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Abstract. The main aim of this note is to find an explicit integral formula for
the heat kernel of a certain second-order left invariant differential operator on a
solvable Lie group, being a semi-direct product RnR, by means of a skew-product
formula for diffusions. An explicit formula of a different kind for the special case
of the operator considered in this note (the operator without the drift term) was
found recently by Calin, Chang and Li.

As a corollary from our main result we get a simple formula for the return
probability from which the asymptotic behaviour for small and large values of time
follows easily.

1. Introduction

Consider R2 with multiplication given by

(x, y) · (x′, y′) = (x+ x′, y + exy′).

Then G = (R2, ·) is a semi-direct product R n R, and is a solvable Lie group. A
left-invariant Haar measure H on G is

H(dxdy) = e−xdxdy. (1.1)

It is easy to see that

X = ∂x and Y = ex∂y
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are left invariant vector fields on G that generate the Lie algebra g of G. Let, for
µ ∈ R,

L(µ) =
1

2

(
X2 + 2µX + Y 2

)
=

1

2

(
∂2
x + 2µ∂x + e2x∂2

y

)
. (1.2)

Let

Ttf(x, a) =

∫
G

p
(µ)
t (x, y;x′, y′)f(x′, y′)H(dx′dy′) (1.3)

be the semigroup of operators on G generated by L(µ). The kernel p
(µ)
t is called the

heat kernel for L(µ).
In a recent paper Calin et al. (2013) found an explicit expression for the funda-

mental solution (heat kernel) p
(0)
t (x, y;x′, y′) of the parabolic equation L(0)−∂t = 0

using a geometric method involving Hamiltonian formalism. The authors of Calin
et al. (2013) were interested in such a group since it has total involutivity property.

The aim of this note is to present an alternative approach which, we think, is
much simpler and allows us to consider more general operators with the first order
term µX. Namely, we use a probabilistic skew-product formula (see Sec. 2) for the
diffusion generated by L(µ) in order to give an explicit integral expression for the

transition probabilities p
(µ)
t (x, y;x′, y′) of the stochastic process generated by L(µ).

The second main probabilistic ingredient in our proof (Theorem 3.1) is an im-
portant result obtained by Yor (1992) which gives an explicit formula for the joint
distribution of the Brownian motion (with drift) and some exponential functional
of this Brownian motion - time integral from 0 to t of the geometric Brownian
motion. We want to mention that exponential functionals of this type play an im-
portant role in financial mathematics. In particular, their distributions has many
applications in the European and the Asian options (see e.g. Matsumoto and Yor
(2005b); Yor (2001); Carr and Schröder (2003); Donati-Martin et al. (2001)).

The method presented here is not new. For example, Matsumoto (2001) applied
the skew-product formula (although he did not use that name) in order to find
some integral representations of the heat kernels for the Laplace-Beltrami operators
on hyperbolic spaces. Penney and the author used the skew-product formula for
obtaining the upper bound for the heat kernel and the Poisson kernel for a second
order left-invariant differential operators on a certain class of Lie groups in Penney
and Urban (2013b) and Penney and Urban (2013a), respectively.

Remark 1.1. Since the operator L(µ) commutes with left translation, the same is
true for the operators Tt. Thus, from (1.3),

p
(µ)
t (x, y;x′, y′) = p

(µ)
t (e; (x, y)−1(x′, y′)),

where e = (0, 0) is the identity element in the group G. Therefore, it is enough to

consider only p
(µ)
t (e;x, y).

The main result is the following.

Theorem 1.2. Let p
(µ)
t be the heat kernel (with respect to the left-invariant Haar

measure H) for the operator L(µ) defined in (1.2). Then

p
(µ)
t (e;x, y) =

21/2Γ(3/2)e(2+µ)x−µ2t/2+π2/(2t)

π2t1/2

∫ ∞

0

e−ξ2/2t sinh(ξ) sin
(

πξ
t

)
(1 + y2 + e2x + 2ex cosh(ξ))

3/2
dξ.
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Remark 1.3. Notice that since G is non-unimodular the heat kernel p
(µ)
t (x, y;x′, y′)

is not symmetric with respect to the left-invariant Haar measure H(dxdy). Specifi-
cally,

p
(µ)
t (x′, y′;x, y) = e−xex

′
p
(µ)
t (x, y;x′, y′).

The value p
(µ)
t (e; e) is the analogue of the probability of return in t steps to the

origin (neutral element) e = (0, 0) of the group G for the (discrete time) random
walk. It is a very important and general problem to know, for a given Lie group H
and a left-invariant second order differential operator L on H satisfying Hörmander
condition, the asymptotic of the heat kernel pt for L at identity e both for small
and large time t. The behavior of pt(e; e) is closely related with the geometry of the
underlying group H. There is a lot of literature devoted to this subject. See e.g.
the survey by Varopoulos (2005) and references therein.

As a corollary from Theorem 1.2 we obtain, with a help of McKean’s result
McKean (1970) about heat kernel for Laplace-Beltrami operator on the upper half-

plane, a simple explicit formula for “return probability” p
(µ)
t (e; e), from which we

deduce the asymptotic for t → 0 and t → ∞.

Theorem 1.4. We have

p
(µ)
t (e; e) =

1

2(πt)3/2
e−µ2t/2

∫ ∞

0

ξe−ξ2/(2t)

(cosh ξ)1/2
dξ.

Corollary 1.5. The asymptotic behavior of p
(µ)
t (e; e), for small and large t, is as

follows,

p
(µ)
t (e; e) ∼

{
1

2π3/2 t
−1/2, as t → 0,

c
2π3/2 t

−3/2e−µ2t/2, as t → ∞,

where c =
∫∞
0

ξ(cosh ξ)−1/2dξ.

Similar results on solvable groups of upper triangular 2× 2 matrices are proved
by Konakov et al. (2011).

Remark 1.6. The diffusion process (Xt, Yt) associated to the infinitesimal generator
L(µ) is the solution of the following system of stochastic differential equations,

dXt =dW 1
t + µdt,

dYt =eXtdW 2
t ,

where W 1
t and W 2

t are independent standard Brownian motions. This process is
closely related to processes considered in financial mathematics. Specifically, one
can consider a model in which the process eXt , which is a geometric Brownian
motion, is the volatility process and Yt is the log returns process.

2. Skew-product formula

Consider the product of two manifolds M ×N. A generic element of M ×N is
denoted by (x, y). Let L1 be a differential operator acting on M and let, for every
x ∈ M, L2(x) be an operator acting on N. Let L be a skew-product of L1 and L2(x).
That is L is the operator, on the product M ×N, and acts on f : M ×N → R by
formula,

Lf(x, y) = L1f(·, y)
∣∣
x
+ L2(x)f(x, ·)

∣∣
y
, (2.1)



302 Roman Urban

i.e., L1 in (2.1) differentiate only the fist variable of the function f, whereas L2(x)
acts on the second variable. Then it is natural to expect that the semigroup Tt

generated by L is given by the following skew-product formula:

Ttf(x, y) = Ex (U
σ(0, t)f(σ(t), y)) , (2.2)

where the expectation Ex is taken with respect to the diffusion σ(t) on M gener-
ated by L1 (a subscript x denotes that σ starts from x ∈ M, i.e., σ(0) = x) and
Uσ(s, t) is a family of evolution operators (acting on variable y ∈ N) generated
by time dependent operator L2(σ(t)) (see Tanabe (1979); van Casteren (2011) for
information on evolutions). The idea of such a decomposition of the diffusion on
M × N goes back to Malliavin (1978); Malliavin and Malliavin (1974) (see also
Taylor (1992)).

In our context M = R, N = R, and the operator L(µ) is a skew-product of
L1 = 1

2 (∂
2
x+2µ∂x) and L2(x) =

1
2e

2x∂2
y . Then σ(t) in (2.2) is the Brownian motion

with a constant drift µ, that is σ(t) = b(µ)(t) := b(t) + tµ, where b(t) is a standard
Brownian motion. The formula (2.2) in this situation can be proved along the lines
of the proof of Theorem 3.1 in Damek et al. (2001).

3. Proofs

We are going to apply formula (2.2) to get the explicit expression for the heat
kernel for the operator L(µ) defined in (1.2).

Proof of Theorem 1.2: For a trajectory b(µ) ∈ C([0,+∞),R) of the Brownian mo-
tion with drift (generated by the operator L1 = 1

2 (∂
2
x + 2µ∂x) we consider the

following time dependent operator

Lb(µ)(t) = e2b
(µ)(t)∂2

y .

(This is L2(b
(µ)(t)) in the notation of the previous section.) Then the fundamental

solution pb
(µ)

t,s (y) of

Lb(µ)(t) − ∂t = 0

can be easily computed (using, for example, the Fourier transformation) and is
given by

pb
(µ)

t,s (y) =
1(

2π
∫ t

s
e2b(µ)(u)du

)1/2 exp

(
− y2

2
∫ t

s
e2b(µ)(u)du

)
.

In notation of Sec. 2, U bµ(s, t)f(y) = pb
(µ)

t,s ∗ f(y) is a convolution operator. Let, for
x ∈ R and ε > 0,

Iε(x) = [x− ε, x+ ε].

By the skew-product formula (2.2) applied to the function

δy(·)⊗
1

ν(Iε(x))
1Iε(x)(·),

where 1A is the indicator function of a given set A ⊆ R, and

ν(A) =

∫
A

e−xdx, A ⊆ R,
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i.e., ν is a projection of the Haar measureH defined in (1.1) onto the first component
of G, we get

p
(µ)
t (e;x, y) = lim

ε→0

1

ν(Iε(x))
E0

(
pb

(µ)

t,0 (y)1Iε(x)(b
(µ)(t))

)
. (3.1)

Let, for t > 0, ϕ(t; r, w) denote the density function (with respect to the measure
drdw) on (0,+∞)× R of the joint distribution of the exponential functional

A
(µ)
t =

∫ t

0

e2b
(µ)(u)du

and b(µ)(t) = b(t) + tµ, i.e.,

ϕ(t; r, w)drdw = P0

(
A

(µ)
t ∈ dr, b(µ)(t) ∈ dw

)
.

Then, by (3.1),

p
(µ)
t (e;x, y)

= lim
ε→0

1

ν(Iε(x))

∫
R

∫ +∞

0

1

(2πr)
1/2

exp

(
−y2

2r

)
1Iε(x)(w)ϕ(t; r, w)drdw.

Since

lim
ε→0

1

ν(Iε(x))

∫
R
1Iε(x)(w)ϕ(t; r, w)dw

= lim
ε→0

1

ν(Iε(x))

∫
R
1Iε(x)(w)ϕ(t; r, w)e

we−wdw = ϕ(t; r, x)ex,

we get that

p
(µ)
t (e;x, y) = ex

∫ ∞

0

1

(2πr)
1/2

exp

(
−y2

2r

)
ϕ(t; r, x)dr. (3.2)

The density ϕ(t; r, x), by a probabilistic method, was for the first time computed
by Yor (1992). An analytic proof is given in Matsumoto and Yor (2005a).

Theorem 3.1. Let µ ∈ R. Fix t > 0. Then, for r > 0 and x ∈ R, it holds that

P0

(
A

(µ)
t ∈ dr, b(µ)(t) ∈ dx

)
= eµx−µ2t/2 exp

(
−1 + e2x

2r

)
θ(ex/r, t)

drdx

r
,

where,

θ(r, t) =
r

(2π3t)1/2
eπ

2/2t

∫ ∞

0

e−ξ2/2te−r cosh(ξ) sinh(ξ) sin

(
πξ

t

)
dξ.

Thus, by Theorem 3.1 and (3.2),

p
(µ)
t (e;x, y) =ex

∫ ∞

0

1

(2πr)
1/2

exp

(
−y2

2r

)
× eµx−µ2t/2 exp

(
−1 + e2x

2r

)
θ(ex/r, t)

dr

r

=
e(2+µ)x−µ2t/2+π2/(2t)

2π2t1/2

∫ ∞

0

1

r5/2
exp

(
−1 + y2 + e2x

2r

)
×
∫ ∞

0

e−ξ2/2te−ex cosh(ξ)/r sinh(ξ) sin

(
πξ

t

)
dξdr.
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By Fubini theorem,

p
(µ)
t (e;x, y) =

e(2+µ)x−µ2t/2+π2/(2t)

2π2t1/2

∫ ∞

0

e−ξ2/2t sinh(ξ) sin

(
πξ

t

)
×
∫ ∞

0

1

r5/2
exp

(
−1 + y2 + e2x + 2ex cosh(ξ)

2r

)
drdξ.

The integral over r is equal to(
1 + y2 + e2x + 2ex cosh(ξ)

2

)−3/2

Γ(3/2).

Hence, Theorem 1.2 follows. �

Proof of Theorem 1.4: From Theorem 1.2,

p
(µ)
t (e; e) =

Γ(3/2)e−µ2t/2+π2/(2t)

2π2t1/2

∫ ∞

0

e−ξ2/2t sinh(ξ) sin
(

πξ
t

)
(1 + cosh(ξ))

3/2
dξ.

Comparing above formula with Matsumoto (2001, Theorem 3.1) we see that

p
(1/2)
t (e; e) is equal to ht(0), where ht(r) is the heat kernel for the Laplace-Beltrami

operator on the upper half plane (r is the hyberbolic distance between given points),
i.e.,

p
(µ)
t (e; e) = e−µ2t/2et/8ht(0).

Using a well known formula for ht(r) (which was found by McKean (1970), see also
Matsumoto and Yor (2005b, (3.3)), Matsumoto (2001, p. 558)),

ht(r) =
1

2(πt)3/2
e−t/8

∫ ∞

0

ξe−ξ2/(2t)

(cosh ξ − cosh r)1/2
dξ

the result follows. �

Proof of Corollary 1.5: For large t, it is enough to note that

lim
t→∞

∫ ∞

0

ξe−ξ2/(2t)

(cosh ξ)1/2
dξ =

∫ ∞

0

ξ

(cosh ξ)1/2
dξ = c.

For small t, we change variables and get∫ ∞

0

ξe−ξ2/(2t)

(cosh ξ)1/2
dξ = 2t

∫ ∞

0

ξe−ξ2

cosh(
√
2tξ)

dξ.

The integral on the right tends (as t → 0) to
∫∞
0

ξe−ξ2dξ = 1/2. �
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