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Abstract. Using Stein’s method techniques, we develop a framework which allows
one to bound the error terms arising from approximation by the Laplace distribution
and apply it to the study of random sums of mean zero random variables. As a
corollary, we deduce a Berry-Esseen type theorem for the convergence of certain
geometric sums. Our results make use of a second order characterizing equation
and a distributional transformation which is related to zero-biasing.

1. Background and Introduction

Beginning with the publication of Charles Stein’s seminal paper Stein (1972),
probabilists and statisticians have developed a wide range of techniques based on
characterizing equations for bounding the distance between the distribution of a
random variable X and that of a random variable Z having some specified target
distribution. The metrics for which these techniques are applicable are of the
form dH(L (X),L (Z)) = suph∈H |E[h(X)]− E[h(Z)]| for some suitable class of
functions H, and include as special cases the Wasserstein, Kolmogorov, and total
variation distances. (The Kolmogorov distance gives the L∞ distance between the
associated distribution functions, so H = {1(−∞,a](x) : a ∈ R}. The total variation
and Wasserstein distances correspond to letting H consist of indicators of Borel sets
and 1-Lipschitz functions, respectively.) The basic idea is to find an operatorA such
that E[(Af)(X)] = 0 for all f belonging to some sufficiently large class of functions
F if and only if L (X) = L (Z). For example, Stein showed that Z ∼ N (0, σ2) if
and only if E[(ANf)(Z)] = E[Zf(Z) − σ2f ′(Z)] = 0 for all absolutely continuous
functions f with ‖f ′‖∞ < ∞ Stein (1972), and shortly thereafter Louis Chen proved
that Z ∼ Poisson(λ) if and only if E[(AP f)(Z)] = E[Zf(Z)−λf(Z+1)] = 0 for all
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functions f for which the expectations exist Chen (1975). Similar characterizing
operators have since been worked out for several other common distributions (e.g.
Ehm (1991); Luk (1994); Brown and Phillips (1999); Peköz et al. (2013)).

Given a Stein operator A for L (Z), one then shows that for every h ∈ H, the
equation (Af)(x) = h(x) − E[h(Z)] has solution fh ∈ F . Taking expectations,
absolute values, and suprema yields

dH(L (X),L (Z)) = sup
h∈H

|E[h(X)]− E[h(Z)]| = sup
h∈H

|E[(Afh)(X)]| .

(In practice, this is usually how one proves that E[(Af)(X)] = 0 for f ∈ F is
sufficient for L (X) = L (Z).)

The intuition is that since E[(Af)(Z)] = 0 for f ∈ F , the distribution of X
should be close to that of Z when E[(Af)(X)] is close to zero. Remarkably, it is
often easier to work with the right-hand side of the above equation, and the tools
for analyzing distances between distributions in this manner are collectively known
as Stein’s method. For more on this rich and fascinating subject, the authors
recommend Stein (1986); Ross (2011); Chen et al. (2011); Diaconis and Holmes
(2004).

In this paper, we apply the above ideas to the Laplace distribution. For a ∈ R,
b > 0, a random variable W ∼ Laplace(a, b) has distribution function

FW (w; a, b) =

{
1
2e

w−a
b , w ≤ a

1− 1
2e

−w−a
b , w ≥ a

and density

fW (w; a, b) =
1

2b
e−

|w−a|
b , w ∈ R.

If W ∼ Laplace(0, b), then its moments are given by

E[W k] =

{
0, k is odd

bkk!, k is even
,

and its characteristic function is

ϕW (t) =
1

1 + b2t2
.

This distribution was introduced by P.S. Laplace in 1774, four years prior to
his proposal of the “second law of errors,” now known as the normal distribution.
Though nowhere near as ubiquitous as its younger sibling, the Laplace distribution
appears in numerous applications, including image and speech compression, options
pricing, and modeling sizes of sand particles, diamonds, and beans. For more
properties and applications of the Laplace distribution, the reader is referred to the
text Kotz et al. (2001).

Our interest in the Laplace distribution was sparked by the fact that if X1, X2, ...
is a sequence of random variables (satisfying certain technical assumptions) and

Np ∼ Geometric(p) is independent of the Xi’s, then the sum p
1
2

∑Np

i=1 Xi converges
weakly to the Laplace distribution as p → 0 Kotz et al. (2001). Such geometric
sums arise in a variety of settings Kalashnikov (1997), and the general setup (dis-
tributional convergence of sums of random variables) is exactly the type of problem
for which one expects Stein’s method computations to yield useful results. Indeed,
Erol Peköz and Adrian Röllin have applied Stein’s method arguments to generalize
a theorem due to Rényi concerning the convergence of sums of a random number of
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positive random variables to the exponential distribution Peköz and Röllin (2011).
By an analogous line of reasoning, we are able to carry out a similar program for
convergence of random sums of certain mean zero random variables to the Laplace
distribution.

We begin in Section 2 by introducing a Stein operator which we show completely
characterizes the mean zero Laplace distribution. Specifically, we prove

Theorem 1.1. Let W ∼ Laplace(0, b) and define the operator A by

(Af)(x) = f(x)− f(0)− b2f ′′(x).

Then E[(Ag)(W )] = 0 for every function g such that g and g′ are locally absolutely
continuous and E |g′(W )| ,E |g′′(W )| < ∞.

Conversely, if X is any random variable such that E[(Ag)(X)] = 0 for every twice-
differentiable function g with ‖g‖∞ , ‖g′‖∞ , ‖g′′‖∞ < ∞, then X ∼ Laplace(0, b).

In Section 3, we use this characterization to bound the distance to the Laplace
distribution. For technical reasons, we work in the bounded Lipschitz metric, dBL,
which is defined in terms of 1-Lipschitz test functions with sup norm 1. We begin by
defining the centered equilibrium transformationX 7→ XL in terms of the functional
equation E[f(X)]−f(0) = 1

2E[X
2]E[f ′′(XL)] for all twice-differentiable functions f

such that f , f ′, and f ′′ are bounded. After establishing that XL exists whenever X
has mean zero and finite nonzero variance, we derive the following coupling bound.

Theorem 1.2. Suppose that X is a random variable with E[X] = 0, E[X2] = 2b2 ∈
(0,∞), and let XL have the centered equilibrium distribution for X. Then

dBL(L (X),Laplace(0, b)) ≤ b+ 2

b
E
∣∣X −XL

∣∣ .
Finally, in Section 4 we apply these tools to the study of random sums of mean

zero random variables. As a special case, we show

Theorem 1.3. Let X1, X2, ... be a sequence of independent random variables with

E[Xi] = 0, E[X2
i ] = 2b2, supi≥1 E

[
|Xi|3

]
= ρ < ∞, and let N ∼ Geometric(p)

(with strictly positive support) be independent of the X ′
is. Then

dBL

(
L

(
p

1
2

N∑
i=1

Xi

)
,Laplace (0, b)

)
≤ p

1
2
b+ 2

b

(
b
√
2 +

ρ

6b2

)
for all p ∈ (0, 1).

2. Characterizing the Laplace Distribution

Our first order of business is to establish a characterizing operator for the Laplace
distribution. As is typical in Stein’s method constructions, we split the proof of
Theorem 1.1 into two parts. We begin with

Lemma 2.1. Suppose that W ∼ Laplace(0, b). If g and g′ are locally absolutely
continuous with E |g′(W )| ,E |g′′(W )| < ∞, then

E[g(W )]− g(0) = b2E[g′′(W )].
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Proof : Applying Fubini’s theorem twice shows that∫ ∞

0

g′′(x)e−
x
b dx =

∫ ∞

0

g′′(x)

(∫ ∞

x

1

b
e−

y
b dy

)
dx

=
1

b

∫ ∞

0

∫ y

0

g′′(x)e−
y
b dxdy

=
1

b

∫ ∞

0

g′(y)e−
y
b dy − g′(0)

b

∫ ∞

0

e−
y
b dy

=
1

b

∫ ∞

0

g′(y)

(∫ ∞

y

1

b
e−

z
b dz

)
dy − g′(0)

=
1

b2

∫ ∞

0

∫ z

0

g′(y)e−
z
b dydz − g′(0)

=
1

b2

∫ ∞

0

g(z)e−
z
b dz − g(0)

b2

∫ ∞

0

e−
z
b dz − g′(0)

=
1

b2

∫ ∞

0

g(z)e−
z
b dz − g(0)

b
− g′(0).

Setting h(y) = g(−y), it follows from the previous calculation that∫ 0

−∞
g′′(x)e

x
b dx =

∫ ∞

0

g′′(−y)e−
y
b dy =

∫ ∞

0

h′′(y)e−
y
b dy

=
1

b2

∫ ∞

0

h(z)e−
z
b dz − h(0)

b
− h′(0)

=
1

b2

∫ ∞

0

g(−z)e−
z
b dz − g(0)

b
+ g′(0)

=
1

b2

∫ 0

−∞
g(z)e

z
b dz − g(0)

b
+ g′(0).

Summing the above expressions gives

E[g′′(W )] =
1

2b

∫ 0

−∞
g′′(x)e

x
b dx+

1

2b

∫ ∞

0

g′′(x)e−
x
b dx

=
1

2b

[(
1

b2

∫ 0

−∞
g(z)e

z
b dz − g(0)

b
+ g′(0)

)
+

(
1

b2

∫ ∞

0

g(z)e−
z
b dz − g(0)

b
− g′(0)

)]
=

1

2b

(
1

b2

∫ ∞

−∞
g(z)e−

|z|
b dz − 2

g(0)

b

)
=

1

b2
(E[g(W )]− g(0)) .

�

Note that since the density of a Laplace(0, b) random variable is given by

fW (w) = 1
2be

− |w|
b , the density method Chen et al. (2011) suggests the following

characterizing equation for the Laplace distribution:

g′(w)− 1

b
sgn(w)g(w) = g′(w) +

f ′
W (w)

fW (w)
g(w) = 0,
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and indeed one can verify that if W ∼ Laplace(0, b), then

E[g′(W )] =
1

b
E[sgn(W )g(W )]

for all absolutely continuous g for which these expectations exist. Thus if g′ is such
a function as well, setting G(w) = sgn(w) (g(w)− g(0)) gives

E[g′′(W )] =
1

b
E[sgn(W )g′(W )] =

1

b
E[G′(W )]

=
1

b2
E[sgn(W )G(W )] =

1

b2
(E[g(W )]− g(0)) ,

so the general form of the equation in Theorem 1.1 can be ascertained by iterating
the density method.

Alternatively, it is known Ross (2011) that if Z ∼ Exponential(1), then
E[g′(Z)] = E[g(Z)] − g(0) for all absolutely continuous g with E |g′(Z)| < ∞.
Thus if g′ is also absolutely continuous and E |g′′(Z)| < ∞, then

E[g′′(Z)] = E[g′(Z)]− g′(0) = E[g(Z)]− g(0)− g′(0).

Using this observation, one can derive the equation in Lemma 2.1 by noting that
if J is independent of Z with P(J = 1) = P(J = −1) = 1

2 , then W = bJZ has the
Laplace(0, b) distribution.

We include each of these approaches because their analogues may be variously
applicable in different situations involving the construction of characterizing equa-
tions. Observe that there is an iterative step involved in each case. By manipulating
the integral defining E[g′(W )] or using the usual Stein equation for the exponential
along with the representation W = bJZ, one arrives at the first order equation
E[g′(W )] = 1

bE[sgn(W )g(W )] suggested by one application of the density method.

However, we were not able to get much mileage out of the operator (Ãg)(x) =
g′(x)− 1

b sgn(x)g(x), while the second-order operator (Ag)(x) = g(x)−g(0)−b2g′′(x)
turned out to be quite effective. This idea of iterating more traditional procedures
to obtain higher order characterizing equations which are simpler to work with is
one of the key insights of this paper.

Now, in order to establish the second part of Theorem 1.1, we will show that
any X satisfying the hypotheses has

dBL (L (X),Laplace(0, b)) = 0

where dBL denotes the bounded Lipschitz distance given by

dBL (L (X),L (Y )) = sup
h∈HBL

|E[h(X)]− E[h(Y )]| ,

HBL = {h : ‖h‖∞ ≤ 1 and |h(x)− h(y)| ≤ |x− y| for all x, y ∈ R}.
The claim will follow since dBL is a metric on the space of Borel probability measures
on R van der Vaart and Wellner (1996).

In keeping with the general strategy laid out in the introduction, we consider
the initial value problem

g(x)− b2g′′(x) = h(x)−Wh, g(0) = 0

where h ∈ HBL and Wh := E[h(W )], W ∼ Laplace(0, b).
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Lemma 2.2. For h ∈ HBL, W ∼ Laplace(0, b), h̃(x) = h(x) − Wh, a bounded,
twice-differentiable solution to the initial value problem

g(x)− b2g′′(x) = h̃(x), g(0) = 0

is given by

gh(x) =
1

2b

(
e

x
b

∫ ∞

x

e−
y
b h̃(y)dy + e−

x
b

∫ x

−∞
e

y
b h̃(y)dy

)
.

This solution satisfies ‖gh‖∞ ≤ 2, ‖g′h‖∞ ≤ 2
b , ‖g

′′
h‖∞ ≤ 4

b2 and ‖g′′′h ‖∞ ≤ b+2
b3 .

Proof : The general solution to the homogeneous equation g′′(x) − b−2g(x) = 0 is
given by g0(x) = C1e

x
b + C2e

− x
b , so, since the associated Wronskian is nonzero,

the variation of parameters method suggests that a solution to the inhomogeneous

equation g′′(x)− b−2g(x) = −b−2h̃(x) is

gh(x) = uh(x)e
x
b + vh(x)e

− x
b

where

uh(x) =
1

2b

∫ ∞

x

e−
y
b h̃(y)dy, vh(x) =

1

2b

∫ x

−∞
e

y
b h̃(y)dy.

Differentiation gives

g′h(x) = − 1

2b
h̃(x) +

1

b
uh(x)e

x
b +

1

2b
h̃(x)− 1

b
vh(x)e

− x
b =

1

b

(
uh(x)e

x
b − vh(x)e

− x
b

)
,

and thus

g′′h(x) =
1

b2

(
−h̃(x) + uh(x)e

x
b + vh(x)e

− x
b

)
=

1

b2

(
gh(x)− h̃(x)

)
,

so gh is indeed a solution.
To see that the initial condition is satisfied, we observe that

gh(0) = uh(0) + vh(0) =
1

2b

∫ ∞

−∞
e−

|y|
b h̃(y)dy =

∫ ∞

−∞
fW (y) (h(y)−Wh) dy

=

∫ ∞

−∞
h(y)fW (y)dy −Wh

∫ ∞

−∞
fW (y)dy = Wh−Wh = 0.

Moreover, since ‖h‖∞ ≤ 1,

|Wh| =
∣∣∣∣ 12b

∫ ∞

−∞
h(x)e−

|x|
b dx

∣∣∣∣ ≤ 1

2b

∫ ∞

−∞
e−

|x|
b dx = 1,

and thus
∣∣∣h̃(x)∣∣∣ ≤ |h(x)|+ |Wh| ≤ 2. Consequently,∣∣uh(x)e

x
b

∣∣ ≤ 1

2b
e

x
b

∫ ∞

x

2e−
y
b dy = 1

and ∣∣vh(x)e− x
b

∣∣ ≤ 1

2b
e−

x
b

∫ x

−∞
2e

y
b dy = 1,

for all x ∈ R, and the bounds on ‖gh‖∞ and ‖g′h‖∞ follow.

Noting that g′′h(x) = 1
b2

(
gh(x)− h̃(x)

)
and thus g′′′h (x) = 1

b3 g
′
h(x) − 1

b2h
′(x)

completes the proof since
∥∥∥h̃∥∥∥

∞
≤ 2 and ‖h′‖∞ ≤ 1. �
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With the preceding result in hand, we can finish of the proof of Theorem 1.1 via

Lemma 2.3. If X is a random variable such

E[g(X)]− g(0) = b2E[g′′(X)]

for every twice-differentiable function g with ‖g‖∞ , ‖g′‖∞ , ‖g′′‖∞ < ∞, then X ∼
Laplace(0, b).

Proof : LetW ∼ Laplace(0, b) and, for h ∈ HBL, let gh be as in Lemma 2.2. Because
gh(0) = 0 and gh, g

′
h, g

′′
h are bounded, it follows from the above assumptions that

E[h(X)]− E[h(W )] = E[gh(X)− b2g′′h(X)] = 0.

Taking the supremum over h ∈ HBL shows that dBL (L (X),L (W )) = 0. �

Before moving on, we observe that the reason we are working with the bounded
Lipschitz distance is that the bounds on gh and its derivatives depended on both h
and h′ having finite sup norm. As dBL is not especially common (at least explicitly)
in the Stein’s method literature, we conclude this section with a proposition relating
it to the more familiar Kolmogorov distance

dK (L (X),L (Y )) = sup
x∈R

|P{X ≤ x} − P{Y ≤ x}| .

Proposition 2.4. If Z is an absolutely continuous random variable whose density,
fZ , is uniformly bounded by a constant C < ∞, then for any random variable X,

dK (L (X),L (Z)) ≤ C + 2

2

√
dBL (L (X),L (Z)).

Proof : We first note that the inequality holds trivially if dBL (L (X),L (Z)) = 0
as dBL and dK are metrics. Also, since dK(P,Q) ≤ 1 for all probability measures P

and Q, C+2
2 ≥ 1, and dBL (L (X),L (Z)) ≥ 1 implies

√
dBL (L (X),L (Z)) ≥ 1,

we have

dK (L (X),L (Z)) ≤ 1 ≤ C + 2

2

√
dBL (L (X),L (Z))

whenever dBL (L (X),L (Z)) ≥ 1. Thus it suffices to consider the case where
dBL (L (X),L (Z)) ∈ (0, 1).

Now, for x ∈ R, ε > 0, write

hx(z) = 1(−∞,x](z) =

{
1, z ≤ x

0, z > x
and hx,ε(z) =


1, z ≤ x

1− z−x
ε , z ∈ (x, x+ ε]

0, z > x+ ε

.

Then for all x ∈ R,

E[hx(X)− hx(Z)] = E[hx(X)]− E[hx,ε(Z)] + E[hx,ε(Z)]− E[hx(Z)]

≤ (E[hx,ε(X)]− E[hx,ε(Z)]) +

∫ x+ε

x

(
1− z − x

ε

)
fZ(z)dz

≤ |E[hx,ε(X)]− E[hx,ε(Z)]|+ Cε

2
.
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Since dBL (L (X),L (Z)) ∈ (0, 1), if we take ε =
√
dBL (L (X),L (Z)) ∈ (0, 1),

then εhx,ε ∈ HBL and thus

E[hx(X)− hx(Z)] ≤ 1

ε
|E[εhx,ε(X)]− E[εhx,ε(Z)]|+ Cε

2

≤ 1

ε
dBL (L (X),L (Z)) +

Cε

2

=
C + 2

2

√
dBL (L (X),L (Z)).

A similar argument using

E[hx(Z)− hx(X)] = E[hx(Z)]− E[hx−ε,ε(Z)] + E[hx−ε,ε(Z)]− E[hx(X)]

≤ Cε

2
+ (E[hx−ε,ε(Z)]− E[hx−ε,ε(X)])

shows that

|E[hx(X)]− E[hx(Z)]| ≤ C + 2

2

√
dBL (L (X),L (Z))

for all x ∈ R, and the proposition follows by taking suprema. �

Remark 2.5. When C ≥ 1, we can take ε =
√

1
C dBL (L (X),L (Z)) in the above

argument to obtain an improved bound of

dK (L (X),L (Z)) ≤ 3

2

√
CdBL (L (X),L (Z)).

To the best of the authors’ knowledge, the above proposition is original, though
the proof follows the same basic line of reasoning as the well-known bound on
the Kolmogorov distance by the Wasserstein distance (see Proposition 1.2 in Ross
(2011)). It seems that the primary reason for using the Wasserstein metric, dW , is
that it enables one to work with smoother test functions while still implying con-
vergence in the more natural Kolmogorov distance. Proposition 2.4 shows that dBL

also upper-bounds dK while enjoying all of the resulting smoothness of Wasserstein
test functions and with additional boundedness properties to boot. Moreover, the
Wasserstein distance is not always well-defined (e.g. if one of the distributions does
not have a first moment), whereas dBL always exists. Finally, dBL is a fairly natural
measure of distance since it metrizes weak convergence van der Vaart and Wellner
(1996). However, we always have dW (L (X),L (Z)) ≥ dBL (L (X),L (Z)), and
it is possible for a sequence to converge in dBL but not in dW or dK . Further-
more, the bounded Lipschitz metric does not scale as nicely as the Kolmogorov
or Wasserstein distances when the associated random variables are multiplied by a
positive constant. For the remainder of this paper, we will state our results in terms
of dBL with the corresponding Kolmogorov bound being implicit therein, though
one should note that, as with the Wasserstein bound on dK , Kolmogorov bounds
obtained in this fashion are not necessarily optimal, often giving the root of the
true rate.

3. The Centered Equilibrium Transformation

Our next task is to use the characterization in Theorem 1.1 to obtain bounds on
the error terms resulting from approximation by the Laplace distribution. To this
end, we introduce the following definition.
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Definition 3.1. For any nondegenerate random variable X with mean zero and
finite variance, we say that the random variable XL has the centered equilibrium
distribution with respect to X if

E[f(X)]− f(0) =
1

2
E[X2]E[f ′′(XL)]

for all twice-differentiable functions f such that f , f ′, and f ′′ are bounded. We call
the map X 7→ XL the centered equilibrium transformation.

Note that the centered equilibrium distribution is uniquely defined because
E[f ′′(X)] = E[f ′′(Y )] for all twice continuously differentiable functions with com-
pact support implies X =d Y . The nomenclature is in reference to the equilibrium
distribution from renewal theory, which was used in a similar manner in Peköz and
Röllin (2011) for a related problem involving the exponential distribution.

Since the characterizing equation for the Laplace distribution involves second
derivatives and a variance term, one expects some kind of relation between XL and
the zero bias distribution for X (defined by E[Xf(X)] = E[X2]E[f ′(Xz)] for all
absolutely continuous f for which E |Xf(X)| < ∞ Goldstein and Reinert (1997))
in much the same way as the equilibrium distribution is related to the size bias
distribution Peköz and Röllin (2011). The following theorem shows that this is
indeed the case. Moreover, since the zero bias distribution is defined for any X
with E[X] = 0 and Var(X) ∈ (0,∞), it will follow that every such random variable
has a centered equilibrium distribution.

Theorem 3.2. Suppose that X has mean zero and variance σ2 ∈ (0,∞). Let
Xz have the zero bias distribution with respect to X and let B ∼ Beta(2, 1) be
independent of Xz. Then XL := BXz satisfies

E[f(X)]− f(0) =
σ2

2
E[f ′′(XL)]

for all twice-differentiable f with ‖f‖∞ , ‖f ′‖∞ , ‖f ′′‖∞ < ∞.

Proof : Applying the fundamental theorem of calculus, Fubini’s theorem, the defi-
nition of Xz, and the fact that B has density p(x) = 2x1[0,1](x) gives

E[f(X)]− f(0) = E
[∫ 1

0

Xf ′(uX)du

]
=

∫ 1

0

E [Xf ′(uX)] du

= σ2

∫ 1

0

uE[f ′′(uXz)]du = σ2E
[∫ 1

0

uf ′′(uXz)du

]
=

σ2

2
E [f ′′(BXz]

The assumptions ensure that all of the functions are integrable. �
Corollary 3.3. If X has variance E[X2] = 2b2 and XL has the centered equilibrium
distribution with respect to X, then XL is absolutely continuous with density

fXL(x) =
1

b2

∫ 1

0

E
[
X;X >

x

v

]
dv.

Proof : XL =d BXz with B andXz as in Theorem 3.2, so the claim follows from the
fact Goldstein and Reinert (1997) that Xz is absolutely continuous with density
fXz (x) = 1

2b2E[X;X > x] by the usual method of computing the density of a
product. �
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Remark 3.4. In an earlier version of this paper, we established the existence of the
centered equilibrium distribution by showing that for certain random variables X,
XL can be obtained by iterating the X − P bias transformation from Goldstein
and Reinert (2005) with P (x) = sgn(x). Though there may be some merit to
such a strategy and it provides another example of how results for higher order
Stein operators may be obtained by iterating more traditional techniques, in our
case it required the rather artificial assumption that the variates in the domain
of the transformation have median zero. Those interested in the iterated X − P
bias approach are referred to the article Döbler (2013) by Christian Döbler, which
contains the essential technical details of our original argument and suggests certain
improvements.

Lemma 2.3 shows that, up to scaling, the mean zero Laplace distribution is the
unique fixed point of the centered equilibrium transformation. Thus one expects
that if a random variable is close to its centered equilibrium transform, then its
distribution is close to the Laplace law. Theorem 1.2 formalizes this intuition.

Proof of Theorem 1.2: If X is a random variable with E[X2] = 2b2 < ∞ and XL

has the centered equilibrium distribution for X, then for all h ∈ HBL, taking gh as
in Lemma 2.2, we see that

|Wh− E[h(X)]| =
∣∣E[gh(X)− b2g′′h(X)]

∣∣ = ∣∣E[b2g′′h(XL)− b2g′′h(X)]
∣∣

≤ b2E
∣∣g′′h(XL)− g′′h(X)

∣∣ ≤ b2 ‖g′′′h ‖E
∣∣XL −X

∣∣
=

b+ 2

b
E
∣∣X −XL

∣∣ .
�

For the example in Section 4, we will also need the following complementary
result.

Proposition 3.5. If Y L has the centered equilibrium distribution for Y and E[Y 2] =
2b2, then

E
∣∣Y − Y L

∣∣ ≤ E |Y |+ 1

6b2
E[|Y |3].

Proof : We may assume that E[|Y |3] < ∞ as the inequality is trivial otherwise.
The result will follow immediately from the triangle inequality if we can show
that E

∣∣Y L
∣∣ = 1

6b2E
∣∣Y 3

∣∣, which is what one would obtain by formally plugging

f(y) = |y|3 into the definition of the transformation Y 7→ Y L.
Of course, neither f , f ′, nor f ′′ is bounded, so we must proceed by approxima-

tion. To this end, define

fn(x) =



|x|3 , |x| ≤ n

n3 + 3n2(|x| − n)− 3
2 (|x| − n)2, n < |x| ≤ n2 + n

n3 + 3n2(2n2 + n− |x|)− 3
2 (2n

2 + n− |x|)2, n2 + n < |x| ≤ 2n2 + n

(2n2 + 2n− |x|)3, 2n2 + n < |x| ≤ 2n2+2n

0, |x| > 2n2 + 2n

By construction, fn is smooth with compact support and satisfies
∣∣∣f (i)

n

∣∣∣ ≤ ∣∣f (i)
∣∣ for

all n ∈ N, i = 0, 1, 2, thus fulfilling the conditions in the definition of the centered
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equilibrium transformation when E[|Y |3] < ∞. Moreover, f
(i)
n → f (i) pointwise for

i = 0, 1, 2, so it follows from the dominated convergence theorem that

E[f(Y )] = lim
n→∞

E[fn(Y )] = lim
n→∞

b2E[f ′′
n (Y

L)].

Fatou’s lemma shows that f ′′(Y L) is integrable since

E
[
f ′′(Y L)

]
= E

[
lim inf
n→∞

f ′′
n (Y

L)
]
≤ lim inf

n→∞
E
[
f ′′
n (Y

L)
]
=

1

b2
E[f(Y )] < ∞,

so another application of dominated convergence gives

E[f(Y )] = lim
n→∞

b2E[f ′′
n (Y

L)] = b2E[f ′′(Y L)].

�

The same general argument shows that if Y L has the centered equilibrium dis-
tribution for Y and E [|Y |n] < ∞, then E[q(Y )]− q(0) = 1

2E[Y
2]E[q′′(Y L)] for any

polynomial q of degree at most n. As is often the case with distributional trans-
formations defined in terms of functional equations, we find it more convenient to
define X 7→ XL in terms of a relatively small class of test functions and then argue
by approximation when we want to apply the relation more generally.

4. Random Sums

The p-geometric summation of a sequence of random variables X1, X2, ... is de-
fined as Sp = X1+X2+ ...+XNp where Np is geometric with success probability p

- that is, P{Np = n} = p(1− p)n−1, n ∈ N - and is independent of all else. A result
due to Rényi (1957) states that if X1, X2, ... are i.i.d., positive, nondegenerate ran-
dom variables with E[Xi] = 1, then L (pSp) → Exponential(1) as p → 0. In fact,
just as the normal law is the only nondegenerate distribution with finite variance
that is stable under ordinary summation (in the sense that if X,X1, X2, ... are i.i.d.
nondegenerate random variables with finite variance, then for every n ∈ N, there
exist an > 0, bn ∈ R such that X =d an (X1 + ...+Xn) + bn), it can be shown
that if X,X1, X2, ... are i.i.d., positive, and nondegenerate with finite variance, then
there exists ap > 0 such that ap

(
X1 + ...+XNp

)
=d X for all p ∈ (0, 1) if and only

if X has an exponential distribution. Similarly, if we assume that Y, Y1, Y2, ... are
i.i.d., symmetric, and nondegenerate with finite variance, then there exists ap > 0
such that ap

(
Y1 + ...+ YNp

)
=d Y for all p ∈ (0, 1) if and only if Y has a Laplace

distribution. Moreover, it must be the case that ap = p
1
2 . In addition, we have an

analog of Rényi’s theorem Kotz et al. (2001):

Theorem 4.1. Suppose that X1, X2, ... are i.i.d., symmetric, and nondegenerate
random variables with finite variance σ2, and let Np ∼ Geometric(p) be independent
of the X ′

is. If

ap

Np∑
i=1

Xi →d X as p → 0,

then there exists γ > 0 such that ap = p
1
2 γ + o(p

1
2 ) and X has the Laplace distri-

bution with mean 0 and variance σ2γ2.

A recent theorem from Toda (2011) gives the following Lindeberg-type conditions
for the existence of the distributional limit in Theorem 4.1.



582 John Pike and Haining Ren

Theorem 4.2 (Toda). Let X1, X2, ... be a sequence of independent (but not neces-
sarily identically distributed) random variables such that E[Xi] = 0 and Var(Xi) =
σ2
i , and let Np ∼ Geometric(p) independent of the X ′

is. Suppose that

lim
n→∞

n−ασ2
n = 0 for some 0 < α < 1 ,

σ2 := lim
n→∞

1

n

n∑
i=1

σ2
i > 0 exists,

and for all ε > 0,

lim
p→0

∞∑
i=1

(1− p)i−1pE[X2
i ; |Xi| ≥ εp−

1
2 ] = 0.

Then as p → 0, the sum p
1
2

∑Np

i=1 Xi converges weakly to the Laplace distribution
with mean 0 and variance σ2.

Remark 4.3. The original statement of Toda’s theorem is slightly more general,
allowing for convergence to a possibly asymmetric Laplace distribution.

In 2011, Peköz and Röllin were able to generalize Rényi’s theorem by using a
distributional transformation inspired by Stein’s method considerations Peköz and
Röllin (2011). Specifically, for a nonnegative random variable X with E[X] < ∞,
they say that Xe has the equilibrium distribution with respect to X if E[f(X)] −
f(0) = E[X]E[f ′(Xe)] for all Lipschitz f and use this to bound the Wasserstein
and Kolmogorov distances to the Exponential(1) distribution. The equilibrium dis-
tribution arises in renewal theory, but its utility in analyzing convergence to the
exponential distribution comes from the fact that a Stein operator for the expo-
nential distribution with mean one is given by (AEf)(x) = f ′(x) − f(x) + f(0),
so X ∼ Exponential(1) is the unique fixed point of the equilibrium transformation
Ross (2011). This transformation and the similarity between our characteriza-
tion of the Laplace and the above characterization of the exponential inspired our
construction of the centered equilibrium transformation, and the fact that both dis-
tributions are stable under geometric summation led us to parallel their argument
for bounding the distance between p-geometric sums of positive random variables
and the exponential distribution in order to obtain corresponding results for the
Laplace case. Our results are summarized in the following theorem.

Theorem 4.4. Let N be any N-valued random variable with µ = E[N ] < ∞ and let
X1, X2, ... be a sequence of independent random variables, independent of N , with

E[Xi] = 0, and E[X2
i ] = σ2

i ∈ (0,∞). Set σ2 = E
[(∑N

i=1 Xi

)2]
= E

[∑N
i=1 σ

2
i

]
and let M be any N-valued random variable, independent of the X ′

is and defined on
the same space as N , satisfying

P{M = m} =
σ2
m

σ2
P{N ≥ m}.
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Then

dBL

(
L

(
µ− 1

2

N∑
i=1

Xi

)
,Laplace

(
0,

σ√
2µ

))

≤

(
µ− 1

2 +

√
8

σ

)(
E
∣∣XM −XL

M

∣∣+ sup
i≥1

σiE
[
|N −M |

1
2

])
.

Proof : We first note that

σ2 =
∞∑

m=1

P{N = m}
m∑
i=1

σ2
i =

∞∑
m=1

P{N ≥ m}σ2
m,

so M is well-defined.
Now, taking V = µ− 1

2

∑N
i=1 Xi, we claim that V L = µ− 1

2

(∑M−1
i=1 Xi +XL

M

)
has the centered equilibrium distribution with respect to V . (Throughout, XL

m is
taken to be independent of M , N , and Xk for k 6= m.) To see that this is so, let
f be any function satisfying the assumptions in Definition 3.1. Then, using the
notation

X = {Xi}i≥1, gm(X) = f

(
µ− 1

2

m∑
i=1

Xi

)
, fs(x) = f

(
µ− 1

2 s+ µ− 1
2x
)
,

letting νm denote the distribution of

Sm−1 =

m−1∑
i=1

Xi,

and observing that, by independence,

E[h′′(XL
m)|Sm−1 = s] = E[h′′(XL

m)] =
2

σ2
m

(E[h(Xm)− h(0)])

=
2

σ2
m

E[h(Xm)− h(0)|Sm−1 = s]

for all s ∈ R and all twice differentiable h with h, h′, h′′ bounded, we see that

E

[
f ′′

(
µ− 1

2

m−1∑
i=1

Xi + µ− 1
2XL

m

)]
=

∫
E
[
f ′′(µ− 1

2 s+ µ− 1
2XL

m) |Sm−1 = s
]
dνm(s)

=

∫
E
[
µf ′′

s (X
L
m) |Sm−1 = s

]
dνm(s)

=
2µ

σ2
m

∫
E [fs(Xm)− fs(0) |Sm−1 = s ] dνm(s)

=
2µ

σ2
m

∫
E
[
f(µ− 1

2 s+ µ− 1
2Xm)

−f(µ− 1
2 s) |Sm−1 = s

]
dνm(s)

=
2µ

σ2
m

E

[
f

(
µ− 1

2

m∑
i=1

Xi

)
− f

(
µ− 1

2

m−1∑
i=1

Xi

)]

=
2µ

σ2
m

E [gm(X)− gm−1(X)]
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for all m ∈ N, hence

E[f ′′(V L)] =
∞∑

m=1

P{M = m}E

[
f ′′

(
µ− 1

2

m−1∑
i=1

Xi + µ− 1
2XL

m

)]

=
2µ

σ2

∞∑
m=1

σ2

σ2
m

P{M = m}E [gm(X)− gm−1(X)]

=
2

E[V 2]
E

[ ∞∑
m=1

P{N ≥ m} (gm(X)− gm−1(X))

]

=
2

E[V 2]
(E[gN (X)]− g0(X)) =

2

E[V 2]
(E[f(V )]− f(0)) .

Having shown that V L does in fact have the centered equilibrium distribution

for V , we can apply Theorem 1.2 with 2B2 = E[V 2] = σ2

µ to obtain

dBL(L (V ),Laplace(0, B)) ≤
(
1 +

2

B

)
E
∣∣V − V L

∣∣
=

(
µ− 1

2 +

√
8

σ

)
E

∣∣∣∣∣∣(XM −XL
M

)
+ sgn(N −M)

N∨M∑
i=(N∧M)+1

Xi

∣∣∣∣∣∣
≤

(
µ− 1

2 +

√
8

σ

)E
∣∣XM −XL

M

∣∣+ E

∣∣∣∣∣∣
N∨M∑

i=(N∧M)+1

Xi

∣∣∣∣∣∣
 .

Finally, since the X ′
is are independent with mean zero, the Cauchy-Schwarz

inequality gives

E

∣∣∣∣∣∣
N∨M∑

i=(N∧M)+1

Xi

∣∣∣∣∣∣ =
∞∑
j=1

∞∑
k=1

P{N ∧M = j, |N −M | = k}E

∣∣∣∣∣∣
j+k∑

i=j+1

Xi

∣∣∣∣∣∣
≤

∞∑
j=1

∞∑
k=1

P{N ∧M = j, |N −M | = k}E

 j+k∑
i=j+1

X2
i

 1
2

≤
∞∑
j=1

∞∑
k=1

P{N ∧M = j, |N −M | = k}k 1
2 sup

i≥1
σi

= sup
i≥1

σi

∞∑
k=1

k
1
2P{|N −M | = k} = sup

i≥1
σiE

[
|N −M |

1
2

]
,

and the proof is complete. �

Remark 4.5. When the summands in Theorem 4.4 have common variance σ2
1 , we

have σ2 = E
[∑N

i=1 σ
2
1

]
= µσ2

1 , so M is defined by

P{M = m} =
σ2
m

σ2
P{N ≥ m} =

1

µ
P{N ≥ m}.

In other words, M is the discrete equilibrium transformation of N defined in Peköz

et al. (2013) for use in geometric approximation. Thus the E[|N −M |
1
2 ] term in the
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bound from Theorem 4.4 may be regarded as measuring how close L (N) is to a geo-
metric distribution. If the summands are i.i.d., then XM =d X1 (as M is assumed
to be independent of all else), so Theorem 1.2 shows that the E

∣∣XM −XL
M

∣∣ term
measures how close the distribution of the summands is to the Laplace. To put this
into context, recall that if the X ′

is are i.i.d. Laplace(0, b) and N ∼ Geometric(p),

then p
1
2

∑N
i=1 Xi ∼ Laplace(0, b).

We conclude our discussion with a proof of Theorem 1.3, which gives sufficient
conditions for weak convergence in the setting of Theorem 4.1. Though it requires
that the X ′

is have uniformly bounded third absolute moments, the condition of
symmetry is dropped and the identical distribution assumption is reduced to the
requirement that the X ′

is have common variance. This result is not quite as general
as Theorem 4.2, but it does provide bounds on the error terms.

Proof of Theorem 1.3: We are trying to bound the distance between the

Laplace(0, b) distribution and that of p
1
2

∑N
i=1 Xi where X1, X2, ... are indepen-

dent mean zero random variables with common variance E[X2
i ] = 2b2 and uniformly

bounded third absolute moments supi≥1 E
[
|Xi|3

]
= ρ < ∞, andN ∼ Geometric(p)

is independent of the X ′
is.

In the language of Theorem 4.4, we have µ = 1
p , σ = b

√
2µ, and

σ2
m

σ2
P{N ≥ m} = pP{N ≥ m} = p2

∞∑
i=m

(1− p)m−1 = p(1− p)m−1 = P{N = m},

so we can take M = N to obtain

dBL

(
L

(
p

1
2

N∑
i=1

Xi

)
,Laplace(0, b)

)
≤

(
p

1
2 +

2p
1
2

b

)
E
∣∣XN −XL

N

∣∣ .
Applying Proposition 3.5 gives

E
∣∣XN −XL

N

∣∣ = ∞∑
n=1

P{N = n}E
∣∣Xn −XL

n

∣∣
≤

∞∑
n=1

P{N = n}
(
E |Xn|+

1

6b2
E
[
|Xn|3

])

≤
∞∑

n=1

P{N = n}
(
E
[
X2

n

] 1
2 +

ρ

6b2

)
= b

√
2 +

ρ

6b2
,

and the result follows �
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