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Abstract. Consider a bivariate Geometric random variable where the first compo-
nent has parameter p1 and the second parameter p2. It is not possible to make the
correlation between the marginals equal to -1. Here the properties of this minimum
correlation are studied both numerically and analytically. It is shown that the min-
imum correlation can be computed exactly in time O(p−1

1 ln(p−1
2 ) + p−1

2 ln(p−1
1 )).

One method for generating a bivariate geometric with target correlation requires
computing this minimum correlation. The minimum correlation is shown to be non-
monotonic in p1 and p2, moreover, the partial derivatives are not continuous. For
p1 = p2, these discontinuities are characterized completely and shown to lie near
(1 - roots of 1/2). In addition, we construct analytical bounds on the minimum
correlation.

1. Introduction

We investigate the minimum attainable correlation between two Geometric ran-
dom variables. Most students graduate believe that any correlation in [−1, 1] is
attainable by a bivariate distribution. That, of course, is not true, except for dis-
tributions with symmetric support like Normal and Uniform (see Moran (1967)).
The consequence is that, in data analysis, empirical correlation is often misinter-
preted, and compared to −1 and 1 instead to the theoretical bounds. See Denuit
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and Dhaene (2003) and Shih and Huang (1992) for a discussion. Therefore, attain-
able correlation is crucial information about a multivariate distribution. Still, there
is much more unknown than known facts in this field, especially in higher dimen-
sions. In bivariate case, minimum correlation for several important distributional
examples is analyzed in Conway (1979) and Dukic and Marić (2013) (and refer-
ences therein). The purpose of the present paper is to fill the gap in this subject
concerning one of the most important discrete cases – the Geometric distribution.

Say that X has a Geometric distribution with parameter p (0 < p ≤ 1) and
write X ∼ Geo(p), if for all i ∈ {0, 1, 2, . . .}, P(X = i) = p(1 − p)i. If one has a
coin with probability p of heads, then X ∼ Geo(p) represents the number of tails
flipped before obtaining a heads.

For (p1, p2) ∈ (0, 1]2, let

ρ−(p1, p2) = min{Corr(X1, X2) : X1 ∼ Geo(p1), X2 ∼ Geo(p2)}.

When p1 = p2 = p, Figure 1.1 shows a graph of this minimum correlation as a
function of p. Several properties are immediately apparent. First, the correlation
is not a monotonic function of p. In addition, there are points of discontinuity in
the derivative of the graph. These phenomena are explained in Section 3.

In Section 2 it is shown that the value of ρ−(p1, p2) can be found exactly in time
O(p−1

1 ln(p−1
1 )+p−1

2 ln(p−1
2 )). In addition, upper and lower bounds for this function

are computed.
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Figure 1.1. The minimum correlation ρ−(p, p) for p < 1/2.
When p ≥ 1/2 the minimum correlation is simply equal to p− 1.

To understand ρ−, first consider the inverse transform method for generating a
random variate with a specified cdf (cumulative distribution function) F . Define
the pseudoinverse of the cdf as

F−1(u) = inf{x : F (x) ≥ u}. (1.1)

When U is uniform over the interval [0, 1] (write U ∼ Unif([0, 1])), F−1(U) is a
random variable with cdf F (see for instance p. 28 of Devroye (1986)). Since U
and 1 − U have the same distribution, both can be used in the inverse transform
method. The random variables U and 1− U are antithetic random variables.

We will use the notation X ∼ Y when X has the same probability distribution
as Y . The following result comes from work of Fréchet (1951) and Hoeffding (1940).
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Lemma 1.1 (Fréchet-Hoeffding bound). For X1 with cdf F1 and X2 with cdf F2,
and U ∼ Unif([0, 1]):

Corr(F−1
1 (U), F−1

2 (1− U)) ≤ Corr(X1, X2) ≤ Corr(F−1
1 (U), F−1

2 (U)).

Conversely, if Corr(X1, X2) equals the minimum correlation then it holds that
(X1, X2) ∼ (F−1

1 (U), F−1
2 (1 − U)). For correlation equal to the maximum value,

(X1, X2) ∼ (F−1
1 (U), F−1

2 (U)).

In other words, the maximum correlation between X1 and X2 is achieved when
the same uniform is used in the inverse transform method to generate both. The
minimum correlation between X1 and X2 is achieved when antithetic random
variates are used in the inverse transform method. In the literature on depen-
dence and copulas (see for instance Nelsen, 2006 and Denuit and Dhaene, 2003)
(F−1

1 (U), F−1
2 (U)) and (F−1

1 (U), F−1
2 (1 − U)) are known as the comonotonic and

countermonotonic vectors, respectively.
For X ∼ Geo(p), the expectation and variance are well known: E(X) = (1−p)/p

and V(X) = (1− p)/p2. The cdf is

Fp(a) = P(X ≤ a) = p+ p(1− p) + · · · p(1− p)a = 1− (1− p)a+1.

Lemma 1.2. The pseudoinverse F−1
p of Fp is

F−1
p (u) =

∞
∑

n=1

1(1− (1− p)n ≤ u < 1− (1− p)n+1).

[Here 1(expression) is the indicator function that evaluates to 1 when the Boolean
expression in the argument is true, and is 0 otherwise.]

Proof : As the cdf of X is 1− (1−p)a+1, for u ∈ [1− (1−p)n ≤ u < 1− (1−p)n+1],
it holds that P(X ≤ n) ≥ u and P(X ≤ n− 1) < u. �

Prior Work. Several authors have studied the construction of bivariate geometric
distributions. Downton (1970) created such a distribution as a means to create a
bivariate exponential for reliability applications where two processes are receiving
shocks in a memoryless correlated fashion. Hawkes (1972) generalized Downton’s
family as follows. Consider a bivariate Bernoulli distribution (A,B) where for all i
and j in {0, 1}:

P(A = i, B = j) = pij .

Then if (Ai, Bi) are an iid sequence of draws from this distribution for
i ∈ {1, 2, 3, . . .}, let X1 = min{i : Ai+1 = 1}, X2 = min{i : Bi+1 = 1}. It is
easy to show that this gives X1 ∼ Geo(p10 + p11), X2 ∼ Geo(p01 + p11).

Marshall and Olkin (1985) then showed that the geometrics obtained in this
fashion have a minimum correlation of at least −1/4.

Paulson and Uppuluri (1972) built a bivariate distribution by taking advantage
of a recursive formulation of the geometric from Uppuluri et al. (1967). They do not
analyze the minimum correlation, only showing that their family of distributions is
not rich enough to include the case that the components are independent.

In Dukic and Marić (2013) (and see also Huber and Marić, 2015), it is shown how
to simulate a bivariate Geometric distribution that attains any value between the
maximum and minimum correlation, although these methods require knowledge of
the maximum and minimum correlation.
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Therefore our first main result concerns computation of the minimum correlation.
Since the bivariate geometric distribution has infinite support, it is important to
note the minimum correlation can be computed relatively quickly.

Theorem 1.3. The minimum correlation between X1 ∼ Geo(p1) and X2 ∼ Geo(p2)
can be computed in time O(p−1

1 ln(p−1
2 ) + p−1

2 ln(p−1
1 )).

Our second main result is a proof of certain properties of the function ρ−(p, p).

Theorem 1.4. Let ρ−(p) be the minimum correlation achieved between X1 and X2

where both are Geo(p). Then the following is true.

(1) There is an infinite number of points where (d/dp)ρ−(p) is discontinuous.
(2) The points where the discontinuities occur are near to (1 - roots of 1/2).
(3) The function is upper and lower bounded by:

g(p)− p ≤ ρ−(p) ≤ g(p)

where

g(p) =
p2

[ln(1− p)]2
·

1

1− p

(

2−
π2

6

)

− (1− p).

To bound Corr(F−1
p (U), F−1

p (1−U)), the minimum correlation, the key is com-

puting E(F−1
p (U)F−1

p (1 − U)). Section 2 looks at finding this quantity for various
values of p. Some computational details are left for the Appendix, Section 5. Sec-
tion 3 then proves an upper and lower bound on the ρ−(p) function, as well as the
asymptotic behavior of the “bumps” in the function.

2. Computing the minimum correlation

For simplicity consider first the case that p = p1 = p2.
For any bivariate random variables with the same marginal distributions, the

maximum correlation is always 1. More interesting is the minimum correlation. For
geometric marginals, the minimum correlation is markedly different when p < 1/2
and when p ≥ 1/2.

Lemma 2.1. Let ρ−(p) be the minimum correlation achievable between X1 and X2

where both are Geo(p). It is possible to compute ρ−(p) in O(p−1 ln(p−1)) steps.

Proof : As in the introduction, let U ∼ Unif([0, 1]),X1 = F−1
p (U) andX2 = F−1

p (1−
U).

• Consider the p ≥ 1/2 case. Then either U or 1 − U falls in the interval [0, p]
so either X1 or X2 is 0. Hence E(F−1

p (U)F−1
p (1− U)) = 0 and

ρ−(p) =
0− [(1 − p)/p]2

(1− p)/p2
= p− 1.

• Next suppose p < 1/2. As in the p ≥ 1/2 case, if either U or 1 − U falls in
[0, p], then X1X2 = 0 and so consider when U ∈ [p, 1− p].

Let q = 1 − p, αi = 1 − qi, and βi = qi. With this notation, Fp(i) = αi+1, and
the pseudoinverse becomes

F−1
p (u) =

∞
∑

i=1

1(U ∈ [αi, αi+1)).
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Note that

p = α1 < α2 < · · · < αc ≤ 1− p,

where c = ⌊ln(p)/ ln(1 − p)⌋ = ⌊log1−p(p)⌋.
When U ∈ [αi, αi+1), X1 = i. At the same time, when 1−U ∈ [αi, αi+1), X2 = i.

Hence there are at most 2c breakpoints changing the value of X1 or X2. Therefore
there are at most 2c different values of (X1, X2) where one of the variables is not
0. This makes it possible to compute E(X1X2) in O(c) = O(p−1 ln(p−1)) time. For
more details see the Appendix. �

Example: p = 1/4. As an example of how this can be used to calculate the mini-
mum correlation, consider the case when p = 1/4.

Here c = ⌊ln(1/4)/ ln(3/4)⌋ = 4, and so the αi and βi values for interval [1/4, 3/4]
become

i
1 2 3 4

αi 1/4 = 64/256 112/256 148/256 175/256
βi 3/4 = 192/256 144/256 108/256 81/256

Ordering the αi and βi divides [1/4, 3/4] into seven pieces:

(x1, x2, . . . , x8) =

(

65

256
,
81

256
,
108

256
,
112

256
,
144

256
,
148

256
,
175

256
,
192

256

)

.

The seven intervals are then
Interval [x1, x2] [x2, x3] [x3, x4] [x5, x6] [x6, x7] [x1, x2] [x1, x2]

(X1, X2) (1, 4) (1, 3) (1, 2) (2, 2) (2, 1) (3, 1) (4, 1)

Hence

E(X1X2) = 1 · 4 ·
81− 65

256
+ 1 · 3 ·

108− 81

256
+ · · ·+4 · 1 ·

192− 175

256
=

442

256
≈ 1.7266,

which gives a minimum correlation of ρ−(1/4) = −1862/3072≈ −0.606.

Lemma 2.2. Let ρ−(p1, p2) be the minimum correlation achievable between X1 ∼
Geo(p1) and X2 ∼ Geo(p2). Then it is possible to compute ρ−(p1, p2) in
O(p−1

1 ln(p−1
2 ) + p−1

2 ln(p−1
1 )) steps.

Proof : The proof is essentially the same as for the previous lemma. Since E[X1],
E[X2], V(X1), and V(X2) are easy to calculate, the difficult part is finding E[X1X2]
using antithetic random variables.

Let χ1(u) = ⌊log1−p1
(1− u)⌋ and χ2(u) = ⌊log1−p2

(u)⌋ for u ∈ [0, 1]. Then note
X1 = χ1(U) and X2 = χ2(U), so

E[X1X2] =

∫ 1

0

χ1(u)χ2(u) du.

Find the integral by breaking it into a sum, since χ1(u) and χ2(u) are both step
functions.

When p1 + p2 ≥ 1, then one of the X1 and X2 must be zero. Otherwise let
αi = 1−(1−p1)

i for i from 1 to d2 = ⌊ln(p2)/ ln(1−p1)⌋. Similarly, set βi = (1−p2)
i

for i from 1 to d1 = ⌊ln(p1)/ ln(1−p2)⌋. Note d1+d2 = O(p−1
1 ln(p−1

2 )+p−1
2 ln(p−1

1 ))
and that the {αi} and {βj} values can be merged and sorted in linear time. �

Since for X ∼ Geo(p), E[X ] = O(p−1
1 ), this proves Theorem 1.3.
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3. Properties of the minimum correlation

In this section, the discontinuities of the partial derivatives of the ρ−(p1, p2)
function are determined.

Recall that E[X1X2] is computed by breaking the interval [0, 1] into subintervals
using 0 ≤ s1 ≤ s2 ≤ s3 ≤ · · · sn ≤ 1 where (s1, . . . , sn) are the sorted values (order
statistics) of the {αi} and {βj}. In particular s1 = α1 and sn = β1. Also, for
convenience we will set s0 = 0. Let f1(m) = max{i : αi ≤ sm}, f2(m) = max{j :
βj ≥ sm+1} so that for all u ∈ (sm, sm+1), (χ1(u), χ2(u)) = (f1(m), f2(m)). In
this interval form:

E[X1X2] =

n−1
∑

m=1

(sm+1 − sm)f1(m)f2(m). (3.1)

Lemma 3.1. Fix p2, and let p̄1 be a value where there exists i and j such that
αi = βj. Then ∂ρ−/∂p1 has a discontinuity at p̄1.

Proof : Since ρ−(p1, p2)=(E[XY ]−E[X ]E[Y ])/
√

V(X1)V(X2) and E[X ] and V(X1)
are analytic in p1 for p1 ∈ (0, 1], it suffices to show that ∂E[XY ]/∂p1 is discontinuous
at p̄1.

Each αℓ is the left endpoint of one subinterval, and the right endpoint of another.
Hence for each ℓ there is an integer m(ℓ) such that αℓ = sm(ℓ). Note that when
sm(ℓ)−1 < sm(ℓ) = αℓ < sm(ℓ)+1, a small change in αℓ does not change the interval
structure. That means f1(m(ℓ)) and f1(m(ℓ−1)) are constant under small changes
in αℓ. Only two terms in E[X1X2] depend on αℓ, so ∂E[X1X2]/∂αℓ is

∂

∂αℓ

[

(sm(ℓ)+1 − αℓ)f1(m(ℓ))f2(m(ℓ)) + (αℓ − sm(ℓ)−1)]f1(m(ℓ)− 1)f2(m(ℓ)− 1)
]

and since sm(ℓ)+1 and sm(ℓ)−1 do not depend on αℓ:

∂E[X1X2]

∂αℓ
= −f1(m(ℓ))f2(m(ℓ)) + f1(m(ℓ)− 1)f2(m(ℓ)− 1).

This holds for all ℓ. The chain rule then gives

∂E[X1X2]

∂p1
=

∑

ℓ

−
∂αℓ

∂p1
f1(m(ℓ))f2(m(ℓ)) +

∂αℓ

∂p1
f1(m(ℓ)− 1)f2(m(ℓ)− 1).

Since sm(ℓ) = αℓ, f1(m(ℓ)) = ℓ and f1(m(ℓ) − 1) = ℓ − 1. Also, we know that
f2(m(ℓ)) = f2(m(ℓ)− 1) since the boundary between the m and m− 1 intervals is
αℓ. Hence

∂E[X1X2]

∂p1
= −

∑

ℓ

∂αℓ

∂p1
f2(m(ℓ)). (3.2)

So now consider p1 only slightly smaller than p̄1. Then αi < βj , and if p1 is
close enough to p̄1, then sm(i)+1 = βj . As p1 increases past p̄1, αi increases past βj .
Then gives f2(m(i)) a discontinuity, as now the situation is βj < αi = sm(i) < βj−1.
So f2(m(i)) jumps from j for p1 arbitrarily close to but smaller than p̄1, to j − 1
for p1 arbitrarily close to but larger than p̄1.

Note that ∂αℓ/∂p1 > 0 for all ℓ. So there might be other {i′, j′} pairs where
αi′ = βj′ , but this only makes the discontinuous jump larger.

Hence ∂E[X1X2]/∂p1 has a discontinuous jump at every p1 value where there is
at least one αi = βj . �
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Of course by symmetry a similar result holds for p2. A similar result also holds
for ρ−(p) = ρ−(p, p).

Lemma 3.2. When there is an {i, j} pair such that 1 − (1 − p̄)i = (1 − p̄)j , the
derivative of ρ−(p) is discontinuous at p̄.

Proof : The proof is similar to that of the previous lemma. �

Consider the solutions to the equation of the previous Lemma. For x = (1− p̄),
discontinuities occur at the solutions to equations of the form

xj + xi = 1. (3.3)

One simple family of solutions is all roots of 1/2. That is, setting j = i and
x = (1/2)1/i gives a solution to (3.3).

The next set of solutions comes from j = i+1, giving the equation xi(1+x) = 1.
Since the solutions have x close to 1, 1+x is close to 2 and xi is close to 1/2. Since
1 + x is slightly smaller than 2, the solution x is slightly larger than (1/2)1/i.

More generally, for any fixed c, a family of solutions is found with j = i + c,
with solution x that is close to (1/2)1/i. The following lemma makes this notion of
closeness precise.

Lemma 3.3. The unique positive solution to xi(1 + xc) = 1 lies in the interval
(

(1/2)1/i, (1/2)1/(i+c)
)

for i and c positive.

Proof : The function f(x) = xi(1+xc) is continuous in x for i and c positive. Note

f((1/2)1/i) = (1/2)(1 + (1/2)c/i) < (1/2)(2) = 1

f((1/2)1/(i+c)) = (1/2)i/(i+c)(1 + (1/2)c/(i+c)) = (1/2)i/(i+c) + (1/2) > 1.

Hence the Intermediate Value Theorem guarantees a solution to f(x) = 1 for x
inside the interval. �

4. Bounding ρ−(p)

Using the antithetic generation of X1 and X2, it is possible to obtain bounds on
ρ−(p1, p2).

Lemma 4.1. The minimum correlation satisfies

ρ−(p1, p2) ≤
[p1/ ln(1 − p1)][p2/ ln(1− p2)]

√

(1− p1)(1 − p2)

(

2−
π2

6

)

−
√

(1− p1)(1 − p2).

Proof : The minimum correlation between X1 and X2 with X1 ∼ Geo(p1) and
X2 ∼ Geo(p2) is determined by E[X1X2] and is found when X1 = χ1(U) and
X2 = χ2(U) (where U ∼ Unif([0, 1])). Hence

E[X1X2] =

∫ 1

0

⌊

ln(1 − u)

ln(1− p1)

⌋⌊

ln(u)

ln(1− p2)

⌋

du.

For any nonnegative a and b, ⌊ab⌋ ≤ ab, so

E[X1X2] ≤

∫ 1

0

ln(1− u) ln(u)

ln(1− p1) ln(1 − p2)
= [ln(1 − p1) ln(1− p2)]

−1(2− π2/6)
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where
∫ 1

0 ln(1−u) ln(u) du can be computed by considering the power series expan-
sion of ln(1− u) and the value for the Riemann zeta function at 2 (see for example
Dukic and Marić, 2013).

When X ∼ Geo(p), E[X ] = (1− p)/p and V(X) = E[X ]2/(1− p). Hence

ρ−(p1, p2) ≤
[ln(1− p1) ln(1 − p2)]

−1(2− π2/6)− E[X1]E[X2]

E[X1]E[X2]/
√

(1− p1)(1− p2)
.

Simplifying then finishes the proof. �

The following lemma gives a feel for the behavior of −p/ ln(1− p).

Lemma 4.2. For p ∈ (0, 1/2],

1− (2− ln(2)−1)p ≤
−p

ln(1− p)
≤ 1− (1/2)p− (1/12)p2

where 2− ln(2)−1 ≈ 0.5573.

To obtain a lower bound, first note, as in Dukic and Marić (2013), that
∫ 1

0
λ−1
1 λ−1

2 ln(u) ln(1 − u) du− λ−1
1 λ−1

2

λ−1
1 λ−1

2

= 1− π2/6 = −0.6449 . . .

is the minimum correlation between any two exponentially distributed random vari-
ables, no matter their rates!

It is well known that adding an exponential random variable of rate λ conditioned
to lie in [0, 1] to a geometric with parameter p = 1− exp(−λ) gives an exponential
random variable with rate λ. This can be used to show the following.

Lemma 4.3. Let

g(p1, p2) =
[p1/ ln(1− p1)][p2/ ln(1 − p2)]

√

(1− p1)(1 − p2)

(

2−
π2

6

)

−
√

(1− p1)(1 − p2).

The minimum correlation satisfies

g(p1, p2)−
1

2

√

1− p1
1− p2

p2 −
1

2

√

1− p2
1− p1

p1 ≤ ρ−(p1, p2) ≤ g(p1, p2).

Proof : For X1 ∼ Geo(p1), X2 ∼ Geo(p2), let

A1 ∼ Exp(− ln(1− p1)|A1 ∈ [0, 1]), A2 ∼ Exp(− ln(1− p2)|A2 ∈ [0, 1]),

where A1 and A2 are independent of (X1, X2) and each other. Then Xi + Ai ∼
Exp(− ln(1− pi)) for i ∈ {1, 2}, and so Corr(X1 +A1, X2 +A2) ≥ 1− π2/6.

Solving the correlation for the mean of the product gives:

E[(X1 +A1)(X2 +A2)] ≥ (2 − π2/6) ln(1− p1) ln(1− p2).

So

E[X1X2] ≥− E(A1)E(X2)− E(A2)E(X1)− E(A1)E(A2)

+ (2− π2/6) ln(1− p1) ln(1− p2).

Since E(A1) and E(A2) are both at most 1/2, this gives

E[X1X2] ≥ −(1/2)E(X2)− (1/2)E(X1)− 1/4 + (2 − π2/6) ln(1 − p1) ln(1− p2)

which in turn gives the result. �

Theorem 1.4 then follows easily.
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5. Appendix

Here we carry out in greater detail the calculation of ρ−(p) (p1 = p2 = p) that
is used to generate Figure 1.1.

Consider 1/2 ∈ [p, 1 − p]. Let k be such that αk ≤ 1/2 < αk+1. That implies
qk+1 < 1/2 ≤ qk and k ≤ logq(1/2) < k+1. Since k is an integer, k = ⌊logq(1/2)⌋.

To avoid accumulation of superscripts let ri = (1/2)1/i, the ith root of 1/2. Then
ri ≤ q < ri+1 gives k = i, so as a function of q, k is a step-function whose value
increases by one at the roots of 1/2.

α1 βc1 βc1−1. . . βc2+1 βc2 βk+1
1
2 βk

α1 α2
· · · αk 1

2
αk+1

1 · c1 1(c1 − 1) · · · 1c2 2c2 2(c2 − 1) · · · (k − 1)k k · k

Figure 5.2. αi, βi, k, and ci over [p = α1, 1/2] and slightly be-
yond. The bottom row represents the value of F−1

p (U)F−1
p (1−U)

in each subinterval.

For i ∈ {1, . . . , c}, let ci be the index such that βci+1 < αi ≤ βci . Then
ci = [logq(1 − qi)] (see Figure 5.2.) The mean product of a geometric and its
antithetic counterpart can be written

E(F−1
p (U)F−1

p (1− U)) = 2

k
∑

i=1

iLi (5.1)

where for i = 1, . . . , k − 1

Li =
(

|(αi, βci)|ci + |(βci , βci−1)|(ci − 1) + · · ·+ |(βci+1+1, αi+1)|ci+1

)

.

[Here |(a, b)| = b− a denotes the width of the interval.]
When i = k there are three cases

Case 1. βk+1 ≤ αk ≤ 1/2, so Lk = |(αk,
1
2 )|k

2 since ck = k. Then

Lk = k2(qk − 1/2).

Case 2. βk+2 ≤ αk ≤ βk+1 ≤ 1/2 so Lk = |(αk, βk+1)|k(k + 1) + |(βk+1,
1
2 )|k

2 since
ck = k + 1. Then

Lk = k2(qk − 1/2) + k(qk+1 − 1 + qk).

Case 3. αk ≤ βk+2 < βk+1 ≤ 1/2: Here it is the case that ck = k + 2 and Lk =
|(αk, βk+2)|k(k + 2) + |(βk+2, βk+1)|k(k + 1) + |(βk+1,

1
2 )|k

2. Then

Lk = k2(qk − 1/2) + k(qk+2 + qk+1 + 2qk − 2).

These three cases exhaust the possibilities.

Lemma 5.1. The set of βi values in [αk, 1/2] is either ∅, {βk+1}, or {βk+1, βk+2}.
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Proof : It suffices to show that βk+3 < αk which is equivalent to qk+3 < 1− qk. As
before, let ri = (1/2)1/i. Consider the function g(x) = xi+3 +xi − 1 on the interval
(ri, ri+1); we shall show that g(x) is negative there. At ri+1:

g(ri+1) = (1/2)(i+3)/(i+1) + (1/2)i/(i+1) − 1

= (1/2)[r2i+1 + r−1
i+1 − 2] = (2ri+1)

−1[r3i+1 + 1− 2ri+1].

Now we observe that x3 − 2x + 1 < 0 for x ≥ r1 and therefore g(ri+1) < 0. Since
g′(x) = i+ 3xi+2 + ixi−1 > 0, g is an increasing function on (ri, ri+1) which means
the the function is negative on the entire interval.

So between αk and 1/2 one finds either βk+1, {βk+1, βk+2} or no βi values. �

Going back to (5.1), for i = 1, . . . , k − 1 we have

Li =
(

(βci − αi)ci + (βci−1 − βci)(ci − 1) + · · ·+

(βci+1+1 − βci+1+2)(ci+1 + 1) + (αi+1 − βci+1+1)ci+1

)

= ci(βci − αi + βci−1 − βci + · · ·+ αi+1 − βci+1+1)− 1 · (βci−1 − βci)−

2 · (βci−2 − βci−1)− · · · − (ci − ci+1)(αi+1 − βci+1+1)

which in terms of q is

Li = ci(αi+1 − αi)− (ci − ci+1)αi+1 − βci+1+1(βci−ci+1
+ βci−ci+1−1 + · · ·+ 1)

= ci(q
i − 1)− ci+1(q

i+1 − 1) +
qci+1+1 − qci+1

1− q
.

We can rewrite the sum in (5.1) as

k−1
∑

i=1

iLi =

k−1
∑

i=1

Li +

k−1
∑

i=2

Li + · · ·+
k−1
∑

i=k−2

Li + Lk−1. (5.2)

Many terms in
∑k−1

i=1 Li cancel:

k−1
∑

i=1

Li = c1(q − 1)− c2(q
2 − 1) +

qc2+1 − qc1+1

1− q
+

c2(q
2 − 1)− c3(q

3 − 1) +
qc3+1 − qc2+1

1− q
+ · · ·+

ck−1(q
k−1 − 1)− ck(q

k − 1) +
qck+1 − qck−1+1

1− q

= c1(q − 1)− ck(q
k − 1) +

qc2k+1 − qc1+1

1− q
.

In general, when the sum starts at j:

k−1
∑

i=j

Li = cj(q
j − 1)− ck(q

k − 1) +
q

1− q
(qck − qcj); j = 1, 2, . . . , k − 1.
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Now the sum in (5.2) becomes

k−1
∑

i=1

iLi =

k−1
∑

i=1

ci(q
i − 1)− ck(q

k − 1) +
q

1− q
(qck − qci)

= −(k − 1)ck(q
k − 1) + (k − 1)

qck+1

1− q
+

k−1
∑

i=1

ci(q
i − 1)−

qci+1

1− q
.

Finally

1

2
E(F−1

p (U)F−1
p (1− U)) =

k−1
∑

i=1

ci(q
i − 1)−

qci+1

1− q
+R(q, k),

where R(q, k) equals

k2/2 + k(qk − 1 + qk+1/(1− q))

− qk+1/(1− q)
in case 1,

k2/2 + k(qk+1 + qk − 1 + qk+2/(1− q)

+ qk − 1− qk+2/(1− q))
in case 2,

k2/2 + k(qk+2 + qk+1 + qk − 1 + qk+3/(1− q))

+ 2(qk − 1)− qk+3/(1− q)
in case 3.
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MR0339371.

W.J. Shih and W. Huang. Evaluating correlation with proper bounds. Biometrics
48 (4), 1207–1213 (1992). DOI: 10.2307/2532712.

V.R. Rao Uppuluri, P.I. Feder and L.R. Shenton. Random difference equa-
tions occurring in one-compartment models. Math. Biosci. 1, 143–171 (1967).
MR0215388.

http://www.ams.org/mathscinet-getitem?mr=MR2197664
http://www.ams.org/mathscinet-getitem?mr=MR0339371
http://dx.doi.org/10.2307/2532712
http://www.ams.org/mathscinet-getitem?mr=MR0215388

	1. Introduction
	2. Computing the minimum correlation
	3. Properties of the minimum correlation
	4. Bounding rho_-(p)
	5. Appendix
	References

