadη−dp(τa,mρ

n−1) (2.4)

Cadη−dp(τa,mρ
n−1) ≤ ε1/2 as soon as p(a,mρ

n−1) ≤ ε1. (2.5)

As moreover (2.1) implies p(a,mρ
0) ≤ ε1 we get, by induction and then sending n

to infinity (see Lemma 2.5):

p(a,mρ
∞) ≤ ε1.

The convergence of p(a,mρ
∞) to 0 is then extracted from the above result for a

small enough ε2 and from arguments behind (2.3) applied to mρ
∞ and other ε.

Sketch of the proofs of Theorems 1.1 and 1.2 by Menshikov, Popov and
Vachkovskaia. Let us quickly describe the ideas of the proofs of Menshikov, Popov
and Vachkovskaia. Those ideas are used in their papers Menshikov et al. (2001)
and Menshikov et al. (2003) through a discretization of space (definition of differ-
ent notions of good boxes at different scales); we describe them in a slightly more
geometric way. For simplicity we only consider two scales: ρ−1Σ1 and Σ0. For
simplicity, we also assume that the radius is one in the unscaled model (µ = λδ1).
We assume that the scale factor ρ is large enough. Assume that C is a connected
component of ρ−1Σ1∪ Σ0 whose diameter is a least α (it can be much larger) for
a small enough constant α > 0. Then, C is included in the union of the following
kind of sets:

(1) connected components of ρ−1Σ1 whose diameter is at least α;
(2) balls of Σ0 enlarged by α (same centers but the radii are 1+α instead of 1).

Then, they show that the union of all those sets is stochastically dominated by a
Boolean model similar to Σ0 but with radii enlarged by a factor α and with density
of centers 1+α′ times the corresponding density for Σ0 for a suitable α′ > 0. This

part uses λ < λ̂c. In some sense, one can therefore control percolation in the union
of two models by percolation in one model. Iterating the argument with care in the
constants α and α′, one sees that – for large enough ρ – one can control percolation
in the multiscale model by percolation in a subcritical model. This yields the result
when the radius is constant.
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When the radius is random and non bounded, the proof is more involved and
require in particular the technical assumption (1.5).

2.3. Proof of Theorem 1.4. As 1 < λ̂c(µ), we know that p(a, µ) tends to 0 as a
tends to infinity. We need the following slightly stronger consequence.

Lemma 2.1. There exists η > 0 such that p(a, Tηµ) tends to 0 as a tends to ∞.

Proof. Let ε > 0 and x > 0. We have:

H1+εTε2µ([x,+∞[) = (1 + ε)dTε2µ([x(1 + ε),+∞[)

= (1 + ε)dµ([x(1 + ε)− ε2,+∞[)

≤ κ(ε)(1 + ε)dµ([x,+∞[) (2.6)

where

κ(ε) =
µ(]0,+∞[)

µ([ε,+∞[)
.

The inequality is proven as follows. If x ≥ ε, then [x(1 + ε) − ε2,+∞[⊂ [x,+∞[
and the result follows from κ(ε) ≥ 1. If, on the contrary, x < ε, then the left-hand
side is bounded above by (1 + ε)dµ(]0,+∞[) which is itself bounded above by the
right-hand side.

Note that κ(ε)(1+ ε)d tends to 1 as ε tends to 0. Let us say that a measure ν is

subcritical if λ̂c(ν) > 1. As µ is subcritical, we get that κ(ε)(1 + ε)dµ is subcritical
for small enough ε. We fix such an ε. By (2.6) we can couple a Boolean model
driven by H1+εTε2µ and a Boolean model driven by κ(ε)(1+ε)dµ in such a way that
the first one is contained in the second one. Therefore the first one is subcritical.
By scaling, a Boolean model driven by Tε2µ is then subcritical. We take η = ε2. �

Lemma 2.2. Let ν1 and ν2 be two finite measures on ]0,+∞[. One has, for all
η > 0 and a ≥ 4η:

p(a, ν1 + ν2) ≤ p(a, Tην1) + C1a
dη−dp(η/2, ν2)

where C1 = C1(d) > 0 depends only on the dimension d.

Proof. Let (xi)i∈I be a family of points such that :

• The balls B(xi, η/4), i ∈ I, cover B(a) = B(0, a).
• There are at most C1a

dη−d points in the family where C1 = C1(d) depends
only on the dimension d.

We couple the different Boolean models as follows. Let Σ(ν1) be a Boolean model
driven by ν1. Let Σ(ν2) be a Boolean model driven by ν2. Assume that Σ(ν1) and
Σ(ν2) are independent. Then Σ(ν1) ∪ Σ(ν2) is a Boolean model driven by ν1 + ν2.
We set Σ(ν1 + ν2) = Σ(ν1) ∪ Σ(ν2). We also consider Σ(Tην1), the Boolean model
obtained by adding η to the radius of each ball of Σ(ν1). Thus Σ(Tην1) is driven
by Tην1.

Let us prove the following property:

{S(a/2) ↔Σ(ν1+ν2) S(a)}

⊂ {S(a/2) ↔Σ(Tην1) S(a)} ∪
∪
i∈I

{S(xi, η/4) ↔Σ(ν2) S(xi, η/2)}. (2.7)
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Assume that Σ(ν1 + ν2) = Σ(ν1) ∪ Σ(ν2) connects S(a/2) with S(a). Recall
a ≥ 4η. If the diameter of all connected components of Σ(ν2)∩B(a) are less or equal
to η, then Σ(Tην1) connects S(a/2) with S(a). Otherwise, let C be a connected
component of Σ(ν2) ∩ B(a) with diameter strictly larger than η. Let x, y be two
points of C such that ‖x− y‖ > η. The point x belongs to a ball B(xi, η/4). As y
does not belong to B(xi, η/2), the component C connects S(xi, η/4) to S(xi, η/2).
Therefore, Σ(ν2) connects S(xi, η/4) to S(xi, η/2). We have proven (2.7). The
lemma follows (using the union bound, translation invariance and the upper bound
on the cardinality of I). �

The following lemma is essentially the first item of Proposition 3.1 in Gouéré
(2008). For the sake of completeness we nevertheless provide a proof.

Lemma 2.3. Let ν be a finite measure on ]0,+∞[. There exists a constant C2 =
C2(d) > 0 such that, for all a > 0:

p(10a, ν) ≤ C2p(a, ν)
2 + C2

∫
[a,+∞[

rdν(dr).

Proof. Let K be a finite subset of S(5) such that K + B(1/2) covers S(5). Let
L be a finite subset of S(10) such that L + B(1/2) covers S(10). Let A be the
following event: there exists a random ball B(c, r) of Σ(ν) such that r ≥ a and
B(c, r) ∩B(10a) is non empty. We have:

{S(5a) ↔Σ(ν) S(10a)} \A ⊂ {S(5a) ↔≤a
Σ(ν) S(10a)}

where, in the last event, we ask for the existence of a path contained in balls of
Σ(ν) of radius at most a. Let us prove the following:

{S(5a) ↔Σ(ν) S(10a)} \A

⊂
∪

k∈K,l∈L

{S(ak, a/2) ↔≤a
Σ(ν) S(ak, a)} ∩ {S(al, a/2) ↔≤a

Σ(ν) S(al, a)}. (2.8)

Assume that the event on the left-hand side occurs. Then, by the previous remark,
there exists a path from a point x ∈ S(5a) to a point y ∈ S(10a) that is contained
in balls of Σ(ν) of radius at most a. As Ka + B(a/2) covers S(5a), there exists
k ∈ K such that x belongs to B(ka, a/2). Using the previous path, one gets that
the event

{S(ak, a/2) ↔≤a
Σ(ν) S(ak, a)}

occurs. By a similar arguments involving y we get (2.8).
Observe that, for all k ∈ K and l ∈ L, the events

{S(ak, a/2) ↔≤a
Σ(ν) S(ak, a)} and {S(al, a/2) ↔≤a

Σ(ν) S(al, a)}

are independent. Indeed, the first one depends only on balls with centers in
B(ak, 2a), the second one depends only on balls with centers in B(al, 2a), and
‖ak − al‖ ≥ 5a. Using this independence, stationarity and (2.8), we then get:

P ({S(5a) ↔Σ(ν) S(10a)}) ≤ CP (S(a/2) ↔≤a
Σ(ν) S(a)})2 + P (A)

where C is the product of the cardinality of K by the cardinality of L. We thus
have:

p(10a, ν) ≤ Cp(a, ν)2 + P (A).
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The probability P (A) is bounded above by standard Poisson point process compu-
tations. �

From the previous lemma, we deduce the following result.

Lemma 2.4. Let ε > 0. There exists C3 = C3(d) > 0, a0 = a0(d, µ) and k0 =
k0(d, µ, ε) such that, for all N , all ρ ≥ 2 and all a ≥ a0: if p(a,mρ

N ) ≤ C3 then for
all k ≥ k0, p(a10

k,mρ
N ) ≤ ε.

Proof. For all ρ ≥ 2 and all a ≥ 1 we have:∫
[a,+∞[

rdmρ
∞(dr) =

∑
k≥0

ρkd
∫
]0,+∞[

1[a,+∞[(rρ
−k)(rρ−k)dµ(dr)

=

∫
]0,+∞[

∑
k≥0

1[a,+∞[(rρ
−k)rdµ(dr)

=

∫
[a,+∞[

( ⌊
ln(r/a) ln(ρ)−1

⌋
+ 1
)
rdµ(dr)

≤
∫
[a,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr).

Let C2 be the constant given by Lemma 2.3. By (1.6) we can chose a0 =
a0(d, µ) ≥ 1 such that

C2
2

∫
[a0,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr) ≤ 1

4
. (2.9)

Let C3 = (2C2)
−1. Let N , ρ and a be as in the statement of the lemma. From

Lemma 2.3 we get:

C2p(10a,m
ρ
N ) ≤ (C2p(a,m

ρ
N ))2 + C2

2

∫
[a,+∞[

rdmρ
N (dr) (2.10)

≤ (C2p(a,m
ρ
N ))2 + C2

2

∫
[a,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr)(2.11)

Let (uk) be a sequence defined by u0 = 1/2 and, for all k ≥ 0:

uk+1 = u2
k + C2

2

∫
[a010k,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr). (2.12)

Note that the sequence (uk) only depends on d and µ.
Assume that p(a,mρ

N ) ≤ C3. We then have C2p(a,m
ρ
N ) ≤ u0. Using a ≥ a0 and

(2.11), we then get C2p(a10
k,mρ

N ) ≤ uk for all k. Therefore, it sufficies to show
that the sequence (uk) tends to 0.

Using (2.12), (2.9) and u0 = 1/2 we get 0 ≤ uk ≤ 1/2 for all k. Therefore,
0 ≤ lim supuk ≤ 1/2. By (2.12) and by the convergence of the integral we also
get lim supuk ≤ (lim supuk)

2. As a consequence, lim supuk = 0 and the lemma is
proven. �

Lemma 2.5. For all a > 0 and ρ > 1 the following convergence holds:

p(a,mρ
∞) = lim

N→∞
p(a,mρ

N ).
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Proof. The sequence of events

AN = {S(a/2) ↔Σ(mρ
N ) S(a)}

is increasing (we use the natural coupling between our Boolean models). Therefore,
it suffices to show that the union of the previous events is

A = {S(a/2) ↔Σ(mρ
∞) S(a)}.

If A occurs, then there is a path from S(a/2) to S(a) that is contained in Σ(mρ
∞).

By a compactness argument, this path is included in a finite union of ball of Σ(mρ
∞).

Therefore, there exists N such that the path is included in Σ(mρ
N ) and AN occurs.

This proves A ⊂ ∪AN . The other inclusion is straightforward. �
Proof of the second item of Theorem 1.4. By Lemma 2.1, we can fix η1 > 0
such that p(a, T10η1µ) tends to 0 as a tends to ∞. Let C1 be given by Lemma 2.2.
Let a0 and C3 be as given by Lemma 2.4. Fix a1 ≥ max(40η1, a0, 1) such that
p(a, T10η1µ) ≤ C3/2 for all a ≥ a1. Let k0 be given by Lemma 2.4 with the choice:

ε = C−1
1 (10a1)

−dηd1C3/2.

Therefore, for all ρ ≥ 2, all N , all a ∈ [a1, 10a1] and all η ∈ [η1, 10η1]:

C1a
dη−dp(a10k,mρ

N ) ≤ C3

2
for all k ≥ k0 as soon as p(a,mρ

N ) ≤ C3.

Fix k ≥ k0, a ∈ [a1, 10a1] and η ∈ [η1, 10η1]. Set:

ρ = 2a10kη−1.

Note ρ ≥ 8 ≥ 2 as a ≥ a1 ≥ 40η1 ≥ 4η. By Lemma 2.2 we have, for all N :

p(a,mρ
N+1) ≤ p(a, Tηµ) + C1a

dη−dp(η/2,mρ
N+1 − µ)

= p(a, Tηµ) + C1a
dη−dp(η/2, Hρmρ

N ).

By definition of a1, by a1 ≤ a, by η ≤ 10η1, by scaling and by definition of ρ we
get, for all N :

p(a,mρ
N+1) ≤ C3

2
+ C1a

dη−dp(ρη/2,mρ
N )

=
C3

2
+ C1a

dη−dp(a10k,mρ
N ).

Combining this inequality with the property defining k0, we get that p(a,m
ρ
N ) ≤ C3

implies p(a,mρ
N+1) ≤ C3. As p(a,mρ

0) = p(a, µ) ≤ p(a, T10η1µ) ≤ C3/2 we get

p(a,mρ
N ) ≤ C3 for all integer N .

Let ε′ > 0. Using again Lemma 2.4 we get the existence of an integer k′0 such

that p(a10k
′
,mρ

N ) ≤ ε′ for all k′ ≥ k′0 as soon as p(a,mρ
N ) ≤ C3. But we have

proven the latter property. Therefore p(a10k
′
,mρ

N ) ≤ ε′ for all N and all k′ ≥ k′0.

By Lemma 2.5, we get p(a10k
′
,mρ

∞) ≤ ε′ for all k′ ≥ k′0. Using the freedom on
the choice of k ≥ k0 and η ∈ [η1, 10η1], we get that the previous result holds for all
ρ ≥ 2a10k0−1η−1

1 and then for all ρ ≥ 2a110
k0η−1

1 . Moreover, using the freedom on
the choice of a ∈ [a1, 10a1] and k′ ≥ k′0, we get:

p(r,mρ
∞) ≤ ε′ for all r ≥ a110

k′
0 and all ρ ≥ 2a110

k0η−1
1 .

Therefore, p(r,mρ
∞) tends to 0 as r tends to infinity. As a consequence, Σρ(µ) does

not percolate for any ρ ≥ 2a110
k0η−1

1 . �
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3. Proof of Theorem 1.5

Lemma 3.1. Let s > 0 and ρ > 1. The following assumptions are equivalent:

(1)
∫
]0,+∞[

rd+sµ(dr) < ∞.

(2)
∫
[1,+∞[

rd+smρ
∞(dr) < ∞.

Proof. We have:∫
[1,+∞[

rd+smρ
∞(dr) =

∑
k≥0

ρkd
∫
]0,+∞[

1[1,+∞[(rρ
−k)(rρ−k)d+sµ(dr)

=

∫
[1,+∞[

∑
k≥0

1[1,+∞[(rρ
−k)ρ−ksrd+sµ(dr).

Therefore:∫
[1,+∞[

rd+sµ(dr) ≤
∫
[1,+∞[

rd+smρ
∞(dr) ≤ 1

1− ρ−s

∫
[1,+∞[

rd+sµ(dr).

This yields the result. �

Proof of the first item of Theorem 1.5. By the discussion at the beginning
of Section 1.5 in Gouéré (2009), Σρ(λµ) is driven by a Poisson point process whose
intensity is the product of the Lebesgue measure by the locally finite measure λmρ

∞.
Let us check the three assumptions of Theorem 2.9 in Gouéré (2009) with ρ = 10
(ρ is not used in the same way in Gouéré (2009)). We refer to Section 2.1 of Gouéré
(2009) for definitions.

(1) The first assumption is fulfilled thanks to (1.7).
(2) For all β > 0 and all x ∈ Rd, the event G(x, 0, β) only depends on

balls B(c, r) of Σρ(λµ) such that c belongs to B(x, 3β). By the indepen-
dance property of Poisson point processes, we then get that G(0, 0, β) and
G(x, 0, β) are independent whenever ‖x‖ ≥ 10β. Therefore I(10, 0, β) = 0
and the second assumption of Theorem 2.9 is fulfilled.

(3) The third assumption (note that µ in Gouéré (2009) is mρ
∞ in this paper)

is fulfilled thanks to Lemma 3.1.

Theorem 2.9 in Gouéré (2009) yields the result. �

Proof of the second item of Theorem 1.5. If
∫
rdµ(dr) is infinite then,

Σ(λµ) percolates for all λ > 0 (see the dicussion of Section 1.2). Therefore Σρ(λµ)
percolates for all ρ > 1 and λ > 0. Therefore Dρ(λµ) = ∞ with positive probability
for all ρ > 1 and λ > 0.

Now, assume that
∫
rdµ(dr) is finite. Then, by the discussion at the beginning

of Section 1.5 in Gouéré (2009), Σρ(λµ) is driven by a Poisson point process whose
intensity is the product of the Lebesgue measure by the locally finite measure λmρ

∞.
We can therefore apply Theorem 1.2 in Gouéré (2009). By Lemma 3.1, assumption
(A3) of Theorem 1.2 in Gouéré (2009) is not fulfilled (note that µ in Gouéré (2009)
is mρ

∞ in this paper). Theorem 1.2 in Gouéré (2009) then yields the result. �

4. Proof of Proposition 1.6

We first need a lemma, which is a consequence of Lemmas 2.2 and 2.3.
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Lemma 4.1. Let ν1 and ν2 be two finite measures on ]0,+∞[. Let η > 0, a0 ≥ 4η

and ρ > 1. There exists C4 = C4(d) > 0 such that λ̂c(ν1 +Hρ(ν2)) ≥ 1 as soon as
the following conditions hold:

(1) p(a, Tην1) ≤ C4 for all a ∈ [a0, 10a0].
(2) ad0η

−dp(ρη/2, ν2) ≤ C4.
(3)

∫
[a0,+∞[

rdν1(dr) ≤ C4 and
∫
[a0,+∞[

rdν2(dr) ≤ C4.

Proof. Let C4 = C4(d) > 0 be such that C4C2(1+10dC1) ≤ 1/2 and 2C2
2C4 ≤ 1/4,

where C1 appears in Lemma 2.2 and C2 appears in Lemma 2.3. Set ν = ν1+Hρ(ν2).
For all a ∈ [a0, 10a0] we have, by Lemma 2.2 applied to ν1 and Hρ(ν2), by scaling

and by the assumptions of the lemma:

p(a, ν) ≤ p(a, Tην1) + C1a
dη−dp(η/2,Hρν2)

= p(a, Tην1) + C1a
dη−dp(ρη/2, ν2)

≤ C4(1 + 10dC1)

≤ 1/(2C2). (4.1)

But for all a ≥ a0 we have, by Lemma 2.3 and by the assumptions of the lemma:

C2p(10a, ν) ≤ (C2p(a, ν))
2 + C2

2

∫
[a,+∞[

rdν(dr)

= (C2p(a, ν))
2 + C2

2

∫
[a,+∞[

rdν1(dr) + C2
2

∫
[aρ,+∞[

rdν2(dr)(4.2)

≤ (C2p(a, ν))
2 + 2C2

2C4

≤ (C2p(a, ν))
2 + 1/4. (4.3)

By (4.1) and (4.3) we get C2p(a, ν) ≤ 1/2 for all a ≥ a0 and therefore
0 ≤ lim supC2p(a, ν) ≤ 1/2. By (4.2) and the third assumption of the lemma, we
get lim supC2p(a, ν) ≤ (lim supC2p(a, ν))

2. Therefore, we must have
lim supC2p(a, ν) = 0 and the lemma is proven. �
Proof of Proposition 1.6. The inequality is straightforward. To prove the

equality, we note that, by scaling, λ̂c(H
ρν2) = λ̂c(ν2). Let us prove the convergence.

We can assume λ̂c(ν1) > 0 and λ̂c(ν2) > 0, otherwise the convergence is obvious.
Therefore, by Lemma A.2, the integrals

∫
rdν1(dr) and

∫
rdν2(dr) are finite.

Let C4 be the constant given by Lemma 4.1. Let 0 < ε < 1. Note that:

λ̂c

(
(1− ε)λ̂c(ν1)ν1

)
= (1− ε)−1λ̂c(ν1)

−1λ̂c(ν1) > 1.

Therefore, by Lemma 2.1 (in which (1.6) is not used), we can fix η > 0 such that

p(a, Tη(1− ε)λ̂c(ν1)ν1) → 0.

We can then fix a0 ≥ 4η such that:

p(a, Tη(1− ε)λ̂c(ν1)ν1) ≤ C4 for all a ≥ a0 (4.4)

and such that ∫
[a0,+∞[

rdλ̂c(ν1)ν1(dr) ≤ C4 (4.5)

and ∫
[a0,+∞[

rdλ̂c(ν2)ν2(dr) ≤ C4. (4.6)
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Now we fix ρ0 > 1 such that :

ad0η
−dp(ρη/2, (1− ε)λ̂c(ν2)ν2) ≤ C4 for all ρ ≥ ρ0. (4.7)

Now, let 0 < α < 1 and set

λ = min

(
λ̂c(ν1)(1− ε)

α
,
λ̂c(ν2)(1− ε)

1− α

)
.

By (4.4), (4.7), (4.5) and (4.6) we get that Assumptions 1 , 2 and 3 of Lemma 4.1
are fulfilled for the measures αλν1 and (1 − α)λν2 and for ρ ≥ ρ0. Therefore, we
get

λ̂c(αλν1 + (1− α)λHρν2) ≥ 1

and thus:

λ̂c(αν1 + (1− α)Hρν2) ≥ λ = (1− ε)min

(
λ̂c(ν1)

α
,
λ̂c(ν2)

1− α

)
.

Therefore, as soon as ρ ≥ ρ0, we have:

0 ≤ min

(
λ̂c(ν1)

α
,
λ̂c(ν2)

1− α

)
− λ̂c(αν1 + (1− α)Hρν2)

≤ εmin

(
λ̂c(ν1)

α
,
λ̂c(ν2)

1− α

)
≤ εmax(2λ̂c(ν1), 2λ̂c(ν2)).

This yields the proposition. �

Appendix A. Critical parameters

Lemma A.1. The critical parameters satisfy:

λ̃c(µ) ≤ λ̂c(µ) ≤ λc(µ).

Proof. The second inequality is a consequence of the following inclusion:

{{0} ↔Σ S(r)} ⊂ {S(r/2) ↔Σ S(r)}.
The first inequality can be proven as follows. Let r ≥ 1. By the FKG inequality,
we get:

P ({0} ↔Σ S(r)) ≥ P (B(0, 1) ⊂ Σ and S(1) ↔Σ S(r))

≥ CP (S(1) ↔Σ S(r))

where C = P (B(0, 1) ⊂ Σ) > 0 does not depend on r. For all large enough r,
we can cover S(2r) by at most C ′rd balls B(xi, 1) where C ′ only depends on the
dimension d. If there is a path in Σ from S(2r) to S(4r), then there exists i and
a path in Σ from S(xi, 1) to S(xi, r). (Consider the ball B(xi, 1) that contains the
initial point of the path.) By stationarity and by the previous inequality we thus
get:

P (S(2r) ↔Σ S(4r)) ≤ C ′rdP (S(1) ↔Σ S(r))

≤ C ′C−1rdP ({0} ↔Σ S(r)).

The first inequality stated in the lemma follows. �
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Lemma A.2. The threshold parameter λ̂c(µ) is positive if and only if
∫
rdµ(dr) is

finite.

Proof. If λ̂c(µ) is positive, then there exists λ > 0 such that Σ(λµ) does not
percolate. By Theorem 2.1 of Gouéré (2008) this implies that

∫
rdµ(dr) is finite.

Let us assume now that
∫
rdµ(dr) is finite. We need to prove the existence of

λ > 0 such that p(a, λµ) tends to 0. This is proven, as an intermediate result, in
the proof of Theorem 1.1 in Gouéré (2009). As the result is an easy consequence
of Lemma 2.3, we find it more convenient to provide a proof here. Let C2 be the
constant given by Lemma 2.3. For all a > 0 and λ > 0 we have:

C2p(10a, λµ) ≤ (C2p(a, λµ))
2 + λC2

2

∫
[a,+∞[

rdµ(dr). (A.1)

For all 0 < a ≤ 1 we have, by standard computations:

C2p(a, λµ) ≤ C2P (a ball of Σ(λµ) touches B(a)) ≤ C2vdλ

∫
]0,+∞[

(1 + r)dµ(dr)

where vd is the volume of the unit Euclidean ball. As
∫
rdµ(dr) is finite, we can

therefore fix λ > 0 such that:

λC2
2

∫
[a,+∞[

rdµ(dr) ≤ 1/4 for all a > 0 and C2p(a, λµ) ≤ 1/2 for all 0 < a ≤ 1.

(A.2)
By (A.1), (A.2) and by induction we get C2p(a, λµ) ≤ 1/2 for all a > 0. There-
fore, we have 0 ≤ lim supC2p(a, λµ) ≤ 1/2. But (A.1) also yields the inequal-
ity lim supC2p(a, λµ) ≤ (lim supC2p(a, λµ))

2. As a consequence we must have
lim supC2p(a, λµ) = 0 and then p(a, λµ) → 0. �
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