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Abstract. We consider the range of random walks up to time n, Rn, on graphs
satisfying a uniform condition. This condition is characterized by potential theory.
Not only all vertex transitive graphs but also many non-regular graphs satisfy the
condition. We show certain weak laws of Rn from above and below. We also show
that there is a graph such that it satisfies the condition and a sequence of the mean
of Rn/n fluctuates. By noting the construction of the graph, we see that under the
condition, the weak laws are best in a sense.

1. Introduction

The range of random walk Rn is simply the number of sites which the random
walk visits up to time n. One of the most fundamental problems is whether the
process {Rn}n satisfies law of large numbers. Dvoretzky and Erdös (1951), Spitzer
(1976) considered the ranges of random walks on Z

d and derived strong law of large
numbers. They used the spacial homogeneity of Zd heavily. We may need to take
alternative techniques to consider the range of walks on graphs which do not have
such spacial homogeneity.

In this paper we consider the range of randomwalk on graphs satisfying a uniform
condition (U). See Definition 1.1 for the definition of the uniform condition. This
condition is characterized by potential theory, specifically, effective resistances. Not
only all vertex transitive graphs but also some non-regular graphs satisfy (U). See
Section 4 for detail. We state certain weak laws of Rn from above and below in
Theorem 1.2. Under a stronger assumption, certain strong laws holds for Rn. In
Theorem 1.3, we state the existence of a graph such that it satisfies (U) and a
sequence of the mean of Rn/n fluctuates. This construction shows that under (U),
the two convergences are best in a sense.
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Now we describe the settings. Let (X,µ) be an weighted graph. That is, X
is an infinite weighted graph and X is endowed with a weight µxy, which is a
symmetric nonnegative function on X × X such that µxy > 0 if and only if x
and y are connected. We write x ∼ y if x and y are connected by an edge. Let
µx =

∑

y∈X µxy, x ∈ X . Let µ(A) =
∑

x∈A µx for A ⊂ X .

In this paper we assume that supx∈X deg(x) < +∞ and 0 < infx,y∈X,x∼y µxy ≤
supx,y∈X,x∼y µxy < +∞. Whenever we do not refer to weights, we assume that
µxy = 1 for any x ∼ y.

Let {Sn}n≥0 be a Markov chain on X whose transition probabilities are given
by P (Sn+1 = y|Sn = x) = µxy/µx, n ≥ 0, x, y ∈ X . We write P = Px if P (S0 =
x) = 1. We say that (X,µ) is recurrent (resp. transient) if ({Sn}n≥0, {Px}x∈X) is
recurrent (transient). Let the random walk range Rn = |{S0, . . . , Sn−1}|.

Let TA = inf{n ≥ 0 : Sn ∈ A} and T+
A = inf{n ≥ 1 : Sn ∈ A} for A ⊂ X .

For x, y ∈ X , n ≥ 0 and B ⊂ X , let pBn (x, y) = Px(Sn = y, TBc > n)/µy and
gB(x, y) =

∑

n≥0 p
B
n (x, y). Let pn(x, y) = pXn (x, y) and g(x, y) = gX(x, y).

Let F1 = infx∈X Px(T
+
x < +∞) and F2 = supx∈X Px(T

+
x < +∞).

Let d be the graph metric on X . Let B(x, n) = {y ∈ X : d(x, y) < n}, x ∈ X ,
n ∈ N≥1. Let V (x, n) = µ(B(x, n)). Let E(f, f) = 1

2

∑

x,y∈X,x∼y(f(x) − f(y))2µxy

for f : X → R. Let us define the effective resistance by Reff(A,B)−1 = inf{E(f, f) :
f |A = 1, f |B = 0} for A,B ⊂ X with A ∩B = ∅.

Let ρ(x, n) = Reff({x}, B(x, n)c), x ∈ X,n ∈ N. Let ρ(x) = limn→∞ ρ(x, n). If
(X,µ) is recurrent (resp. transient), then, ρ(x) = +∞ (resp. ρ(x) < +∞) for any
x ∈ X .

Now we define a uniform condition for weighted graphs.

Definition 1.1 (uniform condition). We say that an weighted graph (X,µ) satisfies
(U) if ρ(x, n) converges uniformly to ρ(x), n → ∞.

Not only vertex transitive graphs (e.g. Z
d, the M -regular tree TM , Cayley

graphs of groups) but also some non-regular graphs (e.g. graphs which are roughly
isometric with Z

d, Sierpiński gasket or carpet) satisfy (U) if all weights are equal
to 1. See Section 4 for detail.

Now we describe the main results.

Theorem 1.2. Let (X,µ) be an weighted graph satisfying (U). Then, for any
x ∈ X and any ǫ > 0, we have that

lim
n→∞

Px(Rn ≥ n(1− F1 + ǫ)) = 0, (1.1)

and,

lim
n→∞

Px(Rn ≤ n(1− F2 − ǫ)) = 0. (1.2)

These convergences are uniform with respect to x. The convergence in (1.1) is
exponentially fast.

If (X,µ) satisfies an assumption which is stronger than (U), then, certain strong
laws hold for Rn, that is,

1− F2 ≤ lim inf
n→∞

Rn

n
≤ lim sup

n→∞

Rn

n
≤ 1− F1, Px-a.s.

See Corollary 2.3 for detail.
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Theorem 1.3. There exists an infinite weighted graph (X,µ) with a reference point
o which satisfies F1 < F2, (U),

lim inf
n→∞

Eo[Rn]

n
= 1− F2, and, lim sup

n→∞

Eo[Rn]

n
= 1− F1. (1.3)

Remark 1.4. (i) If X is vertex transitive, then, F1 = F2 and hence Rn/n → 1−F1 ∈
[0, 1] in probability. On the other hand, by noting Theorem 1.3, there exists an
infinite weighted graph (X,µ) with a reference point o which satisfies (U) and
Rn/n does not converge to any a ∈ [0, 1] in probability under Po.
(ii) If we replace F1 (resp. F2) with a real number larger than F1 (resp. smaller
than F2), (1.1) (resp. (1.2)) fails for an weighted graph in Theorem 1.3. In this
sense, the convergences (1.1) and (1.2) are best.

The main difficulty of the proof of Theorem 1.2 is that Px 6= Py can happen for
x 6= y. On the other hand, we use the fact in order to show Theorem 1.3.

2. Proof of Theorem 1.2

First, we show the following lemma.

Lemma 2.1. Let (X,µ) be an weighted graph satisfying (U). Then,

lim
n→∞

sup
x∈X

Px(n < T+
x < +∞) = 0.

Proof : By Kumagai (2010) Theorem 1.14, ρ(x, n)−1 = µxPx(T
+
x > TB(x,n)c), x ∈

X , n ≥ 1. Letting n → ∞, we have ρ(x)−1 = µxPx(T
+
x = +∞).

Since ρ(x, 1)−1 = µx,

Px(TB(x,n)c < T+
x < +∞) = µ−1

x (ρ(x, n)−1 − ρ(x)−1)

≤ µx(ρ(x)− ρ(x, n)).

Since µx ≤ supy∈X deg(y) supy,z∈X,y∼z µyz < +∞ and (X,µ) satisfies (U), we
see that

lim
n→∞

sup
x∈X

Px(TB(x,n)c < T+
x < +∞) = 0. (2.1)

Since supx deg(x) < +∞ and supy,z∈X,y∼z µyz < +∞, we have that

supx∈X V (x, n) < +∞, n ≥ 1. Since ρ(x, n)−1 ≥ infy,z∈X,y∼z µyz/n > 0, we
have that supx∈X ρ(x, n) < +∞, n ≥ 1.

Thus we can let f(n) = supx∈X ρ(x, n) supx∈X V (x, n), n ≥ 1.
By Kumagai (2010) Lemma 3.3(v),

Px(TB(x,n)c ≥ nf(n)) ≤
Ex[TB(x,n)c ]

nf(n)
≤

ρ(x, n)V (x, n)

nf(n)
≤

1

n
.

Hence,
lim
n→∞

sup
x∈X

Px(TB(x,n)c ≥ nf(n)) = 0. (2.2)

We have that

Px(nf(n) < T+
x < +∞) ≤ Px(TB(x,n)c < T+

x < +∞) + Px(TB(x,n)c ≥ nf(n)).

By noting (2.1) and (2.2), we have that

lim
n→∞

sup
x∈X

Px(nf(n) < T+
x < +∞) = 0.

This completes the proof of Lemma 2.1. �
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Let Yi,j be the indicator function of {Si 6= Si+k for any 1 ≤ k ≤ j}. Let Yi,∞ be
the indicator function of {Si 6= Si+k for any k ≥ 1}.

Proof of Theorem 1.2: We show this assertion in a manner which is partially similar
to the proof of Theorem 1 in Benjamini et al. (2007). However Px 6= Py can
happen for x 6= y and hence the random variables {Yk+aM,M}a∈N are not necessarily
independent. The details are different from the proof of Theorem 1 in Benjamini
et al. (2007).

First, we will show (1.1). Let ǫ > 0. Let M be a positive integer such that
supx∈X Px(M < T+

x < +∞) < ǫ/4. We can take such M by Lemma 2.1.
By considering a last exit decomposition (as in Benjamini et al. (2007)),

Rn = 1 +

n−2
∑

i=0

Yi,n−1−i ≤ M +

n−1−M
∑

i=0

Yi,n−1−i ≤ M +

n−1−M
∑

i=0

Yi,M .

Hence for n > 2M/ǫ,

Px(Rn ≥ n(1− F1 + ǫ)) ≤ Px

(

n−1−M
∑

i=0

Yi,M > n
(

1− F1 +
ǫ

2

)

)

= Px





M
∑

a=0

∑

i≡a mod (M+1)

Yi,M > n
(

1− F1 +
ǫ

2

)





≤
M
∑

a=0

Px





∑

i≡a mod (M+1)

Yi,M >
n

M + 1

(

1− F1 +
ǫ

2

)



 .

Therefore it is sufficient to show that for each a ∈ {0, 1, . . . ,M},

Px





∑

i≡a mod (M+1)

Yi,M >
n

M + 1

(

1− F1 +
ǫ

2

)



→ 0, n → ∞, exponentially fast.

(2.3)
For any t > 0, we have that

Px





∑

i≡a mod (M+1)

Yi,M >
n

M + 1

(

1− F1 +
ǫ

2

)





≤ exp

(

−t
n

M + 1

(

1− F1 +
ǫ

2

)

)

Ex



exp



t
∑

i≡a mod (M+1)

Yi,M







 . (2.4)

By using the Markov property of {Sn}n,

Ex



exp



t
∑

i≡a mod (M+1)

Yi,M







 = Ex





∏

i≡a mod (M+1)

exp(tYi,M )





≤

(

sup
y∈X

Ey [exp(tY0,M )]

)n/(M+1)

=

(

1 + (exp(t)− 1) sup
y∈X

Py(T
+
y > M)

)n/(M+1)

.
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By noting the definition of M and F1,

sup
y∈X

Py(T
+
y > M) ≤ sup

y∈X
Py(M < T+

y < +∞) + sup
y∈X

Py(T
+
y = +∞)

≤
ǫ

4
+ 1− F1.

Hence, for any t ≥ 0 and x ∈ X ,

Ex



exp



t
∑

i≡a mod (M+1)

Yi,M







 ≤
(

1 + (exp(t)− 1)
( ǫ

4
+ 1− F1

))n/(M+1)

.

Hence, the right hand side of the inequality (2.4) is less than or equal to

[

exp
(

−t
(

1− F1 +
ǫ

2

)){

1 + (exp(t)− 1)
( ǫ

4
+ 1− F1

)}]n/(M+1)

.

It is easy to see that for sufficiently small t1 = t1(F1, ǫ) > 0,
{

1 + (exp(t1)− 1)
( ǫ

4
+ 1− F1

)}

< exp
(

t1

(

1− F1 +
ǫ

2

))

.

Thus we have (2.3) and this convergence is uniform with respect to x. This
completes the proof of (1.1).

Second, we will show (1.2). Let ǫ > 0. Let M be a positive integer.
By a last exit decomposition,

Px(Rn ≤ n(1− F2 − ǫ)) = Px(n−Rn ≥ n(F2 + ǫ))

= Px

(

n−2
∑

i=0

(1− Yi,n−1−i) ≥ n(F2 + ǫ)

)

≤ Px

(

n−2
∑

i=0

(1− Yi,∞) ≥ n(F2 + ǫ)

)

.

Now we have 1− Yi,∞ = 1− Yi,M + Yi,M − Yi,∞ and

Px

(

n−2
∑

i=0

(1− Yi,∞) ≥ n(F2 + ǫ)

)

≤ Px

(

n−2
∑

i=0

(1 − Yi,M ) ≥ n
(

F2 +
ǫ

2

)

)

+ Px

(

n−2
∑

i=0

(Yi,M − Yi,∞) ≥
nǫ

2

)

. (2.5)

We have that Yi,M − Yi,∞ is the indicator function of

{Si 6= Si+k for any 1 ≤ k ≤ M, Si = Si+k for some k > M},

and hence, Ex[Yi,M − Yi,∞] ≤ supy∈X Py(M < T+
y < +∞).

Then for any n,

Px

(

n−2
∑

i=0

(Yi,M − Yi,∞) ≥
nǫ

2

)

≤
2

nǫ

n−2
∑

i=0

Ex[Yi,M − Yi,∞]

≤
2

ǫ
sup
y∈X

Py(M < T+
y < +∞). (2.6)



346 K. Okamura

On the other hand,

Px

(

n−2
∑

i=0

(1− Yi,M ) ≥ n
(

F2 +
ǫ

2

)

)

≤
M
∑

a=0

Px

(

∑

i≡a mod M+1

(1− Yi,M ) ≥
n

M + 1

(

F2 +
ǫ

2

)

)

.

By the Markov property of {Sn}n, we have that for any t > 0 and any a ∈
{0, 1, . . . ,M},

Px

(

∑

i≡a mod M+1

(1 − Yi,M ) ≥
n

M + 1

(

F2 +
ǫ

2

)

)

≤ exp

(

−t
n

M + 1

(

F2 +
ǫ

2

)

)

Ex

[

∏

i≡a mod M+1

exp(t(1 − Yi,M ))

]

≤ exp

(

−t
n

M + 1

(

F2 +
ǫ

2

)

)(

sup
y∈X

Ey [exp(t(1− Y0,M ))]

)n/(M+1)

=

[

exp
(

−t
(

F2 +
ǫ

2

))

{

1 + (exp(t)− 1) sup
y∈X

Py(T
+
y ≤ M)

}]n/(M+1)

.

Since supy∈X Py(T
+
y ≤ M) ≤ F2, we have that for sufficiently small t2 =

t2(F2, ǫ) > 0,

exp
(

−t2

(

F2 +
ǫ

2

))

{

1 + (exp(t2)− 1) sup
y∈X

Py(T
+
y ≤ M)

}

< 1.

Therefore for any a ∈ {0, 1, . . .M},

Px

(

∑

i≡a mod M+1

(1− Yi,M ) ≥
n

M + 1

(

F2 +
ǫ

2

)

)

→ 0, n → ∞.

Thus we see that

Px

(

n−2
∑

i=0

(1 − Yi,M ) ≥ n
(

F2 +
ǫ

2

)

)

→ 0, n → ∞. (2.7)

This convergence is uniform with respect to x.
By using (2.5), (2.6) and (2.7), we have

lim sup
n→∞

Px(Rn ≤ n(1 − F2 − ǫ)) ≤
2

ǫ
sup
y∈X

Py(M < T+
y < +∞).

By letting M → ∞, it follows from Lemma 2.1 that

lim sup
n→∞

Px(Rn ≤ n(1− F2 − ǫ)) = 0.

This convergence is uniform with respect to x. This completes the proof of (1.2). �

Remark 2.2. If F1 = F2, then (1.2) is easy to see by noting (1.1) and Ex[Rn] ≥
n(1− F2), n ≥ 1, x ∈ X .
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Corollary 2.3. If supx Px(M < T+
x < +∞) = O(M−1−δ) for some δ > 0, then,

certain strong laws hold. More precisely, for any x ∈ X,

1− F2 ≤ lim inf
n→∞

Rn

n
≤ lim sup

n→∞

Rn

n
≤ 1− F1, Px-a.s.

Proof : By noting the Borel-Cantelli lemma, we see that it suffices to show that for
any x ∈ X and ǫ > 0,

∑

n≥1

Px(Rn ≥ n(1− F1 + ǫ)) < +∞, (2.8)

and,
∑

n≥1

Px(Rn ≤ n(1− F2 − ǫ)) < +∞. (2.9)

(2.8) follows from that the convergence (1.1) is exponentially fast.
By noting (2.5), (2.6) and (2.7), we have that there exists a = a(F2, ǫ) ∈ (0, 1)

such that for any n and M < n,

Px(Rn ≤ n(1− F2 − ǫ)) ≤
2

ǫ
O(M−1−δ) + an/(M+1).

If we let M = n1−δ/2 − 1 for each n, then, we see (2.9). �

Since the convergence in (1.1) is exponentially fast, we can extend Theorem 1
in Benjamini et al. (2007), which treats the range of the random walk bridge on
vertex transitive graphs.

Corollary 2.4. Let (X,µ) be an weighted graph satisfying (U). Let x ∈ X. We
assume that lim supn→∞ Px(S2n = x)1/n = 1. Let ǫ > 0. Then,

lim
n→∞

Px (Rn ≥ n(1− F1 + ǫ)|Sn = x) = 0.

The limit is taken on n such that Px(Sn = x) > 0. This convergence is exponentially
fast.

3. Proof of Theorem 1.3

To begin with, we state a very rough sketch of the proof.
Let N1, N2 be integers such that 3 < N1 < N2 < (N1 − 1)2. First, we prepare

a finite tree with degree N1 and denote it X(1). Second, we surround X(1) with
finite trees with degree N2. We denote the graph we obtain by X(2). Third, we
surround X(2) with finite trees with degree N1. We denote the graph we obtain by
X(3). Repeating this construction, we obtain an increasing sequence of finite trees
(X(n))n. X

(2n+1) \X(2n) (resp. X(2n+2) \X(2n+1)) is a ring-like object consisting
of the N1 (resp. N2) -trees. Let r2n+1 (resp. r2n+2) be the “width” of the ring.
Assume ri ≪ ri+1 for any i. Let X be the infinite graph of the limit of (X(n))n.
This satisfies (U), because N1 and N2 are not too far apart. Lemma 3.3 states this
formally. X also satisfies F1 < F2 and (1.3), because ri ≪ ri+1 for any i.

In this section, we assume that any weight is equal to 1, that is, µxy = 1 for any
x ∼ y.

Let X be an infinite tree. For a connected subgraph Y of X , we denote the
restriction of E , deg, and ρ to Y by EY , degY , and ρY respectively. For a connected
subgraph Y ⊂ X , we let diam(Y ) = supy1,y2∈Y d(y1, y2). Here d is the graph
distance on X .
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Let x ∈ X . Let

Dx(y) = {z ∈ X : the path between x and z contains y} , y ∈ X.

We remark that y ∈ Dx(y) and Dx(x) = X . Let Ix(y, n) = ρDx(y)(y, n)
−1, y ∈ X .

We remark that Ix(x, n) = ρX(x, n)−1 = ρ(x, n)−1. Then we have the following.

Lemma 3.1. Let X be an infinite tree. Let x, y ∈ X. Let n ≥ 1. Let yi, 1 ≤ i ≤
degDx(y)(y), be the neighborhoods of y in Dx(y). Then,

Ix(y, n+ 1) =

degDx(y)(y)
∑

i=1

Ix(yi, n)

1 + Ix(yi, n)
.

Proof : Let f : Dx(y) → R such that f(y) = 1 and f = 0 on Dx(y)\BDx(y)(y, n+1).
Then, f = 0 on Dx(yi) \BDx(yi)(y, n) for any 1 ≤ i ≤ degDx(y)(y). Hence,

EDx(y)(f, f) =

degDx(y)(y)
∑

i=1

(1 − f(yi))
2 + EDx(yi)(f, f)

≥

degDx(y)(y)
∑

i=1

(1 − f(yi))
2 + f(yi)

2Ix(yi, n) ≥

degDx(y)(y)
∑

i=1

Ix(yi, n)

1 + Ix(yi, n)
.

Thus we see that

Ix(y, n+ 1) ≥

degDx(y)(y)
∑

i=1

Ix(yi, n)

1 + Ix(yi, n)
.

Let fi : Dx(yi) → R be a function such that fi(yi) = 1 and fi = 0 on Dx(yi) \
BDx(yi)(yi, n), 1 ≤ i ≤ degDx(y)(y). Let f : Dx(y) → R be the function defined by

f(y) = 1 and f = fi/(1 + EDx(yi)(fi, fi))
1/2 on Dx(yi). Then, f = 0 on Dx(y) \

BDx(y)(y, n) and,

Ix(y, n+ 1) ≤ EDx(y)(f, f) =

degDx(y)(y)
∑

i=1

EDx(yi)(fi, fi)

1 + EDx(yi)(fi, fi)
.

Since each fi is taken arbitrarily, we have

Ix(y, n+ 1) ≤

degDx(y)(y)
∑

i=1

Ix(yi, n)

1 + Ix(yi, n)
.

These complete the proof of Lemma 3.1. �

Lemma 3.2. Let 3 ≤ N1 < N2. Let X be an infinite tree such that deg(x) ∈
[N1, N2] for any x ∈ X. Then, N1 − 2 ≤ Ix(y, n) ≤ N2 for any x, y ∈ X and any
n ≥ 1.

Proof : We show this assertion by induction on n. If n = 1, then, by noting the
definition of Dx(y) and Ix(y, 1), Ix(y, 1) = degDx(y)(y) ∈ [N1 − 1, N2]. Thus the
assertion holds.

We assume that N1 − 2 ≤ Ix(y, n) ≤ N2 for any x, y ∈ X .



Range of random walk on graphs 349

Let x, y ∈ X . Since Ix(y, n + 1) ≤ Ix(y, n), we have Ix(y, n + 1) ≤ N2. Let yi,
1 ≤ i ≤ degDx(y)(y), be the neighborhoods of y in Dx(y). By noting Lemma 3.1
and the assumption of induction,

Ix(y, n+ 1) =

degDx(y)(y)
∑

i=1

Ix(yi, n)

Ix(yi, n) + 1
≥ degDx(y)(y)

N1 − 2

N1 − 1
≥ N1 − 2.

These complete the proof of Lemma 3.2. �

Lemma 3.3. Let 3 ≤ N1 < N2 < (N1 − 1)2. Let X be an infinite tree such that
deg(x) ∈ [N1, N2] for any x ∈ X. Then, X satisfies (U).

Proof : By using Lemma 3.1 and Lemma 3.2, we have that for any n, k ≥ 1 and
any x, y ∈ X ,

Ix(y, n+ 1)− Ix(y, n+ k + 1) =

degDx(y)(y)
∑

i=1

Ix(yi, n)

Ix(yi, n) + 1
−

Ix(yi, n+ k)

Ix(yi, n+ k) + 1

≤
N2

(N1 − 1)2
sup
z∈X

(Ix(z, n)− Ix(z, n+ k)) .

Here yi, 1 ≤ i ≤ degDx(y)(y), be the neighborhoods of y in Dx(y).
Repeating this argument, we have that for any n, k ≥ 1,

Ix(x, n)− Ix(x, n+ k) ≤

(

N2

(N1 − 1)2

)n−1

sup
z∈X

(Ix(z, 1)− Ix(z, k + 1))

≤

(

N2

(N1 − 1)2

)n−1

N2.

Since N2 < (N1 − 1)2, ρX(x, n)−1 converges uniformly to ρX(x)−1, n → ∞.
By Lemma 3.2, ρX(x, n)−1 ≥ N1−2 for any n ≥ 1 and hence ρX(x)−1 ≥ N1−2.

Therefore,

ρX(x)− ρX(x, n) = ρX(x)ρX(x, n)(ρX(x, n)−1 − ρX(x)−1)

≤
ρX(x, n)−1 − ρX(x)−1

(N1 − 2)2
.

Hence ρX(x, n) converges uniformly to ρX(x), n → ∞. This completes the proof
of Lemma 3.3. �

Let N ≥ 3. Let TN be the infinite N -regular tree. Let T̃N (o) be the infinite tree
T such that deg(o) = N − 1 for o ∈ T and deg(x) = N for any x ∈ T \ {o}. For the
simple random walk on TN , we let gN = Px(T

+
x = +∞) and gN (n) = Px(T

+
x > n)

for some (or any) x ∈ TN .

Definition 3.4. Let Y be a finite tree. Let E(Y ) = {y ∈ Y : deg(y) = 1}. Let
N ≥ 3. We define an infinite tree YN as follows : We prepare Y and |E(Y )| copies
of T̃N(o). Let YN be the infinite tree obtained by attaching o ∈ T̃N(o) to each
y ∈ E(Y ).

Lemma 3.5. Let N ≥ 3. Let Y be a finite tree with a reference point o such that
deg(y) ≥ 3 for any y ∈ Y \E(Y ). Let YN be the infinite tree in Definition 3.4. We
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assume that YN satisfies (U). Let Rn be the range of the simple random walk up to
time n− 1 on YN . Then,

lim
n→∞

Eo[Rn]

n
= gN .

Proof : By considering a last exit decomposition as in the proof of Theorem 1.2,

Eo[Rn] = 1 +

n−2
∑

i=0

Po (Si 6= Sj for any j ∈ {i+ 1, . . . , n− 1})

= 1 +

n−2
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y > n− 1− i)

= 1 +

n−2
∑

i=0

∑

y∈YN

Po(Si = y)Py(n− 1− i < T+
y < +∞)

+
n−2
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞).

Since YN satisfies (U),

1

n

n−2
∑

i=0

∑

y∈YN

Po(Si = y)Py(n− 1− i < T+
y < +∞)

≤
1

n

n−2
∑

i=0

sup
y∈YN

Py(n− 1− i < T+
y < +∞) → 0, n → ∞.

Hence it is sufficient to show that

lim
n→∞

1

n

n−2
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞) = gN . (3.1)

By the assumption, YN is an infinite tree such that deg(y) ≥ 3 for any y ∈ YN

and supy∈YN
deg(y) < +∞. Then, by Woess (2000) Example 3.8, YN is roughly

isometric to the 3-regular tree T3. Therefore YN is a transient graph.
Let x, y ∈ YN . Since Px(Si = y)/ deg(y) = Py(Si = x)/ deg(x),

deg(x)

deg(y)
Px(Si = y)2 = Px(Si = y)Py(Si = x) ≤ Px(S2i = x).

Therefore,

Px(Si = y) → 0, i → ∞, for any x, y ∈ YN . (3.2)

Let ǫ > 0. Then, there exists a positive integer m0 such that gN(m0) ≤ gN+ǫ/2.
By using the definition of YN and that the distribution of the random walk up to
time n− 1 starting at y ∈ YN is determined by BYN

(y, n), we have that

Py(T
+
y > m0) = gN (m0) for any y ∈ YN \B(o, 2(diam(Y ) +m0)).

Hence Py(T
+
y = +∞) ≤ gN + ǫ/2 for any y ∈ YN \B(o, 2(diam(Y ) +m0)).

By (3.2), we have that Po(Si ∈ B(o, 2(diam(Y ) + m0))) → 0, i → ∞. Hence
there exists a positive integer n0 such that Po(Si ∈ B(o, 2(diam(Y ) +m0))) ≤ ǫ/2
for any i ≥ n0. Then, for any n > n0,
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1

n

n−1
∑

i=n0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞)

≤
1

n

n−1
∑

i=n0

Po(Si ∈ B(o, 2(diam(Y ) +m0))) + sup
y/∈B(o,2(diam(Y )+m0))

Py(T
+
y = +∞).

≤
n− n0

n

ǫ

2
+ gN +

ǫ

2
≤ gN + ǫ.

We remark that

1

n

n0−1
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞) ≤

n0

n
→ 0, n → ∞.

Since ǫ > 0 is taken arbitrarily, we see that

lim sup
n→∞

1

n

n−1
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞) ≤ gN . (3.3)

Let ǫ > 0. Since YN satisfies (U), there exists a positive integer m1 such that
supy∈YN

Py(m1 < T+
y < +∞) ≤ ǫ. We have that for any y ∈ YN \B(o, 2(diam(Y )+

m1), Py(T
+
y > m1) = gN (m1). Hence,

gN ≤ gN(m1) = Py(T
+
y = +∞) + Py(m1 < T+

y < +∞) ≤ Py(T
+
y = +∞) + ǫ

for any y ∈ YN \B(o, 2(diam(Y ) +m1)).
By (3.2), there exists a positive integer n1 such that Po(Si ∈ B(o, 2(diam(Y ) +

m1))) ≤ ǫ, for any i ≥ n1. Then,

1

n

n−1
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞)

≥
1

n

n−1
∑

i=n1

∑

y/∈B(o,2(diam(Y )+m1))

Po(Si = y)Py(T
+
y = +∞) ≥

n− n1

n
(1− ǫ)(gN − ǫ).

By letting n → ∞ and recalling that ǫ > 0 is taken arbitrarily,

lim inf
n→∞

1

n

n−1
∑

i=0

∑

y∈YN

Po(Si = y)Py(T
+
y = +∞) ≥ gN . (3.4)

(3.3) and (3.4) imply (3.1). �

Proof of Theorem 1.3: First, we will construct an increasing sequence of finite trees
(X(n))n by induction on n. Second, we will show that the limit infinite graph X of
(X(n))n satisfies (U), F1 < F2 and (1.3).

Let 3 ≤ N1 < N2 < (N1 − 1)2. Let X(1) be a finite tree such that deg(x) = N1

for any x ∈ X(1) \E(X(1)) and X(1) = B(o, k1) for a point o ∈ X(1) and a positive
integer k1.

We assume that X(2n−1) is constructed and X(2n−1) = BX(2n−1)(o, k2n−1) for a
positive integer k2n−1. By Lemma 3.5, there exists k2n > 2k2n−1 such that for the
simple random walk on (X(2n−1))N2 starting at o,

Eo[Rk2n ]

k2n
≥ gN2 −

1

n
. (3.5)
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Then we let X(2n) = (X(2n−1))N2 ∩B(X(2n−1))N2
(o, k2n).

We assume that X(2n) is constructed and X(2n) = BX(2n)(o, k2n) for a positive
integer k2n. By Lemma 3.5, there exists k2n+1 > 2k2n such that for the simple
random walk on (X(2n))N1 starting at o,

Eo[Rk2n+1 ]

k2n+1
≤ gN1 +

1

n
. (3.6)

Then we let X(2n+1) = (X(2n))N1 ∩B(X(2n))N1
(o, k2n+1).

Let X be the infinite graph obtained by the limit of a sequence of (X(n)). Then
degX(x) ∈ {N1, N2} and by Lemma 3.3 X satisfies (U).

Now we show (1.3). We remark that the distribution of the simple random walk
up to time k − 1 on X starting at o is determined by BX(o, k), k ≥ 1. By the
definition of X , (3.5) and (3.6) hold also for the simple random walk on X . Hence,

lim inf
n→∞

Eo[Rn]

n
≤ gN1 , and, lim sup

n→∞

Eo[Rn]

n
≥ gN2 . (3.7)

By considering a last exit decomposition as in the proof of Theorem 1.2, and,
noting that X satisfies (U), we have

1− F2 = inf
x∈X

Px(T
+
x = +∞) ≤ lim inf

n→∞

Eo[Rn]

n
, (3.8)

and,

lim sup
n→∞

Eo[Rn]

n
≤ sup

x∈X
Px(T

+
x = +∞) = 1− F1. (3.9)

In order to see (1.3), it is sufficient to show that for any x ∈ X ,

gN1 ≤ Px(T
+
x = +∞) ≤ gN2. (3.10)

Let x ∈ X . We recall that degX(x) = N1 or degX(x) = N2. Then we can assume
that TN1 is a subtree of X and X is a subtree of TN2 and x ∈ TN1 .

Assume degX(x) = N1. By using Kumagai (2010) Theorem 1.16 and that TN1

is a subtree of X , we have

gN1 = N−1
1 ρTN1

(x)−1 ≤ N−1
1 ρX(x)−1 = Px(T

+
x = +∞).

Let xi, 1 ≤ i ≤ N2, be the neighborhoods of x in TN2 and xi ∈ TN1 for 1 ≤
i ≤ N1. Let f : TN2 → R be a function such that f(x) = 1 and it has a compact
support in TN2. Then, f has compact support also in Dx(xi) for each i. Here
Dx(xi) is defined in TN2. Then,

ETN2
(f, f)− EX(f, f) ≥

N2
∑

i=N1+1

(1− f(xi))
2 + EDx(xi)(f, f)

≥
N2
∑

i=N1+1

(1− f(xi))
2 + f(xi)

2ρDx(xi)(xi)
−1

≥
N2
∑

i=N1+1

ρDx(xi)(xi)
−1

1 + ρDx(xi)(xi)−1
.
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Since Dx(xi) is graph isomorphic to T̃N2(o), ρDx(xi)(xi) = ρT̃N2 (o)
(o). Hence,

ETN2
(f, f)− EX(f, f) ≥ (N2 −N1)

ρT̃N2 (o)
(o)−1

1 + ρT̃N2(o)
(o)−1

.

Since f |X(x) = 1 and f |X has compact support on X ,

ETN2
(f, f)− ρX(x)−1 ≥ (N2 −N1)

ρT̃N2 (o)
(o)−1

1 + ρT̃N2(o)
(o)−1

.

Since f is taken arbitrarily,

ρTN2
(x)−1 − ρX(x)−1 ≥ (N2 −N1)

ρT̃N2 (o)
(o)−1

1 + ρT̃N2(o)
(o)−1

.

We see that ρTN2
(x)−1 = N2

ρT̃N2 (o)
(o)−1

1 + ρT̃N2(o)
(o)−1

in the same manner as in the

proof of Lemma 3.1. Hence, N1ρTN2
(x)−1 ≥ N2ρX(x)−1. By using Kumagai (2010)

Theorem 1.16, we see that

Px(T
+
x = +∞) = N−1

1 ρX(x)−1 ≤ N−1
2 ρTN2

(x)−1 = gN2.

Assume degX(x) = N2. We can show (3.10) in the same manner as above and
sketch the proof.

By using Kumagai (2010) Theorem 1.16 and that X is a subtree of TN2, we have

Px(T
+
x = +∞) = N−1

2 ρX(x)−1 ≤ N−1
2 ρTN2

(x)−1 = gN2.

Let xi, 1 ≤ i ≤ N2, be the neighborhoods of x in X and xi ∈ TN1 for 1 ≤ i ≤ N1.
Let f : X → R be a function such that f(x) = 1 and it has a compact support in
X . Then, f has compact support also in Dx(xi) for each i. Here Dx(xi) is defined
in X . Then,

EX(f, f)− ETN1
(f, f) ≥

N2
∑

i=N1+1

(1− f(xi))
2 + EDx(xi)(f, f)

≥
N2
∑

i=N1+1

ρDx(xi)(xi)
−1

1 + ρDx(xi)(xi)−1
.

We can regard T̃N1(o) as a subtree of Dx(xi) and can assume xi = o. Hence
ρDx(xi)(xi)

−1 ≥ ρT̃N1 (o)
(o)−1 and

EX(f, f)− ETN1
(f, f) ≥ (N2 −N1)

ρT̃N1 (o)
(o)−1

1 + ρT̃N1(o)
(o)−1

.

Therefore,

ρX(x)−1 − ρTN1
(x)−1 ≥ (N2 −N1)

ρT̃N1(o)
(o)−1

1 + ρT̃N1 (o)
(o)−1

= (N2 −N1)
ρTN1

(x)−1

N1
.

and then we have N1ρX(x)−1 ≥ N2ρTN1
(x)−1. By using Kumagai (2010) Theorem

1.16, we see that

gN1 = N−1
1 ρTN1

(x)−1 ≤ N−1
2 ρX(x)−1 = Px(T

+
x = +∞).

Thus the proof of (3.10) completes and we obtain (1.3).
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By using Woess (2000) Lemma 1.24 and N1 < N2, we see that gN1 = (N1 −
2)/(N1 − 1) < gN2 = (N2 − 2)/(N2 − 1). By using (3.7), (3.8), (3.9) and (3.10), we
see gN1 = 1− F2 and gN2 = 1− F1. Hence F1 < F2.

Thus we see that X satisfies (U), F1 < F2, and, (1.3). �

4. Examples of graphs satisfying the uniform condition

In this section, we give some examples of graphs satisfying (U). We assume that
all weights are equal to 1.

Here we follow Kumagai (2010) Definition 1.8 for the definition of rough isometry
introduced by Kanai (1985).

Definition 4.1. Let Xi be weighted graphs and di be the graph metric of Xi,
i = 1, 2. We say that a map T : X1 → X2 is a ((A,B,M)-)rough isometry if there
exist constants A > 1, B > 0, and, M > 0 satisfying the following inequalities.

A−1d1(x, y)−B ≤ d2(T (x), T (y)) ≤ Ad1(x, y) +B, x, y ∈ X1.

d2(T (X1), z) ≤ M, z ∈ X2.

We say that X1 is roughly isometric to X2 if there exists a rough isometry between
them. We say that a property is stable under rough isometry if wheneverX1 satisfies
the property and is roughly isometric to X2, then X2 also satisfies the property.

4.1. Recurrent graphs.

Proposition 4.2. The condition (U) is stable under rough isometry between re-
current graphs.

Proof : Assume that X1 is a recurrent graph satisfying (U) and X2 is a (recurrent)
graph which is roughly isometric to X1. We would like to show that X2 satisfies
(U).

Since rough isometry is an equivalence relation, there exists a (A,B,M)-rough
isometry T : X2 → X1. Fix n ∈ N and x ∈ X2. Let f be a function on X1 such that
f(T (x)) = 1 and f = 0 on X1 \B(T (x), A−1n−B). Since T is a (A,B,M)-rough
isometry, we have that for any y ∈ X2 \B(x, n), T (y) ∈ X1 \ B(T (x), A−1n− B),
and hence, f ◦ T = 0 on X2 \B(x, n).

By using Theorem 3.10 in Woess (2000), we see that there exists a constant
c > 0 such that EX1(f, f) ≥ cEX2(f ◦ T, f ◦ T ). This constant does not depend on
(x, n, f). Therefore,

inf
{

EX1(f, f) : f(T (x)) = 1, f = 0 on X1 \B(T (x), A−1n−B)
}

≥ c inf {EX2(g, g) : g(x) = 1, g = 0 on X2 \B(x, n)} .

Hence, ρX2(x, n) ≥ cρX1(T (x), A
−1n − B). By recalling that X1 satisfies (U), we

see that X2 satisfies (U). �

Proposition 4.3. Let X be a graph such that there exists C > 0 such that V (x, n) ≤
Cn2 for any x ∈ X and n ≥ 1. Let X ′ be a graph which is roughly isometric to X.
Then, X and X ′ satisfy (U).

We can show the above assertion in the same manner as in the proof of Woess
(2000), Lemma 3.12 and Lemma 3.13, so we omit the proof.
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Proposition 4.4. Let X be a graph such that

lim
n→∞

inf
x∈X

n
∑

k=0

pk(x, x) = +∞. (4.1)

Let X ′ be a graph which is roughly isometric to X. Then, X and X ′ satisfy (U).

Proof : By noting Kumagai (2010) Lemma 3.3(iv), we see that ρ(x, n) =

gB(x,n)(x, x), x ∈ X , n ≥ 1. Since p
B(x,n)
k (x, x) = pk(x, x) for k < n,

ρ(x, n) = gB(x,n)(x, x) ≥
∑

0≤k<n

pk(x, x).

By noting (4.1), we see X satisfies (U). Since X is recurrent, it follows from
Proposition 4.2 that X ′ also satisfies (U). �

By using Section 5 in Barlow et al. (2005), we see that the d-dimensional stan-
dard graphical Sierpiński gaskets, d ≥ 2, and Vicsek trees (See Barlow (2004) for
definition) satisfies (4.1). Thus we have

Example 4.5. The graphs which are roughly isometric with the following graphs
satisfy (U).
(i) Infinite connected subgraphs in Z

2.
(ii) Infinite connected subgraphs in the planer triangular lattice.
(iii) The d-dimensional standard graphical Sierpiński gaskets, d ≥ 2.
(iv) Vicsek trees.

4.2. Transient graphs.

Proposition 4.6. Assume that a graph X satisfies (UCα), α > 2, that is, there
exist C > 0 such that supx∈X pn(x, x) ≤ Cn−α/2, n ≥ 1. Let X ′ be a graph which
is roughly isometric to X. Then, X and X ′ satisfy (U).

Proof : Let m > n. Then, by using Kumagai (2010) Lemma 3.3(iv) and

p
B(x,m)
k (x, x) = p

B(x,n)
k (x, x) = pk(x, x) for k < n,

ρ(x,m) − ρ(x, n) = gB(x,m)(x, x) − gB(x,n)(x, x)

=
∑

k≥n

(p
B(x,m)
k (x, x) − p

B(x,n)
k (x, x))

≤
∑

k≥n

pk(x, x).

Letting m → ∞,

ρ(x) − ρ(x, n) ≤
∑

k≥n

pk(x, x), x ∈ X,n ≥ 1.

Thus we see that if X satisfies (UCα) for some α > 2, then X satisfies (U).
The stability of the property (UCα), α > 2, under rough isometry follows from

Varopoulos (1985) Theorem 1 and 2, and, Kanai (1986) Proposition 2.1. Thus we
see that X ′ also satisfies (U). �

Z
d satisfies (UCd). By using Barlow and Bass (1999a,b), we see that if d ≥ 3,

then d-dimensional standard graphical Sierpiński carpet satisfies (UCα) for some
α > 2. Therefore we have
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Example 4.7. The graphs which are roughly isometric with the following graphs
satisfy (U).
(i) Zd, d ≥ 3.
(ii) d-dimensional standard graphical Sierpiński carpet, d ≥ 3.

4.3. A graph which does not satisfy (U). Finally, we give an example of a graph
which does not satisfy (U).

Remark 4.8. The recurrent tree T treated in Woess (2000), Example 6.16 does not
satisfy (U). For any n ≥ 1, there exists xn ∈ T such that ρ(xn, n) = ρT4(xn, n),
where T4 is the 4-regular tree. Since T4 is vertex transitive and transient, we have
that ρT4(xn, n) ≤ ρT4(xn) = ρT4(o) < +∞, n ≥ 1, for a reference point o ∈ T4.
However, T is recurrent and hence ρ(x, n) → ∞, n → ∞, x ∈ T . Thus we see that
T does not satisfy (U).
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