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Abstract. Let Vt be a driftless subordinator, and let denote m
(1)
t ≥ m

(2)
t ≥ . . .

its jump sequence on interval [0, t]. Put V
(k)
t = Vt − m

(1)
t − . . . − m

(k)
t for the

k-trimmed subordinator. In this note we characterize under what conditions the
limiting distribution of the ratios V

(k)
t /m

(k+1)
t and m

(k+1)
t /m

(k)
t exist, as t ↓ 0 or

t→ ∞.

1. Introduction and results

Let Vt, t ≥ 0, be a subordinator with Lévy measure Λ and drift 0. Its Laplace
transform is given by

Ee−λVt = exp

{
−t

∫ ∞

0

(
1− e−λv

)
Λ(dv)

}
,

where the Lévy measure Λ satisfies∫ ∞

0

min{1, x}Λ(dx) <∞. (1.1)

Put Λ(x) = Λ((x,∞)). Then Λ(x) is nonincreasing and right continuous on (0,∞).
Whenever we consider limit theorems, as t ↓ 0, we also assume that Λ(0+) = ∞,
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which is necessary and sufficient to assure that there is an infinite number of jumps
up to time t, for any t > 0.

Denote m
(1)
t ≥ m

(2)
t ≥ . . . the ordered jumps of Vs up to time t, and for k ≥ 0

consider the trimmed subordinator

V
(k)
t = Vt −

k∑
j=1

m
(j)
t .

We investigate the asymptotic distribution of jump sizes as t ↓ 0 and t → ∞.
Specifically, we shall determine a necessary and sufficient condition in terms of the

Lévy measure Λ for the convergence in distribution of the ratios V
(k)
t /m

(k+1)
t and

m
(k+1)
t /m

(k)
t . Observe in this notation that V

(0)
t = Vt is the subordinator and m

(1)
t

is the largest jump.
An extended random variable W can take the value ∞ with positive probability,

in which case W has a defective distribution function F , meaning that F (∞) < 1.
We shall call an extended random variable proper, if it is finite a.s. In this case its
F is a probability distribution, i.e. F (∞) = 1. Here we are using the language of
the definition given on p. 127 of Feller (1966).

Theorem 1.1. For any choice of k ≥ 0 the ratio V
(k)
t /m

(k+1)
t converges in distri-

bution to an extended random variable Wk as t ↓ 0 (t → ∞) if and only if one of
the following holds:

(i) Λ is regularly varying at 0 (∞) with parameter −α, α ∈ (0, 1), in which
case Wk is a proper random variable with Laplace transform

gk(λ) =
e−λ[

1 + α
∫ 1

0
(1− e−λy) y−α−1dy

]k+1
; (1.2)

(ii) Λ is slowly varying at 0 (∞), in which case Wk = 1 a.s.;
(iii) the condition

xΛ(x)∫ x
0
uΛ(du)

−→ 0 as x ↓ 0 (x→ ∞) (1.3)

holds, in which case V
(k)
t /m

(k+1)
t

P−→ ∞, that is Wk = ∞ a.s.

Note that Theorem 1.1 says that the situation 0 < P{Wk = ∞} < 1 cannot
happen.

The corresponding problem for nonnegative i.i.d. random variables was investi-
gated by Darling (1952) and Breiman (1965), in the k = 0 case. In this case Darling
proved the sufficiency parts corresponding to (i) and (ii) (Theorem 5.1 and The-
orem 3.2 in Darling (1952)), in particular the limit W0 has the same distribution
as given by Darling in his Theorem 5.1, while Breiman proved the necessity parts
corresponding to (i), (ii) and (iii) (Theorem 3 (p. 357), Theorem 2 and Theorem
4 in Breiman (1965)). A special case of Theorem 1 in Teugels (1981) gives the
sufficiency analog of (i) in the case of i.i.d. nonnegative sums for any k ≥ 0.

The necessary and sufficient condition in the cases (ii) and (iii), stated in the
more general setup of Lévy processes without a normal component, is given by
Buchmann et al. (2014), see their Theorem 3.1 and 5.1.



Jumps of subordinators 633

Next we shall investigate the asymptotic distribution of the ratio of two consec-

utive ordered jumps m
(k+1)
t /m

(k)
t , k ≥ 1. We shall obtain the analog for subordi-

nators of a special case of a result that Bingham and Teugels (1981) established for
i.i.d. nonnegative random variables. This will follow from a general result on the
asymptotic distribution of ratios of the form defined for k ≥ 1 by

rk (t) =
ψ (Sk+1/t)

ψ (Sk/t)
, t > 0,

where for each k ≥ 1, Sk = ω1 + . . . + ωk, with ω1, ω2, . . . being i.i.d. mean
1 exponential random variables and ψ is the nonincreasing and right continuous
inverse function defined for s > 0 by

ψ(s) = sup{y : Π(y) > s},

with Π being a positive measure on (0,∞) such that Π(x) = Π ((x,∞)) → 0, as
x → ∞. Note that we do not require Π to be a Lévy measure. Also whenever
we consider the asymptotic distribution of rk(t) as t ↓ 0 we shall assume that
Π(0+) = ∞.

We call a function f rapidly varying at 0 with index −∞, f ∈ RV0(−∞), if

lim
x↓0

f(λx)

f(x)
=


0, for λ > 1,

1, for λ = 1,

∞, for λ < 1.

Correspondingly, f is rapidly varying at ∞ with index −∞, f ∈ RV∞(−∞), if the
same holds with x→ ∞.

Theorem 1.2. For any choice of k ≥ 1 the ratio rk (t) converges in distribution
as t ↓ 0 (t→ ∞) to a random variable Yk if and only if one of the following holds:

(i) Π is regularly varying at 0 (∞) with parameter −α ∈ (−∞, 0), in which
case Yk has the Beta(kα, 1) distribution, i.e.

Gk(x) = P{Yk ≤ x} = xkα, x ∈ [0, 1]; (1.4)

(ii) Π is slowly varying at 0 (∞), in which case Yk = 0 a.s.
(iii) Π is rapidly varying at 0 (∞) with index −∞, in which case Yk = 1 a.s.

Theorem 1.2 has some important applications to the asymptotic distribution of

the ratio of two consecutive ordered jumps m
(k+1)
t /m

(k)
t , k ≥ 1, of a Lévy process.

Let Xt, t ≥ 0, be a Lévy processes whose Lévy measure Λ is concentrated on (0,∞).
Here in addition to Λ (x) → 0 as x→ ∞, we require that∫ ∞

0

min{1, x2}Λ(dx) <∞. (1.5)

In this setup one has the distributional representation for k ≥ 1(
m

(k)
t ,m

(k+1)
t

)
D
= (ϕ(Sk/t), ϕ(Sk+1/t)) , (1.6)

with ϕ defined for s > 0 to be

ϕ(s) = sup{y : Λ(y) > s}. (1.7)
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It is readily checked that ϕ is nonincreasing and right continuous. Moreover, when-
ever Λ is the Lévy measure of a subordinator Vt, condition (1.1) holds, which is
equivalent to ∫ ∞

δ

ϕ(s)ds <∞, for any δ > 0. (1.8)

The distributional representation in (1.6) follows from Proposition 1 in Kevei and
Mason (2013), see the proof of Theorem 1.1 below. For general spectrally positive
Lévy processes it can be deduced using the same methods that Maller and Mason
(2010) derived the distributional representation for a Lévy process given in their
Proposition 5.7.

When applying Theorem 1.2 to the asymptotic distribution of consecutive or-
dered jumps at 0 or ∞ of a Lévy process Xt whose Lévy measure Λ is concentrated
on (0,∞), we have to keep in mind that (1.5) must always hold and (1.1) must be
satisfied whenever Xt is a subordinator. For instance in the case of a subordinator

Vt, whenever m
(k+1)
t /m

(k)
t converges in distribution to a random variable Yk as

t ↓ 0, Theorem 1.2 says that Λ is regularly varying at 0. Further since (1.1) must
hold, the parameter −α is necessarily in [−1, 0], while there is no such restriction
when considering convergence in distribution as t → ∞. We note that in case of
general Lévy processes for k = 1 the sufficiency part corresponding to part (ii) in
Theorem 1.2 is given in Theorem 3.1 in Buchmann et al. (2014).

In the special case when Vt is an α-stable subordinator, α ∈ (0, 1), and m(1) >
m(2) > . . . is its jump sequence on [0, 1], then (m(1)/V1,m

(2)/V1, . . .) has the
Poisson–Dirichlet law with parameter (α, 0) (PD(α, 0)), see Bertoin (2006) p. 90.
The ratio of the (k+1)th and kth element of a vector, which has the PD(α, 0) law,
has the Beta(kα, 1) distribution (Proposition 2.6 in Bertoin (2006)).

2. Proofs

In the proofs we only consider the case when t ↓ 0, as the t → ∞ case is nearly
identical.

2.1. Proof of Theorem 1.1. First we calculate the Laplace exponent of the ratio
using the notation ϕ defined in (1.7). We see by the nonincreasing version of the
change of variables formula stated in (4.9) Proposition of Revuz and Yor (1991),
which is given in Lemma 1 in Kevei and Mason (2013),

Ee−λVt = exp

{
−t

∫ ∞

0

(
1− e−λv

)
Λ(dv)

}
= exp

{
−t

∫ ∞

0

(
1− e−λϕ(x)

)
dx

}
.

The key ingredient of our proofs is a distributional representation of the subor-
dinator Vt given in Proposition 1 in Kevei and Mason (2013), which follows from a
general representation by Rosiński (2001). It states that for t > 0

Vt
D
=

∞∑
i=1

ϕ

(
Si
t

)
. (2.1)
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From the proof of this result it is clear that ϕ(Si/t) corresponds to m
(i)
t , for i ≥ 1.

Therefore
V

(k)
t

m
(k+1)
t

D
=

∑∞
i=k+1 ϕ(Si/t)

ϕ(Sk+1/t)
.

Conditioning on Sk+1 = s and using the independence we can write
∞∑

i=k+2

ϕ(Si/t) =
∞∑

i=k+2

ϕ

(
s

t
+
Si − s

t

)
D
=

∞∑
i=1

ϕ

(
s

t
+
Si
t

)

=
∞∑
i=1

ϕs/t (Si/t) ,

where ϕy(x) = ϕ(y + x). Note that the latter sum has the same form as in (2.1),

therefore it is equal in distribution to a subordinator V (s/t)(t) with Laplace trans-
form

Ee−λV
(s/t)
t = exp

{
−t

∫ ∞

0

(
1− e−λϕs/t(x)

)
dx

}
= exp

{
−t

∫ ∞

s/t

(1− e−λϕ(x))dx

}
.

(2.2)

Now we can compute the Laplace transform of the ratio V
(k)
t /m

(k+1)
t . Since

Sk+1 has Gamma(k + 1, 1) distribution, the law of total probability and (2.2) give

E exp

{
−λ V

(k)
t

m
(k+1)
t

}
= E exp

{
−λ

∑∞
i=k+1 ϕ(Si/t)

ϕ(Sk+1/t)

}

=

∫ ∞

0

sk

k!
e−s

[
e−λE exp

{
− λ

ϕ(s/t)

∞∑
i=1

ϕs/t(Si/t)

}]
ds

= e−λ
∫ ∞

0

sk

k!
e−s exp

{
−t

∫ ∞

s/t

[
1− e−

λ
ϕ(s/t)

ϕ(x)
]
dx

}
ds

=
tk+1

k!
e−λ

∫ ∞

0

uk exp

{
−t

(
u+

∫ ∞

u

[
1− e−λ

ϕ(x)
ϕ(u)

]
dx

)}
du

=
tk+1

k!
e−λ

∫ ∞

0

uke−tΨ(u,λ)du,

(2.3)

where

Ψ(u, λ) = u+

∫ ∞

u

[
1− e−λ

ϕ(x)
ϕ(u)

]
dx. (2.4)

Since ϕ is right continuous on (0,∞), Ψ(·, λ) is also right continuous on (0,∞).
Further a short calculation shows that this function is strictly increasing for any
λ > 0, moreover for u1 > u2

Ψ(u1, λ)−Ψ(u2, λ) ≥ e−λ(u1 − u2).

Clearly Ψ(∞, λ) = ∞ and therefore

Ψk(u, λ) := Ψ
(
((k + 1)u)1/(k+1), λ

)
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has a right continuous increasing inverse function given by

Qλ(s) = inf {v : Ψk (v, λ) > s} , for s ≥ 0,

such that Qλ(0) = 0 and limx→∞Qλ(x) = ∞. (For the right continuity part see
(4.8) Lemma in Revuz and Yor (1991).)

Necessity. Assuming that V
(k)
t /m

(k+1)
t converges in distribution as t→ 0 to some

extended random variable Wk, we can apply Theorem 2a on p. 210 of Feller (1966)
to conclude that its Laplace transform also converges, i.e.∫ ∞

0

uke−tΨ(u,λ)du =

∫ ∞

0

e−tΨk(v,λ)dv

=

∫ ∞

0

e−tydQλ (y) ∼
eλgk(λ)k!

tk+1
, as t→ 0,

where gk(λ) = Ee−λWk , andWk can possibly have a defective distribution, i.e. pos-
sibly P {Wk = ∞} > 0. (Here we used the change of variables formula given in
(4.9) Proposition in Revuz and Yor (1991).) By Karamata’s Tauberian theorem
(Theorem 1.7.1 in Bingham et al. (1989))

Qλ(y) ∼
yk+1

k + 1
eλgk(λ), as y → ∞,

and thus by Theorem 1.5.12 in Bingham et al. (1989)

Ψk (v, λ) ∼
(
(k + 1)v

eλgk(λ)

)1/(k+1)

, as v → ∞,

and hence

Ψ(u, λ) ∼ u
[
eλgk(λ)

]− 1
k+1 , as u→ ∞.

Substituting back into (2.4) we obtain for any λ > 0

lim
u→∞

1

u

∫ ∞

u

(
1− e−λ

ϕ(x)
ϕ(u)

)
dx =

[
eλgk(λ)

]− 1
k+1 − 1. (2.5)

Note that the limit Wk is ≥ 1, with probability 1, and so gk(λ) ≤ e−λ. Thus for
any λ [

eλgk(λ)
]− 1

k+1 − 1 ≥ 0.

For any x ≥ 0 we have 1− e−x ≤ x. Therefore by (2.5) we obtain for any λ > 0

lim inf
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx ≥ 1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
. (2.6)

On the other hand, by monotonicity ϕ(x)/ϕ(u) ≤ 1 for u ≤ x. Therefore for any
0 < ε < 1 there exists a λε > 0, such that for all 0 < λ < λε

1− e−λ
ϕ(x)
ϕ(u) ≥ (1− ε)

λϕ(x)

ϕ(u)
, for x ≥ u.

Using again (2.5) and keeping (1.8) in mind, this implies that for such λ

lim sup
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx ≤ 1

1− ε

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
. (2.7)

In particular, we obtain that, whenever gk(λ) 6≡ 0 (i.e. P{Wk <∞} > 0)

0 ≤ lim inf
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx ≤ lim sup
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx <∞.



Jumps of subordinators 637

Note that in (2.6) the greatest lower bound is 0 for all λ > 0 if and only if gk(λ) =
e−λ, in which case Wk = 1. Then the upper bound for the limsup in (2.7) is 0, thus

lim
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx = 0,

which by Proposition 2.6.10 in Bingham et al. (1989) applied to the function f(x) =
xϕ(x) implies that ϕ ∈ RV∞(−∞), and so, by Theorem 2.4.7 in Bingham et al.
(1989), Λ is slowly varying at 0. We have proved that Wk = 1 if and only if Λ is
slowly varying at 0.

In the following we assume that P {Wk > 1} > 0, therefore the liminf in (2.6) is
strictly positive. Let

a = lim inf
λ↓0

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
≤ lim sup

λ↓0

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
= b.

By (2.7) and (2.6), a > 0 and b <∞. Moreover

b ≤ lim inf
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx ≤ lim sup
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx ≤ a,

which forces

a = b = lim
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx = lim
λ↓0

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
.

By Karamata’s theorem (Theorem 1.6.1 (ii) in Bingham et al. (1989)) we obtain
that ϕ is regularly varying at infinity with parameter −a−1 − 1 =: −α−1, so Λ is
regularly varying with parameter −α at zero with α ∈ (0, 1).

Let us consider the case when Wk = ∞ a.s., that is V
(k)
t /m

(k+1)
t

P−→ ∞. All the
previous computations are valid, with gk(λ) = Ee−λ∞ ≡ 0. Thus, from (2.6) we
have

lim
u→∞

1

uϕ(u)

∫ ∞

u

ϕ(x)dx = ∞.

From this, through the change of variables formula we obtain (1.3).

Sufficiency and the limit. Consider first the special case when ϕ(x) = x−
1
α ,

α ∈ (0, 1). Then a quick calculation gives

1

u

∫ ∞

u

(
1− e−λ

ϕ(x)
ϕ(u)

)
dx = α

∫ 1

0

(
1− e−λy

)
y−α−1dy.

By formula (2.5) for the Laplace transform of the limit we obtain (1.2).
The sufficiency can be proved by standard arguments for regularly varying func-

tions. Using Potter bounds (Theorem 1.5.6 in Bingham et al. (1989)) one can show
that for α ∈ (0, 1)

lim
u→∞

1

u
Ψ(u, λ) = 1 + α

∫ 1

0

(
1− e−λy

)
y−α−1dy,

from which, through formula (2.3), the convergence readily follows. As already
mentioned, cases (ii) and (iii) are treated in Buchmann et al. (2014).
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2.2. Proof of Theorem 1.2. Using that ψ(y) ≤ x if and only if Π(x) ≤ y, for the
distribution function of the ratio we have for x ∈ (0, 1)

P {rk(t) ≤ x} = P

{
ψ(Sk+1/t)

ψ(Sk/t)
≤ x

}
=

∫ ∞

0

sk−1

(k − 1)!
e−sP

{
ψ

(
s+ S1

t

)
≤ xψ

(s
t

)}
ds

=

∫ ∞

0

sk−1

(k − 1)!
e−s e−[tΠ(xψ(s/t))−s]ds

=
tk

(k − 1)!

∫ ∞

0

uk−1 e−tΠ(xψ(u))du.

(2.8)

Necessity. Assume that the limit distribution function Gk exists. Write

tk

(k − 1)!

∫ ∞

0

uk−1e−tΠ(xψ(u))du =
tk

(k − 1)!

∫ ∞

0

e−tΦk(v,x)dv, (2.9)

where Φk(v, x) = Π
(
xψ((kv)1/k)

)
. Note that for each x ∈ (0, 1) the function

Φk(·, x) is monotone nondecreasing, since Π and ψ are both monotone nonincreas-
ing. Let

Gk = {x : x is a continuity point of Gk in (0, 1) such that Gk(x) > 0} .
First assume that P{Yk < 1} > 0. Clearly we can now proceed as in the proof of
Theorem 1 to apply Karamata’s Tauberian theorem (Theorem 1.7.1 in Bingham
et al. (1989)) to give that for any x ∈ Gk,

lim
u→∞

Π(xψ(u))

u
= [Gk(x)]

− 1
k . (2.10)

In fact, there is a small difference here compared to the proof of Theorem 1.1.
We have to be more cautious, as Φk(v, x) is not necessarily right-continuous as a
function of v > 0. To use the machinery from the proof of Theorem 1.1 we need

to consider the right-continuous version Φ̃k(v, x) := Φk(v+, x). Since, in (2.9) we

integrate with respect to the Lebesgue measure and Φk and Φ̃k are equal almost

everywhere, substituting Φk with Φ̃k leaves the integral unchanged. Therefore,
proceeding as before we obtain that

Φ̃k(v, x) ∼
(

kv

Gk(x)

)1/k

, as v → ∞,

and since the right-hand function is continuous, we also get that

Φk(v, x) ∼
(

kv

Gk(x)

)1/k

, as v → ∞,

form which now (2.10) does indeed follow.
We claim that (2.10) implies the regular variation of Π. When Π is continuous

and strictly decreasing we get by changing variables to ψ(u) = t, u = Π(t), that we
have for any x ∈ Gk

lim
t↓0

Π(tx)

Π(t)
= [Gk(x)]

− 1
k ,

which by an easy application of Proposition 1.10.5 in Bingham et al. (1989) implies
that Π is regularly varying.
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Note that the jumps of Π correspond to constant parts of ψ, and vice versa.
Put J = {z : Π(z−) > Π(z)} for the jump points of Π. For z ∈ J and y ∈[
Π(z),Π(z−)

)
we have ψ(y) = z. Substituting into (2.10) we have

lim
z↓0,z∈J

Π(xz)

Π(z)
= [Gk(x)]

− 1
k , and lim

z↓0,z∈J

Π(xz)

Π(z−)
= [Gk(x)]

− 1
k . (2.11)

To see how the second limit holds in (2.11) note that for any 0 < ε < 1 and z ∈ J ,
we have ψ

(
εΠ(z) + (1− ε)Π(z−)

)
= z and thus

lim
z↓0,z∈J

Π(xz)

εΠ(z) + (1− ε)Π(z−)
= [Gk(x)]

− 1
k .

Since 0 < ε < 1 can be chosen arbitrarily close to 0 this implies the validity of the
second limit in (2.11). Therefore by choosing any x ∈ Gk we get

lim
z↓0

Π(z−)

Π(z)
= 1. (2.12)

Let
A = {z > 0 : Π(z − ε) > Π(z) for all z > ε > 0}.

This set contains exactly those points z for which ψ(Π(z)) = z. With this notation
formula (2.10) can be written as

lim
z↓0,z∈A

Π(xz)

Π(z)
= [Gk(x)]

− 1
k , for x ∈ Gk. (2.13)

This together with (2.12) will allow us to apply Proposition 1.10.5 in Bingham
et al. (1989) to conclude that Π is regularly varying. We shall need the following
technical lemma.

Lemma 2.1. Whenever (2.12) holds, there exists a strictly decreasing sequence
zn ∈ A such that zn → 0 and

lim
n→∞

Π(zn+1)

Π(zn)
= 1. (2.14)

Proof. Choose z1 ∈ A such that Π(z1) > 0, and define for each n ≥ 1

zn+1 = sup

{
z > 0 : Π(z) >

(
1 +

1

n

)
Π(zn−)

}
.

Notice that the sequence {zn} is well-defined, since Π(0+) = ∞ and it is decreasing.
Further we have

Π(zn+1−) ≥
(
1 +

1

n

)
Π(zn−) and Π(zn+1) ≤

(
1 +

1

n

)
Π(zn−),

where the second inequality follows by right continuity of Π. Also note that zn+1 <
zn, since otherwise if zn+1 = zn, then

Π(zn+1−) = Π(zn−) ≥
(
1 +

1

n

)
Π(zn−),

which is impossible. Observe that each zn+1 is in A since by the definition of zn+1

for all 0 < ε < zn+1

Π(zn+1 − ε) >

(
1 +

1

n

)
Π(zn−) ≥ Π(zn+1).
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Clearly since {zn} is a decreasing and positive sequence, limn→∞ zn = z∗ exists
and is ≥ 0. By construction

Π(zn+1−) ≥
(
1 +

1

n

)
Π(zn−) ≥

n∏
k=1

(
1 +

1

k

)
Π(z1−).

The infinite product
∏∞
n=1(1 + 1/n) = ∞ forces z∗ = 0. Also by construction we

have

1 ≤ Π(zn+1)

Π(zn−)
=

Π(zn+1)

Π(zn)

(
Π(zn)

Π(zn−)

)
≤ 1 +

1

n
.

By (2.12) we have

lim
n→∞

Π(zn)

Π(zn−)
= 1.

Therefore we get (2.14). tu

According to Proposition 1.10.5 in Bingham et al. (1989) to establish that Π is
regularly varying at zero it suffices to produce λ1 and λ2 in (0, 1) such that for
i = 1, 2

Π(λizn)

Π(zn)
→ di ∈ (0,∞) , as n→ ∞,

where (log λ1) / (log λ2) is finite and irrational. This can clearly be done using
(2.13) and P{Yk < 1} > 0. Necessarily Π has index of regular variation parameter
−α ∈ (−∞, 0]. For α ∈ (0,∞) the limiting distribution function has the form (1.4).
In the case α = 0, Π is slowly varying at 0 and we get that Gk(x) = 1 for x ∈ (0, 1),
i.e. Yk = 0 a.s.

Now consider the case when P{Yk = 1} = 1, i.e. Gk(x) = 0 for any x ∈ (0, 1).
We once more use Theorem 1.7.1 in Bingham et al. (1989), with c = 0 this time,
and as an analog of (2.10) we obtain

lim
u→∞

Π(xψ(u))

u
= ∞.

This readily implies that

lim
z↓0,z∈A

Π(xz)

Π(z)
= ∞.

Moreover, the analogs of formula (2.11) also hold, i.e.

lim
z↓0,z∈J

Π(xz)

Π(z)
= ∞, and lim

z↓0,z∈J

Π(xz)

Π(z−)
= ∞.

(Note, however, that this does not imply (2.12).) Let z 6∈ A, and define z′ = inf{v :
v ∈ A, v > z}. Clearly, z′ ↓ 0 as z ↓ 0. If z′ ∈ A then necessarily it is a jump point,
z′ ∈ J , and Π(z′−) = Π(z). Then

Π(xz)

Π(z)
=

Π(xz)

Π(z′−)
≥ Π(xz′)

Π(z′−)
,

and the latter tends to ∞ as z ↓ 0. On the other hand, when z′ 6∈ A it is simple to
see that Π(z′) = Π(z) and Π(z′ + ε) < Π(z′) for any ε > 0. Moreover, we can find
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z < z′′ ∈ A, such that Π(z) ≤ Π(z′′) + 1 ≤ 2Π(z′′) (we tacitly assumed that z is
small enough). Thus

Π(xz)

Π(z)
≥ Π(xz)

Π(z′′) + 1
≥ Π(xz′′)

2Π(z′′)
,

and the lower bound goes to ∞ as z ↓ 0. Summarizing, we have proved that

lim
z↓0

Π(xz)

Π(z)
= ∞,

for any x ∈ (0, 1), that is, Π is rapidly varying at 0 with index −∞.

Sufficiency. Assume that Π is regularly varying at 0 with index −α ∈ (−∞, 0).
Then its inverse function ψ is regularly varying at ∞ with index −1/α, therefore
simply

rk(t) =
ψ(Sk+1/t)

ψ(Sk/t)
→

(
Sk
Sk+1

)1/α

a.s., as t ↓ 0,

which has the distribution Gk in (1.4). Assume now that Π is slowly varying at 0.
Then ψ ∈ RV∞(−∞), therefore

rk(t) =
ψ(Sk+1/t)

ψ(Sk/t)
→ 0 a.s., as t ↓ 0.

Finally, if Π ∈ RV0(−∞) then ψ is slowly varying at infinity, so

rk(t) =
ψ(Sk+1/t)

ψ(Sk/t)
→ 1 a.s., as t ↓ 0,

and the theorem is completely proved.
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