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Abstract. The vectorial Deffuant model is a simple stochastic process for the
dynamics of opinions that also includes a confidence threshold. To understand the
role of space in this type of social interactions, we study the process on the one-
dimensional lattice where individuals are characterized by their opinion – in favor or
against – about F different issues and where pairs of nearest neighbors potentially
interact at rate one. Potential interactions indeed occur when the number of issues
both neighbors disagree on does not exceed a certain confidence threshold, which
results in one of the two neighbors updating her opinion on one of the issues both
neighbors disagree on (if any). This paper gives sufficient conditions for clustering
of the system and for coexistence due to fixation in a fragmented configuration,
showing the existence of a phase transition between both regimes.

1. Introduction

In the voter model Clifford and Sudbury (1973); Holley and Liggett (1975),
individuals are located on the vertex set of a graph and are characterized by one
of two competing opinions. Individuals update their opinion independently at rate
one by mimicking a random neighbor where the neighborhood is defined in an
obvious manner from the edge set of the graph. This is the simplest model of
opinion dynamics based on the framework of interacting particle systems. The
model includes social influence, the tendency of individuals to become more similar
when they interact. More recently, and particularly since the work of political
scientist Axelrod Axelrod (1997), a number of variants of the voter model that also
account for homophily, the tendency of individuals to interact more frequently with
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individuals who are more similar, have been introduced. These spatial processes
are continuous-time Markov chains whose state at time t is a function that maps
the vertex set V of a graph into a set of opinions:

ηt : V −→ Γ := opinion set.

The common modeling approach is to equip Γ with a metric, which allows one
to define an opinion distance between neighbors, and to include homophily by
assuming that neighbors interact at a rate which is a nonincreasing function of
their opinion distance. This rate is often chosen to be the step function equal to
zero if the opinion distance between the two neighbors is larger than a so-called
confidence threshold and equal to one otherwise.

Model description – In the original version of the Deffuant model Deffuant et al.
(2000), the opinion space is the unit interval equipped with the Euclidean distance.
Neighbors interact at rate one if and only if the distance between their opinion does
not exceed a certain confidence threshold, which results in a compromise strategy
where both opinions get closer to each other by a fixed factor. The main conjecture
about this opinion model is that, at least when the initial opinions are independent
and uniformly distributed over the unit interval, the system reaches a consensus
when the confidence threshold is larger than one half whereas disagreements persist
in the long run when the confidence threshold is smaller than one half. This con-
jecture has been completely proved for the one-dimensional system in Häggström
(2012); Lanchier (2012) using different techniques and we also refer to Häggström
and Hirscher (2014) for additional results on the system in higher dimensions and/or
starting from more general distributions. In contrast, in the vectorial version of the
Deffuant model also introduced in Deffuant et al. (2000), the opinion space is the
hypercube equipped with the Hamming distance:

Γ := {0, 1}F and H(u, v) := card{i : ui 6= vi} for all u, v ∈ Γ. (1.1)

As for the general class of opinion models described above, the system depends on
a confidence threshold that we call θ from now on. To describe the dynamics, we
also introduce the set

Ω(x, y, η) := {u ∈ Γ : H(u, η(y)) = H(η(x), η(y)) − 1}

for each pair of neighbors x and y and each configuration η. The vectorial Deffuant
model can then be formally defined as the Markov chain with generator

Lf(η) =
∑

x (card {y : y ∼ x})−1
∑

y∼x (card Ω(x, y, η))−1

∑

u∈Ω(x,y,η) 1{1 ≤ H(η(x), η(y)) ≤ θ} [f(ηx,u)− f(η)]
(1.2)

where y ∼ x means that both vertices are nearest neighbors and where ηx,u is the
configuration obtained from configuration η by setting the opinion at x equal to u
and leaving all the other opinions unchanged. In words, each individual looks at a
random neighbor at rate one and updates her opinion by moving one unit towards
the opinion of this neighbor along a random direction in the hypercube unless either
the opinion distance between the two neighbors exceeds the confidence threshold or
both neighbors already agree. These evolution rules, which are somewhat compli-
cated thinking of each opinion as an element of the hypercube, have a very natural
interpretation if one thinks of each opinion as a set of binary opinions – in favor
or against – about F different issues. Using this point of view gives the following:
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each individual looks at a random neighbor at rate one and imitates the opinion
of this neighbor on an issue selected uniformly at random among the issues they
disagree on (if any), which models social influence, unless the number of issues they
disagree on exceeds the confidence threshold, which models homophily.

Main results – The results in Deffuant et al. (2000, section 4) are based on
numerical simulations of the system on a complete graph where all the individuals
are neighbors of each other, thus leaving out any spatial structure. In contrast, the
main objective of this paper is to understand not only the role of the parameters
but also the role of explicit space in the long-term behavior of the system. In
particular, we specialize from now on in the one-dimensional system where each
individual has exactly two nearest neighbors and set V = Z. In this case, the
process can exhibit two types of behavior: reach a consensus or get trapped in an
absorbing state where the different opinions coexist. To define mathematically this
dichotomy, we say that

• the system clusters whenever

limt→∞ P (ηt(x) = ηt(y)) = 1 for all x, y ∈ Z,

• the system coexists due to fixation whenever

P (ηt(x) = η∞(x) eventually in t) = 1 for all x ∈ Z

for some configuration η∞ such that P (card {η∞(x) : x ∈ Z} = 2F ) = 1.

The one-dimensional system has been studied numerically by Adamopoulos and
Scarlatos (2012) who considered a percolation model starting from the uniform
product measure and predicted a phase transition for the continuous-time model
between clustering and coexistence at an approximate critical value θc ≈ F/2. We
follow Adamopoulos and Scarlatos (2012) and study the system starting from the
uniform product measure in which the opinions at different vertices are independent
and equally likely, i.e.,

P (η0(x) = u) = (1/2)F for all x ∈ Z and u ∈ Γ. (1.3)

The first key ingredient to prove both clustering and coexistence is to think of
each opinion profile as a collection of F levels, each having two possible states,
and put a particle between two neighbors at the levels they disagree on. This
induces a coupling between the dynamics of opinions and a system of annihilating
random walks similar to the one introduced in Lanchier and Schweinsberg (2012).
The inclusion of a confidence threshold in the opinion model translates into the
following in the system of random walks: particles jump at a positive rate except
the ones that are part of a pile whose size exceeds the confidence threshold which
do not move because they are carried by an edge connecting two individuals who
disagree too much to interact. We call a particle either active or frozen depending
on whether it jumps at a positive rate or cannot jump at all.

To begin with, we look at the process with F ≤ θ. In this case, regardless of
the number of issues on which they disagree, neighbors can always interact so, at
every issue-level, the configuration of opinions evolves according to a voter model
where individuals interact at rates that vary across space and time. More precisely,
whenever two neighbors disagree on a given issue, they come into an agreement on
this issue at rate one over the total number of issues on which they disagree, their
new common opinion being equally likely to be each of the two possible opinions.
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Figure 1.1. Phase diagram of the one-dimensional vectorial Def-
fuant model in the F − θ plane along with a summary of our theo-
rems. The black dots correspond to the set of parameters for which
clustering is proved whereas the white dots correspond to the set
of parameters for which coexistence is proved.

For the system of particles introduced above, this means that all the particles are
active and evolve according to simple symmetric random walks that jump at rates
that vary across space and time. Since such random walks are recurrent (because
they are symmetric and jump at a positive rate) and since they annihilate by pair
just like the interfaces of the one-dimensional voter model, the system of active
particles goes extinct, which implies clustering of the opinion model.

Now, we look at the process with F = θ + 1. In this case, only individuals who
disagree on all issues do not interact. In particular, the only frozen piles are the ones
with F particles, which results in a system of annihilating random walks similar
enough to its counterpart for the Axelrod model so that the machinery in Lanchier
and Schweinsberg (2012) also applies to our case. Using this machinery, it can be
proved that each frozen particle will eventually become active or annihilate with an
active particle. From this, it can be deduced that both frozen and active particles
ultimately go extinct, which again implies clustering of the opinion model therefore
we have the following result.

Theorem 1.1. – Assume (1.3) and F = θ + 1. Then, the system clusters.

Even though the proof of this theorem is the same as the proof in Lanchier and
Schweinsberg (2012), the main ingredients will be briefly explained in Section 3 for
the sake of completeness.

To study the coexistence regime, we again use the coupling with annihilating
random walks as well as a characterization of fixation due to Bramson and Griffeath
(1989) based on certain spatial properties of so-called active paths that keep track
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of the offspring of the opinions initially present in the system. This characterization
leads to a sufficient condition for survival of the frozen particles on a large interval,
and therefore coexistence due to fixation, based on the initial number of active and
frozen particles in this interval. Using estimates on the random number of active
particles that annihilate with frozen particles to turn a pile of frozen particles into
a smaller pile of active particles, a random weight is then attributed to each pile
of particles at time zero. This, together with large deviation estimates for the
cumulative weight in large intervals, implies that the system coexists whenever the
expected value of the weight of a typical pile is positive. Relying on some symmetry
property of the binomial random variable, we make explicit the set of parameters
for which the expected value of the weight is positive, from which we deduce the
following theorem.

Theorem 1.2. – Assume (1.3) and F ≥ 4θ − 1. Then, the system coexists.

Note that both theorems imply the existence of at least one phase transition between
consensus and coexistence at some critical confidence threshold

θc ∈ ((1/4)(F + 1), F − 1) for all F ≥ 2

which gives a rigorous proof of part of the conjecture announced in Adamopoulos
and Scarlatos (2012).

To gain some insight on the reason why the critical threshold might indeed be
equal to F/2, we finally look at the system starting from a non-uniform prod-
uct measure where two opposite designated opinion profiles start at high density
whereas the other opinion profiles start at low density. More precisely, we now
assume that the system starts from the product measure with

P (η0(x) = u) = 1/2− (2F−1 − 1) ρ when u ∈ {u−, u+}

= ρ when u /∈ {u−, u+}
(1.4)

where ρ ∈ [0, 2−F ) is a small parameter and where

u− := (0, 0, . . . , 0) and u+ := (1, 1, . . . , 1).

For the process starting from this initial distribution, the methodology developed to
prove the previous theorem can be applied together with large deviation estimates
for non-independent random variables to obtain the following result.

Theorem 1.3. – Assume (1.4) and F > 2θ. Then, there exists ρ0 > 0 that depends
on the two parameters such that the system coexists for all ρ ≤ ρ0.

Even though the theorem only gives a sufficient condition for coexistence due to
fixation, the proof somewhat suggests that this condition is also necessary. Our
intuition relies on the fact that the largest blockades contain F frozen particles
while the collision of F − θ active particles with such a blockade can create a total
of θ active particles. In particular, when F ≤ 2θ, it is possible that the number of
active particles created is at least equal to the number of active particles destroyed,
which leads to a global extinction of all the particles and therefore clustering.

We refer the reader to Figure 1.1 for a summary of our results. The rest of
this paper is devoted to proofs starting in the next section with the coupling with
annihilating random walks which is then used to show our three theorems in the
subsequent three sections.
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2. Coupling with annihilating random walks

In this section, we follow the approach of Lanchier and Schweinsberg (2012) to
define a coupling between the process and a collection of systems of symmetric
annihilating random walks. The basic idea is to visualize each opinion profile, i.e.,
each vertex of the hypercube, using F levels each having two possible states and put
particles between two neighbors at the levels they disagree on. For an illustration,
we refer to Figure 2.2 where black and white dots represent the two possible opinions
on each issue and the crosses indicate the position of the particles. To make this
construction rigorous, we first identify the process with the spin system

η̄t : Z× {1, 2, . . . , F} → {0, 1} where η̄t(x, i) := ith coordinate of ηt(x).

This again defines a Markov process. To describe this system of particles, it is also
convenient to identify the edges connecting neighbors with their midpoint

e := (x, x+ 1) ≡ x+ 1/2 for all x ∈ Z

and to define translations on this set of edges by setting

e + a := (x, x + 1) + a ≡ x+ 1/2 + a for all e ∈ Z+ 1/2 and a ∈ R.

The process that keeps track of the disagreements is then defined as

ξt(e, i) := 1 {η̄t(e− 1/2, i) 6= η̄t(e + 1/2, i)} (2.1)

and we put a particle on edge e at level i if and only if ξt(e, i) = 1 to visualize the
corresponding configuration of interfaces. The reason for introducing this system
of particles is that

• the limiting behavior of the process (1.2) can be easily translated into sim-
ple properties for the system of particles (2.1): clustering is equivalent to
extinction of the particles whereas coexistence is equivalent to survival of
the particles and

• the particles of (2.1) consist of a collection of systems of simple symmetric
annihilating random walks somewhat easier to analyze than the vectorial
Deffuant model itself.

The number of particles per edge, defined as

ζt(e) := ξt(e, 1) + ξt(e, 2) + · · ·+ ξt(e, F ) for each edge e,

is a key quantity to describe the dynamics of the system of particles since it is equal
to the opinion distance between the two individuals connected by the edge:

ζt(e) = card {i : ξt(e, i) = 1}

= card {i : η̄t(e − 1/2, i) 6= η̄t(e+ 1/2, i)}

= H(ηt(e− 1/2), ηt(e+ 1/2)).

Since the number of particles on the edge is equal to the opinion distance, an
interaction along edge e := (x, x + 1) results in the following alternative:

(1) There are more than θ particles on the edge in which case nothing hap-
pens because the opinion distance between the two neighbors exceeds the
confidence threshold.
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Figure 2.2. Illustration of the coupling between the vectorial Def-
fuant model and the system of simple symmetric annihilating ran-
dom walks. Black and white dots represent the two possible states
of the individuals’ opinion on each issue while the crosses indicate
the position of the particles. In our example, there are 24 = 16
possible opinion profiles and the confidence threshold is θ ≥ 2. The
two imitation events represented in this realization translate into
two consecutive jumps of particles, with the first one resulting in
the annihilation of two particles.

(2) There are at most θ particles on the edge in which case one of the issues for
which the two neighbors disagree is chosen uniformly at random and the
opinion of either vertex x or vertex x+1 at this level is switched. Note that
the issues the two neighbors disagree on correspond to the levels which are
occupied by a particle so, after the interaction, the particle at the chosen
level disappears while the state of one of the two edges e ± 1 at the same
level switches from either empty to occupied or from occupied to empty.

Combining 1 and 2, we deduce that the system of particles (2.1) evolves at each level
according to a system of simple symmetric annihilating random walks as illustrated
in Figure 2.2. In addition, since the issues on which neighbors disagree are chosen
for update uniformly at random, at each edge occupied by j particles, these particles
jump individually at rate

r(j) = j−1 when 0 < j ≤ θ

= 0 when θ < j ≤ F
(2.2)

making the F systems of symmetric annihilating random walks non-independent.
Motivated by the transition rates in (2.2), we call an edge either a live edge or
a blockade depending on whether they have at most or more than θ particles,
respectively. Accordingly, we call the particles at this edge either active particles
or frozen particles, respectively, and notice that active particles jump at a positive
rate whereas frozen particles cannot jump at all.

Both the vectorial Deffuant model and its coupled system of annihilating ran-
dom walks starting from any initial configuration can be constructed from the
same percolation structure using a standard argument due to Harris Harris (1972).
This percolation structure consists of a random graph involving independent Pois-
son processes marking the times at which potential jumps or interactions occur
and additional collections of independent Bernoulli random variables and uni-
form random variables to determine the outcome of each jump or interaction.
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To make this construction rigorous, for each pair of individual-issue or vertex-
level (x, i) ∈ Z× {1, 2, . . . , F},

• we let (Nx,i(t) : t ≥ 0) be a rate one Poisson process,

• we denote by Tx,i(n) its nth arrival time: Tx,i(n) := inf {t : Nx,i(t) = n},

• we let (Bx,i(n) : n ≥ 1) be a collection of independent Bernoulli random
variables with

P (Bx,i(n) = +1) = P (Bx,i(n) = −1) = 1/2,

• we let (Ux,i(n) : n ≥ 1) be a collection of independent Uniform (0, 1) random
variables.

Then, at each time t := Tx,i(n), we draw an arrow

x → y := x+Bx,i(n) with the label i (2.3)

and call this arrow an active arrow if and only if

ξt−(e, i) = 1 and Ux,i(n) ≤ r(ζt−(e)) where e := x+ (1/2)Bx,i(n). (2.4)

The vectorial Deffuant model and the system of annihilating random walks can then
be constructed from the resulting percolation structure by assuming that arrows
which are not active have no effect on any of the two processes whereas if the i-
arrow (2.3) is active (2.4) then

• at time t, the individual at y looks at the individual at x and imitates her
opinion for the ith issue, therefore we set η̄t(y, i) := η̄t−(x, i),

• the particle at x+ (1/2)Bx,i(n) at level i jumps to x+ (3/2)Bx,i(n).

To establish our results, it is also useful to identify the vertices where the opinions
of some given space-time point originate from. This can be done looking at active
paths: we say that there is an active i-path from (z, s) to (x, t) whenever there are
sequences of times and vertices

s0 = s < s1 < · · · < sn+1 = t and x0 = z, x1, . . . , xn = x

such that the following two conditions hold:

(1) For j = 1, 2, . . . , n, there is an active i-arrow xj−1 → xj at time sj .

(2) For j = 0, 1, . . . , n, there is no active i-arrow pointing at {xj} × (sj , sj+1).

We say that there is a generalized active path from (z, s) to (x, t) whenever

3. For j = 1, 2, . . . , n, there is an active arrow xj−1 → xj at time sj.

Later, we will use the notations
i
 and  to indicate the existence of an active i-

path and a generalized active path. We also point out that for every space-time
point (x, t) there is a unique space-time point (z, 0) such that both points are
connected by an active i-path which, using a simple induction, implies that the
corresponding individuals at the corresponding times agree on the ith issue, i.e., z
is the ancestor of (x, t) for the ith issue.

3. Proof of Theorem 1.1

In this section, we prove that, when F = θ+ 1, the opinion model clusters. In this
case, the process is closely related to the two-state Axelrod model Axelrod (1997).
Indeed, the one-dimensional construction in the previous section can be applied to
the latter, which again results in a system of non-independent annihilating random
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walks. The only difference between the two models is that, in the system of random
walks coupled with the Axelrod model, at each edge occupied by j particles, these
particles jump at rate

rax(j) = j−1(1− j/F ) when j 6= 0. (3.1)

In particular, when F = θ+1, it follows from (2.2) and (3.1) that, for both models,
an edge is a blockade if and only if it has exactly F particles:

r(j) = 0 if and only if rax(j) = 0 if and only if j = F.

Now, clustering of the two-state Axelrod model has been proved in Lanchier and
Schweinsberg (2012) and, while it heavily relies on the fact that an edge is a block-
ade if and only if it has F particles, the proof is not sensitive to the exact rate
at which active particles jump. In particular, Theorem 1.1 follows from the argu-
ments introduced in Lanchier and Schweinsberg (2012) for the Axelrod model. In
addition to the coupling with annihilating random walks, there are two key ingredi-
ents: each blockade breaks eventually with probability one and, as a consequence,
the system of active and frozen particles goes extinct. We only give the idea of the
proof and refer to Lanchier and Schweinsberg (2012, Sections 3–4) for more details.

Blockade destruction – The first step is to prove destruction of the blockades:
assuming that a designated edge e⋆ is a blockade at some time t, we have

T := inf {s > t : ζs(e⋆) 6= F} < ∞ with probability one. (3.2)

The proof of (3.2) will involve the probability

p := conditional probability that the leftmost edge of the
system of random walks on N has F particles at all
times given that it has F particles at time 0.

We will see that this probability is equal to zero but, seeking a contradiction, we
will assume that it is strictly positive. The proof relies on two ingredients: parity
preserving of the number of particles at each level and a symmetry argument due to
Adelman Adelman (1976) to show site recurrence of systems of annihilating random
walks. To briefly explain parity preserving, assume that

• edge e⋆ with e⋆ > e⋆ also is a blockade at time t, i.e., ζt(e
⋆) = F , and

• between the two blockades e⋆ and e⋆, the number of particles at some
level i and the number of particles at some other level j do not have the
same parity, i.e., for some i 6= j, we have

∑

e⋆≤e≤e⋆ ξt(e, i) 6=
∑

e⋆≤e≤e⋆ ξt(e, j) mod 2. (3.3)

Now, let τ be the first time one of these two blockades breaks. Since particles at the
same level annihilate by pairs, the parity of the number of particles between the two
blockades is preserved at each level and up to time τ . This, together with (3.3),
implies that, up to time τ , there is at least one active particle between the two
blockades so either this particle or another active particle outside the interval breaks
one of the blockades after a finite time:

τ := inf {s > t : ζs(e⋆) 6= F or ζs(e
⋆) 6= F} < ∞ with probability one. (3.4)

The property in (3.2) can be deduced from its analog (3.4) for two blockades also
using some symmetry arguments through the following construction. To prove this
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statement, we first introduce

B0 := {e⋆, e⋆ + 1, . . . , e∗, e∗ + 1, e∗ + 2} where

e∗ := min {e > e⋆ : e and e+ 1 and e+ 2
have not been updated by time t}.

Next, we partition the half-line into intervals with the same length as B0 by setting

Bn := B0 + (e∗ + 3− e⋆)n for all n ≥ 1

and let N be the smallest n such that

• the configurations of particles in B0 and Bn at time t can be obtained from
one another by translation or reflection and

• none of the edges in Bn has been updated by time t.

Then, letting e⋆ be the rightmost edge in BN ,

(a) the probability that the configurations of particles in B0 and BN at time t
can be obtained from one another by reflection is ≥ 1/2, and

(b) the probability that (3.3) holds, in which case (3.4) also holds, is ≥ 1/2.

In case the events in (a) or (b) do not occur, we repeat the same construction
starting from the same time t but replacing the interval B0 with the interval

B′
0 := the smallest interval that contains B0 and BN

= {e⋆, e⋆ + 1, . . . , e⋆ − 1, e⋆}
(3.5)

After at most a geometric number of steps, both (a) and (b) occur. To avoid cum-
bersome notation, we again let e⋆ be the rightmost edge of the rightmost interval
in this construction. Because parity is preserved, one of the two blockades at e⋆
and e⋆ breaks after a finite time. The probability that, at this time, the rightmost
blockade breaks because of the jump of an active particle that originates from its
right is by definition at most 1− p. In particular,

(c) by symmetry due to reflection (a), the conditional probability given (b)
that the blockade e⋆ breaks before the blockade e⋆ is at least p/2.

In case the event in (c) does not occur, we repeat the same construction but starting
from the time at which the blockade breaks and using the substitution (3.5). This
construction implies the existence of an increasing sequence (tj) of finite stopping
times such that

P (Ak | (A1 ∪ A2 ∪ · · · ∪ Ak−1)
c) ≥ p/2 for all k > 0 (3.6)

where Aj is the event that the blockade at e⋆ breaks between times tj−1 and tj .
Finally, seeking a contradiction, we now assume that (3.2) does not hold for the
system of random walks where edges to the left of e⋆ have been removed. Since the
probability that e⋆ has not been updated until time t is positive, the probability p
must be positive so that (3.2) does not hold. But this, together with (3.6), implies
that one of the Ak must occur so (3.2) holds, a contradiction. This implies the
desired result for the process where edges to the left of e⋆ have been removed, from
which the analog for the original process on the integers directly follows.

Extinction of the particles – To complete the proof of the theorem, it suffices
to show extinction of the system of random walks, since this property is equivalent
to clustering of the original opinion model. The proof deals with active particles
and frozen particles separately. Seeking a contradiction, we first assume that the
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expected number of active particles at edge e, which does not depend on the choice
of e due to translation invariance, does not converge:

lim supt→∞ E (ζt(e)1{ζt(e) 6= F})

6= lim inf t→∞ E (ζt(e)1{ζt(e) 6= F}).
(3.7)

There are two types of events that reduce the number of active particles: annihi-
lating events and active particles becoming frozen. In particular, the fact that the
expected number of active particles per edge goes infinitely often from the lim sup
to the lim inf in (3.7) implies that the expected number of annihilating events per
edge or freezing events per edge is infinite. The former leads to an expected num-
ber of particles per edge decreasing to minus infinity while the latter leads to an
expected number of frozen particles per edge increasing to infinity, i.e.,

limt→∞ E (ζt(e)) = −∞ or limt→∞ E (ζt(e)1{ζt(e) = F}) = ∞, (3.8)

which is not possible. In particular, (3.7) is not true. We refer the reader to Lanchier
and Schweinsberg (2012, Lemma 6) for more details. Seeking again a contradiction,
we now assume that the expected number of active particles per edge converges to
a positive limit:

limt→∞ E (ζt(e)1{ζt(e) 6= F}) = ǫ > 0. (3.9)

Since one-dimensional symmetric random walks are recurrent, each active particle
either gets annihilated or becomes frozen eventually with probability one there-
fore (3.9) implies that, at all times, the expected number of annihilating events per
edge per unit of time or the expected number of freezing events per edge per unit
of time is larger than some positive constant, which again leads to the impossible
statement (3.8). It follows that (3.9) is not true. We refer the reader to Lanchier
and Schweinsberg (2012, Lemma 7) for more details. To deal with the frozen par-
ticles, we first observe that, since the expected number of particles per edge can
only decrease, it has a limit as time goes to infinity. This, together with the fact
that the expected number of active particles per edge has a limit, implies that the
expected number of frozen particles per edge has a limit as well. Seeking once more
a contradiction, we assume that this limit is positive:

limt→∞ E (ζt(e)1{ζt(e) = F}) = ǫ > 0. (3.10)

Since each blockade breaks eventually with probability one according to (3.2) and
since each blockade destruction results in the annihilation of two particles, (3.10)
implies that the expected number of annihilating events per edge per unit of time
is larger than a positive constant, thus leading to the left-hand side of (3.8), again
a contradiction. See Lanchier and Schweinsberg (2012, Lemma 8) for more details.

4. Proof of Theorem 1.2

This section is devoted to the study of the coexistence regime for the system start-
ing from the uniform product measure. The first ingredient is a construction based
on duality-like techniques due to Bramson and Griffeath Bramson and Griffeath
(1989), which gives a sufficient condition (4.6) for fixation of an interacting par-
ticle system. Starting from this general condition, we then derive a more explicit
condition for fixation using properties of the opinion model as well as large devia-
tion estimates. To begin with, we state the following lemma, which is the analog
of Bramson and Griffeath (1989, Lemma 2).
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Lemma 4.1. – For all (z, i) ∈ Z× {1, 2, . . . , F}, let

T (z, i) := inf {t : (z, 0)
i
 (0, t)}.

Then, the system fixates whenever

limN→∞ P (T (z, i) < ∞ for some z < −N and i = 1, 2, . . . , F ) = 0. (4.1)

Proof: This follows the proof of Lanchier and Scarlatos (2013, Lemma 4). �

We now extend the construction in Bramson and Griffeath (1989, Section 3) using
generalized active paths rather than active paths at a given level. In this construc-
tion, Lemma 4.1 is used to exhibit the connection between the initial configuration
of the system, i.e., the initial number of active particles and the initial number of
frozen particles, and the key event

HN := {T (z, i) < ∞ for some z < −N and some i = 1, 2, . . . , F}

that appears in (4.1). The main objective is to construct a random interval such
that all the blockades initially in this interval must have been destroyed by either
active particles initially in this interval or active particles that result from the
destruction of these blockades. Let

τ = inf {T (z, i) : z ∈ (−∞,−N) and i = 1, 2, . . . , F}

be the first time that, for some issue i = 1, 2, . . . , F , an active i-path that originates
from the left of −N hits the origin, and observe that HN can be written as

HN = {τ < ∞}. (4.2)

Given HN , we let z⋆ < −N be the initial position of this active path and

z− := min {z ∈ Z : (z, 0) (0, τ)} ≤ z⋆ < −N

z+ := max {z ∈ Z : (z, 0) (0, σ) for some σ < τ} ≥ 0
(4.3)

and define I = (z−, z+). Since generalized active paths cannot cross edges which
are occupied by a blockade, we have the following two properties:

• All the blockades initially in I must have been destroyed, i.e., turned into
piles of θ active particles due to annihilating events, by time τ .

• None of the active paths can cross going from left to right the leftmost
generalized active path in (4.3). Similarly, none of the active paths can
cross from right to left the rightmost generalized active path. In particular,
the active particles initially outside I cannot jump inside the space-time
region delimited by the two generalized active paths.

This, together with (4.2), implies that, on the event HN , all the blockades initially
in the interval I must have been destroyed before time τ by either active particles
initially in this interval or active particles that result from the destruction of these
blockades. To quantify this last event, we use a collection of random variables,
that we shall call contributions of the edges, which are measurable with respect
to the initial configuration and the graphical representation of the process. More
precisely, we let

cont (e) := number of active particles that either annihilate or
become frozen as the result of a jump onto e before
the first jump of an active particle initially at e
minus the number of particles initially at e

(4.4)
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when e is initially a live edge, and

cont (e) := number of active particles that either annihilate or
become frozenas the result of a jump onto e before e
becomes a live edge minus the number of particles
initially at e that ever become active

(4.5)

when e is initially a blockade. Basically, the contribution counts particles using
different weights: particles initially active that become frozen are counted posi-
tively while particles initially frozen that become active are counted negatively. In
addition, particles initially active that annihilate are counted positively if the an-
nihilation is the result of their jump but negatively otherwise, so that overall pairs
of active particles that annihilate do not contribute. Note that particles initially
frozen that stay frozen are not counted because there are no such particles in the
interval I. The fact that, on the event HN , all the blockades initially in I must
have been destroyed by active particles that are either initially in this interval or
that result from the destruction of these blockades can then be written using these
contributions as follows:

HN = {τ < ∞}

= {τ < ∞ and
∑

e∈I cont (e) ≤ 0}

⊂ {
∑

e∈(l,r) cont (e) ≤ 0 for some l < −N and some r ≥ 0}.

(4.6)

We now briefly describe the structure of our proof to deduce fixation and coex-
istence. The first step is to find an explicit random function φ, that we shall
call weight, defined on the edge set and which is stochastically smaller than the
contribution. Then, proving large deviation estimates for the total weight of a
large interval and using Lemma 4.1 and (4.6), we will deduce that fixation occurs
whenever the expected value of the weight at a single edge is strictly positive. To
complete the proof, we will invoke the symmetry of the probability mass function
of the binomial random variable to study the sign of the expected weight from
which fixation will follow for the parameter region described in the statement of
the theorem with the exception of the three-feature system with threshold one. To
study this last case, we will improve our stochastic bound for the contribution by
also accounting for pairs of active particles forming blockades.

Lemma 4.2. – The contribution cont (e) is stochastically larger than

φ(e) := −j when ζ0(e) = j ≤ θ

:= j + 2 (Xj − θ) when ζ0(e) = j > θ

where Xj := Bernoulli (1− j/F ).

Proof: Let j be the initial number of particles at e and assume first that j ≤ θ. In
this case, the edge is initially a live edge therefore (4.4) implies that

cont (e) ≥ minus the number of particles initially at e = −j

almost surely, which proves the first part of the lemma. Now, assume that j > θ,
implying that the edge is initially a blockade. Then, observe that j − θ active
particles must annihilate with some of the frozen particles of the blockade to break
the blockade, and that this results in a total of exactly θ frozen particles initially at
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edge e becoming active. This together with (4.5) gives the following lower bound
for the contribution:

cont (e) ≥ (j − θ)− θ = j − 2θ almost surely.

The last step to improve the bound as indicated in the statement of the lemma is
to also estimate the number of active particles that become frozen as the result of
a jump onto e before the blockade becomes a live edge. More precisely, we look at
the probability that the first jump of an active particle onto the blockade results
in an annihilating event, which can be computed explicitly using the following
symmetry argument: since both the initial distribution and the dynamics of the
model are invariant by permutation of the levels, and since the configuration of
particles outside e is independent of the distribution of particles at e by the time
of the first jump of an active particle onto e, this first jump occurs with equal
probability at each level. In particular, the first jump of an active particle onto the
blockade e results in either

• an annihilating event with probability j/F , in which case the number of
active particles required to break the blockade is the same as before or

• a blockade increase with probability 1 − j/F , in which case one active
particle becomes frozen and one additional active particle is required to
eventually break the blockade.

Since two additional active particles are eliminated in the event of a blockade in-
crease, we deduce that the contribution of e is stochastically larger than

(1−Xj)(j − 2θ) +Xj (j − 2θ + 2) = j + 2 (Xj − θ)

where Xj = Bernoulli (1− j/F ). This completes the proof. �

In the next lemma, we prove large deviation estimates for the weight in a large
interval, from which we deduce, in the subsequent lemma, that the system fixates
whenever the expected value of the weight function is strictly positive.

Lemma 4.3. – There exist C1 < ∞ and c1 > 0 such that, for all ǫ > 0,

P (
∑

e∈(−N,0) φ(e) ≤ N(Eφ(e)− ǫ)) ≤ C1 exp(−c1Nǫ2).

Proof: The idea is to prove that the number of j-edges in a given interval is a
binomial random variable and then apply the large deviation estimates

P (Z ≤ N(p− ǫ)) ≤ exp(−(1/2)Np−1ǫ2)

≤ exp(−(1/2)Nǫ2)

P (Z ≥ N(p+ ǫ)) ≤ exp(−(1/2)N(1− p)−1ǫ2)

≤ exp(−(1/2)Nǫ2)

(4.7)

where Z = Binomial (N, p). First, we note that, starting from the uniform product
measure, the opinions at two adjacent vertices at a given level are initially either
equal or different with probability one half, independently of the rest of the initial
configuration. This implies that the initial number of particles at any given edge is
a binomial random variable:

pj := P (ζ0(e) = j) =

(

F

j

)

(1/2)F for each edge e. (4.8)
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Recalling the expression of the bound φ(e), we thus obtain

Eφ(e) =
∑

j≤θ (−j) pj +
∑

j>θ (j + 2 (1− j/F − θ)) pj

=
∑

j≤θ (−j) pj +
∑

j>θ (j − 2θ) pj +
∑

j>θ 2 (1− j/F ) pj.
(4.9)

To also have an explicit expression for the weight of (−N, 0), we let

Ωj := {e ∈ (−N, 0) : ζ0(e) = j}

eN (j) := card Ωj for j = 0, 1, . . . , F,

denote the set of and the number of j-edges in (−N, 0), respectively. Using again
that initially the different pairs edge-level are independently empty or occupied by
a particle with equal probability, a simple extension of the symmetry argument
from Lemma 4.2 implies that the Bernoulli random variables that determine the
outcome of the first jump onto the blockades are independent. It follows that the
random weight of the interval (−N, 0) can be expressed as

∑

e∈(−N,0) φ(e) =
∑

j≤θ (−j) eN (j)

+
∑

j>θ (j + 2 (Xe,j − θ)) eN (j)

=
∑

j≤θ (−j) eN (j)

+
∑

j>θ (j − 2θ) eN (j) +
∑

j>θ

∑

e∈Ωj
2Xe,j

(4.10)

where the random variables Xe,j are independent Bernoulli random variables with
the same success probability 1− j/F . Combining the expressions (4.9) and (4.10),
we deduce that

P (
∑

e∈(−N,0) φ(e) ≤ N(Eφ(e)− ǫ))

≤
∑

j≤θ P ((−j)(eN (j)−Npj) ≤ −Nǫ/2F )

+
∑

j>θ P ((j − 2θ)(eN (j)−Npj) ≤ −Nǫ/2F )

+
∑

j>θ P (
∑

e∈Ωj
2Xe,j − 2 (1− j/F )Npj ≤ −Nǫ/2F ).

(4.11)

To bound the first two terms, we first use (4.8) and independence to deduce

eN(j) = Binomial (N, pj) for all j = 0, 1, . . . , F. (4.12)

Then, using (4.7) and (4.12), we get

P ((−j)(eN (j)−Npj) ≤ −Nǫ/2F )

≤ P (eN (j)−Npj ≥ Nǫ/2F 2) ≤ exp(−Nǫ2/8F 4)
(4.13)

for j = 1, 2, . . . , θ, and

P ((j − 2θ)(eN (j)−Npj) ≤ −Nǫ/2F )

≤ P (eN (j)−Npj /∈ (−Nǫ/2F 2, Nǫ/2F 2))

≤ 2 exp(−Nǫ2/8F 4)

(4.14)
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for j = θ + 1, . . . , F . Finally, using again the second inequality in (4.7) together
with the fact that the random variables Xe,j are independent, we get

P (
∑

e∈Ωj
2Xe,j − 2 (1− j/F )Npj

≤ −Nǫ/2F | eN(j) < N (pj + ǫ/16F ))

≤ P (
∑

e∈Ωj
Xe,j − (1 − j/F )Npj

≤ −Nǫ/4F | cardΩj = N (pj + ǫ/16F ))

≤ P (Binomial (N(pj + ǫ/16F ), 1− j/F )

≤ N((1− j/F ) pj)− ǫ/4F )

≤ P (Binomial (N(pj + ǫ/16F ), 1− j/F )

≤ N(pj + ǫ/16F )(1− j/F − ǫ/16F ))

≤ exp(−(1/2)N (pj + ǫ/16F )(ǫ/16F )2)

from which we deduce that

P (
∑

e∈Ωj
2Xe,j − 2 (1− j/F )Npj ≤ −Nǫ/2F )

≤ P (
∑

e∈Ωj
2Xe,j − 2 (1− j/F )Npj

≤ −Nǫ/2F | eN(j) < N (pj + ǫ/16F ))

+ P (eN (j) ≥ N (pj + ǫ/16F ))

≤ exp(−(1/2)N (pj + ǫ/16F )(ǫ/16F )2)

+ exp(−(1/2)N (ǫ/16F )2).

(4.15)

The lemma then follows from (4.11) and (4.13)–(4.15). �

Lemma 4.4. – The system fixates whenever Eφ(e) > 0.

Proof: Let ǫ := Eφ(e) > 0. Then, according to Lemma 4.3,

P (
∑

e∈(−N,0) φ(e) ≤ 0) = P (
∑

e∈(−N,0) φ(e) ≤ N(Eφ(e)− ǫ))

≤ C1 exp(−c1Nǫ2).

This, together with (4.6) and Lemma 4.2, implies that

limN→∞ P (HN ) = limN→∞ P (τ < ∞ and
∑

e∈I cont (e) ≤ 0)

≤ limN→∞ P (
∑

e∈(l,r) cont (e) ≤ 0 for some l < −N and some r ≥ 0)

≤ limN→∞ P (
∑

e∈(l,r) φ(e) ≤ 0 for some l < −N and some r ≥ 0)

≤ limN→∞

∑

l<−N

∑

r≥0 P (
∑

e∈(l,r) φ(e) ≤ 0)

≤ limN→∞

∑

l<−N

∑

r≥0 C1 exp(−c1 (r − l)ǫ2) = 0.

In particular, Lemma 4.1 implies that the system fixates. �

Having Lemma 4.4 in hand, the last step is to exhibit the set of parameters for
which the expected value of the weight is positive. This can be done by making the
expression of the expected value more explicit but this leads to messy calculations.
As previously mentioned, we use instead the symmetry of the probability mass
function of the binomial random variable when the success probability is equal to
one half. Using this approach, the expected value of the weight can be expressed
as a sum of positive values when F ≥ 4θ, which is done in the next lemma.
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Lemma 4.5. – Assume (1.3) and F ≥ 4θ. Then, Eφ(e) > 0.

Proof: To begin with, we introduce

K− := the largest integer smaller than or equal to (1/2)(F − 1)

K+ := the smallest integer larger than or equal to (1/2)(F + 1)

and observe that K− +K+ = F and

K+ −K− = 1 when F is odd

= 2 when F is even.
(4.16)

Letting qj(θ, F ) := 2 (1− θ) + (1 − 2/F ) j, we also have

qF−j(θ, F ) = 2 (1− θ) + (1− 2/F )(F − j)

= F − 2θ − (1− 2/F ) j

qj(θ, F ) + qF−j(θ, F ) = 2 (1− θ) + F − 2θ = F − 4θ + 2

qF/2(θ, F ) = F/2− 2θ + 1 ≥ 1 for F ≥ 4θ and even.

In particular, considering the intervals

J1 := [0, θ]

J2 := [θ + 1,K−]

J3 := [K+, F − (θ + 1)]

J4 := [F − θ, F ]

(4.17)

recalling (4.9) and using the symmetry pj = pF−j, we obtain

Eφ(e) =
∑

j≤θ (−j) pj +
∑

j>θ (j + 2 (1− j/F − θ)) pj

≥
∑

j∈J1
(−j) pj +

∑

k=2,3,4

∑

j∈Jk
qj(θ, F ) pj

=
∑

j∈J1
((−j) + qF−j(θ, F )) pj

+
∑

j∈J2
(qj(θ, F ) + qF−j(θ, F )) pj

=
∑

j∈J1
(F − 2θ − 2 (1− 1/F ) j) pj

+
∑

j∈J2
(F − 4θ + 2) pj

≥
∑

j∈J1
(F − 2 (θ + j)) pj +

∑

j∈J2
(F − 4θ + 2) pj > 0

(4.18)

for all F ≥ 4θ since in this case all the terms in the previous two sums are nonneg-
ative with also some terms that are strictly positive. �

The approach of the previous proof does not extend to the case F = 4θ − 1 be-
cause, for this set of parameters, the first sum in the last line of (4.18) contains a
negative term. To deal with this case also avoiding messy calculations, we find a
lower bound using the binomial random variable and then invoke standard large
deviation estimates for this distribution.

Lemma 4.6. – Assume (1.3) and F = 4θ − 1 with θ ≥ 2. Then, Eφ(e) > 0.

Proof: Let F = 4θ − 1 and observe that

F − 2 (θ + j) ≥ 4θ − 1− 2 (θ + θ) = −1 for all j ∈ J1

F − 4θ + 2 = 4θ − 1− 4θ + 2 = 1 for all j ∈ J2.
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In particular, recalling (4.18), we obtain

Eφ(e) ≥
∑

j∈J1
(F − 2 (θ + j)) pj +

∑

j∈J2
(F − 4θ + 2) pj

≥
∑

j∈J1
(−pj) +

∑

j∈J2
pj

= P (Z ∈ J2)− P (Z ∈ J1)

where Z = Binomial (F, 1/2). Using that, according to (4.16), the intervals in (4.17)
form a partition of the range of Z when F is odd, we obtain

Eφ(e) ≥ (1/2)(P (Z ∈ J2) + P (Z ∈ J3)− P (Z ∈ J1)− P (Z ∈ J4))

≥ (1/2)(1− 2P (Z ∈ J1)− 2P (Z ∈ J4)) = 1/2− 2P (Z ∈ J1).

Then, using the standard large deviation estimate

P (Z ≤ F (1/2− ǫ)) ≤ exp(−Fǫ2) for all ǫ ∈ (0, 1/2)

and taking ǫ = 13/54, we deduce that, for all θ ≥ 7,

Eφ(e) ≥ 1/2− 2P (Z ≤ θ)

≥ 1/2− 2P (Z ≤ (4θ − 1)(1/2− 13/54))

≥ 1/2− 2 exp(−(13/54)2(4θ − 1)) > 0.

(4.19)

In addition, explicit calculations for 2 ≤ θ ≤ 6 show that

Eφ(e) ≥

(

3

(

7

0

)

+

(

9

7

)(

7

1

)

−

(

3

7

)(

7

2

)

+

(

7

3

))(

1

2

)7

= 19/64. (4.20)

The lemma follows from combining (4.19)–(4.20). �

Putting together Lemmas 4.4–4.6, we obtain the theorem except for the three-issue
threshold one system in which case a direct calculation gives

Eφ(e) = −

(

3

1

)

(1/2)3 +

(

2

3

)(

3

2

)

(1/2)3 +

(

3

3

)

(1/2)3 = 0.

To also prove fixation when θ = 1 and F = 3, the idea is to slightly improve the
definition of our weight function to make its expected value strictly positive by also
accounting for pairs of initially active particles that form a blockade before jumping
onto a blockade.

Lemma 4.7. – The system with θ = 1 and F = 3 fixates.

Proof: We define the weight of a blockade as before by setting

φ(e) := 2 + 2 (Xe,2 − 1) = 2Xe,2 when ζ0(e) = 2

:= 3 + 2 (Xe,3 − 1) = 2Xe,3 + 1 when ζ0(e) = 3
(4.21)

where the random variables Xe,j = Bernoulli (1 − j/3) are again independent. To
improve our estimate for the weight of an edge initially occupied by an active
particle, we take into account the possibility that, before it jumps, this active
particle forms a blockade of size two with another active particle. Let Ae be such
an event for an active particle initially at e. To compute the probability of this
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event, we introduce the following two events:

B−
e := there is initially an active particle at e− 1 which is not at the

same level as the active particle initially at edge e

B+
e := there is initially an active particle at e+ 1 which is not at the

same level as the active particle initially at edge e.

Observe that, on the event B±
e , the event Ae occurs whenever the first jump of an

active particle either directed to or starting from one of the two edges e and e ± 1
is a jump e± 1 → e. Since all the active particles jump at the same rate,

P (Ae) ≥ P (Ae ∩ (B−
e \B+

e ))

+ P (Ae ∩ (B+
e \B−

e )) + P (Ae ∩ (B−
e ∩B+

e ))

≥ (1/6)P (B−
e \B+

e )

+ (1/6)P (B+
e \B−

e ) + (2/8)P (B−
e ∩B+

e ).

(4.22)

Independence and basic counting also imply that

P (B−
e \B+

e ) = P (B−
e )(1 − P (B+

e ))

= (2/8)× (6/8) = 3/16

P (B+
e \B−

e ) = P (B+
e )(1− P (B−

e ))

= (2/8)× (6/8) = 3/16

P (B−
e ∩B+

e ) = P (B−
e )P (B+

e )

= (2/8)× (2/8) = 1/16.

(4.23)

Combining (4.22)–(4.23), we deduce that

P (Ae) ≥ (1/6)× (3/16) + (1/6)× (3/16) + (2/8)× (1/16) = 5/64.

Note also that the events in (4.22) for different edges are independent whenever the
two edges are at least distance four apart therefore our previous stochastic lower
bound for the contribution of an active particle can be improved by setting

φ(e) := −1 when ζ0(e) = 1 and e+ 1/2 6= 0 mod 4

:= 2Xe,1 − 1 when ζ0(e) = 1 and e+ 1/2 = 0 mod 4
(4.24)

where the random variables Xe,1 = Bernoulli (5/64) are independent. Using the
independence of these random variables, our proof of the large deviation estimates
in Lemma 4.3 easily extends to the weight function defined in (4.21) and (4.24) and
we get: for all ǫ > 0,

P (
∑

e∈(−N,0) φ(e) ≤ N(m− ǫ)) ≤ C1 exp(−c1N)

for suitable C1 < ∞ and c1 > 0, where

m := ((−3/4) + (1/4)E (2Xe,1 − 1))P (ζ0(e) = 1)

+ E (2Xe,2)P (ζ0(e) = 2) + E (2Xe,3 + 1)P (ζ0(e) = 3)

= ((−3/4) + (1/4)(10/64− 1))(3/8)

+ 2 (1− 2/3)(3/8) + 1/8 = 15/1024 > 0.

In particular, fixation follows from the argument in the proof of Lemma 4.4. �
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The previous two lemmas imply fixation under the assumptions of Theorem 1.2.
Our proof implies more generally that each edge initially occupied by a blockade
has a positive probability of never being updated. Since in addition the process
starts from a product measure and is constructed from a collection of independent
Poisson processes, the ergodic theorem implies that

limN→∞ (2N)−1 card {e ∈ (−N,N) : ζt(e) = j for all t ≥ 0}

= P (ζt(e) = j for all t ≥ 0) > 0 for all j > θ.
(4.25)

Now, each time the opinion of an individual is updated, the two edges incident
to the corresponding vertex are updated as well, so whenever an edge is never
updated the two nearest neighbors on both sides of this edge are never updated.
This, together with (4.25), implies that

limN→∞ card {e ∈ (−N,N) : ηt(e− 1/2) = η0(e − 1/2)

6= η0(e+ 1/2) = ηt(e+ 1/2) for all t ≥ 0}

≥
∑

j>θ limN→∞ card {e ∈ (−N,N) : ζt(e) = j for all t ≥ 0} = ∞

so there are infinitely many pairs of neighbors who disagree and are never updated.
Since in addition each of the opinion profiles is equally likely to appear on both
sides of a blockade at time 0 due to the obvious symmetry of the process, we deduce
that the system fixates in a configuration where all the opinion profiles are present:
the system coexists due to fixation.

5. Proof of Theorem 1.3

We now assume that the system starts from the product measure (1.4). Our
approach to study fixation in this case is similar to the one in the previous sec-
tion, the only additional difficulty being to extend the large deviation estimates in
Lemma 4.3 to non-uniform initial distributions where the number of particles at
adjacent edges are no longer independent. In particular, the number of edges in a
given interval and with a given initial number of particles is no longer a binomial
random variable. In order to simplify the calculations, we define the weight func-
tion in the worst case scenario assuming that all the particles initially active never
become frozen, i.e., we set all the random variables Xj introduced in Lemma 4.2
equal to zero so that

φ(e) := −j when ζ0(e) = j ≤ θ

:= j − 2θ when ζ0(e) = j > θ.
(5.1)

Denote the initial densities of opinion as

ρ(u) := P (η0(x) = u) for all u ∈ Γ.

To extend Lemma 4.3 to such product measures, we first study

eN(u, v) := card {x ∈ [−N, 0] : η0(x) = u and η0(x+ 1) = v}

the number of edges connecting individuals with opinion u and v, respectively. The
next lemma gives large deviation estimates for the number of such edges which itself
relies on large deviation estimates for the number of changeovers in a sequence of
independent Bernoulli trials.
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Lemma 5.1. – There exist C2 < ∞ and c2 > 0 such that, for all ǫ > 0 small,

P (eN (u, v)−Nρ(u)ρ(v) /∈ (−ǫN, ǫN)) ≤ C2 exp(−c2Nǫ2) for u 6= v.

Proof: Let X0, X1, . . . , XN be independent Bernoulli trials and let ZN be the num-
ber of changeovers, that is, the number of pairs of consecutive trials resulting in
different outcomes

ZN := card {j = 0, 1, . . . , N − 1 : Xj 6= Xj+1}.

According to Lemma 7 in Lanchier and Scarlatos (2014), there exist C3 < ∞
and c3 > 0 such that, for all ǫ > 0,

P (ZN − 2N (1− p) p /∈ (−ǫN/2, ǫN/2))

= P (ZN − EZN /∈ (−ǫN/2, ǫN/2)) ≤ C3 exp(−c3Nǫ2)
(5.2)

where p is the common success probability of all the Bernoulli trials. Now, for
any u, the number of edges connecting an individual with initial opinion u to
an individual with a different opinion is equal in distribution to the number of
changeovers when p = ρ(u). In particular, the large deviation estimate in (5.2)
implies that, for every opinion profile u ∈ Γ,

P (
∑

v 6=u eN (u, v)−Nρ(u) (1− ρ(u)) /∈ (−ǫN/2, ǫN/2))

≤ C3 exp(−c3Nǫ2).
(5.3)

In addition, since each individual with initial opinion u preceding a changeover is
independently followed by any of the remaining 2F − 1 opinions, the conditional
distribution of the number of edges

eN (u, v) given
∑

w 6=u eN(u,w) = K is

Binomial (K, ρ(v)(1 − ρ(u))−1).
(5.4)

Letting K+ := Nρ(u)(1− ρ(u)) + ǫN/2, observing that, for ǫ > 0 small,

K+ (ρ(v)(1 − ρ(u))−1 + (1/4) ρ(u)−1(1− ρ(u))−1 ǫ) ≤ N (ρ(u)ρ(v) + ǫ)

and combining (5.3)–(5.4) with the large deviation estimates (4.7), we get

P (eN (u, v)−Nρ(u)ρ(v) ≥ ǫN)

≤ P (
∑

w 6=u eN(u,w)−Nρ(u)(1 − ρ(u)) ≥ ǫN/2)

+ P (eN (u, v)−Nρ(u)ρ(v) ≥ ǫN |
∑

w 6=u eN(u,w)−Nρ(u)(1− ρ(u)) < ǫN/2)

≤ C3 exp(−c3Nǫ2)

+ P (Binomial (K+, ρ(v)(1− ρ(u))−1) ≥ N (ρ(u)ρ(v) + ǫ))

≤ C3 exp(−c3Nǫ2) + exp(−(1/32) ρ(u)−2(1− ρ(u))−2 K+ ǫ2).

(5.5)

Similarly, letting K− := Nρ(u)(1− ρ(u))− ǫN/2, we have

K− (ρ(v)(1 − ρ(u))−1 − (1/4) ρ(u)−1(1− ρ(u))−1 ǫ) ≥ N (ρ(u)ρ(v)− ǫ)
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and the same reasoning as in (5.5) gives

P (eN (u, v)−Nρ(u)ρ(v) ≤ −ǫN)

≤ C3 exp(−c3Nǫ2)

+ P (Binomial (K−, ρ(v)(1 − ρ(u))−1) ≤ N (ρ(u)ρ(v)− ǫ))

≤ C3 exp(−c3Nǫ2) + exp(−(1/32) ρ(u)−2(1− ρ(u))−2 K− ǫ2).

(5.6)

The lemma follows from combining (5.5)–(5.6). �

Lemma 5.2. – The system fixates whenever Eφ(e) > 0.

Proof: For all u, v ∈ Γ, we set

h(u, v) := −H(u, v) when H(u, v) ≤ θ

:= H(u, v)− 2θ when H(u, v) > θ

where H(u, v) is the Hamming distance (1.1), and observe that
∑

e∈(−N,0) (φ(e) − Eφ(e)) =
∑

e∈(−N,0) φ(e) −NEφ(e)

=
∑

u6=v h(u, v) eN (u, v)

− N
∑

u6=v h(u, v)P (η0(x) = u and η0(x + 1) = v)

=
∑

u6=v h(u, v) (eN (u, v)−Nρ(u)ρ(v)).

Then, letting

m := maxu,v |h(u, v)| = max(θ, F − 2θ)

and applying Lemma 5.1, we get

P (
∑

e∈(−N,0) (φ(e)− Eφ(e)) /∈ (−ǫN, ǫN))

= P (
∑

u6=v h(u, v) (eN(u, v)−Nρ(u)ρ(v)) /∈ (−ǫN, ǫN))

≤ P (eN (u, v)−Nρ(u)ρ(v)

/∈ (−ǫN/mF 2, ǫN/mF 2) for some u 6= v)

≤ C2 F
2 exp(−c2Nǫ2/m2F 4)

(5.7)

for all ǫ > 0 small. Finally, we fix ǫ ∈ (0, Eφ(e)) small enough so that (5.7) holds
and follow the same reasoning as in Lemma 4.4 to deduce that

limN→∞ P (HN ) ≤ limN→∞

∑

l<−N

∑

r>0 P (
∑

e∈(l,r) φ(e) ≤ 0)

≤ limN→∞

∑

l<−N

∑

r>0 P (
∑

e∈(l,r)(φ(e)− Eφ(e)) ≤ −ǫ(r − l))

≤ limN→∞

∑

l<−N

∑

r>0 C2 F
2 exp(−c2(r − l)ǫ2/m2F 4) = 0.

As in Lemma 4.4, we deduce fixation from Lemma 4.1. �

In view of Lemma 5.2, the last step to complete the proof of the theorem is to
show the positivity of the expected value of the weight function when F > 2θ and
the system starts from the product measure (1.4) with ρ > 0 small. This is done
in the next lemma.

Lemma 5.3. – Assume (1.4) and F > 2θ. Then, there exists ρ0 > 0 such that

Eφ(e) > 0 for all ρ ≤ ρ0.
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Proof: To begin with, we observe that

P (ζ0(e) = j) =
∑

H(u,v)=j P (η0(x) = u and η0(x+ 1) = v) (5.8)

and that, under the assumption (1.4),

Nj := card {(u, v) ∈ Γ2 : H(u, v) = j}

= 2F card {v ∈ Γ : H(u−, v) = j} = 2F
(

F

j

)

.
(5.9)

Now, among the pairs with H(u, v) = F ,

• exactly two pairs include both u− and u+,

• the remaining NF − 2 pairs do not include any of these two opinions.

This, together with (5.8)–(5.9), implies that

P (ζ0(e) = F ) = 2 ρ(u−)
2 + (2F − 2) ρ2. (5.10)

In addition, among the pairs with H(u, v) = j < F ,

• exactly 4
(

F
j

)

pairs include either u− or u+,

• the remaining Nj − 4
(

F
j

)

pairs do not include any of these two opinions.

This, together with (5.8)–(5.9), implies that

P (ζ0(e) = j) = 4

(

F

j

)

ρ(u−)ρ+ (2F − 4)

(

F

j

)

ρ2. (5.11)

Recalling (1.4) and (5.1) and combining (5.10)–(5.11), we deduce

Eφ(e) =

θ
∑

j=0

(−j)

(

4

(

F

j

)(

1

2
− (2F−1 − 1) ρ

)

ρ+ (2F − 4)

(

F

j

)

ρ2
)

+

F−1
∑

j=θ+1

(j − 2θ)

(

4

(

F

j

)(

1

2
− (2F−1 − 1) ρ

)

ρ+ (2F − 4)

(

F

j

)

ρ2
)

+ (F − 2θ)

(

2

(

1

2
− (2F−1 − 1) ρ

)2

+ (2F − 2) ρ2

)

.

In particular, as a function of ρ, the expected weight is a degree two polynomial
with constant term (1/2)(F −2θ) > 0. Therefore, by continuity, there exists ρ0 > 0
such that the expected value of the weight is positive for all ρ ≤ ρ0. �

Fixation under the assumptions of Theorem 1.3 directly follows from Lemma 4.1
and the previous two lemmas. To deduce that the one-dimensional system coexists,
we use again the argument following the proof of Lemma 4.7.
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O. Häggström. A pairwise averaging procedure with application to consensus forma-
tion in the Deffuant model. Acta Appl. Math. 119, 185–201 (2012). MR2915577.
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