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Abstract. We consider a new IDLA - particle system model, on the upper half
planar lattice, resulting in an infinite forest covering the half plane. We prove that
almost surely all trees are finite.

1. Introduction

The model of Internal Diffusion Limited Aggregation (IDLA) was introduced
by Meakin and Deutch (1986) as a model for some chemical reactions, particle
coalescence and aggregation. IDLA was first studied rigorously by Diaconis and
Fulton (1991) and by Lawler, Lawler et al. (1992). IDLA is a growth model, starting
with a point aggregate 0 ∈ Z2, A(0) = {0}. At each step a particle exits the origin,
performs a simple random walk (SRW) and stops at the first position outside the
aggregate, this position is then added to the aggregate i.e. A(n + 1) = A(n) ∪ vn,
where vn is the first exit position of a SRW starting at 0 from A(n). In Lawler et al.
(1992), Lawler, Bramson and Griffeath prove the asymptotic shape of the IDLA
aggregate converges to the Euclidean ball. Asselah and Gaudillière (2010) and
independently Jerison et al. (2012) recently proved the long standing conjecture,
that the fluctuations from the Euclidean ball are at most logarithmic.

In this paper we consider an IDLA process in continuous time, introduced to us
by Itai Benjamini, which we call Stretched IDLA (SIDLA). This process starts with
an infinite line. Every vertex on the line has a Poisson clock, every ring initiates
an oriented SRW that can add an edge to the tree rooted at the vertex whose clock
rang. We show that even though eventually all vertices are covered, all trees are
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finite almost surely. See Figurs 1.1a and 1.1b for two simulations of the process.
The tree rooted at 0 is colored red. In initiating the IDLA in an infinite line, we lose
the simplicity of a discrete process, but we gain ergodicity which we use heavily in
our analysis. Our main tool is coupling the SIDLA to some first passage percolation
model, with exponentially increasing weights, and proving all trees are finite in the
percolation setting.

A natural question that arises is universality of the finite tree property. In the
last section we prove that all trees are finite in another first passage percolation
model with exponentially decreasing weights. Another interesting problem is to
characterize the decay of tree height. See Remark 3.6 for further discussion.
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Figure 1.1. Simulations of the SIDLA process.

1.1. General Notation. We consider the rotated Z2 lattice in the upper half-plane
re-scaled by

√
2. Hereon we abbreviate it H,

H = {(x, y) ∈ Z2 : x+ y ∈ 2 · Z, y ≥ 0}.
Denote by θl = (−1, 1) and θr = (1, 1) the vectors spanning the lattice. Viewed as
a directed graph, every site v = (x, y) is connected to the sites v+θl = (x−1, y+1)
and v + θr = (x + 1, y + 1). Abbreviate E the set of edges in H. For a vertex
v = (x, y), denote the vertex height by h(v) = y. For an edge e = (v, w), let
h(e) = max{h(v), h(w)}. It will also be useful to define the cone of v, C(v) =
{v+ iθl+jθr : i, j ∈ N∪{0}}, we write e = (w, z) ∈ C(v) if w, z ∈ C(v). This is the
set of vertices and edges that can be reached from x using directed edges. Finally
we denote ∂H = {(x, 0) : x ∈ 2 · Z}. See Figure 1.2 for a summary of the notation.

A disjoint oriented rooted forest in H, is a collection of rooted trees {T (v)}v∈∂H ⊂
E , such that for every v 6= v′, T (v) ∩ T (v′) = ∅, and every rooted tree T (v) is
the union of oriented paths for the form (e1 = (x1, x2), e2 = (x2, x3), . . . , en =
(xn, xn+1)) starting from x1 = v ∈ ∂H and ∀i ≤ n, xi+1 − xi ∈ {θl, θr}. For every
tree T (v) and a vertex u ∈ H, if there exists some w ∈ H such that (w, u) or (u,w)
is in T (v), we abuse notations and say that u ∈ T (v).

Let T be an oriented tree in a disjoint oriented rooted forest. Denote by ∂T , the
edge boundary of T i.e. ∂T = {e = (u, v) ∈ E : v /∈ T, u ∈ T}. Abbreviate ∂nT
the boundary of height n, i.e. ∂nT = {e ∈ ∂T, h(e) = n}. The height of a tree
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Figure 1.2. The oriented lattice

is denoted h(T ) = supe∈∂T {h(e)}. Denote by Tn the vertices of height n in T i.e.
Tn = {v|h(v) = n, v ∈ T}. For any set A ⊂ H, let ∂inA = {u ∈ A : ∃v /∈ A, (u, v) ∈
E or (v, u) ∈ E}.

We call a homogenous Poisson process N(t) such that N(t + τ) − N(t) is dis-
tributed Poisson(λτ) a Poisson clock of rate λ. When omitting the time of the Pois-
son clock we refer to the set of ring times i.e N = {t ∈ R+ : ∀s < t, N(t) > N(s)}.

1.2. SIDLA model description and general remarks. In this section we give a de-
scription of the SIDLA, the well-definedness is proved below.

We construct the SIDLA process on H. Let F be the set of disjoint oriented
rooted forests in H, and let F be the σ-algebra spanned by the standard projection
maps to E . For every t ≥ 0, let Pt be a measure on F . The process starts with the
empty forest i.e. P0(∀v, T (v, 0) = ∅) = 1. Assume Pt is defined and let T (v, t) to
be the tree rooted at v sampled from Pt.

At each site v found on the x axis place an independent Poisson clock of rate 1.
Given that a ring occurred at time t0 > t an edge e = (u1, u2) is adjoined to the
tree according to the following law:

Pt0(T (v, t0) = T (v, t−0 )∪e) =

2−h(u2) if u1 ∈ T (v, t−0 ) and u2 /∈
∪

v′∈∂H
v′ 6=v

T (v′, t0)

0 Otherwise
,

for every e 6= e′, Pt0(T (v, t0) = T (v, t−0 ) ∪ e ∪ e′) = 0, where

t−0 = t−0 (v) = sup{s > 0 : s < t0, clock at site v rang at time s}.
This process can be described intuitively in terms of particles: each time t0, the

clock at a vertex u ∈ ∂H rings, a particle is created, and starts an instantaneous
oriented random walk subject to the following law:

(1) Being at vertex v ∈ T (u, t−0 ), the particle chooses one of its neighbours
v + θr and v + θl with probability 1

2 , call the choice a.
(2) If a is free, the particle occupies the edge (v, a).
(3) If a ∈

∪
x∈∂H
x 6=u

T (x, t0) or a ∈ T (u, t−0 ) but (v, a) /∈ T (u, t−0 ) the particles

vanishes.
(4) Else it continues as described in (1.) from the newly reached vertex.
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Since the process is defined in continuous time the question of well-definedness
arises. However the geometry of H greatly simplifies the matter.

Lemma 1.1. The process is well defined and Pt converges strongly to a measure
P on disjoint oriented forests.

Proof : Each edge e ∈ E can a priori be reached only by a finite number of trees i.e.
|{v ∈ ∂H : e ∈ C(v)| = h(e). For every t > 0 we can order the rings of the Poisson
clocks associated to the set of trees up to time t. For each ring we have an oriented
random walk path, and e can be joined to at most one tree. The well definedness
of the process for every t ≥ 0 follows.

If some edge e ∈ E is contained in some tree T (v, t), then for every s > t,
e ∈ T (v, s) Ps-a.s. Thus the limit limt→∞ Pt exists. Abbreviate the limiting
measure P. �

Let T (v) = limt→∞ T (v, t). We can now state the main result of this paper:

Theorem 1.2. P(∀v ∈ ∂H, |T (v)| < ∞) = 1.

Remark 1.3. Note that every vertex in H is reached at a finite time a.s. We use
this remark in Corollary 3.5 which states that the expected height of a tree in P is
infinity.

1.3. First passage percolation. In this section we define a first passage percolation
model (FPP). In the next section we will couple the SIDLA with the FPP defined
in this section.

Assign for each edge e ∈ E a weight ω(e) ∼ exp
(
2−h(e)

)
independently of all other

edges. We denote the measure on [0,∞]E so constructed by P. For every oriented
path γ = (e1, e2, . . . , en) in H, the length of γ is defined to be λ(γ) =

∑n
i=1 ω(ei).

For every two points x, y ∈ H such that x ∈ C(y) or y ∈ C(x), let

dω(x, y) = min
γ:x→y

λ(γ),

where the minimum is over all finite number of oriented paths in H connecting x
and y. For a point x ∈ H and a set A ⊂ H connected by an oriented path, let
dω(x,A) = infy∈A dω(x, y).

Definition 1.4. For a vertex x ∈ ∂H, let T̂ (x) =
∪

y∈H{γ|γ is oriented, γ : x →
y, λ(γ) = dω(y, ∂H)} i.e. the union of all oriented paths minimizing the distance
from points y ∈ H to ∂H starting at the vertex x.

Remark 1.5. The uniqueness of the path γ : x → y, such that λ(γ) = dω(y, ∂H),
follows from the independence and continuity of the distribution of {ω(e)}e∈E .

Remark 1.6. Since P is a function of i.i.d. random variables, P is ergodic under the
shift θ : H → H defined by θ(x) = x− θl + θr.

2. Coupling SIDLA with FPP

Given a FPP process with distribution P, we construct a SIDLA process by way
of coupling. The construction amounts to associating with each x ∈ ∂H a set of
Poisson clock rings and prescribing the trajectory of each particle.
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To this end we introduce an auxiliary set of independent Poisson clocks. Given
an edge e ∈ E we associate with it a Poisson clock of rate 2−h(e), which we abbre-
viate Poisson(e), such that {Poisson(e)}e is an independent set of processes, and
independent of the FPP measure P.

We assign a set of rings for x and particle trajectories as follows: For each finite
oriented path γ ⊆ T̂ (x) ∪ ∂T̂ (x), γ = (e1, . . . , el(γ)) originating at x we assign the
following rings:

• if γ ⊂ T̂ (x) we assign the ring
∑l(γ)

i=1 ω(ei), and the trajectory of the particle
will be γ.

• if γ 6⊆ T̂ (x) we assign the ring sequence
∑l(γ)

i=1 ω(ei),
∑l(γ)

i=1 ω(ei)
+Poisson(el(γ)), for each ring in this sequence of rings the particle will
be assigned the path γ.

Remark 2.1. Note that in the second case, all the particles will vanish, as the
vertex at the end of γ will be reached sooner by a particle associated to the FPP
tree containing it.

We need to show that this construction results in a Poisson clock at v for every
v ∈ ∂H with the correct rate. We prove this by showing that the time differences
between every two consecutive rings is distributed exponentially with rate 1.

The next lemma is a combinatorial property of finite oriented trees in H.

Lemma 2.2. For every finite oriented tree T in H with root x ∈ ∂H and height
n− 1, then

n∑
i=1

1

2i
|∂iT | = 1.

Proof : We prove by induction on n. For n = 1, the tree is empty, thus |∂1T | = 2
and for every i > 1, |∂iT | = 0. We get 1

22 = 1. Now assume the claim is true for

n − 1, let T be a tree of height n. If |∂1T | = 0, denote by Tr − θr and Tl − θl the
two subtrees of T contained in T \ {x} shifted to ∂H. The subtrees are of height
smaller than n, and for every i ≤ n, |∂iTr|+ |∂iTl| = |∂i+1T | thus by the induction
hypothesis

n∑
i=1

1

2i
|∂iT | =

n−1∑
i=1

1

2i+1

(
|∂iTr|+ |∂iTl|

)
=

1

2
+

1

2
= 1. (2.1)

If |∂1T | = 1, assume wlog Tl = ∅, by the induction hypothesis,

n∑
i=1

1

2i
|∂iT | = 1

2
|∂1T |+

n∑
i=2

1

2i
|∂iT | = 1

2
+

1

2

n−1∑
i=1

1

2i
|∂iTr| = 1. (2.2)

�

Lemma 2.3. The time differences between every two consecutive rings at any vertex
v are independent and are distributed exponentially with rate 1.

Proof : By induction on the number of rings. The first ring happens at time
min{ω(er), ω(el)} which are distributed exponentially ω(er) ∼ exp(1/2), ω(el) ∼
exp(1/2), thus their minimum, is distributed min{ω(er), ω(el)} ∼ exp(1).

Induction step: assuming the first n rings have occurred, we consider the n+1st

interval of ring times. T (v, t) after the n-th ring consists of at most n vertices
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and edges, in particular |T (v, t)| < ∞. Let w′(e) be distributed according to P
independently from ω. By the memoryless property of exponential distribution,
the n+ 1st interval between ring times is by definition of the coupling, distributed
as mine∈∂T (v,t) w

′(e). We prove by induction that

µj = min
e∈

∪j
k=0 ∂n−kT (v,t)

{w′(e)} ∼ exp

(
1

2n−j

j∑
l=0

1

2j−l

∣∣∣∣∂n−lT (v, t)

∣∣∣∣
)
. (2.3)

The base of induction follows as µ0 is the minimum of |∂nT (v, t)| , exp
(

1
2n

)
inde-

pendent random variables. Since

min
e∈∂n−j−1T (v,t)

w′(e) ∼ exp

(
1

2n−j−1

∣∣∣∣∂n−j−1T (v, t)

∣∣∣∣) ,

µj+1 ∼ min

{
µj , min

e∈∂n−j−1T (v,t)
w′(e)

}
∼ exp

(
1

2n−j−1

j+1∑
l=0

1

2j+1−l

∣∣∣∣∂n−lT (v, t)

∣∣∣∣
)
.

(2.4)
Thus proving the internal induction. We obtain by Lemma 2.2

µn ∼ exp

(
n∑

l=0

1

2n−l

∣∣∣∣∂n−lT (v, t)

∣∣∣∣
)

∼ exp(1). (2.5)

�

3. Finite trees

In this section we will prove the main result of this paper.

Theorem 3.1. Given a FPP on H distributed according to P, i.e. with weights
w(e) ∼ exp

(
2−h(e)

)
, almost surely all trees are finite, i.e.

P(|T̂ (0)| < ∞) = 1.

Proof : Assume for the purpose of contradiction the existence of an infinite tree.
Then by shift invariance, β := P(|T̂ (0)| = ∞) > 0.

Remember that T̂m(x) = {v|h(v) = m, v ∈ T̂ (x)}. By the ergodic theorem we
have

1

2n+ 1

n∑
x=−n

|T̂m(x)|1|T̂ (x)|=∞ −→
n→∞

E
[
|T̂m(0)|

∣∣T̂ (0) = ∞
]
· P(|T̂ (0)| = ∞)

= β · E
[
|T̂m(0)|

∣∣|T̂ (0) = ∞|
]
.

(3.1)

Since all the trees are oriented, for every x ∈ ∂H, the tree T̂ (x) resides in the cone
C(x). Thus

1

2n+ 1

n∑
x=−n

|T̂m(x)|1|T̂ (x)|=∞ ≤ 1

2n+ 1

n∑
x=−n

|T̂m(x)| ≤ 2n+ 2m+ 1

2n+ 1
−→
n→∞

1,

and we get

E
[
|T̂m(0)|

∣∣ |T̂ (0)| = ∞
]
≤ 1

β
.
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Fix δ < 1, D = 1
β·δ , by Markov’s inequality

P
(
|T̂n(0)| > D

∣∣ |T̂ (0)| = ∞
)
≤ δ (3.2)

Definition 3.2. A tree rooted at v is called slim, if 0 < |T̂n(v)| < D for infinitely

many n’s. We say that a tree is slim at level k if 0 < |T̂ k(0)| < D.

T̂ (0) is slim with probability greater than 1− δ by the estimation

P
(
T̂ (0) is not slim

∣∣ |T̂ (0)| = ∞
)
= P

( ∞∪
n=1

∞∩
m=n

{|T̂n(0)| > D}
∣∣ |T̂ (0)| = ∞

)
= P

(
lim inf
n→∞

{|T̂n(0)| > D}
∣∣ |T̂ (0)| = ∞

)
≤ lim inf

n
P
(
|T̂n(0)| > D

∣∣ |T̂ (0)| = ∞
)
≤ δ.

(3.3)
By assuming existence of infinite trees we obtain a positive density of slim trees.
We will reach a contradiction by showing that the probability of a tree being slim
is 0.

Definition 3.3. Let rn = (max{s : (s, n) ∈ T̂n(0)} + 2, n) be the vertex to the

right of T̂n(0) and let ln be the vertex to the left of T̂n(0). For every n ∈ N
denote ∆(n) = H∩Convex hull{ln, rn, ln +

(
|T̂n(0)|+ 1

)
θr}, the triangle based in

T̂n(0) ∪ ln ∪ rn. See Figure 3.3 for clarifications.

Lemma 3.4. For every κ > 1, P(dω(ln, ∂H) > κ2n+1|σ({ω(e) :e ∈
∪n

i=1 T̂
i(0)})) ≤

1
κ < 1 a.s.

Proof : Let wi ∼ exp(2−i), with law Q, be independent of each other and of P.
We first prove by induction on n that dω(ln, ∂H) is stochastically dominated by∑n

i=1 wi. For n = 1, if T 1(0) is {θr}, then ω((θl, 0)) > ω((l1−θr, l1)). ω((l1−θr, l1))

is independent of T̂ 1(0), and in particular d(l1, ∂H) is stochastically dominated by

w1. If T̂ 1(0) is {θl} or {θl, θr}, d(l1, ∂H) = min{ω(−2,−2 + θl), ω(−4,−4 + θr)},
both are independent of T̂ 1(0), and in particular dominated by w1. Assume claim

for ln−1, if ln = ln−1+θl, since there is no oriented path connecting T̂n(0) with the

edge (ln−1, ln), then ω(ln−1, ln) is independent of
∪n

i=1 T̂
i(0), and thus dominated

by wn. Since dω(ln, ∂H) ≤ d(ln−1, ∂H)+ω(ln−1, ln), the claim follows by induction.
If ln = ln−1+θr, then dω(ln, ∂H) < dω(ln−θl, ∂H)+ω(ln, ln−θl) . Thus conditioned

on the weights of
∪n−1

i=1 T̂ i(0), and the structure of the tree, we obtain that

0 ≤ ω(ln−1, ln) ≤ ω(ln − θl, ln) + d(ln − θl, ∂H)− d(ln−1, ∂H). (3.4)

Since the random variables on the RHS of 3.4 are independent (without the con-
ditioning) of ω(ln−1, ln), we obtain that ω(ln−1, ln) is conditionally dominated
by wn. This is since for two independent random variables X and Y , one has
P(X > t|X < Y ) ≤ P(X > t). Thus we get by the induction hypotheses that
dω(ln, ∂H) ≤ d(ln−1, ∂H) + ω(ln−1, ln) is stochastically dominated by

∑n
i=1 wi.
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Now

P

(
dω(ln, ∂H) > κ2n+1|σ({ω(e) : e ∈

n∪
i=1

T̂ i(0)})

)
≤ Q

(
n∑

i=1

wi > κEQ

[
n∑

i=1

wi

])

≤ 1

κ
< 1.

(3.5)
�

Figure 3.3. Killing a slim tree.

Let Mn = max{dω(ln, ∂H), dω(rn, ∂H)}. Conditioned on the event that T̂ (0)
was slim in levels n1, . . . , nk such that nm+1 − nm > D and 2nk+1 > Mnk−1

,
m = 1, . . . , k−1, we show that the probability there exists a level l ≥ nk+D where
the tree is slim is bounded away from 1.

Every edge e ∈ ∆(nk) has weight distribution ω(e) ∼ exp(2−h(e)) = exp(2−nk−l)
where 0 ≤ l ≤ D + 1. Using the exponential distribution properties w(e) ∼
2nk exp(2−l).

The idea that will follow is to show that with positive probability ∂in∆(nk) \
T̂nk(0) belongs to the union of the trees of rnk

and lnk
thus killing the tree rooted

at 0. To this end let wi ∼ exp(2−i), be independent of each other and of P. We
denote the measure so constructed by Q. By Lemma 3.4 (note that the conditioning
is hiding in the notation lnk

) we obtain that

P(dω(lnk
, ∂H) > Mnk−1

+ κ2nk+1) ≤ P(dω(lnk
, ∂H) > κ2nk+1) ≤ 1

κ
< 1. (3.6)

With probability bounded away from zero and independent of all the levels lower
than nk, all (finite number) edges e ∈ ∆(nk) will have weights larger than ω(e) ≥
κ22DE[ω(e)] ≥ κ22D2nk , and all edges e′ = (x, y), {x, y} ∈ ∂in∆(nk) \ T̂nk(0)
will have weights smaller than ω(e′) ≤ E[ω(e′)]. Under this event, for every edge

e ∈ ∂in∆(nk) \ T̂nk(0), ω(e) ≤ 2nk+D. This yields,∑
e∈∂in∆(nk)\T̂nk (0)

ω(e) ≤ 2D · 2nk+D < κ22D2nk .

By the choice of nk we obtain that under the previous event Mnk

+
∑

e∈∂in∆(nk)\T̂nk (0) ω(e) is smaller than the weight of a single edge in ∆(nk), thus

any geodesic that hits ∆(nk) will not connect to Tnk(0). We get that ∂in∆(nk) \
T̂nk(0) /∈ T̂ (0).

�
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Corollary 3.5. E[h(T̂ (0))] = ∞

Proof : Assume for the purpose of contradiction that E[h(T̂ (0))] < ∞, thus

∞∑
i=1

P(h(T̂ (0)) ≥ i) =

∞∑
i=1

P(h(T̂ (i)) ≥ i) ≤ 1

2

∞∑
i=−∞

P(h(T̂ (i)) ≥ |i|) < ∞. (3.7)

By Borel-Cantelli, for all but a finite number i’s, h(T̂ (i)) < |i|. Since all trees have
finite height, there are infinitely many vertices in C(0) that are not covered a.s.
This is a contradiction to the construction of the SIDLA. �

Proof of theorem 1.2: By the coupling of Section 2, P(|T (0)| < ∞) = P(|T̂ (0)| <
∞). By Theorem 3.1, P(|T̂ (0)| < ∞) = 1. �

Remark 3.6. An interesting question that so far evades rigorous proof is that of
the correct decay of tree height. In Zerner and Merkl (2001), Zerner and Merkl
presented a variation of the next forest model. Let Z be a measure on {0, 1}E
defined as follows: from each vertex v ∈ H with h(v) > 0,

Z((v, v − θr) = 1, (v, v − θl) = 0) =
1

2

Z((v, v − θr) = 0, (v, v − θl) = 1) =
1

2
.

(3.8)

Zerner and Merkl proved the that the height of trees under Z have a 1
2 moment,

by coupling an exploration process that surrounds the trees with two independent
simple random walks. The tree is bounded by the trajectories of the random walks
until the first time they meet. Since the SIDLA process is coupled to a FPP model
with exponentially increasing weights, the law of the SIDLA is very close to Z. We
conjecture that SIDLA has 1

2 − ε moment for some small ε > 0.

4. Analogous result for different FPP

Once one sees the finite trees result for the FPP with exponentially increasing
weights, one may ask if this phenomenon is preserved for different FPP measures
e.g. a FPP with exponentially decreasing weights.

Let S be a FPP measure on H such that ω(e) ∼ exp
(
2h(e)

)
, and abbreviate

S(x) =
∪
y∈H

{γ, oriented |γ : x → y, l(γ) = dω(y, ∂H)}.

Theorem 4.1. S(0) is finite S a.s.

Proof : Denote by a = min{ω((0, θr)), ω((0, θl))}. Let l be the minimal integer such
that

∞∑
i=l

(
2−i + i · 2−i

)
<

a

3
.

Consider Al(a) = {0 < v ∈ ∂H |
∑l−1

i=0 ω ((v + i · θl, v + (i+ 1) · θl)) < a/3}. Note
that by shift invariance this set is infinite.
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Figure 4.4. FPP with decreasing weights

P

( ∞∑
i=l

ω ((v + i · θl, v + (i+ 1) · θl)) < a/3

)
≥

P

(∞∩
i=l

{
ω((v + i · θl(v), v + (i+ 1) · θl)) < 2−i + i · 2−i

})
≥

∞∏
i=l

(
1− 1

i2

)
> 0,

(4.1)
where the one before last inequality follows from Chebyshev.

For every v ∈ Al(a), the events {
∑∞

i=l ω ((v + i · θl, v + (i+ 1) · θl)) < a/3} and{
l−1∑
i=0

ω ((v + i · θl, v + (i+ 1) · θl)) < a/3

}
,

are independent. Thus by (4.1) There exists some v ∈ Al(a) such that

∞∑
i=0

ω ((v + i · θl, v + (i+ 1) · θl)) <
2a

3
< a,

thus the path
∪

i{v + i · θl} /∈ T (0). By symmetrical arguments there exists some
v′ < 0 with

∪
i{v′ + i · θr} /∈ T (0), thus T (0) is finite. �

Remark 4.2. An interesting open question is that of finite trees in the i.i.d case on
H. i.e. ω(e) ∼ exp (1). It has some relations to the Eden model on H. Similar to
the Eden model each edge on the boundary of a tree is attempted to be added with
equal probability. Under the coupling scheme of Section 2 bigger trees grow in a
greater rate than smaller trees.
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