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Abstract. This work is motivated by the study of some two-dimensional random
walks in random environment (RWRE) with transition probabilities independent
of one coordinate of the walk. These are non-reversible models and can not be
treated by electrical network techniques. The proof of the recurrence of such RWRE
needs new estimates for quenched return probabilities of a one-dimensional recur-
rent RWRE. We obtained these estimates by constructing suitable valleys for the
potential. They imply that k independent walkers in the same one-dimensional
(recurrent) environment will meet in the origin infinitely often, for any k. We also
consider direct products of one-dimensional recurrent RWRE with another RWRE
or with a RW.We point out that models involving one-dimensional recurrent RWRE
are more recurrent than the corresponding models involving simple symmetric walk.

1. Introduction

Since the early works of Solomon Solomon (1975) and Sinai Sinăı (1982) (see
also Kesten (1986) and Golosov (1984)), one-dimensional random walks in random
environment (RWRE) have been studied by many authors. For an introduction
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to this model, we refer to Zeitouni (2004). In the present work, we consider a
one-dimensional RWRE (Xn)n with random environment given by a sequence ω =
(ωx)x∈Z of independent identically distributed (i.i.d.) random variables with values
in (0, 1) defined on some probability space (Ω,F ,P). Let z ∈ Z. Given ω, under
P z
ω , (Xn)n≥0 is a Markov chain such that P z

ω(X0 = z) = 1 and with the following
transition probabilities

P z
ω(Xn+1 = x+ 1|Xn = x) = ωx = 1− P z

ω(Xn+1 = x− 1|Xn = x). (1.1)

For i ∈ Z we define ρi = ρi(ω) :=
1−ωi

ωi
and we assume throughout the paper that

E[log ρ0] = 0, Var(log ρ0) > 0, (1.2)

P(ε ≤ ω0 ≤ 1− ε) = 1 for some ε ∈
(
0, 1

2

)
. (1.3)

The first part of (1.2) ensures that the RWRE is recurrent for P-a.e. ω, its second
part excludes the case of a deterministic environment. Such RWREs are often
called “Sinai’s walk” due to the results in Sinăı (1982). Assumption (1.3) (called
uniform ellipticity) is a common technical condition in the context of RWRE. Our
main results on the one-dimensional RWRE (Xn)n are the following. We write Pω

for P 0
ω .

Theorem 1.1. For 0 ≤ α < 1 and for P-a.e. ω, we have∑
n∈N

Pω(X2n = 0) · n−α = ∞. (1.4)

Theorem 1.2. For all α > 0 and for P-a.e. ω, we have∑
n∈N

(
Pω(X2n = 0)

)α
= ∞. (1.5)

In particular, d independent particles performing recurrent RWRE in the same
environment (and starting from the origin) are meeting in the origin infinitely often,
almost surely.

Remark 1.3. It was shown in Gallesco (2013) that d independent particles in the
same environment meet infinitely often, and the tail of the meeting time was in-
vestigated (more precisely, the random walks considered in Gallesco (2013) are on
Z+). We show here that the d particles even meet infinitely often in the origin.

For the next statement, we consider d independent environments.

Corollary 1.4. For d ∈ N, consider d i.i.d. random environments ω(1), ω(2),. . . ,
ω(d) fulfilling (1.2) and (1.3). Then, for P⊗d-a.e. (ω(1), ω(2), . . . , ω(d)), we have∑

n∈N

d∏
k=1

Pω(k)(X2n = 0) = ∞. (1.6)

In particular, d independent particles performing recurrent RWRE in i.i.d. envi-
ronments (and starting from the origin) are meeting in the origin infinitely often,
almost surely.

We point out that a proof of Corollary 1.4 can also be found in Zeitouni (2004)
after Lemma A.2. The proof there uses the Nash-Williams inequality in the context
of electrical networks.
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In Comets and Popov (2003), Comets and Popov also consider the return prob-
abilities of the one-dimensional recurrent RWRE on Z. In contrast to our setting,
they consider the corresponding jump process in continuous time (ξzt )t≥0 started
at z ∈ Z and with jump rates (ω+

x , ω
−
x )x∈Z to the right and left neighbouring sites.

One advantage of this process in continuous time is that it is not periodic as the
RWRE in discrete time. They show the following (under two conditions on the
environment (ω+

x , ω
−
x )x∈Z):

Theorem (cf. Corollary 2.1 and Theorem 2.2 in Comets and Popov (2003)) We

have
logPω(ξ0t=0)

log t

t→∞−−−→ −âe in distribution where âe has the density f given by

f(z) = 2− z − (z + 2) · e−2z if z ∈ (0, 1) and f(z) = ([e2 − 1] · z − 2) · e−2z if z ≥ 1.

Since we can embed the recurrent RWRE (Xn)n∈N0 in discrete-time into the
corresponding jump process in continuous time, we can expect the return proba-
bilities to behave similarly as in the continuous setting. In particular, for P-a.e.
environment ω, we expect

Pω(X2n = 0) =: n−a(ω,n) with lim inf
n→∞

a(ω, n) = 0, lim sup
n→∞

a(ω, n) = ∞.

Theorem 1.1, 1.2 and Corollary 1.4 allow us to establish the recurrence of the
multidimensional RWRE (Mn)n in the cases (I)-(III) below. Except model (I)
(which is the direct product of (Xn)n with a RW), the models considered here
are 2-dimensional RWRE with transition probabilities independent of the vertical
position of the walk. The study of such models was initiated by Matheron and de
Marsily in Matheron and de Marsily (1984) to modelise transport in a stratified
porus medium (see also Bouchaud et al. (1990)) and also by Campanino and Petritis
in Campanino and Petritis (2003).

Let δ ∈ (0, 1). We establish recurrence of the RWRE (Mn)n on Z2 in the three
following cases:

(I) d = 2 and (Mn)n is the direct product of the Sinai walk (Xn)n and of some
recurrent random walk on Z; more precisely

Pω(Mn+1 = (x+ 1, y + z)|Mn = (x, y)) = ωx · ν({z})
and Pω(Mn+1 = (x− 1, y + z)|Mn = (x, y)) = (1− ωx) · ν({z}),
where ν is a distribution on Z (with zero expectation) belonging to the
domain of attraction of a β-stable random variable with β ∈ (1, 2].

(II) d = 2 and (Mn)n either moves horizontally with respect to the Sinai walk
(with probability δ) or moves vertically with respect to some recurrent
random walk (with probability 1− δ):

Pω(Mn+1 = (x+1, y)|Mn = (x, y)) = δωx = δ−Pω(Mn+1 = (x−1, y)|Mn = (x, y)),

Pω(Mn+1 = (x, y + z)|Mn = (x, y)) = (1− δ) · ν(z),
where ν is a probability distribution on Z (with zero expectation) belonging
to the domain of attraction of a β-stable distribution with β ∈ (1, 2].

(III) An odd-even oriented model: d = 2 and (Mn)n either moves horizontally
with respect to Sinai’s walk (with probability δ) or moves vertically (with
probability 1 − δ) with respect to ν if the first coordinate of the current
position of the walk is even and to ν̃ := ν(−·) otherwise; i.e.

Pω(Mn+1 = (x+1, y)|Mn = (x, y)) = δωx = δ−Pω(Mn+1 = (x−1, y)|Mn = (x, y)),

Pω(Mn+1 = (x, y + z)|Mn = (x, y)) = (1− δ)ν((−1)xz),
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where ν is a probability distribution on Z (admitting a first moment) be-
longing to the domain of attraction of a stable distribution.

x = 0

y = 0

1− δ

δ · ω3δ · (1− ω3)

1− δ

δ · ω3δ · (1− ω3)

1− δ

δ · ω
−4δ · (1− ω

−4)

1− δ

δ · ω
−4δ · (1− ω

−4)

Figure 1.1. Transition probabilities in case (III)
in the particular case where ν = δ1. This is an
example of an oriented RWRE. Every even vertical
line is oriented upward and every odd vertical line
is oriented downward.

If ωx is replaced by 1/2 (i.e. if we replace Sinai’s walk by the simple symmetric
walk), the walks given in (I)-(III) are transient when ν is in the domain of attraction
of a β-stable distribution with β < 2. Hence, in this study, Sinai’s walk gives rise
to more recurrent models than the simple symmetric random walk does.

The structure of our paper is the following: In Section 2, we introduce the
potential of the one-dimensional RWRE and we recall some known results. Section
3 contains the proofs of our main results for one-dimensional RWRE. In Section 4,
we state our recurrence results for multidimensional RWRE involving the RWRE
(Xn)n (models (I)-(III)) and we compare our results with the case when (Xn)n is
replaced by a simple random walk.

2. Preliminaries

As usual, we use P o
ω instead of P 0

ω and will even drop the superscript o where no
confusion is to be expected. We can now define the potential V as

V (x) :=



x∑
i=1

log ρi for x = 1, 2, . . .

0 for x = 0
0∑

i=x+1

− log ρi for x = −1,−2, . . . .

(2.1)
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Note that V (x) is a sum of i.i.d. random variables which are centered and whose
absolute value is bounded due to assumptions (1.2) and (1.3). One of the crucial
facts for the RWRE is that, for fixed ω, the random walk is a reversible Markov
chain and can therefore be described as an electrical network. The conductances are
given by C(x,x+1) = e−V (x) and the stationary reversible measure which is unique
up to multiplication by a constant is given by

µω(x) = e−V (x) + e−V (x−1) (2.2)

The reversibility means that, for all n ∈ N0 and x, y ∈ Z, we have

µω(x) · P x
ω (Xn = y) = µω(y) · P y

ω(Xn = x). (2.3)

For the random time of the first arrival in x

τ(x) := inf{n ≥ 0 : Xn = x}, (2.4)

the interpretation of the RWRE (Xn)n as an electrical network helps us to compute
the following probability for x < y < z (for a proof see for example formula (2.1.4)
in Zeitouni (2004)):

P y
ω(τ(z) < τ(x)) =

y−1∑
j=x

eV (j)

z−1∑
j=x

eV (j)

. (2.5)

Further (cf. (2.4) and (2.5) in Shi and Zindy (2007) and Lemma 7 in Golosov
(1984)), we have for k ∈ N and y < z

P y
ω(τ(z) < k) ≤ k · exp

(
− max

y≤i<z

[
V (z − 1)− V (i)

])
(2.6)

and similarly for x < y

P y
ω(τ(x) < k) ≤ k · exp

(
− max

x<i≤y

[
V (x+ 1)− V (i)

])
. (2.7)

To get bounds for large values of τ(·), we can use that for x < y < z we have (cf.
Lemma 2.1 in Shi and Zindy (2007))

Ey
ω[τ(z) · 1{τ(z)<τ(x)}] ≤ (z − x)2 · exp

(
max

x≤i≤j≤z

(
V (j)− V (i)

))
. (2.8)

Further, the Komlós-Major-Tusnády strong approximation theorem (cf. Theorem 1
in Komlós et al. (1975), see also formula (2) in Comets and Popov (2003)) will help
us to compare the shape of the potential with the path of a two-sided Brownian
motion:

Theorem 2.1. In a possibly enlarged probability space, there exists a version of our
environment process ω and a two-sided Brownian motion (B(t))t∈R with diffusion

constant σ := (Var(log ρ0))
1
2 (i.e. V ar(B(t)) = σ2|t|) such that for some K > 0

we have

P

(
lim sup
x→±∞

|V (x)−B(x)|
log |x|

≤ K

)
= 1. (2.9)
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3. Dimension 1 : Proofs of Theorem 1.1, 1.2 and Corollary 1.4

For L ∈ N and 0 < δ < 1, we introduce the set Γ(L, δ) of environments defined
by

Γ(L, δ) := {R±
1 (L) ≤ δL, R±

2 (L) ≤ δL, T±(L) ≤ L2},

where

T+(L) := inf{z ≥ 0 : V (z)− min
0≤y≤z

V (y) ≥ L},

T−(L) := sup{z ≤ 0 : V (z)− min
n≤y≤z

V (y) ≥ L},

R+
1 (L) := − min

0≤y≤T+(L)
V (y), R−

1 (L) := − min
T−(L)≤y≤0

V (y),

T+
b (L) := inf{z ≥ 0 : V (z) = −R+

1 (L)}, T−
b (L) := sup{z ≤ 0 : V (z) = −R−

1 (L)},

R+
2 (L) := max

0≤y≤T+
b (L)

V (y), R−
2 (L) := max

T−
b (L)≤y≤0

V (y).

We then consider the valley of the potential V between T−(L) and T+(L) (see
Figure 3.2). Here, the +-sign and the −-sign indicate whether we deal with prop-
erties of the valley on the positive or negative half-line, respectively. Note that the
definition of the set Γ(L, δ) is compatible with the scaling of a Brownian motion in
space and time.

V (x)

x

L2 L2

R
−

1 (L)

b
−
=T

−

b
(L)

T−(L)

L

R
+

1 (L)

T
+

b
(L)=b+

T+(L)

L

δL

δL

R
−

2 (L) R
+

2 (L)

Figure 3.2. Shape of a valley of an environment in Γ(L, δ)

Remark 3.1. We have constructed the valleys in such a way that the return proba-
bility of the random walk to the origin is bounded from below (for even time points)
as long as the random walk has not left the valley. If ω ∈ Γ(L, δ), the random walk
(Xn)n∈N0 in the environment ω satisfies the following:
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(1) Since we have V (T−(L))−V (T−
b (L)) ≥ L and V (T+(L))−V (T+

b (L)) ≥ L,
the random walk (Xn)n∈N0 stays within {T−(L), T−(L) + 1, . . . , T+(L)}
with high probability for at least exp((1− 2δ)L) steps (cf. (3.8)).

(2) Within the valley {T−(L), T−(L)+1, . . . , T+(L)}, the random walk prefers
to stay at positions x with a small potential V (x), i.e. at positions close to
the bottom points T−

b (L) and T+
b (L).

(3) The return probability for the random walk from the bottom points T−
b (L)

and T+
b (L) to the origin is mainly given by the potential differences R−

2 (L)+

R−
1 (L) ≤ 2δL and R+

2 (L) + R+
1 (L) ≤ 2δL respectively, i.e. by the height

of the potential the random walk has to overcome from the bottom points
back to the origin (cf. (3.3)).

Proposition 3.2. For every δ ∈ (0, 1
5 ), there exists C = C(δ) such that, for every

L, for every ω ∈ Γ(L, δ) and every n satisfying e3δL ≤ n ≤ e(1−2δ)L, we have

P o
ω(X2n = 0) ≥ C · exp(−3δL). (3.1)

Proof of Proposition 3.2: The return probability to the origin for the time points
of interest is mainly influenced by the shape of the “valley” of the environment ω
between T−(L) and T+(L). For the positions of the two deepest bottom points of
this valley on the positive and negative side, we write b± := T±

b (L) and we assume
for the following proof that we have (cf. (2.4) for the definition of τ(·))

P o
ω

(
τ(b+) < τ(b−)

)
≥ 1

2
. (3.2)

(Due to the symmetry of the RWRE, the proof also works in the opposite case if
we switch the roles of b+ and b−). We have

P o
ω(X2n = 0) ≥ P o

ω

(
X2n = 0, τ(b+) ≤ 2n

3 , τ(b+) < τ(b−)
)

≥ P o
ω

(
τ(b+) ≤ 2n

3 , τ(b+) < τ(b−)
)
· înf

`∈
{⌈

4n
3

⌉
,...,2n

}P b+
ω (X` = 0)

= P o
ω

(
τ(b+) ≤ 2n

3 , τ(b+) < τ(b−)
)
· µω(0)

µω(b+)
· înf

`∈
{⌈

4n
3

⌉
,...,2n

}P o
ω(X` = b+)

(3.3)

where we used (2.3) in the third step and with the short notation

înf
`∈
{⌈

4n
3

⌉
,...,2n

}P x
ω (X` = y) := inf

`∈
{⌈

4n
3

⌉
,...,2n

}
∩
(
2Z+(x+y)

)P x
ω (X` = y).

Let us now have a closer look at the factors in the lower bound in (3.3) separately:
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First factor in (3.3): We can bound the first factor from below by

P o
ω

(
τ(b+) ≤ 2n

3 , τ(b+) < τ(b−)
)

= 1− P o
ω

(
τ(b+) >

2n
3 , τ(b+) < τ(b−)

)
− P o

ω

(
τ(b+) ≥ τ(b−)

)
≥ 1− 3

2n · Eo
ω

[
τ(b+) · 1{τ(b+)<τ(b−)}

]
− P o

ω

(
τ(b+) ≥ τ(b−)

)
≥ 1− 3

2n · (b+ − b−)
2 · exp

(
max

b−≤i≤j≤b+

(
V (j)− V (i)

))
− 1

2
,

where we used (2.8) and assumption (3.2) for the last step. Therefore, we get for
ω ∈ Γ(L, δ) and exp (3δL) ≤ n that

P o
ω

(
τ(b+) ≤ 2n

3 , τ(b+) < τ(b−)
)
≥ 1

2
− 3 · 4 · L4

2 · exp(3δL)
· exp(2δL) (3.4)

≥ 1

2
− 6 · L4 · exp(−δL). (3.5)

Second factor in (3.3): Due to Assumption (1.3) and to (2.2), we get for ω ∈ Γ(L, δ):

µω(0)

µω(b+)
=

1
ω0

e−V (b+) + e−V (b+−1)
=

1
ω0

e−V (b+) · (1 + ρb+)

≥
1

1−ε

1 + 1−ε
ε

· eV (b+) =
ε

1− ε
· eV (b+) ≥ ε

1− ε
· exp(−δL). (3.6)

Here we used that V (b+) ≥ −δL holds for ω ∈ Γ(L, δ).

Third factor in (3.3): For the last factor in (3.3), we can compare the RWRE with

the process (X̃n)n∈N0 which behaves as the original RWRE but is reflected at the po-
sitions T− := T−(L) and T+ := T+(L), i.e. we have for x ∈ {T−, T− +1, . . . , T+}

P x
ω (X̃0 = x) = 1,

P x
ω (X̃n+1 = y ± 1|X̃n = y) = P x

ω (Xn+1 = y ± 1|Xn = y),

∀y ∈ {T− + 1, . . . , T+ − 1},

P x
ω (X̃n+1 = y + 1|X̃n = y) = 1 for y = T−,

P x
ω (X̃n+1 = y − 1|X̃n = y) = 1 for y = T+.

Therefore, we have for ` ∈
{ ⌈

4n
3

⌉
, . . . , 2n

}
∩
(
2Z+ b+

)
P o
ω(X` = b+) ≥ P o

ω(X` = b+, min{τ(T−), τ(T+)} > 2n)

≥ P o
ω(X̃` = b+)− P o

ω(min{τ(T−), τ(T+)} ≤ 2n)

≥ P o
ω

(
X̃` = b+, τ(b+) ≤ `

2 , τ(b+) < τ(b−)
)
− P o

ω(min{τ(T−), τ(T+)} ≤ 2n)

≥ P o
ω

(
τ(b+) ≤ `

2 , τ(b+) < τ(b−)
)
· înf

k∈
{⌈

`
2

⌉
,...,`
}P b+

ω (X̃k = b+)

−P o
ω(min{τ(T−), τ(T+)} ≤ 2n). (3.7)
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Using (2.6) and (2.7), we see that the last term in (3.7) with the negative sign
decreases exponentially for n ≤ e(1−2δ)L, i.e.

P o
ω(min{τ(T−), τ(T+)} ≤ 2n) ≤ P o

ω

(
min{τ(T−), τ(T+)} ≤ 2e(1−2δ)L

)
≤ P o

ω

(
τ(T−) ≤ 2 e(1−2δ)L

)
+ P o

ω

(
τ(T+) ≤ 2 e(1−2δ)L

)
≤ 4e(1−2δ)Le−L = 4e−2δL. (3.8)

In order to derive a lower bound for the first term in (3.7), we first notice that the
analogous calculation as in (3.5) shows for ω ∈ Γ(L, δ) that

P o
ω

(
τ(b+) ≤ `

2 , τ(b+) < τ(b−)
)

≥ 1− 2

`
· 4 · L4 e2δL − 1

2

≥ 1

2
− 6L4 e−δL (3.9)

since ` ≥
⌈
4n
3

⌉
≥ 4

3 e
3δL for n ≥ e3δL. For the second factor of (3.7), we show the

following

Lemma 3.3. For ω ∈ Γ(L, δ) and for all ` ∈ 2N, we have

P b+
ω (X̃` = b+) ≥

1

2
· 1

|T−|+ T+ + 1
e−δL.

Proof of Lemma 3.3: Using the reversibility (cf. (2.3)) of (X̃`)`∈N0
, we get

P b+
ω (X̃` = b+) =

T+∑
x=T−

P b+
ω (X̃`/2 = x) · P x

ω (X̃`/2 = b+)

=

T+∑
x=T−

P b+
ω (X̃`/2 = x) · µ̃ω(b+)

µ̃ω(x)
· P b+

ω (X̃`/2 = x), (3.10)

where µ̃ω(·) denotes a reversible stationary measure of the reflected random walk

(X̃n)n∈N0 which is unique up to multiplication by a constant. To see that (X̃`)`∈N0

is also reversible, it is enough to note that (X̃`)`∈N0 can again be described as an
electrical network with the following conductances:

C̃(x,x+1)(ω) =

{
C(x,x+1)(ω) = e−V (x) for x = T−, T− + 1, . . . , T+ − 1

0 for x = T− − 1, T+.

Therefore, a reversible measure for the reflected random walk is given by (cf. (2.2))

µ̃ω(x) =


µω(x) = e−V (x) + e−V (x−1) for x = T− + 1, T− + 2, . . . , T+ − 1,

e−V (T−) for x = T−,

e−V (T+−1) for x = T+.

Since 0 ≤ b+ < T+, this implies

µ̃ω(b+)

µ̃ω(x)
≥ e−V (b+) + e−V (b+−1)

e−V (x) + e−V (x−1)

≥ e−V (b+)

2 · e(−min{V (b+),V (b−)}) ≥ e−δL

2
(3.11)
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for T− ≤ x ≤ T+ and for ω ∈ Γ(L, δ). By applying (3.11) to (3.10), we get

P b+
ω (X̃` = b+) ≥ 1

2
·

T+∑
x=T−

(
P b+
ω (X̃`/2 = x)

)2
· e−δL

≥ 1

2
· 1

|T−|+ T+ + 1
· e−δL, (3.12)

by the Cauchy-Schwarz inequality since
∑T+

x=T− P
b+
ω (X̃`/2 = x) = 1. �

We can now return to the proof of Proposition 3.2 and finish our lower bound
for the third factor in (3.3). By applying (3.8), (3.9) and Lemma 3.3 to (3.7), we

get that there exists L̃0 = L̃0(δ) such that for all L ≥ L̃0, for e
3δL ≤ n ≤ e(1−2δ)L

and ω ∈ Γ(L, δ) (since |T−|, T+ ≤ L2), we have

înf
`∈
{⌈

4n
3

⌉
,...,2n

}P o
ω(X` = b+)

≥
(
1

2
− 6 · L4 · e−δL

)
· 1
2
· 1

2L2 + 1
e−δL − 4 · e−2δL ≥ e−

3
2 δL. (3.13)

To finish the proof of Proposition 3.2, we can collect our lower bounds in (3.5),

(3.6), and (3.13) and conclude with (3.3) that there exists L̃1 := L̃1(δ) such that

for every L ≥ L̃1, for e
3δL ≤ n ≤ e(1−2δ)L and for ω ∈ Γ(L, δ) we have

Pω(X2n = 0) ≥
(
1

2
− 6 · L4e−δL

)
· ε

1− ε
e−δL · e− 3

2 δL

≥ e−3δL.

This shows (3.1) since we have Pω(X2n = 0) ≥ ε2n > 0 for all n ∈ N due to
assumption (1.3). �

Proposition 3.4. For 0 < δ < 1, we have

P(ω : ω ∈ Γ(L, δ) for infinitely many L) = 1. (3.14)

Proof of Proposition 3.4: Let (B(t))t∈R be the two-sided Brownian motion from
Theorem 2.1. Since Γ(L, δ) is increasing in δ, we can assume that 0 < δ < 1

2 . For
y ∈ R we define

T̂+(y) := inf{t ≥ 0 : B(t) = y} and T̂−(y) := sup{t ≤ 0 : B(t) = y}

as the first hitting times of y on the positive and negative side of the origin, re-
spectively. Additionally, for L ∈ N, i ∈ N, y ∈ R, we can introduce the following
sets

F+
L (y) := {T̂+ (y · L) < T̂+ (−y · L)} and F−

L (y) := {T̂− (y · L) < T̂− (−y · L)}

on which the Brownian motion reaches the value y · L before −y · L. Further we
define

G+
L(i) :=

{
B(t) ≥ (2i− 1) · δ

4 · L for T̂+
(
2i · δ

4 · L
)
≤ t ≤ T̂+

(
(2i+ 2) · δ

4 · L
)}

,

G−
L (i) :=

{
B(t) ≥ (2i− 1) · δ

4 · L for T̂− ((2i+ 2) · δ
4 · L

)
≤ t ≤ T̂− (2i · δ

4 · L
)}
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on which the Brownian motion does not decrease much between the first hitting
times of the two levels of interest. Using these sets, we can define the sets

A+(L, δ) := F+
L (δ) ∩

{
T̂+(1.1 · L) ≤ L2, min

T̂+(δ·L)≤t≤T̂+(1.1·L)
B(t) ≥ δ

4
· L

}
,

A−(L, δ) := F−
L (δ) ∩

{
−T̂−(1.1 · L) ≤ L2, min

T̂−(1.1·L)≤t≤T̂−(δ·L)
B(t) ≥ δ

4
· L

}
,

D+(L, δ) := G+
L(0) ∩G+

L(1) ∩G+
L(2)

∩

T̂+(1.2 · L) ≤ 0.9 · L2, min
T̂+
(
3·δ
2 ·L

)
≤t≤T̂+(1.2·L)

B(t) ≥ 3δ

4
· L

 ,

D−(L, δ) := G−
L (0) ∩G−

L (1) ∩G−
L (2)

∩

−T̂−(1.2 · L) ≤ 0.9 · L2, min
T̂−(1.2·L)≤t≤T̂−

(
3δ
2 ·L
)B(t) ≥ 3δ

4
· L


which will be used for an approximation of our previously constructed valleys ω
belonging to Γ(L, δ) which we illustrated in Figure 3.2 on page 488. Here, we
added the factors 1.1, 1.2 and 0.9 in contrast to the construction before in order to
have some space for the approximation. For the Brownian motion, we can directly
compute that we have

P
(
D+(1, δ) ∩D−(1, δ)

)
> 0. (3.15)

Thereby, for all L ∈ N, due to the scaling property of the Brownian motion,
(B(L2 · t)/L)t∈R is again a two-sided Brownian motion with diffusion constant
σ, this implies

P
(
D+(L, δ) ∩D−(L, δ)

)
= P

(
D+(1, δ) ∩D−(1, δ)

)
> 0. (3.16)

First, we notice that for L0 ∈ N we have

P

( ∞∩
L=L0

(
A+(L, δ) ∩A−(L, δ)

)c)
≤ P

( ∞∩
k=`+1

(
A+(Lk, δ) ∩A−(Lk, δ)

)c)
(3.17)

for arbitrary ` ∈ N0, where we define

Lk := max
{
10,
⌈
2
δ

⌉}
· (Lk−1)

2

for k ∈ N inductively. Note that for n > `+ 1 with

Fn := σ
((

B(t)
)
−(Ln−1)2≤t≤(Ln−1)2

)
.
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Setting Θ±
n (δ) :=

{(
B(t± (Ln−1)

2)−B(±(Ln−1)
2)
)
t∈R /∈ D± (Ln, δ)

}
, the follow-

ing holds:

P

(
n∩

k=`+1

(
A+(Lk, δ) ∩A−(Lk, δ)

)c)

≤ E

 n−1∏
k=`+1

1(
A+(Lk,δ)∩A−(Lk,δ)

)c · 1{
max

−(Ln−1)2≤t≤(Ln−1)2
|B(t)|<(Ln−1)2

}

· E
[
1Θ+

n (δ)∪Θ−
n (δ)

∣∣∣Fn

]]
+ P

(
max

−(Ln−1)2≤t≤(Ln−1)2
|B(t)| ≥ (Ln−1)

2

)

≤
(
1− P

(
D+ (Ln, δ) ∩D− (Ln, δ)

))
· P

(
n−1∩

k=`+1

(
A+(Lk, δ) ∩A−(Lk, δ)

)c)

+ P

(
max

−(Ln−1)2≤t≤(Ln−1)2
|B(t)| ≥ (Ln−1)

2

)

≤
(
1− P

(
D+ (1, δ) ∩D− (1, δ)

))n−`

+
n∑

k=`+1

P

(
max

−(Lk−1)2≤t≤(Lk−1)2
|B(t)| ≥ (Lk−1)

2

)
. (3.18)

To see that the first step in (3.18) holds, note that for

ω ∈
{

max
−(Ln−1)2≤t≤(Ln−1)2)

|B(t)| < (Ln−1)
2

}
∩
{(

B(t+ (Ln−1)
2)−B((Ln−1)

2)
)
t∈R ∈ D+ (Ln, δ)

}
(3.19)

we have

min
0≤t≤(Ln)2

B(t) ≥ min
0≤t≤(Ln−1)2

B(t)

+ min
(Ln−1)2≤t≤(Ln)2

B(t+ (Ln−1)
2)−B((Ln−1)

2)

> −(Ln−1)
2 − δ

4
· Ln > −δ · Ln

since (Ln−1)
2 ≤ δLn/2 and

max
0≤t≤(Ln)2

B(t) ≥ B
(
(Ln−1)

2
)

+ max
(Ln−1)2≤t≤(Ln)2−(Ln−1)2

B(t+ (Ln−1)
2)−B((Ln−1)

2)

≥ −(Ln−1)
2 + 1.2 · Ln ≥ 1.1 · Ln



Recurrence of some multidimensional RWRE 495

since (Ln−1)
2 ≤ Ln/10. In particular, we have T̂+(δ · Ln) < T̂+(−δ · Ln) and

T̂+(1.1 · Ln) ≤ (Ln)
2 on the considered set. Similarly, again on the set in (3.19),

we see that we have

T̂+(δ · Ln) > inf{t ≥ (Ln−1)
2 : (B(t+ (Ln−1)

2)−B((Ln−1)
2) ≥ δ

2 · Ln},

T̂+(δ · Ln) < inf{t ≥ (Ln−1)
2 : (B(t+ (Ln−1)

2)−B((Ln−1)
2) ≥ 3·δ

2 · Ln},

since (Ln−1)
2 ≤ δLn/2, this implies

min
T̂+(δ·L)≤t≤T̂+(1.1·L)

B(t) ≥ δ

4
· Ln

by construction of D+(Ln, δ). Altogether, we can conclude that ω ∈ A+(Ln, δ)
holds for our choice of ω in (3.19). The argument for the negative part runs com-
pletely analogously. Further in (3.18), we used the Markov property of the Brownian
motion in the second step. Additionally, we iterated the first two steps n − ` − 1
times and used (3.16) for the last step. To control the last sum in (3.18), let us
recall that due to the reflection principle (see e.g. Chapter III, Proposition 3.7 in
Revuz and Yor (1999)), we have

∀T, x > 0, P

(
max
t∈[0,T ]

B(t)

σ
√
T

≥ x

)
= P (|Z| ≥ x) = 2P (Z ≥ x) ≤ 1

x
· e

− x2

2

√
2π

for a random variable Z ∼ N (0, 1) (the last estimate can be found for example
in Lemma 12.9 in Appendix B of Mörters and Peres (2010)). Due to this upper
bound, we can conclude that

n∑
k=`+1

P

(
max

−(Lk−1)2≤t≤(Lk−1)2
|B(t)| ≥ (Lk−1)

2

)
(3.20)

≤ 4 ·
n∑

k=`+1

P

(
max

0≤t≤(Lk−1)2

B(t)

σ · Lk−1
≥ Lk−1

σ

)

≤ 8 ·
∞∑

k=`+1

σ

Lk−1
· 1√

2π
· e−

(Lk−1)2

2σ2
`→∞−−−→ 0. (3.21)

By combining the upper bounds in (3.17), (3.18), and (3.21), we get for all ` ∈ N0

P
(
ω /∈

(
A+(L, δ) ∩A−(L, δ)

)
for all L ≥ L0

)
≤ lim

n→∞

(
1− P

(
D+ (1, δ) ∩D− (1, δ)

))n−`

+

∞∑
k=`+1

P

(
max

−(Lk−1)2≤t≤(Lk−1)2
|B(t)| ≥ (Lk−1)

2

)
`→∞−−−→ 0.

Since L0 ∈ N was chosen arbitrarily, we can conclude that for 0 < δ < 1
2 we have

P
(
ω : ω ∈

(
A+(L, δ) ∩A−(L, δ)

)
for infinitely many L

)
= 1.
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Using the Komlós-Major-Tusnády strong approximation Theorem (cf. Theorem
2.1), we see that for 0 < δ < 1

2 we have{
ω : ω ∈

(
A+(L, δ) ∩A−(L, δ)

)
for infinitely many L

}
⊆ {ω : ω ∈ Γ(L, 2δ) for infinitely many L} ,

which is enough to conclude that (3.14) holds for all 0 < δ < 1. �

With the help of Proposition 3.2 and Proposition 3.4, we can now turn to the
proofs of Theorems 1.1 and 1.2 and Corollary 1.4:

Proof of Theorem 1.1: For a fixed 0 ≤ α < 1, we choose 0 < δ < 1
6 such that

α < (1− 5δ)/(1− 2δ). For ω ∈ Γ(L, δ), the inequality in (3.1) implies that∑
n∈N

Pω(X2n = 0) · n−α ≥
∑

de3δLe≤n≤be(1−2δ)Lc

Pω(X2n = 0) · n−α

≥
(
e(1−2δ)L − e3δL − 1

)
· C · e−3δL ·

(
e(1−2δ)L

)−α

= C ·
(
e(1−5δ)L − 1− e−3δL

)
· e−α(1−2δ)L L→∞−−−−→ ∞.

Since Proposition 3.4 shows that for P-a.e. environment ω we find L arbitrarily
large such that ω ∈ Γ(L, δ), we can conclude that (1.4) holds for P-a.e. environment
ω. �

Proof of Theorem 1.2: Given α > 0, we choose δ such that 0 < δ < min
{

1
2+3α ,

1
5

}
,

which yields 1 − 2δ − 3αδ > 0 and 1 − 2δ > 3δ. For ω ∈ Γ(L, δ), the inequality in
(3.1) implies ∑

n∈N

(
Pω(X2n = 0)

)α
≥

∑
de3δLe≤n≤be(1−2δ)Lc

(
Pω(X2n = 0)

)α
≥
(
e(1−2δ)L − e3δL − 1

)
·
(
C · e−3δL

)α
= Cα ·

(
e(1−2δ−3αδ)L − e(3δ−3αδ)L − e−3αδL

)
L→∞−−−−→ ∞.

Again since Proposition 3.4 shows that for P-a.e. environment ω we find L arbi-
trarily large such that ω ∈ Γ(L, δ), we can conclude that (1.5) holds for P-a.e.
environment ω. �

Proof of Corollary 1.4: Due to the independence of the environments ω(1), ω(2), . . . ,
ω(d), we can extend the proof of Proposition 3.4 to get

P⊗d
(
For infinitely many L ∈ N, we have ω(i) ∈ Γ(L, δ) for i = 1, 2, . . . d

)
= 1

(3.22)
for all 0 < δ < 1. Indeed (3.18) becomes
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P
(
∀k = `+ 1, · · · , n, ∃i, ωi 6∈ A+(Lk, δ) ∩A−(Lk, δ)

)
≤
(
1− P

(
∀i, B(i) ∈ D+ (Ln, δ) ∩D− (Ln, δ)

))
· P
(
∀k = `+ 1, · · · , n− 1, ∃i, ωi 6∈ A+(Lk, δ) ∩A−(Lk, δ)

)
+ P

(
max

i=1,··· ,d
max

−(Ln−1)2≤t≤(Ln−1)2
|B(i)(t)| ≥ (Ln−1)

2

)
.

Now, using Proposition 3.2, we have for (ω(1), ω(2), . . . , ω(d)) with ω(i) ∈ Γ(L, δ) for
i = 1, 2, . . . d

∑
n∈N

d∏
k=1

Pω(k)(X2n = 0) ≥
∑

de3δLe≤n≤be(1−2δ)Lc

d∏
k=1

Pω(k)(X2n = 0)

≥
(
e(1−2δ)L − e3δL − 1

)
· Cd · e−3δdL

= Cd ·
(
e(1−2δ−3δd)L − e(3δ−3δd)L − e−3δdL

)
L→∞−−−−→ ∞

for 0 < δ < 1
2+3d . Since (3.22) holds for arbitrarily small δ, we can conclude that

(1.6) holds for P⊗d-a.e. environment (ω(1), ω(2), . . . , ω(d)). �

4. Recurrence properties of the RWRE (I)-(III)

4.1. Direct products involving a one dimensional RWRE.

Proposition 4.1 (Case (I)). Fix a random environment ω which fulfils (1.2) and
(1.3). Let (Xn, Yn)n∈N0 be a 2-dimensional process where (Xn)n∈N0 and (Yn)n∈N0

are independent with respect to Pω, (Xn)n∈N0 being a RWRE in the environment ω
(in the sense of (1.1)) and (Yn)n∈N0 a centered random walk such that Y0 = 0 and
(Yn/An)n converges in distribution to a β-stable distribution with β ∈ (1, 2] (for
some suitable normalization An).

Then, (Xn, Yn)n∈N0 is recurrent for P-a.e. environment ω.

Proof of Proposition 4.1: We denote by P the annealed probability measure of the
2-dimensional random walk. Due to the local limit theorem (see Ibragimov and
Linnik (1971, Chapter 4)), we have P(Yd0n = 0) ∼ C(An)

−1 for some C > 0 and

for d0 := gcd{m ≥ 1, P(Xm = Ym = 0) 6= 0}. Recall that An = n
1
β L(n) with L a

slowly varying function. Due to the independence of the two components, we have∑
n∈N

Pω

(
(Xn, Yn) = (0, 0)

)
=
∑
n∈N

Pω

(
Xd0n = 0

)
· Pω

(
Yd0n = 0

)
= ∞,

where the last equation is due to Theorem 1.1 applied with 1
β < α < 1. This proves

the recurrence of the process (Xn, Yn)n∈N0 for P-a.e. environment ω. �

Observe that, if we take (Xn)n to be the simple symmetric random walk on Z
in Proposition 4.1 instead of Sinai’s walk, we have P(X2n = 0) ∼ cn− 1

2 and hence
we lose the recurrence as soon as β < 2.
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4.2. Other two-dimensional RWRE governed by a one-dimensional RWRE. We
study now the cases (II) and (III). We consider a process moving horizontally with
probability δ and vertically with probability 1− δ. We assume that the horizontal
displacements follow Sinai’s walk and that the vertical ones either follow some re-
current random walk (case (II)) or depend on the parity of the first coordinate of
the current position (case (III)).

Proposition 4.2 (Case (II)). Let δ ∈ (0, 1). Let ω = (ωx)x be a random environ-
ment which fulfils (1.2) and (1.3). We assume that, given ω, (Mn)n∈N0 is a Markov
chain with values in Z2 such that

Pω

(
M0 = (0, 0)

)
= 1,

Pω

(
Mn+1 = (x+ 1, y)

∣∣Mn = (x, y)
)
= δ · ωx,

Pω

(
Mn+1 = (x− 1, y)

∣∣Mn = (x, y)
)
= δ · (1− ωx),

Pω

(
Mn+1 = (x, y + z)

∣∣Mn = (x, y)
)
= (1− δ) · ν(z),

where ν is a probability distribution on Z with zero expectation such that (ν∗n(An·))n
converges to a β-stable distribution with β ∈ (1, 2] (for some suitable increasing
sequence (An)n of positive real numbers). Then, (Mn)n∈N0 is recurrent for P-a.e.
environment ω.

Let us recall that ν∗n(An·) is the distribution of (Z1 + · · ·+Zn)/An if Z1, ..., Zn

are i.i.d. random variables with distribution ν.

Proof of Proposition 4.2: Let us write Mn = (X̃n, Ỹn). We look at the process
(Mn)n∈N0 whenever it has moved in the first component. For this, we define induc-

tively τ0 := 0 and τk := inf
{
n > τk−1 : X̃n 6= X̃τk−1

}
for k ≥ 1. Additionally, we

define Xn := X̃τn and Yn := Ỹτn for n ∈ N0. Note that (Xn)n∈N0 is a usual RWRE
on Z with environment ω. Further, we have

Yn =

τn−n∑
k=1

Zk =
n∑

`=1

τ`−∑̀
k=τ`−1−`+2

Zk,

where (Zk)k is a sequence of i.i.d. random variables with distribution ν. We know

that the random variables (Z̃` :=
∑τ`−`

k=τ`−1−`+2 Zk)` are identically distributed and

centered. Let us prove that their distribution belongs to the domain of attraction of
a β-stable distribution. We know that (

∑m
k=1 Zk/Am)m converges in distribution

to a β-stable centered random variable U and that Am = m
1
β L(m), L being a

slowly varying function. Observe that (Yn/Aτn−n)n converges in distribution to U

and that (Aτn−n/An)n converges almost surely to (E[τ1]− 1)
1
β . Hence (Yn/An)n

converges in distribution to (E[τ1]− 1)
1
β U . Therefore, (since P(Z̃1 = 0) > 0) we

conclude that Pω(Yn = 0) ∼ C(An)
−1. Hence, for P-a.e. environment ω, we have∑

n∈N

Pω

(
(X2n, Y2n) = (0, 0)

)
=
∑
n∈N

Pω(X2n = 0) · Pω(Y2n = 0) = ∞

(due to Theorem 1.1 applied with 1
β < α < 1). This implies the recurrence of

(Xn, Yn)n and so of (Mn)n. �
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Finally we consider the case (III). We suppose now that every vertical line is
oriented upward if the line is labelled by an even number and downward otherwise.
We consider again a process moving horizontally with probability δ and moving
vertically with probability 1 − δ. We assume that the horizontal displacements
follow a Sinai walk (as in the previous example) but that the vertical displacements
follow the orientation of the vertical line on which the walker is located.

Proposition 4.3 (Case (III), odd-even orientations of vertical lines). Let δ ∈ (0, 1)
and let ω be a random environment which fulfils (1.2) and (1.3). Given ω, (Mn)n∈N0

is a Markov chain with values in Z2 such that

Pω

(
M0 = (0, 0)

)
= 1,

Pω

(
Mn+1 = (x+ 1, y)

∣∣Mn = (x, y)
)
= δ · ωx,

Pω

(
Mn+1 = (x− 1, y)

∣∣Mn = (x, y)
)
= δ · (1− ωx),

Pω

(
Mn+1 = (x, y + z)

∣∣Mn = (x, y)
)
= (1− δ) · ν((−1)xz),

with ν a probability distribution on Z admitting a first moment and belonging to
the domain of attraction of a stable distribution of index β > 1. Then, (Mn)n∈N0

is recurrent for P-a.e. environment ω.

Proof of Proposition 4.3: The proof follows the same scheme as the previous one
and uses the same notations (X̃n, Ỹn)n, τn and (Xn, Yn). Again (Xn)n∈N0 is a
RWRE on Z with environment ω. Let us write Tn := τn − τn−1, τ

+
0 = τ−0 = 0,

τ+n :=
∑n

`=1 T2`−1 and τ−n :=
∑n

`=1 T2`. Observe that τ+n − n (resp. τ−n − n) is
the number of vertical moves on an even (resp. odd) vertical axis before the 2n-th
horizontal displacement. We have

Y2n =
n∑

`=1

[ξ2`−1 − ξ2`], with ξ2`−1 =

τ+
` −`∑

k=τ+
`−1−`+2

Z2k−1, ξ2` =

τ−
` −`∑

k=τ−
`−1−`+2

Z2k,

where (Zk)k is a sequence of i.i.d. random variables with distribution ν. With these
notations Z2k+1 (resp. −Z2k) is the k-th vertical displacement on an even (resp.
odd) vertical axis.

The random variables ξ2`−1 − ξ2` are i.i.d.. We already know that ξ1 − ξ2 is
centered. Let us prove that its distribution belongs to the domain of attraction of
a β-stable centered distribution, i.e. that Y2n suitably normalized converges to a
β-stable random variable. We observe that

Y2n =

τ+
n −n∑
k=1

Z2k−1 −
τ−
n −n∑
k=1

Z2k = Un + V +
n − V −

n +Wn,

with

Un :=

nE[τ1−1]∑
k=1

(Z2k−1 − Z2k),

V +
n :=

τ+
n −n∑
k=1

(Z2k−1 − E[Z1])−
nE[τ1−1]∑

k=1

(Z2k−1 − E[Z1]),
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V −
n :=

τ−
n −n∑
k=1

(Z2k − E[Z1])−
nE[τ1−1]∑

k=1

(Z2k − E[Z1]),

Wn := (τ+n − τ−n )E[Z1].

We know that there exists an increasing sequence of real numbers (An)n (regularly
varying of index 1/β) such that (Vn :=

∑n
k=1(Zk − E[Z1])/An)n converges in dis-

tribution to a β-stable random variable V . This implies that (Un/An)n converges
in distribution to a β-stable random variable U .

By tightness of (Vn)n, for every ε > 0, there exists Kε > 0 such that for every n
we have P(|V ±

n | ≥ KεAτ±
n −nE[τ1]) < ε (with the convention A−m = Am). Moreover

(τ±n − nE[τ1])/n3/4 → 0 almost surely and so Aτ±
n −nE[τ1] � An almost surely. It

follows that (V ±
n /An)n converges in probability to 0.

If E[Z1] = 0, we conclude that (Y2n/An)n converges in distribution to U .
Assume now that E[Z1] 6= 0. Then (Wn/

√
n)n is independent of (Un)n and

converges in distribution to some centered normal variable W (assumed to be in-
dependent of U).

Hence, if 1 < β < 2, we conclude that (Y2n/An)n converges in distribution to U .
If β = 2 and E[Z1] 6= 0, we can choose An such that U and W have the same

distribution and we conclude that (Y2n/
√

n+A2
n)n converges in distribution to a

U .
Hence, for P-a.e. environment ω, we have∑

n∈N
Pω

(
(X2n, Y2n) = (0, 0)

)
=
∑
n∈N

Pω(X2n = 0) · Pω(Y2n = 0) = ∞,

due to Theorem 1.1 applied with α > 1/β and due to the local limit theorem
for (Y2n)n. This implies the recurrence of (Xn, Yn)n and so of (Mn)n, for P-a.e.
environment ω. �

Proposition 4.4. If we replace Sinai’s walk by the simple symmetric random walk
on Z (i.e. if we replace ωx by 1/2) in the assumptions of Propositions 4.2 and 4.3,
then the walk (Mn)n is recurrent if and only if

∑
n

1
An

√
n
= ∞.

In particular it is transient as soon as β < 2.

Proof : We follow the proofs of Propositions 4.2 and 4.3 and we use the fact that
P(X2n = 0) is equivalent to c/

√
n for some c > 0 as n goes to infinity. We have∑

n

P(Mn = 0) =
∑
n

P(X2n = 0)P

(
∃K ∈ {0, ..., τ − 1}, Y2n +

K∑
k=1

Zk = 0

)
,

where τ has the same distribution as τ1 and where (Zk)k is a sequence of i.i.d.
random variables with distribution ν such that Y2n, τ and (Zk)k are independent.
Now observe that

P

(
∃K ∈ {0, ..., τ − 1}, Y2n +

K∑
k=1

Zk = 0

)
≥ P(Y2n = 0) ∼ C1

An

for some C1 > 0 due to the local limit theorem for (Y2n)n and that

P

(
∃K ∈ {0, ..., τ − 1}, Y2n +

K∑
k=1

Zk = 0

)
≤ P

(
|Y2n| ≤

τ−1∑
k=1

|Zk|

)
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≤
∑
m≥0

P(|Y2n| = m)P

(
τ−1∑
k=1

|Zk| ≥ m

)

≤ C2

An

(
E

[
τ−1∑
k=1

|Zk|

]
+ 1

)
≤ C2

An
(1 + E[τ ]E[|Z1|]),

for C2 > 0 using the uniform bound given by the local limit theorem. Hence

P

(
∃K ∈ {0, ..., τ − 1}, Y2n +

K∑
k=1

Zk = 0

)
≈ 1

An
.

�
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