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Abstract. In a recent work Conger and Howald derived asymptotic formulas for
the randomness, after shuffling, of decks with repeating cards or all-distinct decks
dealt into hands. In the latter case the deck does not need to be fully randomized:
the order of cards received by a player is indifferent. They called these cases the
“fixed source” and the “fixed target” case, respectively, and treated them separately.
We build on their results and mix these two cases: we obtain asymptotic formulas
for the randomness of a deck of repeating cards which is shuffled and then dealt
into hands of players. We confirm that switching from ordered to cyclic dealing,
or from cyclic to back-and-forth dealing improves randomness in a similar fashion
than in the non-repeating “fixed target” case. Our formulas allow to improve even
the back-and-forth dealing when the deck only contains two types of cards.
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1. Introduction

In card-games a very important requirement is that, after shuffling, every hand
dealt to players should have approximately the same probability. Therefore, the
randomizing properties of the shuffling and dealing procedure is of essential interest.

In 1955 Gilbert (1955) introduced the riffle shuffling as a mathematical model of
card shuffling. In the 1980’s Reeds (1981) and Aldous (1983) added the assumption
that every possible cut/riffle combination is equally likely, and that has become
known as the Gilbert-Shannon-Reeds or GSR model of card shuffling. First, the

deck is cut into two packets of sizes k and n − k with probability
(nk)
2n , k = 0 . . . n.

After the cut the packets are combined together such that the cards of each packet
maintain their relative order. It is assumed that each such interleaving is equally
likely. As there are

(
n
k

)
of them, any possible shuffling with a cut of size k has

probability
(nk)
2n · 1

(nk)
= 1

2n . This probability does not depend on k, hence each pair

of a cut and interleaving is equally likely.
In 1992, Bayer and Diaconis (1992) generalized the riffle shuffling by introducing

the a-shuffle to make the mixing problem easier. First the deck is cut into a packets

of sizes p1, p2, . . . , pa, respectively, with probability
( n
p1,p2,...,pa

)
an . Then the cards

are interleaved such that the cards of each packet maintain their relative order, and
each such interleaving is equally likely. It has been proved that making a random
a-shuffle and then a random b-shuffle is equivalent to making a random a · b shuffle.
In particular, this implies that a sequence of i riffle shuffles is equivalent to a single
2i-shuffle.

Bayer and Diaconis used the variation distance:

||Pa − U || := 1

2

∑
π∈Sn

|Pa(π)− U(π)|

for their analysis, where Pa(π) is the probability of a particular permutation π
after an a-shuffle, Sn is the symmetric group of degree n, U represents the uniform
distribution on permutations (U(π)= 1

n! for all π ∈ Sn), cards are distinct, and
initially the deck is ordered (we start from the identity permutation). Bayer and
Diaconis found an explicit formula for Pa:

Pa(π) =
1

an

(
a+ n− des(π)− 1

n

)
,

where n is the size of the deck and

des(π) := #{i : π(i) > π(i+ 1)}.
In this paper we will consider permutations as a bijection from {1, 2, ..., k} to itself,
so if we apply π to a sequence of objects, then the object in position i will move to
position π(i). This approach is illustrated via the next example: the permutation
π1=[43125] changes our initial ordering to 34215, as well as rearranging 25431 to
43521, and 53412 to 41352. It is easily checked that des(π1)=2.

An interesting generalization is when we allow some cards to have the same
value. This makes our problem more complicated because decks (ordered sequences
of cards) and transformations cannot be identified with permutations anymore.
Indeed, there is a set of permutations for each pair of decks that transform the first
deck into the second. Another novelty is that the initial configuration of a deck
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affects how fast the order of the cards approaches the uniform distribution. For a
rearrangement D′ of D, let S(D,D′) be the set of permutations which transform
D into D′. The transition probability between D and D′ is

Pa(D → D′) :=
∑

π∈S(D,D′)

Pa(π).

Applying the above explicit formula, we arrive to

Pa(D → D′) =
1

an

∑
d

bd

(
a+ n− d− 1

n

)
,

where bd is the number of permutations in S(D,D′) with d descents.
Conger and Viswanath (2006) proved that the calculation of the transition proba-

bilities is a #P-complete problem. Most people believe that #P-complete problems
do not admit efficient solutions, so a possible way to examine this question is to ap-
proximate this probability. Conger and Howald (2010) provided an approximation
of the transition probabilities when a is large. To describe their results we make
some further definitions.

Let a and b be card values. We say that D has an a− b digraph at i, if D(i) = a
and D(i+1) = b. We say that D has an a− b pair at (i, j), if i < j, D(i) = a, and
D(j) = b. Let

W (D, a, b) : = #{a− b digraphs in D} −#{b− a digraphs in D},
Z(D, a, b) : = #{a− b pairs in D} −#{b− a pairs in D}.

As an example, the following deck, that consists of red (R) and black (B) cards,
has 1 R−B digraph, 2 B −R digraphs, 12 R−B pairs, 13 B −R pairs:

D := BRRRBBBBRR,

and W (D,B,R) = 2 − 1 = 1, Z(D,B,R) = 13 − 12 = 1. Clearly, W and Z are
antisymmetric in a and b:

W (D, a, b) = −W (D, b, a), Z(D, a, b) = −Z(D, b, a).

Conger and Howald (2010) proved that

Pa(D → D′) =
1

N
+ c1(D,D′)a−1 +O(a−2), (1.1)

where N is the number of different reorderings of the deck represented by D, and

c1(D,D′) =
n

2N

∑
a<b

W (D, a, b)Z(D′, a, b)

nanb
, (1.2)

with na being the number of cards of value a, nb the number of cards of value b.
They analyzed the behaviour of this formula in the case of repeated cards, where
the complete order of the deck matters after the shuffling (“fixed source” case).
They also looked at shuffling and dealing into hands of all distinct cards where,
on the other hand, only the cards dealt to players matter, but the order within a
player is indifferent (“fixed target” case). As a consequence it is shown that in the
latter case with 52 distinct cards, switching from ordered dealing to cyclic dealing
improves the randomness by a factor of 13, and switching from cyclic dealing to
back and forth dealing again improves the randomness by a factor of 13.

Assaf et al. (2011) also analyzed decks with repeated cards if only certain features
are of interest, for instance, suits are disregarded or only the colors of the cards
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matter. For these features the number of required shuffles drops in a significant
rate.

In this paper we build on (1.1) and combine the above two cases: we derive a
formula for the effectiveness of a dealing method when there are repeated cards
in the deck, and only the hands dealt to players are of interest. Similarly to the
all-distinct case we prove that, in this first-order approximation, switching from
ordered dealing to cyclic dealing improves the randomness by a factor of s, s being
the number of cards each player receives. Switching from cyclic dealing to back and
forth dealing improves the randomness by a factor of s when s is an odd number,
while the coefficient c1(D,D′) disappears for even s values. Our formula becomes
explicit enough so that for two types of cards and odd s values we come up with a
dealing method that is even better than back and forth.

The organization of the paper is as follows. In Section 2 we further introduce
some notation and apply (1.1) to our case of repeated cards in the deck. In Section
3 we analyze the role of dealing methods with repeated cards, and arrive to a key
formula in Proposition 3.1 we can build on later. For simplicity, this is done with
four players. In Section 4 we generalize the result to an arbitrary number of players,
and compare the effectiveness of the ordered, the cyclic, and the back and forth
dealing. In section 5 we briefly deal with the cases of non-ordered initial decks.
Section 6 provides explicit computations when there are only two or three types of
cards.

2. The basics of our model

We start with a deck of 4s cards. These cards can be repeated, their values
(colours) are taken from the k-element set {P1, P2, · · · , Pk}. The initial deck is
ordered: the first p1 cards are P1 coloured, the next p2 cards are P2 coloured, . . . ,

and the last pk cards are Pk coloured (
∑k

i=1 pi = 4s). An a-shuffle is performed on
the deck, and then it is dealt to four players, called North(N), East(E), South(S)
and West(W), respectively. The set Ω of hands consists of the vectors

p̄i = (pi,N , pi,E , pi,S , pi,W ), i = 1 . . . k,

where pi,N , pi,E , pi,S , pi,W is the number of Pi coloured cards received by North,
East, South, West, respectively. These numbers are non-negative integers, and
satisfy

k∑
i=1

pi,N =
k∑

i=1

pi,E =
k∑

i=1

pi,S =
k∑

i=1

pi,W = s,

pi,N + pi,E + pi,S + pi,W = pi, i = 1 . . . k.

Define Π(ω) as the stationary distribution, which is in fact uniform on Ω:

Π(ω) =
s!4

(4s)!

k∏
i=1

pi!

pi,N ! · pi,E ! · pi,S ! · pi,W !
, ∀ω ∈ Ω.
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We use the variation distance as a level of randomness of the hands after an a-
shuffling and dealing:

||Pa −Π|| : = 1

2

∑
ω∈Ω

|Pa(ω)−Π(ω)|

=
1

2

∑
ω∈Ω

∣∣∣∣∣∣
∑

D′:(p̄1,p̄2,...,p̄k)=ω

Pa(D → D′)−Π(ω)

∣∣∣∣∣∣ .
Here we suppose that D, the initial sequence of cards, is ordered, and D′ is some
rearrangement ofD. The inner sum is for allD′’s that give hand ω after the dealing.
It is easy to see that this sum has

|D′ : (p̄1, p̄2, · · · , p̄k) = ω| = s!4
k∏

i=1

1

pi,N ! · pi,E ! · pi,S ! · pi,W !
(2.1)

terms. For computing Pa(D → D′) we use (1.1), withN =
(

4s
p1,p2,...,pk

)
= (4s)!

p1!·p2!···pk!
,

and also (1.2):∑
D′:(p̄1,p̄2,··· ,p̄k)=ω

Pa(D → D′)

=
∑

D′:(p̄1,p̄2,··· ,p̄k)=ω

1

N
+ a−1

∑
D′:(p̄1,p̄2,··· ,p̄k)=ω

c1(D,D′)

+
∑

D′:(p̄1,p̄2,··· ,p̄k)=ω

O(a−2)

= Π(ω) + a−1
∑

D′:(p̄1,p̄2,··· ,p̄k)=ω

2s

(4s)!

(
k∏

j=1

pj !

)(∑
a<b

W (D, a, b)Z(D′, a, b)

nanb

)
+O(a−2)

= Π(ω) + a−1 2s

(4s)!

(
k∏

j=1

pj !

)(
k−1∑
i=1

∑
D′:(p̄1,p̄2,··· ,p̄k)=ω Z(D′, Pi, Pi+1)

pi · pi+1

)
+O(a−2),

because W (D,Pi, Pi+1) = 1 (i = 1, · · · , k− 1), and W (D,A,B) = 0 if B 6= (A+1)
by virtue of the initial deck. Thus the variation distance becomes

1

2

∑
ω∈Ω

|Pa(ω)−Π(ω)|

=a−1 s

(4s)!

(
k∏

j=1

pj !

)∑
ω∈Ω

∣∣∣∣∣
k−1∑
i=1

∑
D′:(p̄1,p̄2,··· ,p̄k)=ω Z(D′, Pi, Pi+1)

pi · pi+1

∣∣∣∣∣+O(a−2).

(2.2)

3. Dealing methods

Next we consider the role of the dealing methods. The dealer a-shuffles the
deck and then deals it to the four players. We can describe the dealing method as
a sequence of repeating letters N , E, S and W , representing the order in which
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players receive the cards of the shuffled deck. The sequence that corresponds to the
ordered dealing is

NNN . . .NN EEE . . . EE SSS . . . SS WWW . . .WW.

Here the first s cards go to North, the next s cards go to East, the next s cards go
to South and the last s cards go to West. The next famous dealing method is the
cyclic dealing with

NESWNESWNESW . . .NESWNESW,

where the top card goes to North, the second goes to East, the third goes to West,
etc. The back and forth dealing for even s values is represented by

NESWWSENNESWWSEN . . .NESWWSEN,

while for odd s values we can write

NESWWSENNESWWSEN . . .NESW.

Next we suppose that in the initial deck the first type is black (B), the second
type is red (R). Let b and r denote the number of black and red cards in the deck,
respectively, and let p be the number of non-red and non-black cards. Let Np, Ep,
Sp, Wp be the pth position, p = 1 . . . s, that goes to North, East, South, West,
respectively in the dealing method. Let pN , pE , pS , pW be the number of non-red
and non-black cards that North, East, South, West has respectively after dealing.
Let bN , bE , bS , bW be the number of black cards that North, East, South, West
has respectively after the dealing.

Proposition 3.1.∑
D′:(b̄,r̄,p̄3,p̄4,··· ,p̄k)=ω

Z(D′, B,R)

= s!4
( k∏
i=1

1

pi,N ! · pi,E ! · pi,S ! · pi,W !

)
·
(
(4s+ 1)b

+
bN
s

(pE · Z(E,N) + pS · Z(S,N) + pW · Z(W,N)

s
− 2

s∑
p=1

Np

)
+

bE
s

(pN · Z(N,E) + pS · Z(S,E) + pW · Z(W,E)

s
− 2

s∑
p=1

Ep

)
+

bS
s

(pN · Z(N,S) + pE · Z(E,S) + pW · Z(W,S)

s
− 2

s∑
p=1

Sp

)
+

bW
s

(pN · Z(N,W ) + pE · Z(E,W ) + pS · Z(S,W )

s
− 2

s∑
p=1

Wp

))
,

where

Z(i, j) = #{i− j pairs in the representing sequence of the dealing method}
−#{j − i pairs in the representing sequence of the dealing method}.

(3.1)
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Proof : First we will prove that for a particular permutation D′:

Z(D′, B,R) =
4s∑
i=1

(4s+ 1− 2i

+ (the number of non-red and non-black cards in D′

before the ith position)

− (the number of non-red and non-black cards in D′

after the ith position))

· 1{in the ith position there is a black card in permutation D′}.

(3.2)

If we change in the position i the value from red to black in a deck D′, then we can
compute the change in the value Z(D′, B,R). Within the first i− 1 cards, denote

• by A the number of black cards;
• by C the number of red cards;
• by G the number of non-red and non-black cards.

Suppose that the card in the position i is red coloured. Furthermore, within the
last 4s− i cards, denote

• by D the number of black cards;
• by F the number of red cards;
• by H the number of non-red and non-black cards.

Then we have A + C + G = i − 1 and D + F + H = 4s − i, and the card in the
position i stands in {B − R pairs} with those A cards within the first i − 1 cards
which are black coloured; and stands in {R − B pairs} with those D cards within
the last 4s − i cards which are black coloured. If we change in the position i the
value from red to black we get that the change of the value Z(D′, B,R) is

−A− C +D + F = −(i− 1) +G+ 4s− i−H = 4s+ 1− 2i

+ (the number of non-red and non-black cards in D′ before the ith position)

− (the number of non-red and non-black cards in D′ after the ith position).

Based on this observation we now build up the value of Z(D′, B,R) recursively.
We start with an all-red deck, in which the value of Z(·, B,R) is 0. First we flip
from this deck all the non-black and non-red cards of D′. This does not change
Z(·, B,R). Next we flip from red all the black cards of D′. Adding the changes in
Z(·, B,R), we are lead exactly to (3.2).

We introduce U(i) := ( the number of non-red and non-black cards in D′ before
the ith position−the number of non-red and non-black cards in D′ after the ith

position−2i), and proceed with∑
D′:(b̄,r̄,p̄3,p̄4,··· ,p̄k)=ω

Z(D′, B,R) =
∑

D′:(b̄,r̄,p̄3,p̄4,··· ,p̄k)=ω

(4s+ 1)b

+
∑

D′:(b̄,r̄,p̄3,p̄4,··· ,p̄k)=ω

4s∑
i=1

(U(i))

· 1{in the ith position there is a black card in permutation D′}.
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In order to compute
∑

D′(U(i)), we introduce an auxiliary uniform measure on the
permutations. With the help of this measure we handle the sum as a conditional
expectation of the random variable U(i), a function of the permutation.

∑
D′:(b̄,r̄,p̄3,p̄4,··· ,p̄k)=ω

(U(i))

· 1{in the ith position there is a black card in permutation D′}

=
(
|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω, in the ith position there is a black card|

·E(U(i)|in the ith position there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)
)
,

for i = 1, . . . , 4s. The justification of this equality is that for each permutation D′

with (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω we sum up the value of U(i) if position i is black in
permutation D′. In

E(U(i)|in position i there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω),

we also sum up these terms, but we divide each term by

|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω, in position i there is a black card|.

With this substitution we arrive to

∑
D′:(b̄,r̄,p̄3,p̄4,··· ,p̄k)=ω

Z(D′, B,R)

= |D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω|(4s+ 1)b

+
( 4s∑
i=1

|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω, in the ith position there is a black card|

·E(U(i)|in the ith position there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)
)
. (3.3)

The dealing method determines which player receives the card in position i. Sup-
pose it is player North and in the ith position there is a black card. Then

|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω| = bN · (s− 1)! · s!3
k∏

j=1

1

pj,N ! · pj,E ! · pj,S ! · pj,W !
.
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If position i belongs to player East, South, or West, then the above formula holds
with bN replaced by bE , bS , or bW , respectively. Compare this to (2.1) to get

|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω, in the ith position there is a black card|
=|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω|

·
(bN

s
1{position i belongs to player North in the dealing method}

+
bE
s
1{position i belongs to player East in the dealing method}

+
bS
s
1{position i belongs to player South in the dealing method}

+
bW
s

1{position i belongs to player West in the dealing method}
)
.

(3.4)

Next we turn to computing the conditional expectation.

E(U(i)| in the ith position there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)

=
i−1∑
j=1

P(position j is non-red and non-black

| in the ith position there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)

−
4s∑

j=i+1

P(position j is non-red and non-black

| in the ith position there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)− 2i.

(3.5)

Suppose now that position i belongs to player North in the dealing method. Then
one of these probabilities can be computed in the following way:

P(position j is non-red and non-black

| in the ith position there is a black card in permutation D′,

(b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)

=
pN
s− 1

1{position j belongs to player North in the dealing method}

+
pE
s
1{position j belongs to player East in the dealing method}

+
pS
s
1{position j belongs to player South in the dealing method}

+
pW
s

1{position j belongs to player West in the dealing method}.

(3.6)
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Now combine (3.3), (3.4), (3.5) and (3.6) with the definition (3.1) of Z(i, j) (and
notice that Z(N,N) is trivially 0 for any dealing method) to conclude( s∑

i=1

|D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω,

in the ith position there is a black card in permutation D′

and position i belongs to player North|

·E(U(i)|in the ith position there is a black card in permutation D′

and position i belongs to player North, (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω)
)

= |D′ : (b̄, r̄, p̄3, p̄4, · · · , p̄k) = ω|

·
(bN

s

(pE · Z(E,N) + pS · Z(S,N) + pW · Z(W,N)

s
− 2

s∑
p=1

Np

))
.

Here we only considered those positions that belong to player North. Repeating the
computation with positions that go to the other players we arrive to the statement
of the proposition (see also (2.1)). �

4. The case of more players

The generalization to the case of ` players and ` · s cards of k different colours is
straightforward. The analogue of (2.2) now reads as:

||Pa −Π|| = a−1

s ·

(∏k
j=1 pj !

)
(`s)!

·
∑
ω∈Ω

∣∣∣∣∣
k−1∑
i=1

∑
D′:(p̄1,p̄2,··· ,p̄k)=ω Z(D′, Pi, Pi+1)

pi · pi+1

∣∣∣∣∣+O(a−2),

where p1, p2, · · · , pk are the number of cards coloured P1, P2, · · · , Pk in the deck.
The main point is again the calculation of

∑
D′:(p̄1,p̄2,··· ,p̄k)=ω Z(D′, X, Y ), where

X and Y are two different types. Let xi be the number of X coloured cards which
player i is dealt, and x be the total number of cards of value X. Let po,j be the
number of Po coloured cards which player j receives. Proposition 3.1 generalizes to

Proposition 4.1.∑
D′:(p̄1,p̄2,··· ,p̄k)=ω

Z(D′, X, Y )

= |D′ : (p̄1, p̄2, · · · , p̄k) = ω|

·
(
(`s+ 1)x+

1

s

∑̀
i=1

xi

( ∑̀
j=1,j 6=i

((
∑k

o=1 po,j)− xj − yj) · Z(j, i)

s
− 2

s∑
t=1

it

))
= |D′ : (p̄1, p̄2, · · · , p̄k) = ω|

·
(∑̀
i=1

xi

(
`s+ 1− 2

∑s
t=1 it
s

+
∑̀

j=1,j 6=i

((
∑k

o=1 po,j)− xj − yj) · Z(j, i)

s2

))
,
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where it is the tth position that goes to player i, t = 1 . . . s.

We are now ready to compare the three famous dealing methods in terms of our
first-order approximation (2.2).

Theorem 4.2. The coefficient of a−1 is exactly s times larger in the ordered dealing
than in the cyclic dealing for every possible k and ` values. If s is even then the
coefficient is 0 in the back and forth dealing. If s is odd then the coefficient is
exactly s times smaller in the back and forth dealing than in the cyclic dealing for
every possible k and ` values.

Proof : In the ordered dealing, without loss of generality, suppose that player j
receives all his cards before player i receives his first card. Then in the representing
sequence there are s2 j − i pairs and 0 i− j pairs, thus Z(j, i) = s2.

In cyclic dealing, suppose that j receives his first card before player i. Then the
pth position that belongs to player j stands in j− i pair with s−p+1 positions that
belong to player i, p = 1 . . . s. Similarly, the pth position that belongs to player i
stands in i − j pair with s − p positions that belong to player j, p = 1 . . . s. We
conclude that Z(j, i) = s in this case.

If s is an even number then the representing sequence of the back and forth
dealing is symmetric, hence Z(j, i) = 0.

If s is an odd number then in the representing sequence of the back and forth
dealing let us call the first `s − ` positions the first group, the last ` positions the
second group. The first group is symmetric, hence within the first group positions
do not contribute to Z(j, i). In the first group the s − 1 positions that belong to
player j stand in j−i pairs with the position which belongs to player i in the second
group, and the s− 1 positions that belong to player i stand in i− j pairs with the
position that belongs to player j in the second group. Suppose again that player j
receives his first card before player i. Then in the second group the position that
belongs to player j stands in j − i pair with the position that belongs to player i
in the second group. Thus we have Z(j, i) = 1.

Summarizing, we have

• Ordered dealing: Z(j, i) = s2 · Ij,i.
• Cyclic dealing: Z(j, i) = s · Ij,i,
• Back and forth: Z(j, i) = Ij,i, if s is an odd number.
• Back and forth: Z(j, i) = 0, if s is an even number,

where

Ij,i :=

{
1, player j receives his first card before player i

−1, player i receives his first card before player j.

This holds true for each pair (i, j) of players, therefore the same holds for∑̀
j=1,j 6=i

((
∑k

o=1 po,j)− xj − yj) · Z(j, i)

s2
:

this is s times larger for the ordered dealing than for the cyclic dealing, and this
sum is s times larger for the cyclic dealing than for the back and forth dealing
with odd s values, while the sum is zero for the back and forth dealing with even
s values.

Next we analyze the term 2
∑s

t=1 it
s .
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In the ordered dealing the positions (i − 1)s + 1, (i − 1)s + 2, · · · , is belong to
the ith player, so we have to sum up these positions when we compute

∑s
t=1 it.

2

∑s
t=1 it
s

= 2
((i− 1)s+ 1 + is)s

2s
= 2is− s+ 1.

For cyclic dealing the positions i, `+ i, 2`+ i, (s−1)`+ i belong to the ith player,
summing up these positions in

∑s
t=1 it we have

2

∑s
t=1 it
s

= 2
(2i+ `(s− 1))s

2s
= 2i+ `(s− 1).

In the back and forth dealing with even s, the positions i, 2`− (i−1), 2`+ i, 4`−
(i − 1), 4` + i, 6` − (i − 1), · · · , `s − (i − 1) belong to the ith player, summing up
these positions for

∑s
t=1 it:

2

∑s
t=1 it
s

= 2
(`s+ 1)s

2s
= (`s+ 1).

If s is an odd number, then positions i, 2`− (i− 1), 2`+ i, 4`− (i− 1), 4`+ i, 6`−
(i− 1), · · · , `s− (`− i) belong to the ith player, and

2

∑s
t=1 it
s

=
2

s

( (1 + `(s− 1))(s− 1)

2
+ `(s− 1) + i

)
=

1

s
(`s2 + s− 1 + 2i− `).

Therefore, we have

`s+ 1− 2

∑s
t=1 it
s

= s(`− 2i+ 1)

for the ordered dealing,

`s+ 1− 2

∑s
t=1 it
s

= (`− 2i+ 1).

for the cyclic dealing, and

`s+ 1− 2

∑s
t=1 it
s

= 0, s even,

`s+ 1− 2

∑s
t=1 it
s

=
1

s
(`− 2i+ 1), s odd

in the back and forth dealing.
Thus we see that these terms also differ by factors of s when comparing the

ordered, cyclic, and back and forth dealing methods (odd s values), while this term
is also 0 for the back and forth dealing if s is an even number. We have proved the
claim for each term in the sum ∑

D′:(p̄1,p̄2,··· ,p̄k)=ω

Z(D′, X, Y ).

which completes the argument. �
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5. The case of arbitrary initial deck

Now, we suppose that the initial deck is arbitrary. In this case the variation
distance is the following:

1

2

∑
ω∈Ω

|Pa(ω)−Π(ω)|

= a−1 s

(`s)!

(
k∏

j=1

pj !

)∑
ω∈Ω

∣∣∣∣∣∑
a<b

W (D, a, b)
∑

D′:(p̄1,p̄2,··· ,p̄k)=ω Z(D′, a, b)

na · nb

∣∣∣∣∣
+O(a−2).

The only term that depends on the dealing method is∑
D′:(p̄1,p̄2,··· ,p̄k)=ω

Z(D′, a, b).

The proof of Theorem 4.2 did not depend on the initial deck, hence that theorem
extends to the case of an arbitrary initial deck.

6. The case of two or three different types of cards

The purpose of this section is to gain some quantitative insight on how the
leading term of the variation distance behaves in the case of repetitive cards.

6.1. Two different types of cards. We now consider 52 cards in the deck, each either
red or black, and four players. Let b be the number of black cards in the deck. Using
the computer and our formulas we are able to compute the coefficient of a−1 for any
possible value b. Applying Proposition 3.1 the coefficient of a−1 in (2.2) becomes

13

b(52− b)
(
52
b

) ∑
ω∈Ω

∣∣∣∣∣
(
13

bN

)(
13

bE

)(
13

bS

)(
13

bW

)(
53b

− 2bN
13

13∑
p=1

Np −
2bE
13

13∑
p=1

Ep −
2bS
13

13∑
p=1

Sp −
2bW
13

13∑
p=1

Wp

)∣∣∣∣∣.
The values of the last four sums are easily computed for a dealing method. The
numerical values are 91; 260; 429; 598 for the ordered dealing, 325; 338; 351; 364
for the cyclic dealing, and 343; 344; 345; 346 for the back and forth dealing. We
see that the values differ the least in the back and forth dealing and the most in
the ordered dealing. In this sense the best of these dealing methods is the back and
forth dealing, and the worst is the ordered dealing. We think that dealing method
A is better than dealing method B if the following value is smaller in A than in B:

|
13∑
p=1

Np − 344, 5|+ |
13∑
p=1

Ep − 344, 5|+ |
13∑
p=1

Sp − 344, 5|+ |
13∑
p=1

Wp − 344, 5|.

Our conjecture is that the best dealing method is a dealing method in which two
of the sums equal 344 and the other two equal 345. As an example, consider

SNEWWSENNEWSWSENNESWWSENNESWWSEN

NESWWSENNESWWSENNESW. (6.1)
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Indeed, the graph 6.1 illustrates that this dealing method has approximately half
the coefficient than that of the back and forth dealing for each value b. That is, for
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Figure 6.1. The coefficient of a−1 for each possible value b in
the back and forth and in our conjectured best dealing method.
The horizontal axis marks the value b and the vertical axis marks
the coefficient of a−1. Squares plot our conjectured best dealing
method and circles stand for back and forth. For better illustration
we excluded the points b = 1 and 51 of the back and forth dealing.

large a we can save circa 1 riffle shuffle if we use this method instead of the back
and forth dealing. We note that there are other dealing methods which have the
same coefficient of a−1 for each value b, but our conjecture is that there is no better
one for two types of cards.

6.2. Three different types of cards. Next we suppose that there are three different
types of cards in the deck: black, red and green. The number of cards is 52 and
there are four players. Let b be the number of black cards, r be the number of
red cards, g be the number of green cards in the deck, g = 52 − b − r. Using the
computer and our formula we are able to compute the coefficient of a−1 for any
possible b, r values. Figure 6.2 shows the coefficient of a−1 for each possible b, r
value in the back and forth dealing method.

A main question is whether the dealing method seen in (6.1) is better than the
back and forth dealing in this case. The answer is: not for every configuration. For
b = 1, r = 1 the coefficient of a−1 is 56

1275 for the back and forth dealing and 76
1275

for dealing method (6.1). Figure 6.3 shows the coefficient of a−1 for each possible
b, r values with (6.1). In most cases it has a smaller coefficient than the back and
forth dealing, but there are some configurations when the back and forth dealing
is better. This proves that the conjecture what we drew up for two different types
is false for three types.
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Figure 6.2. The coefficient of a−1 for each possible value b, r in
the back and forth dealing method.
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Figure 6.3. The coefficient of a−1 for each possible value b, r in
dealing method (6.1).
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