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Abstract. We consider a lattice gas evolving in a bounded cylinder of length 2N+1
and interacting via a Neuman Kac interaction of range N , in contact with particles
reservoirs at different densities. We investigate the associated law of large numbers
and large deviations of the empirical current and of the density. The hydrody-
namic limit for the empirical density, obtained in the diffusive scaling, is given by
a nonlocal, nonlinear evolution equation with Dirichlet boundary conditions.

1. Introduction

The large deviations principle is an inportant topic of interest for the study of
macroscopic properties of non-equilibrium systems. In the last years, many papers
have been devoted to the subject. We just quote a few of them where the issue is
addressed in the context of lattice gas dynamics for which large deviation princi-
ples can be derived in the hydrodynamic scaling, Bertini et al. (2001); Bodineau
and Derrida (2006); Derrida (2007); Bertini et al. (2006a) and references therein.
Typical examples are systems in contact with two thermostats at different temper-
atures or with two reservoirs at different densities. A mathematical model for such
systems is provided by reversible systems of hopping dynamics combined with the
action of an external mechanism of creation and annihilation of particles, modeling
the exchange reservoirs. The action of the reservoirs makes the full process non
reversible. A principal generic feature of these systems is that they exhibit long
range correlations in their steady state.

In this paper we consider a microscopic conservative system, with long range
interaction with open boundaries. The system is contained in a cylinder ΛN =
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{−N, · · · , N} × Td−1
N of length 2N + 1 with axis in direction u1, with Td−1

N the
(d− 1)-dimensional microscopic torus of length 2N +1 and N a scaling parameter,
namely we impose periodic boundary conditions in all directions but u1. In the
bulk, particles evolve according to conservative dynamics (Kawasaki) perturbed by
a modified version of Kac potential which we call Neuman Kac potential. The
Kac potentials JN are two-body interactions with range N and strength N−d:
JN (u) = N−dJ(u), u ∈ Rd, where J is a smooth function with compact support.
They have been introduced in Kac et al. (1963); Uhlenbeck et al. (1963); Hemmer
et al. (1964), and then generalized in Lebowitz and Penrose (1966), to present a
rigorous derivation of the van der Waals theory of a gas-liquid phase transition.
There have been many interesting results on Kac Ising spin systems in equilibrium
statistical mechanics. We refer for a survey to the book Presutti (2009). The so
called Neuman Kac potential, Jneum

N (u) = N−dJneum(u), u ∈ Rd (see (2.1) below)
is the modification of the Kac potential that takes into account the fact that the
particles are confined in a bounded domain.

Given β ≥ 0 and a chemical potential λ ∈ R, we consider the Hamiltonian

Hβ
N (η) = −β

∑
x,y∈ΛN

Jneum
N (x, y)η(x)η(y) + λ

∑
x∈ΛN

η(x) ,

where η = (η(x) , x ∈ Z), η(x) ∈ 0, 1; η(x) = 1 if there is a particle at site x and
η(x) = 0 if site x is empty. One can construct in a standard way an evolution
conserving the total number of particles, the so-called Kawasaki dynamics, which
can be described as follows. Particles attempt to jump to nearest neighbour sites
at rates depending on the energy difference before and after the exchange, provided
the nearest neighbour target sites are empty; attempted jumps to occupied sites are
suppressed. The rates are chosen in such a way that the system satisfies a detailed
balance condition with respect to a family of Gibbs measures, parametrized by
the so-called chemical potential λ ∈ R and fixed β. To model the presence of
the reservoirs, we superimpose at the boundary to the bulk dynamics a birth and
death process. For a fixed smooth function b(·) defined on the boundary of the
domain, the rates of this birth and death process are chosen so that a Bernoulli
product measure of varying parameter b is reversible for it. This latter dynamics
is of course not conservative and keeps the fixed value of the density equal to b
at the boundary. This dynamics defines an irreducible Markov jump process on a

finite state space; its stationary measure µst,b
N is unique. There is a flow of mass

through the full system and µst,b
N encodes its long time behavior. The full dynamics

is reversible only if β = 0 and b is constant. We introduce the empirical density
πN
t of particles and the integrated empirical current WN

t , which measures the total
net flow of particles in the time interval [0, t], associated to a trajectory (η·).

We analyze here the behavior as N ↑ ∞ of the system when the time is rescaled
by N2 (diffusive limit). Our purpose is to investigate the behavior of the current of
particles. Problems of this kind have been studied in Bertini et al. (2006b) and in
Bodineau and Lagouge (2012). In both documents the large deviations rate func-
tionals are convex. The paper Bertini et al. (2006b), studied the simple exclusion
process, in the torus with periodic conditions. The paper Bodineau and Lagouge
(2012) is concerned by the reaction diffusion process, in a one-dimensional interval
with two types of currents (conservative and non conservative); some conditions
on the convexity on the functionals were imposed. Our goal is to extend these



Empirical current for Kawasaki with Neumann Kac interaction 645

results to the d-dimentional boundary driven systems with long range interactions,
for which the dynamical large deviations functionals are non-convex.

For important classes of models, the hydrodynamic limit and dynamical large
deviations for the empirical density have been proven, see for example Kipnis et al.
(1989); Quastel et al. (1999) for equilibrium dynamics and Bertini et al. (2006a);
Bodineau and Derrida (2006); Bertini et al. (2009) in nonequilibrium dynamics. For
Kawasaki dynamics with Kac potential, the law of large numbers for the empirical
density has been proved on the torus with periodic boundary conditions in Gia-
comin and Lebowitz (1997), on the whole lattice in Marra and Mourragui (2000),
and finally on a one-dimensional bounded interval (boundary driven) in Mour-
ragui and Orlandi (2013). The hydrodynamic equation obtained for the boundary
driven dynamics is the following nonlocal, nonlinear partial differential equation
with Dirichlet conditions at the boundary Γ of the domain,

∂tρt = ∇ ·
{
∇ρt − βσ(ρt)∇(Jneum ? ρt)

}
= −∇ ·

{
Jβ(ρt)

}
ρt
∣∣
Γ
= b(·) for 0 ≤ t ≤ T ,

ρ0(u) = γ(u) ,

(1.1)

where ∗ stands for the spatial convolution and σ(ρ) = 2ρ(1 − ρ) is the mobility
of the system. In the above formula Jβ(ρt) is the instantaneous current at time t
associated to the trajectory ρ:

Jβ(ρt) = −∇ρt + βσ(ρt)∇(Jneum ? ρt) . (1.2)

We shall denote by ρ̄ the unique stationary solution of the hydrodynamic equation,
i.e. ρ̄ is the typical density profile for the stationary nonequilibrium state.

It follows from the hydrodynamic limit that the empirical current WN
t converges

weakly to the time integral of Jβ(ρs) in the time interval [0, t] (cf. Proposition 2.3).
In addition to this we prove that when β is small enough, then the empirical particle
density πN obeys a law of large numbers with respect to the stationary measures
(hydrostatic), i.e. it converges weakly under the unique stationary measure of
the evolution process to the stationary solution ρ̄, (see Proposition 2.2). This is
obtained by deriving first the hydrodynamic behavior of the process (πN

t ) when
η0 is distributed according to the stationary measure. Then we exploit that for β
small enough, the stationary solution ρ̄ is unique and is a global attractor for the
macroscopic evolution with a decay rate uniform with respect to the initial datum.
This holds only for β < β0 where β0 > 0 depends on the diameter of the domain and
on the chosen interaction J . Similar strategy for proving the hydrostatic is used in
Farfan et al. (2011); Mourragui and Orlandi (2013). It results from the hydrostatics

that if initially the particles are distributed according to the stationary state µst,b
N ,

then for each t > 0, the mean empirical current WN
t /t converges weakly to Jβ(ρ̄)

as N ↑ ∞ (see Proposition 2.4).

Further, we investigate the large deviations for the couple (current, density)=
(WN

t , πN
t ), that is we compute the asymptotic probability of observing an atypical

macroscopic trajectory of the (current, density)= (Wt, ρt), when the number of
particles tends to infinity. The result can be informally stated as follows. Given a
trajectory (Wt, ρt)t∈[0,T ] on a fixed interval of time [0, T ], we have

Pβ
N

((
WN , πN

)
≈

(
W, ρ

))
∼ exp

{
−NdJT

(
W, ρ

)}
,
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where Pβ
N is the law of microscopic dynamics, ∼ denotes the logarithmic equivalence

as N ↑ ∞ and (WN , πN ) ≈ (W, ρ) means that the trajectory (WN , πN ) is in some
neighborhood of (W, ρ) for an appropriate topology. The rate functional JT is
infinite in the set Ec of all paths (W, ρ) that do not satisfy the continuity equation

∂tρ+∇ · Ẇt = 0, and for which some suitable energy estimate does not holds (cf.
(2.12)). Outside this set,

JT (W, ρ) =
1

2

∫ T

0

dt
〈[

Ẇt − Jβ(ρt)
]
,

1

σ(ρt)

[
Ẇt − Jβ(ρt)

]〉
,

where Ẇt is the instantaneous current at time t, 〈·, ·〉 denotes integration with
respect to the space variables and Jβ(·) is defined in (1.2).

Our proof relies on the method developed to study hydrodynamic large devia-
tions for the density in Kipnis et al. (1989); Quastel et al. (1999); Bertini et al.
(2009) and for the current Bertini et al. (2006b). The basic strategy of the proof
of the lower bound consists of two steps, we first obtain this bound for smooth
paths, then we extend it for general trajectories by showing that, for any given
trajectory (W, ρ) with finite rate functional JT (W, ρ) one constructs a sequence
of smooth paths (Wn, ρn) so that (Wn, ρn) → (W, ρ) in a suitable topology and
JT (W

n, ρn) → JT (W, ρ). The proof in Bertini et al. (2006b) relies on the convex-
ity of the rate functional. In the present case, because of the lack of convexity we
modify the definition of the rate functional declaring it infinite in the set Ec. The
modified rate functional JT makes the proof of the lower and upper bounds harder
than the one in Bertini et al. (2006b).

The last result of this paper is the large deviations for the empirical density.
In one dimension, it has been done in Mourragui and Orlandi (2013). In our
context, one can achieve the proof either following the same scheme as in Mourragui
and Orlandi (2013), or adapting the strategy of Bertini et al. (2006b), using the
contraction principle.

The paper is organized as follows. In section 2, we introduce the model and state
the main results. In Section 3, we introduce the perturbed model, we prove the law
of large numbers for the current, and we collect some basic estimates needed along
the paper. In Section 4, we state and prove some properties of the rate functionals.
In sections 5 and 6, we derive the upper and lower bounds large deviations for the
couple (current, density). Finally the density large deviations are recovered using
the contraction principle in section 7.

2. Notation and Results

Fix a positive integer d ≥ 2. Denote by Λ the open set (−1, 1) × Td−1 and by
Λ = [−1, 1]× Td−1 its closure, where Tk is the k-dimensional torus [0, 1)k, and by
Γ = ∂Λ the boundary of Λ: Γ = {(u1, . . . , ud) ∈ Λ : u1 = ±1}.

We introduce a smooth, symmetric, translational invariant probability kernel
of range 1 on Sd = R × Td−1, that is, a function J : Sd × Sd → [0, 1] such that
J(u, v) = J(v, u) = J(0, v−u) for all u, v ∈ Sd, J(0, ·) is continuously differentiable,
J(0, u) = 0, for all u such that |u1| > 1, and

∫
J(u, v)dv = 1, for all u ∈ Sd. This

is the so called the Kac interaction on Sd.
The Neuman Kac interaction Jneum is a symmetric probability kernel on Λ

defined by imposing a reflection rule: when (u, v) ∈ Λ× Λ, u interacts with v and
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with the reflected points of v where reflections are the ones with respect to the left
and right boundaries of Λ. That is for all u and v in Λ

Jneum(u, v) := J(u, v) + J(u, v + 2(1− v1)e1) + J(u, v − 2(1 + v1)e1) , (2.1)

where v1 stands for the first cordinate of the vector v = (v1, · · · , vd) and {e1, . . . , ed}
stands for the canonical basis of Rd. By the assumption on J , Jneum(u, v) =
Jneum(v, u) and

∫
Jneum(u, v)dv = 1 for all u ∈ Λ, see Lemma 3.2. We defined the

interaction (2.1) by boundary reflections only for convenience. It has the advantage
to keep Jneum a symmetric probability kernel. This choice of the potential has been
done already in De Masi et al. (2011); Mourragui and Orlandi (2013).

For an integer N ≥ 1, denote by Td−1
N = {0, . . . , N − 1}d−1, the discrete (d− 1)-

dimensional torus of length N . Let ΛN = {−N, . . . , N}×Td−1
N be the cylinder in Zd

of length 2N +1 and basis Td−1
N and let ΓN = {(x1, . . . , xd) ∈ Z×Td−1

N |x1 = ±N}
be the boundary of ΛN . The elements of ΛN are denoted by letters x, y and the
elements of Λ by the letters u, v.

The configuration space is ΣN := {0, 1}ΛN ; elements of ΣN are denoted by η so
that η(x) = 1, (resp. 0) if site x is occupied, (resp. empty) for the configuration η.

Fix a positive parameter β ≥ 0, and a positive function b : Γ → R+. Assume
that there exists a neighbourhood V of Λ and a smooth function θ : V → (0, 1)
in C2(V ) such that θ is bounded below by a strictly positive constant, bounded
above by a constant smaller than 1 and such that the restriction of θ to Γ is equal
to b. The boundary driven Kawasaki process with Neuman Kac interaction is the
Markov process on ΣN whose generator LN := Lβ,b,N can be decomposed as

LN := N2Lβ,N +N2 Lb,N . (2.2)

The generator Lβ,N describes the bulk dynamics which preserves the total num-
ber of particles. The pair interaction between x and y in ΛN is given by

JN (x, y) = N−dJneum(
x

N
,
y

N
).

The total interaction energy among particles is defined by the following Hamiltonian

HN (η) = −
∑

x,y∈ΛN

JN (x, y)η(x)η(y) . (2.3)

The action of Lβ,N on functions f : ΣN → R is then given by

(Lβ,Nf) (η) =
d∑

i=1

∑
x,x+ei∈ΛN

Cβ
N (x, x+ ei; η)

[
f(ηx,x+ei)− f(η)

]
,

whith the rate of exchange occupancies Cβ
N given by

Cβ
N (x, y; η) = exp

{
−β

2
[HN (ηx,y)−HN (η)]

}
, (2.4)

where ηx,y is the configuration obtained from η ∈ ΣN , by exchanging the occupation
variables η(x) and η(y), i.e.

(ηx,y)(z) :=


η(y) if z = x ,

η(x) if z = y ,

η(z) if z 6= x, y .



648 M. Mourragui

The generator Lb,N models the particle reservoir at the boundary of ΛN , it is
defined by the infinitesimal generator of a birth and death process acting on ΓN as

(Lb,Nf)(η) =
∑
x∈ΓN

rx
(
b(x/N), η

)[
f(σxη)− f(η)

]
,

where σxη is the configuration obtained from η by flipping the configuration at x,
i.e.

(σxη)(z) :=

{
1− η(x) if z = x

η(z) if z 6= x ,

and for x ∈ ΓN and λ ∈ (0, 1) the rate rx
(
λ, η) is given by

rx
(
λ, η) := λ(1− η(x)) + (1− λ)η(x) . (2.5)

For any β ≥ 0, the operator Lβ,N is self-adjoint w.r.t. the Gibbs measures µβ,λ
N

associated to the Hamiltonian (2.3) and chemical potentials λ ∈ R:

µβ,λ
N (η) =

1

Zβ,λ
N

exp{−βHN (η) + λ
∑

x∈ΛN

η(x)} , η ∈ ΣN ,

where Zβ,λ
N is the normalization constant. This means that the rates of the bulk

dynamics {Cβ
N (x, y; η), x, y ∈ ΛN}, satisfies the detailed balance conditions:

Cβ
N (x, y; η) = e−β[HN (ηx,y)−HN (η)]Cβ

N (y, x; ηx,y).

For a smooth function ρ : Λ̄ → (0, 1) and x ∈ ΛN , let νNρ(·) be the Bernoulli

product measure on ΣN with marginals given by

νNρ(·)(η(x) = 1) = ρ(x/N) .

Let ϕ(α) := log[α/(1− α)] be the chemical potential of the density α. It is easy to
see that, νNρ(·) can be rewritten as

νNρ(·)(η) =
∏

x∈ΛN

eϕ(ρ(x/N)) η(x)

1 + eϕ(ρ(x/N))
, (2.6)

and if ρ(u) = b(u) for all u ∈ Γ, then νNρ(·) is reversible for the process with generator

Lb,N .
Notice that in view of the diffusive scaling limit, the generator has been speeded

up by N2. We denote by (ηt) the Markov process on ΣN with generator LN . Since
the Markov process (ηt) is irreducible, for each N ≥ 1, β ≥ 0, there exists a unique
invariant measure µst

N = µst
N (β, b) in which we drop the dependence on β and b from

the notation. Moreover, if b is not constant then the invariant measure µst
N cannot

be written in simple form.
For an integer 1 ≤ m ≤ +∞ denote by Cm(Λ) the space of m-continuously

differentiable real functions defined on Λ. Let Cm
0 (Λ) (resp. Cm

c (Λ)), 1 ≤ m ≤ +∞,
be the subset of functions in Cm(Λ) which vanish at the boundary of Λ (resp.
with compact support in Λ). We denote by M = M(Λ) the space of finite signed
measures on Λ, endowed with the weak topology. For a finite signed measure m and
a continuous function F ∈ C0(Λ), we let 〈m,F 〉 be the integral of F with respect
to m.
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For each configuration η, denote by πN = πN (η) ∈ M the positive measure
obtained by assigning mass N−d to each particle of η :

πN = N−d
∑

x∈ΛN

η(x) δx/N ,

where δu is the Dirac measure concentrated on u. Notice that for each η ∈ ΣN , the
total mass of the positive measure πN (η) is bounded by 3.

For t ≥ 0 and two neighboring sites x, y ∈ ΛN , denote by Nx,y
t the total number

of particles that jumped from x to y in the macroscopic time interval [0, t]. For

1 ≤ j ≤ d and x, x + ej ∈ ΛN , we denote by W
x,x+ej
t = N

x,x+ej
t − N

x+ej ,x
t the

current through the edge (x, x+ej). We now define the current entering and leaving

the system through the border points in the direction e1. For x ∈ ΓN , let Nx,+
t

(resp. Nx,−
t ) be the number of particles created (resp. killed) at x due to the

reservoir in the macroscopic time interval [0, t], the current through ΓN is then

defined by W x
t = Nx,+

t −Nx,−
t if x ∈ Γ−

N and W x
t = Nx,−

t −Nx,+
t if x ∈ Γ+

N , where

Γ−
N , resp. Γ+

N stands for the left, resp. right, boundary of ΛN :

Γ±
N = {(x1, · · · , xd) ∈ ΓN : x1 = ±N} .

For t ≥ 0, we define the empirical current WN
t = (WN

1,t, . . . ,W
N
d,t) ∈ Md =

{M(Λ)}d as the vector-valued finite signed measure on Λ induced by the net flow
of particles in the time interval [0, t]:

WN
1,t =

1

Nd+1

∑
x,x+e1∈ΛN

W x,x+e1
t δx/N +

1

Nd+1

∑
x∈ΓN

W x
t δx/N ,

WN
k,t =

1

Nd+1

∑
x∈ΛN

W x,x+ek
t δx/N for k = 2, . . . , d .

(2.7)

For a continuous vector field G = (G1, . . . , Gd) ∈ (C0(Λ))d the integral of G with
respect to WN

t , also denoted by 〈WN
t ,G〉, is given by

〈WN
t ,G〉 =

d∑
k=1

〈WN
k,t , Gk〉 , (2.8)

where

〈WN
1,t , G1〉 = N−(d+1)

{ ∑
x,x+e1∈ΛN

G1(x/N)W x,x+e1
t +

∑
x∈ΓN

G1(x/N)W x
t

}
and for 2 ≤ k ≤ d,

〈WN
k,t , Gk〉 = N−(d+1)

∑
x∈ΛN

Gk(x/N)W x,x+ek
t .

The purpose of this article is to prove hydrodynamic limit and large deviations
for the empirical current and for the density of particles. Fix T > 0. Let F1 be
the subset of M of all absolutely continuous positive measures with respect to the
Lebesgue measure with positive density bounded by 1:

F1 =
{
π ∈ M : π(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e.

}
.

For a metric space E (E = M,F1,Md,ΣN , · · · ), let D([0, T ], E) be the set of
right continuous with left limits trajectories with values in E, endowed with the
Skorohod topology and equipped with its Borel σ− algebra. For a probability
measure µN on ΣN denote by (ηt)t∈[0,T ] the Markov process with generator LN
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starting, at time t = 0, by η0 distributed according to µN . Denote by Pβ
µN

:=

Pβ,N
µN

the probability measure on the path space D([0, T ],ΣN ) corresponding to

the Markov process (ηt)t∈[0,T ] and by Eβ
µN

the expectation with respect to Pβ
µN

.

When µN = δηN for some configuration ηN ∈ ΣN , we write simply Pβ
ηN = Pβ,N

δηN

and Eβ
ηN = Eβ

δηN
. We denote by πN the map from D([0, T ],ΣN ) to D([0, T ],M)

defined by πN (η·)t = πN (ηt) and by Qβ
µN

= Pβ
µN

◦ (πN )−1 the law of the process(
πN (ηt)

)
t∈[0,T ]

.

2.1. Hydrodynamics and hydrostatics. The hydrodynamic and hydrostatic limits
for the empirical measures πN has been proved in one dimension in Mourragui
and Orlandi (2013). The analysis in all dimension can be deducted from the same
strategy. We shall therefore summarize the results omitting their proofs.

For integers n and m we denote by Cn,m([0, T ] × Λ) the space of functions
F = Ft(u) : [0, T ] × Λ → R with n derivatives in time and m derivatives in space
which are continuous up to the boundary. We denote by Cn,m

0 ([0, T ]×Λ) the subset
of Cn,m([0, T ] × Λ) of functions vanishing at the boundary of Λ, i.e. Ft

∣∣
Γ
≡ 0 for

all t ∈ [0, T ]. We finaly denote by Cn,m
c ([0, T ] × Λ) the subset of Cn,m([0, T ] × Λ)

of functions with compact support in [0, T ]× Λ.

Let L2(Λ) be the Hilbert space of functions F : Λ → R such that

∫
Λ

|F (u)|2du <

∞ equipped with the inner product

〈F,G〉 =
∫
Λ

F (u)G(u) du .

The norm of L2(Λ) is denoted by ‖ · ‖L2(Λ).

Let H1(Λ) be the Sobolev space of functions F with generalized derivatives
∇F =

(
∂1F, · · · , ∂dF

)
in L2(Λ). H1(Λ) endowed with the scalar product 〈·, ·〉H1 ,

defined by

〈F,G〉H1 = 〈F,G〉+
d∑

i=1

〈∂iF , ∂iG〉 ,

is a Hilbert space. The corresponding norm is denoted by ‖·‖H1 . Denote by H1
0 (Λ)

the closure of C∞
c (Λ) in H1(Λ).

Denote by Tr : H1(Λ) → L2(Γ) the continuous linear operator called trace
operator, defined as the unique extension of the linear operator from C0(Λ) to
L2(Γ) which associates to any F ∈ H1(Λ)∩C0(Λ) its boundary value: Tr(F ) = F

∣∣
Γ

(Zeidler (1990), Theorem 21.A.(e)). Recall that the space H1
0 (Λ) is the space of

functions F in H1(Λ) with zero trace:

H1
0 (Λ) =

{
F ∈ H1(Λ) : Tr(F ) = 0

}
.

To state the hydrodynamic equation, we need some more notation. For a Banach
space (B, ‖·‖B) we denote by L2([0, T ],B) the Banach space of measurable functions
U : [0, T ] → B for which

‖U‖2L2([0,T ],B) =

∫ T

0

‖Ut‖2B dt < ∞



Empirical current for Kawasaki with Neumann Kac interaction 651

holds. For m ∈ L∞(Λ) and u ∈ Λ, we set

(Jneum ? m)(u) =

∫
Λ

Jneum(u, v)m(v)dv ,

and σ(m) = 2m(1 − m). For any smooth function F , let ∆F be the laplacian

with respect to the space variables of a function F . For F ∈ C1,2
0 ([0, T ] × Λ),

ρ ∈ D([0, T ],F1) denote

`βF (ρ) :=
〈
ρT , FT

〉
− 〈ρ0, F0〉 −

∫ T

0

dt
〈
ρt, ∂tFt

〉
−
∫ T

0

dt
〈
ρt,∆Ft

〉
+

∫ T

0

dt

∫
Γ

b(r)n1(r) (∂1Ft)(r) dS(r)

− β

∫ T

0

〈σ(ρt), (∇Ft) · ∇(Jneum ? ρt)〉dt ,

where n=(n1, . . . ,nd) stands for the outward unit normal vector to the boundary
surface Γ and dS for an element of surface on Γ. For u, v ∈ Rd, u·v is the usual scalar

product of u and v in Rd, we denote by | · | the associated norm: |u| =
√∑d

i=1 |ui|2.
Denote by A[0,T ] ⊂ D

(
[0, T ];F1

)
the set of all weak solutions of the boundary

value problem (1.1):

A[0,T ] =
{
ρ ∈ L2

(
[0, T ],H1(Λ)

)
: ∀F ∈ C1,2

0 ([0, T ]× Λ) , `βF (ρ) = 0
}
.

Proposition 2.1. For any sequence of initial probability measures (µN )N≥1, the
sequence of probability measures (Qβ

µN
)N≥1 is weakly relatively compact and all its

converging subsequences converge to some limit Qβ,∗ that is concentrated on abso-
lutely continuous paths whose densities ρ ∈ C([0, T ],F1(Λ)) are in A[0,T ]. More-

over, if for any δ > 0 and for any function F ∈ C0(Λ)

lim
N→∞

µN
{∣∣∣〈πN , F 〉 −

∫
Λ

γ(u)F (u)du
∣∣∣ ≥ δ

}
= 0 , (2.9)

for an initial profile γ ∈ F1, then the sequence of probability measures (Qβ
µN

)N≥1

converges to the Dirac measure concentrated on the unique weak solution ρ(·, ·) of
the boundary value problem (1.1). Accordingly, for any t ∈ [0, T ], any δ > 0 and
any function F ∈ C0(Λ)

lim
N→∞

Pβ
µN

{∣∣∣〈πN (ηt), F 〉 −
∫
Λ

ρ(t, u)F (u)du
∣∣∣ ≥ δ

}
= 0 .

The proof of this Proposition is similar to the one of Theorem 2.1. in Mourragui
and Orlandi (2013). Recall that the stationary measure µst

N depends on β and b.
The asymptotic behavior of the empirical measure under the stationary state µst

N

can be stated as follows.

Proposition 2.2. There exists β0 depending on Λ and Jneum so that, for any
β < β0, for any F ∈ C0(Λ), for any δ > 0,

lim
N→∞

µst
N

[∣∣∣〈πN (η), F 〉 −
∫
Λ

ρ̄(u)F (u)du
∣∣∣ ≥ δ

]
= 0 ,
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where ρ̄ is the unique weak solution of the following boundary value problem∆ρ(u)− β∇ ·
{
σ(ρ(u))∇(Jneum ? ρ)(u)

}
= 0, u ∈ Λ,

ρ(·)
∣∣
Γ
= b(·) .

(2.10)

The proof of this Proposition is similar to the one of Theorem 2.3 in Mourragui
and Orlandi (2013) and therefore is omitted. As noticed in the introduction, we
need to show the uniqueness of the solution of the equation (2.10), and that the
hydrodynamic equation (1.1) satisfy a comparison principle. For values of β larger
than β0, we are not able to show these two main ingredients used in Farfan et al.
(2011); Mourragui and Orlandi (2013) to derive the hydrostatic limit.

Proposition 2.3. Fix an initial profile γ ∈ F1 and consider a sequence of prob-
ability measures µN associated to γ in the sense of (2.9). Let ρ be the solution of

the equation (1.1). Then, for each T > 0, δ > 0 and G ∈
(
C1(Λ)

)d
,

lim
N→∞

Pβ
µN

[ 〈
WN

T ,G
〉
−

∫ T

0

dt
〈{

−∇ρt + βσ(ρt)∇(Jneum ? ρt)
}
, G

〉∣∣∣ > δ
]

= 0 .

Next result concerns the asymptotic behavior of the mean empirical current
WN

T /T under the sequence of stationary measures {µst
N : N ≥ 1}.

Proposition 2.4. There exists β0 depending on Λ and Jneum so that, for any

β < β0, for any T > 0, δ > 0 and G ∈
(
C1(Λ)

)d
,

lim
N→∞

Pβ
µst
N

[ 〈 1
T
WN

T ,G
〉
−

〈{
−∇ρ̄+ βσ(ρ̄)∇(Jneum ? ρ̄)

}
, G

〉∣∣∣ > δ
]

= 0 ,

where ρ̄ is the unique weak solution of the boundary value problem (2.10).

The proof of Proposition 2.3 is given for more general processes in section 3. We
obtain then Proposition 2.4 as an immediate consequence from Proposition 2.2.

2.2. Large deviations. Fix a positive time T > 0 and an initial profile γ ∈ F1. We
are interested both on large deviations of the couple (WN

t , πN (ηt))t∈[0,T ] and on

large deviations of the empirical measure (πN (ηt))t∈[0,T ] during the interval time
[0, T ] and starting from the profile γ.

Let Aγ be the set of trajectories (W, π) in D([0, T ],Md+1) such that for any
t ∈ [0, T ] and any G ∈ C1

0(Λ)

〈πt, G〉 − 〈γ,G〉 = 〈Wt,∇G〉 . (2.11)

Define the energy functional Eγ = Eγ,T,β : D([0, T ],Md+1) → [0,∞] by

Eγ(W, π) =

{
Q(π) if (W, π) ∈ Aγ ∩D([0, T ],Md ×F1) ,

+∞ otherwise,
(2.12)

where the functional Q : D([0, T ],F1) → [0,∞] is given for a trajectory π ∈
D([0, T ],F1) with πt = ρt(u)du , t ∈ [0, T ] by the formula

Q(π) =
d∑

k=1

sup
{∫ T

0

dt 〈ρt, ∂kHt〉 − 2

∫ T

0

dt〈σ(ρt)Ht,Ht〉
}
,
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in which the supremum is carried over all H ∈ C∞
c ([0, T ]× Λ). It has been proved

in Bertini et al. (2009); Farfan et al. (2011) that Q(π) is finite if and only if ρ ∈
L2

(
[0, T ],H1(Λ)

)
, and

Q(π) =
1

8

∫ T

0

dt 〈 1

σ(ρt)
, ∇ρt · ∇ρt〉 . (2.13)

Notice that Aγ∩D([0, T ],Md×F1) is a closed and convex subset ofD([0, T ],Md+1).
It follows immediately from the concavity of σ(·) that the functional Eγ is convex
and lower semicontinuous.

We now define the large deviations functional for the pair (WN , πN ) in the time

interval [0, T ] with initial condition γ. For each V ∈
(
C1,1([0, T ]×Λ)

)d
, define the

functional ĴTV = ĴT,β
V : D([0, T ],Md ×F1) → R if πt = ρt(u)du , t ∈ [0, T ] by

ĴTV(W, π) = Lβ
V(W, π) − 1

2

∫ T

0

dt 〈σ(ρt),Vt ·Vt〉 , (2.14)

where Lβ
V(W, π) := Lβ

V,T (W, π) is a linear function on V:

Lβ
V(W, π) = 〈WT ,VT 〉 −

∫ T

0

dt 〈Wt, ∂tVt〉

−
∫ T

0

dt 〈πt,∇ ·Vt〉 +

∫ T

0

dt

∫
Γ

b(r)n1(r)V1(t, r) dS(r)

− β

∫ T

0

〈σ(ρt),Vt · ∇(Jneum ? ρt)〉dt .

The large deviations fuctional for (WN , πN ) is finally defined from
D([0, T ],Md+1) to [0,+∞] by

J γ
T (W, π) =

{
JT (W, π) if Eγ(W, π) < ∞ ,
+∞ otherwise ,

(2.15)

where

JT (W, π) = sup

V∈
(
C1,1([0,T ]×Λ)

)d

ĴTV(W, π) .

It remains to define the rate functional for the empirical measure. Fix an initial
profile γ : Λ̄ → [0, 1], denote

`βF (ρ|γ) :=
〈
ρT , FT

〉
− 〈γ, F0〉 −

∫ T

0

dt
〈
ρt, ∂tFt

〉
−
∫ T

0

dt
〈
ρt,∆Ft

〉
+

∫ T

0

dt

∫
Γ

b(r)n1(r) (∂1Ft)(r) dS(r)

− β

∫ T

0

〈σ(ρt), (∇Ft) · ∇(Jneum ? ρt)〉dt ,

(2.16)

Denote by IγT = Iγ,βT : D([0, T ],F1) −→ [0,∞] the functional given for a trajec-
tory π with πt(du) = ρt(u)du , t ∈ [0, T ] by

IγT (π) = sup
F∈C1,2

0 ([0,T ]×Λ)

ÎT,γ
F (π) , (2.17)
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where for any function F ∈ C1,2
0 ([0, T ] × Λ), ÎT,γ

F = ÎT,γ,β
F : D([0, T ],F1) −→ R is

given by

ÎT,γ
F (π) := `βF (ρ|γ) − 1

2

∫ T

0

dt
〈
σ(ρt),∇Ft · ∇Ft

〉
.

The rate functional Iγ
T : D([0, T ],M) → [0,∞] for the empirical measure is then

given by

Iγ
T (π) =

{
IγT (π) if π ∈ D([0, T ],F1) andQ(π) < +∞ ,

+∞ otherwise .
(2.18)

We are now ready to state the large deviations results:

Theorem 2.5. Fix T > 0 and an initial profile γ in C0(Λ). Consider a sequence
{ηN : N ≥ 1} of configurations associated to γ in the sense of (2.9). Then, for
each closed set C and each open set U of D([0, T ],Md+1), we have

lim
N→∞

1

Nd
logPβ

ηN

[
(WN , πN ) ∈ C

]
≤ − inf

(W,π)∈C
J γ
T (W, π) ,

lim
N→∞

1

Nd
logPβ

ηN

[
(WN , πN ) ∈ U

]
≥ − inf

(W,π)∈U
J γ
T (W, π) .

The functional J γ
T (·, ·) is lower semi-continuous.

We prove this Theorem in sections 5 and 6. We have the following dynamical
large deviation principle for the empirical measure.

Theorem 2.6. Fix T > 0 and an initial profile γ in C0(Λ). Consider a sequence
{ηN : N ≥ 1} of configurations associated to γ in the sense of (2.9). Then, the

sequence of probability measures {Qβ
ηN : N ≥ 1} on D([0, T ],M) satisfies a large

deviation principle with speed N and rate function Iγ
T (·), defined in (2.18):

lim
N→∞

1

Nd
logQβ

ηN

(
πN ∈ C

)
≤ − inf

π∈C
Iγ
T (π)

lim
N→∞

1

Nd
logQβ

ηN

(
πN ∈ U

)
≥ − inf

π∈U
Iγ
T (π) ,

for any closed set C ⊂ D([0, T ],M) and open set U ⊂ D([0, T ],M). The functional
Iγ
T (·) is lower semi-continuous and has compact level sets.

The proof of this Theorem is given in Section 7. It relies on Theorem 2.5 and
the contraction principle.

3. The perturbed dynamics and basic tools

In this section, we consider the perturbation of the original process (2.2), and
we prove some results needed either to caracterize the behavior of the empirical
current and the empirical density, either to prove large deviations principle.
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3.1. The modified process. Fix T > 0, a time dependent vector-valued function

V = (V1, . . . , Vd) ∈
(
C0,0([0, T ]× Λ)

)d
and a smooth function H ∈ C0,0([0, T ]× Γ).

Define at time t, 0 ≤ t ≤ T , the following generators of a time inhomogeneous
Markov process on ΣN(

LV
β,Nf

)
(η) =

d∑
i=1

∑
x,x+ei∈ΛN

Cβ,Vi

N,t (x, x+ ei; η)
[
f(ηx,x+ei)− f(η)

]
,

(LH
b,Nf)(η) =

∑
x∈ΓN

rHx,t
(
b(x/N), η

)[
f(σxη)− f(η)

]
,

where the rate function Cβ,Vi

N,t (x, x+ ei; η) is defined through the rate Cβ
N by

Cβ,Vi

N,t (x, x+ ei; η) = Cβ
N (x, x+ ei; η)e

−[η(x+ei)−η(x)]N−1Vi(t,x/N) , (3.1)

and the rate at the boundary rHx,t
(
b(x/N), η

)
) is defined through the rate rx as

rHx,t
(
b(x/N), η

)
= rx

(
b(x/N), η

)
e(2η(x)−1)N−1H(t,x/N) . (3.2)

For a probability measure µN on ΣN denote by Pβ,V,H
µN

the law of the inhomo-

geneous Markov process (ηt)t∈[0,T ] on the path space D
(
[0, T ],ΣN

)
with generator

LV,H
N = N2LV

β,N +N2LH
b,N and initial distribution µN . Let Qβ,V,H

µN
be the measure

of the process (πN
t )t∈[0,T ] on the state space D

(
[0, T ],M) induced from Pβ,V,H

µN
.

Proposition 3.1. Let µN be a sequence of probability measures on ΣN correspond-
ing to a macroscopic profile γ in the sense of (2.9). Then the sequence of probability
measures Qβ,V,H

µN
converges as N ↑ ∞, to Qβ,V. This limit point is concentrated on

the unique weak solution ρβ,V in L2([0, T ], H1(Λ)) of the following boundary value
problem 

∂tρ+ ∇ ·
{
σ(ρ)

[
β∇(Jneum ? ρ) + V

]}
= ∆ρ

ρ(t, ·)
∣∣
Γ
= b(·) for 0 ≤ t ≤ T ,

ρ0(u) = γ(u) .

(3.3)

Moreover, for each t > 0, δ > 0 and G ∈ (C1(Λ))d, we have

lim
N→∞

Pβ,V,H
µN

[ ∣∣∣ 〈WN
t ,G

〉
−

∫ t

0

ds
〈
J(ρβ,V),G

〉 ∣∣∣ > δ
]

= 0 , (3.4)

where J(ρβ,V) is is the instantaneous current associated to ρβ,V and is given by

J(ρβ,V) = −∇ρβ,V + σ(ρβ,V)
[
β∇(Jneum ? ρβ,V) + V

]
.

We postpone the derivation of this Proposition at the end of this section.

3.2. Some useful tools. In this subsection we collect some technical results which
will be used in the proof both of the hydrodynamic limit and of the dynamical large
deviation principle. We start by some properties of the potential Jneum(·, ·) easily
obtained by its definition.

Lemma 3.2. The potential Jneum(·, ·) is a symmetric probability kernel. Moreover
for any regular function F : Λ → R and 1 ≤ k ≤ d, we have the following:∣∣∣∂k(∫

Λ

Jneum(u, v)F (v)dv
)∣∣∣ ≤ ∫

Λ

Jneum(u, v)
∣∣∂kF (v)

∣∣dv , (3.5)
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where for 1 ≤ k ≤ d, ∂kF is the partial derivative in the direction ek. In particular,
if | · |1 stands for the l1 norme of Rd, then

|∇(J ? F )(u)
∣∣
1
≤

(
J ?

∣∣∇F
∣∣
1

)
(u) . (3.6)

The proof of this Lemma is similar to the one of Lemma 3.1. in Mourragui and
Orlandi (2013) and therefore is omitted.

Next, we show that for t ≥ 0 and V = (V1, . . . , Vd) ∈
(
C1,1([0, T ] × Λ)

)d
, the

rates Cβ,Vi

N,t , 1 ≤ i ≤ d of the generator LV
β,N are a perturbation of the rates of the

symmetric simple exclusion generator. For any F ∈ C1(Λ), u ∈ Λ and 1 ≤ k ≤ d
denote by ∂N

k F (u) the discrete (space) derivative in the direction ek:

∂N
k F (u) = N

[
F (u+ ek/N)− F (u)

]
, if u+ ek/N ∈ Λ . (3.7)

Lemma 3.3. Fix t ≥ 0 and V = (V1, . . . , Vd) ∈
(
C1,1([0, T ] × Λ)

)d
. For any

1 ≤ k ≤ d, η ∈ ΣN and any x ∈ ΛN with x+ ek ∈ ΛN ,

Cβ,Vk

N,t (x, x+ ek; η) = 1−N−1
(
η(x+ ek)− η(x)

)
Υβ,V

k (πN (η), t, x/N) +O(N−2) ,

where

Υβ,V
k (πN (η), t, x/N) = β∂N

k (Jneum ? πN (η))(x/N) + Vk(t, x/N) ,

Proof : Recall from (3.1) that

Cβ,Vk

N,t (x, x+ ek; η) = Cβ
N (x, x+ ek; η)e

−[η(x+ek)−η(x)]N−1Vk(t,x/N). (3.8)

By definition of HN , for all x, y ∈ ΛN and η ∈ ΣN ,

HN (ηx,y)−HN (η) =
1

Nd

(
η(x)− η(y)

)2(
Jneum(

x

N
,
y

N
)− Jneum(0, 0)

)
+
(
η(x)− η(y)

) 2

Nd

∑
z∈ΛN

η(z)
[
Jneum(

x

N
,
z

N
)− Jneum(

y

N
,
z

N
)
]
.

Thus, by Taylor expansion,

Cβ
N (x, x+ek; η) = 1−β

(
η(x+ek)−η(x)

)
N−1∂N

k

[(
Jneum

)
?πN (η)

]
(x/N)+O(N−2) .

To conclude the proof of the Lemma, it remains to apply again Taylor expansion

to the expression e−[η(x+ek)−η(x)]N−1Vk(t,x/N) in (3.8). �

It is well known that one of the main steps in the derivation of a large deviations
principle for the empirical density is a superexponential estimate which allows the
replacement of local functions by functionals of the empirical density in the large
deviations regime. Essentially, the problem consists in bounding expression such
as 〈Z, f〉µst

N
in terms of Dirichlet form N2〈−LN

√
f(η),

√
f(η)〉µst

N
, where Z is a

local function and 〈·, ·〉µst
N

represents the inner product with respect to stationary

measure µst
N . In the context of boundary driven process, the fact that the invari-

ant measure is not explicitly known introduces a technical difficulty. We fix as
reference measure a product measure νNθ(·), see (2.6), where θ is a smooth func-

tion with the only requirement that θ|Γ = b. There is therefore no reasons for

N2〈−LN

√
f(η),

√
f(η)〉νN

θ (·) to be positive. Next lemma estimates this quantity.
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For each probability measure ν on ΣN and each function f ∈ L2(ν), define the
following functionals

D0,N

(
f, ν

)
=

1

2

d∑
i=1

∑
x,x+ei∈ΛN

∫ (
f(ηx,x+ei)− f(η)

)2
dν(η) ,

Db,N

(
f, ν

)
=

1

2

∑
x∈ΓN

∫
rx
(
b(x/N), η

)
(f(σxη)− f(η))

2
dν(η) .

(3.9)

Lemma 3.4. Let θ : Λ → (0, 1) be a smooth function such that θ(·)
∣∣
Γ
= b(·).

There exist two positive constants C0 ≡ C0(‖∇θ‖∞, Jneum,V), C ′
0 ≡ C ′

0(b,H) so
that for any a > 0 and for f ∈ L2

(
νNθ(·)

)
,

〈f , LV
β,Nf〉νN

θ(·)
≤ −

(
1− a

)
D0,N

(
f, νNθ(·)

)
+

C0

a
N−2+d‖f‖2L2(νN

θ(·))
,

〈f , LH
b,Nf〉νN

θ(·)
= −

(
1− a

)
Db,N

(
f, νNθ(·)

)
+

C ′
0

a
N−2+d‖f‖2L2(νN

θ(·))
.

(3.10)

The proof of this lemma is similar to the one of Lemma 3.3 in Mourragui and
Orlandi (2013) and is thus omitted.

This lemma permits us to prove the superexponential estimate. For a cylinder
function Ψ denote the expectation of Ψ with respect to the Bernoulli product

measure νNα by Ψ̃(α):

Ψ̃(α) = EνN
α [Ψ] .

For a positive integer l and x ∈ ΛN , denote the empirical mean density on a box
of size 2l + 1 centered at x by ηl(x):

ηl(x) =
1

|Λl(x)|
∑

y∈Λl(x)

η(y) ,

where
Λl(x) = ΛN,l(x) = {y ∈ ΛN : |y − x| ≤ l} . (3.11)

For 1 ≤ j ≤ d, define the cylinder function Ψj = [η(ej) − η(0)]2, For each V =
(V1, · · · , Vd), G = (G1, · · · , Gd) in (C0,1([0, T ]× Λ))d, and each ε > 0, let

GG,V,β
N,ε (s, η) =

1

Nd

d∑
j=1

∑
x,x+ej∈ΛN

Gj(s, x/N)

×Υβ,V
j (πN (η), s, x/N)

[
τxΨj(η)− Ψ̃j(η

εN (x))
]
.

(3.12)

For a continuous function H : [0, T ]× Γ → R, let

HH
N (s, η) =

1

Nd−1

∑
x∈ΓN

H(s, x/N)
[
η(x)− b(x/N)

]
. (3.13)

Proposition 3.5. Fix G,V ∈ (C0,0([0, T ]×Λ))d, H in C0,0([0, T ]×Γ) and β ≥ 0.
For any sequence of initial measures µN and every δ > 0,

lim
ε→0

lim
N→∞

1

Nd
logPβ,V,H

µN

[ ∣∣∣ ∫ T

0

GG,V,β
N,ε (s, ηs) ds

∣∣∣ > δ
]

= −∞ ,

lim
N→∞

1

Nd
logPβ,V,H

µN

[ ∣∣∣ ∫ T

0

HH
N (s, ηs) ds

∣∣∣ > δ
]

= −∞ .
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We conclude this section by the Girsanov formula needed in the proof of the
large deviations. Indeed, in order to compare the original dynamics to a perturbed
dynamics with regular drifts V,H (3.1) and (3.2), we have to compute the Radon-
Nikodym derivative of the modified process with respect to the original one (see
Kipnis and Landim (1999), Appendix 1, Proposition 7.3). Fix a vector-valued
function V ∈ (C0,0([0, T ]×Λ))d and a function H ∈ C0,0([0, T ]×Γ). For any initial
measure µN and any positive time t > 0, the Radon-Nikodym derivative of Pβ,V,H

µN

with respect to Pβ
µN

restricted to the time interval [0, t] is gives by

dPβ,V,H
µN

dPβ
µN

(
(ηs)s∈[0,t]

)
= Mβ,V

t × Bb,H
t , (3.14)

where Mβ,V
t and Bb,H

t are two exponential martingales given by,

Mβ,V
t =exp

( d∑
k=1

∑
x,x+ek∈ΛN

{∫ t

0

1

N
Vk(s, x/N) dW x,x+ek

s

−N2

∫ t

0

[
ηs(x) + ηs(x+ ej)]C

β
N

(
x, x+ ek; ηs

)
[
e−[∇x,x+ekηs(x)]

1
N Vk(s,x/N) − 1

]
ds
})

,

Bb,H
t =exp

( ∑
x∈ΓN

{∫ t

0

1

N
H(s, x/N) dW x

s

−N2

∫ t

0

rx
(
b(x/N), ηs(x)

)[
e[2ηs(x)−1] 1

N H(s,x/N) − 1
]
ds
})

,

where the rate rx(·, ·) is given by (2.5) and for any function g : ΣN → R and
x, y ∈ ΛN , we have denoted ∇x,yg(η) = [g(ηx,y)− g(η)].

3.3. Proof of Prposition 3.1. The identification of the limit for the empirical density
(πN (ηt))t∈[0,T ] is similar to the one of Mourragui and Orlandi (2013). We therefore
switch to the limit (3.4). Following the same steps as in Bertini et al. (2006b), we
consider the family of jump martingales

W̃ x,y
t = W x,y

t −N2

∫ t

0

[
η(x)− η(y)

]
Cβ,Vi

N,t (x, y; ηs)ds for y = x+ ei , x, y ∈ ΛN ,

W̃ y
t = W y

t −N2

∫ t

0

{
ηs(y)(1− b(y/N))eN

−1H(s,y/N)

− (1− ηs(y))b(y/N)e−N−1H(s,y/N)
}
ds , y ∈ Γ+

N ,

W̃ y
t = W y

t −N2

∫ t

0

{
(1− ηs(y))b(y/N)e−N−1H(s,y/N)

− ηs(y)(1− b(y/N))eN
−1H(s,y/N)

}
ds , y ∈ Γ−

N .

Recall from (2.7) the definition of the empirical measures (WN
j,t)t≥0 , 1 ≤ j ≤ d.

Fix a smooth vector field G = (G1, · · · , Gd) ∈
(
C1,1([0, T ]×Λ))d, and consider the
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Pβ,V,H
µN -martingale W̃G,V,H

t ≡ W̃G,V,H,N,β
t , t ∈ [0, T ], defined by

W̃G,V,H
t =

d∑
k=1

{〈
WN

k,t , Gk

〉
− N2

Nd+1

∑
x,x+ek∈ΛN

Gk(x/N)

∫ t

0

[
ηs(x)− ηs(x+ ek)

]
Cβ,Vk

N,t

(
x, x+ ek; ηs

)
ds
}

− N2

Nd+1

∑
x∈ΓN

G1(x/N)n1(x/N)

∫ t

0

{
ηs(x)(1− b(x/N))eN

−1H(s,x/N)

− (1− ηs(x))b(x/N)e−N−1H(s,x/N)
}
ds .

From Lemma 3.3 and Taylor expansion the integral term of the last expression is
equal to

− N2

Nd+1

d∑
k=1

∑
x,x+ek∈ΛN

Gk(x/N)

∫ t

0

[
ηs(x)− ηs(x+ ek)

]
ds

− 1

Nd

d∑
k=1

∑
x,x+ek∈ΛN

Gk(x/N)

∫ t

0

[
ηs(x)− ηs(x+ ek)

]2
Υβ,V

k (πN (ηs), s, x/N) ds

− 1

Nd−1

∑
x∈ΓN

G1(x/N)n1(x/N)

∫ t

0

[
ηs(x)− b(x/N)

]
ds + OG,β,V,H

(
N−1

)
,

where for 1 ≤ k ≤ d, η ∈ ΣN , s ≥ 0 and x ∈ ΛN ,

Υβ,V
k (πN (η), s, x/N) = β∂N

k (Jneum ? πN (ηs))(x/N) + Vk(s, x/N) ,

for any smooth function G, ∂N
j G is defined in (3.7), and OG,β,V,H

(
N−1

)
is an

expression whose absolute value is bounded by CN−1 for some constant depending
on G, β, Jneum, V and H. A summation by parts and Taylor expansion permit to

rewrite the martingale W̃G,V,H
t as

W̃G,V,H
t =

〈
WN

t , G
〉
− 1

Nd

d∑
k=1

∑
x∈ΛN\ΓN

∫ t

0

ds
(
∂kGk

)
(x/N)ηs(x)

− 1

Nd

d∑
k=1

∑
x∈ΛN\ΓN

∫ t

0

dsGk(x/N)
[
ηs(x)− η(x+ ek)

]2
Υβ,V

k (πN (ηs), s, x/N)
]

+
1

Nd−1

∑
x∈ΓN

G1(x/N)n1(x/N)

∫ t

0

ηs(x)ds

− 1

Nd−1

∑
x∈ΓN

G1(x/N)n1(x/N)

∫ t

0

[
ηs(x)− b(x/N)

]
ds + OG,β,V,H

(
N−1

)
.

Here, Γ−
N , resp. Γ+

N , stands for the left, resp. right, boundary of ΛN :

Γ±
N = {(x1, · · · , xd) ∈ ΓN : x1 = ±N}
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Next, we use the replacement lemma stated in Proposition 3.5. We obtain that the

martingal W̃G,V,H
t can be replaced by

〈
WN

t , G
〉
−

∫ t

0

ds
{ d∑

k=1

< πN (ηs), ∂kGk >
}

+

∫ t

0

ds

∫
Γ

G1(r) b(r)n1(r) dS(r)

−
∫ t

0

ds
{ 1

Nd

d∑
k=1

∑
x∈ΛN\ΓN

Gk(x/N)σ
(
ηεNs (x)

)
Υβ,V

k (πN (ηs), s, x/N)
}
.

On the other hand, a simple computation shows that the expectation of the qua-

dratic variation of the martingale W̃G,V,H
t vanishes as N ↑ +∞. Therefore, by

Doob’s inequality, for every δ > 0,

lim
N→∞

Pβ,V,H
µN

[
sup

0≤t≤T
|W̃G,V,H

t | > δ
]

= 0 . (3.15)

Finally, recall that by the first part of the proposition, the empirical density con-
verges to the solution of the equation (3.3). This concludes the proof.

Remark 3.6. The hydrodynamic equation (3.3) of the perturbed process does not
depend on the function H. This follows from Lemma 3.5 and Lemma 3.4, where it
is shown that the density at the boundary can be replaced by the function b when
N ↑ +∞.

4. Properties of the rate functionals

In this section, we prove representation results for the rates J γ
T (·) and Iγ

T (·), see
Lemma 4.5, the lower semicontinuity and the compactness of the level sets , see
Proposition 4.2.

4.1. Lower semicontinuity. We first prove that the functional J γ
T is larger than Iγ

T :

Lemma 4.1. For any (W, π) ∈ D([0, T ],Md+1),

Iγ
T (π) ≤ J γ

T (W, π) .

Proof : When J γ
T (W, π) = +∞, the inequality is trivially verified. Suppose then

that J γ
T (W, π) < +∞. This implies that π ∈ D

(
[0, T ],F1

)
, (W, π) ∈ Aγ ,

Q(π) < +∞ and J γ
T (W, π) = JT (W, π). Furthermore, by definition, since π ∈

D
(
[0, T ],F1

)
and Q(π) < +∞, we have Iγ

T (µ) = IγT (µ).
Let F ∈ C1,2

0 ([0, T ]× Λ), since (W, π) ∈ Aγ , we have

ÎT,γ
F (π) = ĴT∇F (W, π) ≤ J γ

T (W, π) .

To conclude the proof, it is enough to take the supremum over all F ∈ C1,2
0 ([0, T ]×

Λ), on the left hand side of the last inequality. �

The main result of this subsection is stated in the following proposition.

Proposition 4.2. For every profile γ ∈ F1, the functional J γ
T , resp. Iγ

T de-
fined in (2.15), resp. (2.18) is lower semicontinuous for the topology of the space
D([0, T ],Md+1), resp. D([0, T ],M). Moreoever the functional Iγ

T has compact
level sets in D([0, T ],M).
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The proof is split in several lemmata. We follow the general scheme used in
Quastel et al. (1999); Bertini et al. (2009). Denote

Bb
γ = {(πt(du))t∈[0,T ] = (ρt(u)du)t∈[0,T ] : ρ ∈ L2([0, T ],H1(Λ)) ,

ρ0(·) = γ(·); Tr(ρt)(·) = b(·), for a.e. t ∈ (0, T ]}.

Lemma 4.3. Let π be a trajectory in D([0, T ],M) such that Iγ
T (π) < ∞. Then π

belongs to Bb
γ ∩ C([0, T ],F1). Furthermore, there exists a positive constant C0 =

C0(β, J
neum) such that

Q(π) ≤ C0

{
1 + Iγ

T (π)
}
. (4.1)

Proof : The proof of the first statement of this Lemma is similar to the one of
Lemma 4.1 in Farfan et al. (2011) and is therefore omitted. One can prove (4.1) by
using the same arguments as in the proof of Proposition 4.3. Quastel et al. (1999)
or Lemma 4.9. in Bertini et al. (2009). �

The proof of the lower-semicontinuity of the rate function Iγ
T is based on com-

pactness arguments; its basic tools is given by the next Proposition. We refer to
Bertini et al. (2009); Farfan et al. (2011) for the proof.

Proposition 4.4. Let {πn : n ≥ 1} be a sequence of functions in D([0, T ],M) such
that

sup
n∈N

{
Iγ
T (π

n)
}
< ∞

with πn(t, du) = ρn(t, u)du, for t ∈ [0, T ] and n ∈ N. Suppose that the sequence
ρn converges weakly in L2([0, T ] × Λ) to some ρ. Then, ρn converges strongly in
L2([0, T ]× Λ) to ρ.

Proof of Proposition 4.2. The proof for the functional Iγ
T is omitted since it’s the

same as for the one dimensional boundary driven Kawasaki process with Neuman
Kac interaction Mourragui and Orlandi (2013).

To prove the lower semicontinuity of the functional J γ
T , we have to show that

for all a ≥ 0 the set

Ea =
{
(W, π) ∈ D([0, T ],Md+1) : J γ

T (W, π) ≤ a
}

is closed in D([0, T ],Md+1). Fix a ≥ 0 and consider a sequence {(Wn, πn) : n ≥ 1}
in Ea converging to some (W, π) in D([0, T ],Md+1), and denote by πn

t (du) =
ρnt (u)du. Then for all V in (C([0, T ]× Λ))d and F in C([0, T ]× Λ),

lim
n→∞

∫ T

0

dt 〈Wn
t ,Vt〉 =

∫ T

0

dt 〈Wt,Vt〉 ,

lim
n→∞

∫ T

0

dt 〈πn
t , Ft〉 =

∫ T

0

dt 〈πt, Ft〉.
(4.2)

We claim that Eγ(W, π) < +∞. Indeed, from the lower semicontinuity of Iγ
T ,

Lemma 4.1 and Lemma 4.3, π belongs to Bb
γ and Q(π) ≤ Ca for some positive

constant Ca. Moreover, for any F ∈ C1
0(Λ)

0 = lim
n→∞

sup
t∈[0,T ]

{
〈πn

t , F 〉 − 〈γ, F 〉 − 〈Wn
t ,∇F 〉

}
= sup

t∈[0,T ]

{
〈πt, F 〉 − 〈γ, F 〉 − 〈Wt,∇F 〉

}
,
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proving that (W, π) ∈ Aγ and then Eγ(W, π) < +∞, so that J γ
T (W, π) =

JT (W, π).
Denote by ρ the density of π: πt(du) = ρt(u)du. Since ρn converges weakly to

ρ in L2([0, T ] × Λ) (cf. (4.2)), by Proposition 4.4, ρn converges strongly to ρ in
L2([0, T ]× Λ), hence for any V in (C1,1([0, T ]× Λ))d

lim
n→∞

{
Lβ
V(Wn, πn) − 1

2

∫ T

0

dt 〈σ(ρnt ),Vt ·Vt〉
}

= Lβ
V(W, π) − 1

2

∫ T

0

dt 〈σ(ρt),Vt ·Vt〉 .

Since (Wn, πn) belongs to Ea, the left hand side is bounded by a. Taking the
supremum over V in (C1,1([0, T ]×Λ))d we obtain that JT (W, π) ≤ a and conclude
the proof of the lower semicontinuity of J γ

T .

4.2. Representation theorem. Given a path π ∈ D([0, T ];F1) with π(t, du) =
ρ(t, u)du, we denote by L2(σ(π)) the Hilbert space of (equivalence classes of) mea-

surable vector-valued functions {G : [0, T ] × Λ → Rd :
∫ T

0
〈σ(ρ(t, u)),G(t, u) ·

G(t, u)〉dt < ∞} endowed with the inner product 〈〈·, ·〉〉σ(π) induced by

〈〈V,G〉〉σ(π) =

∫ T

0

dt

∫
Λ

duσ(π(t, u))V(t, u) ·G(t, u) .

The norm of L2(σ(π)) is denoted by ‖ · ‖L2(σ(π)).

Denote by H1
0 (σ(π)) the Hilbert space obtained by quotienting and completing

C1,2
0 ([0, T ]× Λ) with respect to the pre-inner product defined by

〈F,H〉1,σ(π) = 〈〈∇F,∇H〉〉σ(π) .

The norm of H1
0 (σ(π)) is denoted by ‖ · ‖H1

0 (σ(π))
.

Lemma 4.5. Let (W, π) ∈ D([0, T ],Md+1) such that J γ
T (W, π) < ∞. There exists

a function U in L2(σ(π)) such that (W, π) is the weak solution of the equation

∂tWt = −∇ρt + σ(ρt)
[
β∇(Jneum ? ρt) + U

]
, W0 = 0 , (4.3)

in the following sense : for any G ∈
(
C1,1([0, T ]× Λ)

)d
,

Lβ
G(W, π) = 〈〈G,U〉〉σ(π) =

∫ T

0

dt 〈σ(πt),Gt ·Ut〉 ,

where the linear function G 7→ Lβ
G(W, π) is defined by (2.14).

Furthermore, there exists a function F ∈ H1
0 (σ(π)) such that ρ(·, ·) solves the

equation (3.3) and ∇ ·
(
σ(ρ)(U − ∇F )

)
= 0 in the weak sense described by (4.6).

Moreover,

J γ
T (W, π) =

1

2
‖U‖L2(σ(π)) =

1

2

∫ T

0

dt 〈σ(ρt),Ut ·Ut〉 (4.4)

and

Iγ
T (π) =

1

2
‖F‖H1

0 (σ(π))
=

1

2

∫ T

0

dt 〈σ(ρt),∇Ft · ∇Ft〉 . (4.5)
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Proof : Assume that J γ
T (W, π) < ∞, then Eγ(W, π) < ∞ and JT (W, π) < ∞.

Following the arguments in Kipnis and Landim (1999, §10.5), from Riesz represen-
tation theorem, we derive the existence of a function U in L2(σ(π)) satisfying (4.4)
and (4.3).

On the other hand, from Lemma 4.1, we have Iγ
T (π) < ∞. Using again the

Riesz representation theorem (cf. Kipnis and Landim (1999, §10.5)), we derive
the existence of a function F in H1

0 (σ(π)) such that ρ is the weak solution of the
boundary value problem (3.3), with V = ∇F . Then, the representation (4.5) for
the functional Iγ

T follows immediately. Finally, equation (4.3) and the fact that
(W, π) ∈ Aγ yield, 〈

〈(U−∇F ),∇G
〉
〉σ(ρ) = 0, (4.6)

for all G ∈ C1,2
0 ([0, T ]× Λ). �

5. large deviations upper bound for the empirical current

In this section, we prove the large deviations upper bounds stated in Theorem 2.5
and in Theorem 2.6. In view of the definitions of the energy functional Eγ and the
rate functional for the large deviations, we need to exclude in the large deviations
regime, paths (Wt, πt)t∈[0,T ] which do not belong to Aγ , and with infinite energy
Q(π) = +∞.

5.1. The set Aγ . Fix a positive profile γ and let Ãγ be the set of trajectories (W, π)
in D([0, T ],Md+1) such that for any G ∈ C2

0(Λ) and any ϕ ∈ C1([0, T ])

sup
0≤t≤T

Vt,γ
(G,ϕ)(W, π) = 0 ,

where for (G,ϕ) ∈ C2
0(Λ)× C1([0, T ]) and 0 ≤ t ≤ T ,

Vt,γ
(G,ϕ)(W, π) =〈πt, G〉ϕ(t)− 〈γ,G〉ϕ(0)−

∫ t

0

ds〈πs, G〉ϕ′(s)

− 〈Wt,∇G〉ϕ(t) +
∫ t

0

ds〈Ws,∇G〉ϕ′(s) .

(5.1)

Here ϕ′ stands for the time derivative of ϕ.

Lemma 5.1. Fix (W, π) in D([0, T ],Md+1) such that

sup
(G,ϕ)

sup
0≤t≤T

{
Vt,γ

(G,ϕ)(W, π)
}
< ∞ ,

where the supremum is taken over all (G,ϕ) ∈ C2
0(Λ) × C1([0, T ]). Then (W, π)

belongs to Aγ .

Proof : Let M > 0 be such that Vt,γ
(G,ϕ)(W, π) ≤ M , for all (G,ϕ) ∈ C2

0(Λ) ×
C1([0, T ]), and 0 ≤ t ≤ T . Fix a function G ∈ C2

0(Λ) and 0 ≤ t1 < t2 ≤ T , we have{
〈πt1 , G〉 − 〈πt2 , G〉

}
−

{〈
Wt1 ,∇G

〉
−

〈
Wt2 ,∇G

〉}
≤ M .

Applying this last inequality to the functions −G and then to AG for positive
number A > 0, we get,∣∣∣{〈πt, G〉 − 〈πs, G〉

}
−
{〈

Wt,∇G
〉
−

〈
Ws,∇G

〉}∣∣∣ ≤ M

A
,
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for all A > 0. It remains to let A ↑ +∞. �
The following lemma is needed for the proof of the upper bound of the large

deviations, which consists in two steps. We shall prove at first an upper bound
with an auxiliary rate functional Fa for small a > 0 (Proposition 5.6). This new
rate functional will allow to take the large deviations rate functional equal to +∞
on the set of paths (W,π), which do not belong to Ãγ .

Lemma 5.2. Fix a sequence {ηN ∈ ΣN : N ≥ 1} of configurations. For any
(G,ϕ) ∈ C2

0(Λ)× C1([0, T ]) and any a > 0, we have

lim
N→∞

1

Nd
logEβ

ηN

[
exp

(
aNd sup

0≤t≤T
Vt,γ

(G,ϕ)(W
N , πN )

)]
≤ 0 .

Proof : The proof follows the general scheme used in Bertini et al. (2006b). Notice
however that in our context there are some additional difficulties due to the bound-
ary terms. Fix (G,ϕ) ∈ C2

0(Λ) × C1([0, T ]). For any time s ∈ [0, T ], we have the
following microscopic relation

ηs(x) = η0(x)+
d∑

j=2

(
W x−ej ,x

s −W x,x+ej
s

)
+


W x−e1,x

s −W x,x+e1
s if x ∈ ΛN \ ΓN ,

W x
s −W x,x+e1

s if x ∈ Γ−
N ,

W x−e1,x
s −W x

s if x ∈ Γ+
N .

Since G vanishes at the boundary Γ, the classical spatial summations
by parts and integrations by parts in time, permit to rewrite the two terms of
Vt,γ

(G,ϕ)(W
N , πN ) as

〈πt, G〉ϕ(t)− 〈π0, G〉ϕ(0)−
∫ t

0

ds〈πs, G〉ϕ′(s)

=
1

Nd+1

d∑
j=1

∑
x∈ΛN\Γ+

N

∫ t

0

∂N
j G(x/N)ϕ(s)dW x,x+ej

s ,

〈Wt,∇G〉ϕ(t)−
∫ t

0

ds〈Ws,∇G〉ϕ′(s)

=
1

Nd+1

d∑
j=1

∑
x∈ΛN\Γ+

N

∫ t

0

∂jG(x/N)ϕ(s)dW x,x+ej
s

+
1

Nd+1

∑
x∈ΓN

∫ t

0

∂1G(x/N)n1(x/N)ϕ(s)dW x
s ,

where ∂N
j G(x/N) is the discrete derivative defined in (3.7) and ∂jG is the partial

derivative of the function G in the direction ej . Let H : Γ → R be the function
given by H(s, u) = −∂1G(u)n1(u)ϕ(s) and for 1 ≤ j ≤ d and N > 1, denote
by VN = (V N

1 , · · · , V N
d ) the time dependent vector valued function defined by

VN
j (s, u) = N

[
∂N
j G(u)− ∂jG(u)

]
ϕ(s), we obtain

aNdVt,γ
(G,ϕ)(W

N , πN ) =
a

N2

d∑
j=1

∑
x∈ΛN\Γ+

N

∫ t

0

V N
j (s, x/N)dW x,x+ej

s

+
a

N

∑
x∈ΓN

∫ t

0

H(s, x/N)dW x
s .
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Thus by Cauchy-Schwarz inequality,

1

Nd
logEβ

ηN

[
exp

(
aNd sup

0≤t≤T
Vt,γ

(G,ϕ)(W
N , πN )

)]
≤ 1

2Nd
logEβ

ηN

[
exp

( 2a

N2
sup

0≤t≤T

d∑
j=1

∑
x∈ΛN\Γ+

N

∫ t

0

V N
j (s, x/N)dW x,x+ej

s

)]

+
1

2Nd
logEβ

ηN

[
exp

(2a
N

sup
0≤t≤T

∑
x∈ΓN

∫ t

0

H(s, x/N)dW x
s

)]
.

(5.2)

Next, we control separately the two terms of the right hand side of (5.2) using

the mean one exponential martingales Mβ, 2aN V
t and Bb,2aH

t defined in the Girsanov
formula (3.14):

Mβ, 2aN V
t = exp

( 2a

N2

d∑
j=1

∑
x∈ΛN\Γ+

N

∫ t

0

V N
j (s, x/N)dW x,x+ej

s − R
2a
N V
0,t

)
,

Bb,2aH
t = exp

(2a
N

∑
x∈ΓN

∫ t

0

H(s, x/N)dW x
s − R2aH

b,t

)
,

(5.3)

where

R
2a
N V
0,t = N2

d∑
j=1

∑
x∈ΛN\Γ+

N

∫ t

0

{
[ηs(x) + ηs(x+ ej)]C

β
N

(
x, x+ ej ; ηs

)
×

(
e−[∇x,x+ej ηs(x)]

2a
N2 V N

j (s,x/N) − 1
)}

ds

R2aH
b,t = N2

∑
x∈ΓN

∫ t

0

rx
(
b(x/N), ηs(x)

)(
e[2ηs(x)−1] 2aN H(s,x/N) − 1

)
ds .

We start by the boundary term which differs from the proof of Bertini et al.
(2006b). Recall from (3.13) the definition of HH

N (s, η). Let δ > 0, and define the
set

EH
N,δ =

{
η· ∈ D([0, T ],ΣN ) :

∣∣∣ ∫ T

0

HH
N (t, ηt)dt

∣∣∣ ≤ δ
}
.

According to the definition of Bb,2aH
t and using the following inequality,

lim
N→∞

1

Nd
log(aN + bN ) ≤ max

{
lim

N→∞

1

Nd
log aN , lim

N→∞

1

Nd
log bN

}
, (5.4)

we reduce the control of the second term of the right hand side of (5.2) to the
following claims. For any δ > 0,

lim
N→∞

1

2Nd
logEβ

ηN

[
sup

0≤t≤T

{
Bb,2aH
t × exp

(
R2aH

b,t

)}
1(EH

N,δ)
c

]
= −∞ . (5.5)

and

lim
δ→0

lim
N→∞

1

2Nd
logEβ

ηN

[
sup

0≤t≤T

{
Bb,2aH
t × exp

(
R2aH

b,t

)}
1EH

N,δ

]
≤ 0 . (5.6)

By Schwartz inequality, the expression in the first limit is bounded above by

lim
N→∞

1

4Nd
logEβ

ηN

[
sup

0≤t≤T

(
Bb,2aH
t ×exp

(
R2aH

b,t

))2]
+ lim

N→∞

1

4Nd
logPβ

ηN

[
(EH

N,δ)
c
]
.
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From Lemma 3.5, for any δ > 0, the second term in the last expression is equal
to −∞. Consider the first term. Since G ∈ C2

0(Λ), a Taylor expansion shows that

sup
0≤t≤T

|R2aH
b,t | ≤ Nda(1 +

a

N
)C(H,T ) for some constant C(H,T ) depending on H

and T . Moreover, we can write the martingale Bb,2aH
t as

Bb,2aH
t =

(
Bb,aH
t

)2

exp
(
2RaH

b,t −R2aH
b,t

)
≤

(
Bb,aH
t

)2

exp
{
a(1 +

a

N
)C(H,T )

}
.

(5.7)

Here and below C(H,T ) is a bounded constant depending on H and T whose value
may change from line to line. Therefore,

1

4Nd
logEβ

ηN

[
sup

0≤t≤T

(
Bb,2aH
t × exp

(
R2aH

b,t

))2]
≤ a(1 +

a

N
)C(H,T ) +

1

4Nd
logEβ

ηN

[
sup

0≤t≤T

(
Bb,2aH
t

)2]
.

Since
(
Bb,2aH
t

)
t∈[0,T ]

is a positive martingale equal to 1 at time 0, by Doob’s in-

equality (cf. Proposition 2.16. in Ethier and Kurtz (1986)), the last expression in
bounded above by

a(1 +
a

N
)C(H,T ) +

1

4Nd
logEβ

ηN

[
4
(
Bb,2aH
T

)2]
≤ a(1 +

a

N
)C(H,T ) +

1

4Nd
logEβ

ηN

[
Bb,4aH
T

]
= a(1 +

a

N
)C(H,T ) ,

(5.8)

where we have used again the identity (5.7). This concludes the proof of (5.5).
On the other hand, a Taylor expansion shows that on the set EH

N,δ, for any
0 ≤ t ≤ T , we have

|R2aH
b,t | ≤ Nda

(
δ +

a

N
C(H)

)
,

for some positive constant C(H). We then check the limit (5.6) by using again the
same arguments as in (5.7), (5.8) and letting N ↑ ∞ then δ ↓ 0.

We now consider the first term of the right hand side of (5.2). Since G ∈ C2
0(Λ),

Lemma 3.3, a Taylor expansion and a summation by parts allow to show that for
any 0 ≤ t ≤ T ,

R
β, 2aN V
0,t ≤ aoV(1)

d∑
j=1

∑
x∈ΛN

∫ T

0

dt ηt(x) + aβTNd−1C(V) + ta2Nd−2C(V, β)

≤ a
{
oV(1) +

β

N
C(V) +

a

N2
C(V, β)

}
NdT ,

where oV(1) is an expression depending on V which vanishes as N ↑ ∞. It remains

to apply again the same arguments as in (5.7), (5.8) for the martingale Mβ, 2aN V
t :

Mβ, 2aN V
t =

(
Mβ, a

N V
t

)2

exp
(
2R

β, a
N V

t −R
β, 2aN V
t

)
≤

(
Mβ, a

N V
t

)2

eN
drN (V,a,T ) ,

where rN (V, a, T ) stands for an expression depending on V, a and T which vanishes
as N ↑ ∞. �
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5.2. The energy estimate Q. In this subsection, we state an energy estimate which
is one of the main ingredients in the proof of large deviations and also in the proof
of hydrodynamic limit. For π ∈ D

(
[0, T ],F1

)
, with πt(du) = ρt(u)du, 0 ≤ t ≤ T ,

δ > 0, 1 ≤ i ≤ d, and H ∈ C∞
c ([0, T ]× Λ) define

Q̃δ
i,H(π) =

∫ T

0

dt〈πt, ∂iHt〉 − δ

∫ T

0

dt〈σ(ρt)Ht, Ht〉 , (5.9)

Q̃δ
i (π) = sup

H∈C∞
c ([0,T ]×Λ)

{
Q̃δ

i,H(π)
}
,

Notice that

Q(π) =

d∑
i=1

Q̃2
i (π) ,

where Q(·) is defined in (2.12). We shall denote Qi = Q̃2
i , so that Q =

∑d
i=1 Qi.

For each ε > 0 and π in M, denote by πε the absolutely continuous measure
obtained by smoothing the measure π:

πε(du) =
1

κε

π(Λε(u))

|Λε(u)|
du ,

where Λε(u) = {v ∈ Λ : |v − u| ≤ ε}, |A| stands for the Lebesgue measure of the
set A, and {κε : ε > 0} is a strictly decreasing sequence converging to 1. Denote

πN,ε =
(
πN

)ε
,

and notice that for N sufficiently large πN,ε belongs to F1 because κε > 1. More-
over, for any G ∈ C0(Λ),

〈πN,ε, G〉 =
1

Nd

∑
x∈ΛN

G(x/N)ηεN (x) + O(N, ε) ,

where O(N, ε) is absolutely bounded by C{N−1 + ε} for some finite constant C
depending only on G.

Lemma 5.3. Fix a sequence {ηN ∈ ΣN : N ≥ 1} of configurations and H ∈
C∞
c ([0, T ] × Λ). There exists a positive constant C1 depending only on b and β so

that for any given δ0 > 0, for any δ, 0 ≤ δ ≤ δ0 and any 1 ≤ i ≤ d, we have

lim
ε→0

lim
N→∞

1

Nd
logEβ

ηN

[
exp

(
δ NdQ̃δ0

i,H(πN,ε
))]

≤ C1(T + 1) .

The proof of this Lemma is similar to the one of Lemma 3.8. in Mourragui and
Orlandi (2013), and therefore is omitted.

Corollary 5.4. Fix a sequence {ηN ∈ ΣN : N ≥ 1} of configurations and H ∈
C∞
c ([0, T ] × Λ). There exists a positive constant C1 depending only on b and β so

that for any given δ0 > 0, for any δ, 0 ≤ δ ≤ δ0,

lim
ε→0

lim
N→∞

1

Nd
logEβ

ηN

[
exp

(
δ Nd sup

1≤i≤d
Q̃δ0

i,H(πN,ε
))]

≤ C1(T + 1) . (5.10)

Proof : From the inequality (5.4) the limit in (5.10) is bounded above by

max
1≤i≤d

{
lim
ε→0

lim
N→∞

1

Nd
logEβ

ηN

[
exp

(
δ NdQ̃δ0

i,G(π
N,ε

))]
.

The thesis follows By Lemma 5.3. �
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5.3. The functional Eγ . For (G,ϕ) ∈ C2
0(Λ) × C1([0, T ]) and H ∈ C∞

c ([0, T ] × Λ),

denote by Eγ,H
(G,ϕ) the functional

Eγ,H
(G,ϕ)(W, π) = sup

1≤i≤d

{
Qi,H(π)

}
+ sup

0≤t≤T

{
Vt,γ

(G,ϕ)(W, π)
}
, (5.11)

where Qi,H(π) = Q̃2
i,H(π) with δ = 2, and Vt,γ

(G,ϕ) are defined in (5.9) and (5.1).

Lemma 5.5. Fix a sequence {ηN ∈ ΣN : N ≥ 1} of configurations, (G,ϕ) ∈
C2
0(Λ) × C1([0, T ]) and H ∈ C∞

c ([0, T ] × Λ). There exists a positive constant C2

depending only on b and β so that, for any 0 ≤ δ ≤ 1 and any 1 ≤ i ≤ d,

lim
ε→0

lim
N→∞

1

Nd
logEβ

ηN

[
exp

(
δ NdEγ,H

(G,ϕ)(W
N , πN,ε)

)]
≤ C2(T + 1) .

Proof : By Schwarz inequality,

1

Nd
logEβ

ηN

[
exp

(
δ NdEγ,H

(G,ϕ)(W
N , πN,ε)

)]
≤ 1

2Nd
logEβ

ηN

[
exp

(
2δ Nd sup

0≤t≤T

{
Vt,γ

(G,ϕ)(W
N , πN,ε)

)]
+

1

2Nd
logEβ

ηN

[
exp

(
2δ Nd sup

1≤i≤d

{
Qi,H(πN,ε)

})]
.

The result is an imediate consequence of Lemma 5.2 and of Corollary 5.4. �

5.4. Upper bound. In this section we investigate the upper bound of the large devi-
ations principle for compact sets and then for closed sets of the couple (WN , πN )
on the topological space D([0, T ),Md+1). We follow the strategy of Mourragui and
Orlandi (2013), relying on some properties of the rate function that we proved in
the last subsections. Notice however that in the present case the proof is slightly
more demanding due to the definition of the energy functional Eγ . We first prove
an upper bound with an auxiliary rate functional.

Recall from (5.11) the definition of Eγ,H
(G,ϕ). We introduce the functional Eγ :

D([0, T ],Md ×F1) → [0,+∞] defined by

Eγ(W, π) = sup
G,ϕ,H

{
Eγ,H
(G,ϕ)(W, π)

}
, (5.12)

where the supremum is carried over all (G,ϕ,H) ∈ C2
0(Λ)×C1([0, T ])×C∞

c ([0, T ]×
Λ). Notice that Eγ(W, π) < +∞ if and only if Eγ(W, π) < +∞.

For each 0 ≤ a ≤ 1, let Fa : D([0, T ],Md+1) → [0,+∞] be the functional given
by

Fa(W, π) =

{
JT (W, π) + aEγ(W, π) if D([0, T ],Md ×F1) ,

+∞ otherwise .

Proposition 5.6. Let K be a compact set of D([0, T ],Md+1). There exists a
positive constants C2, such that for any 0 < a ≤ 1,

lim
N→∞

1

Nd
logQβ

ηN (K) ≤ − 1

1 + a
inf

(W,π)∈K
Fa(W, π) +

a

1 + a
C2(T + 1) .
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Proof : Fix a compact set K of D([0, T ],Md+1) and functions (G,ϕ) ∈ C2
0(Λ) ×

C1([0, T ]), H ∈ C∞
c ([0, T ] × Λ), V = (V1, · · · , Vd) ∈ (C1,1([0, T ] × Λ))d. Denote by

O the vector-valued function (0, · · · , 0), where each component is the zero function

and recall from (3.12) and (3.13), the definition of GV,0,β
N,ε and H∂1V1

N . For δ > 0,

let BV,0,β
N,ε,δ , E

∂1V1

N,δ be the sets of trajectories (ηt)t∈[0,T ] defined by

BV,0,β
N,ε,δ =

{
η· ∈ D([0, T ],ΣN ) :

∣∣∣ ∫ T

0

GV,0,β
N,ε (t, ηt)dt

∣∣∣ ≤ δ
}
,

E∂1V1

N,δ =
{
η· ∈ D([0, T ],ΣN ) :

∣∣∣ ∫ T

0

H∂1V1

N (t, ηt)dt
∣∣∣ ≤ δ

}
and set

AV,β
N,ε,δ = BV,0,β

N,ε,δ ∩ E∂1V1

N,δ .

By (5.4) and the superexponential estimates stated in Proposition 3.5, for any
δ > 0

lim
ε→0

lim
N→∞

1

Nd
logQβ

ηN

(
K ∩

(
AV,β

N,ε,δ

)c)
= −∞ , (5.13)

where
(
AV,β

N,ε,δ

)c
stands for the complementary of the set AV,β

N,ε,δ.

Recall from (5.11) the definition of Eγ,H
(G,ϕ). To short notation we denote by

K̂V,β
N,ε,δ = K ∩AV,β

N,ε,δ, and write

1

Nd
logQβ

ηN

(
K ∩AV,β

N,ε,δ

)
=

1

Nd
logEβ

ηN

[
11{K̂V,β

N,ε,δ}e
− a

1+aNdEγ,H
(G,ϕ)

(WN ,πN,ε)
e

a
1+aNdEγ,H

(G,ϕ)
(WN ,πN,ε)

]
.

By Hölder inequality the right hand side of the last equality is bounded above by

1

1 + a

1

Nd
logEβ

ηN

[
11{K̂V,β

N,ε,δ}e
−aNdEγ,H

(G,ϕ)
(WN ,πN,ε)

]
+

a

1 + a

1

Nd
logEβ

ηN

[
e
NdEγ,H

(G,ϕ)
(WN ,πN,ε)

]
.

(5.14)

From Lemma 5.5, the limsup when N ↑ ∞ and ε ↓ 0 of the second term of this

inequality is bounded by
a

1 + a
C2(T + 1), while the first term can be rewriten as

the expectation with respect to the perturbed process introduced in Subsection 3.1

whose law is given by Pβ,V
ηN , that is

1

1 + a

1

Nd
logEβ,V

ηN

[ dPβ
ηN

dPβ,V
ηN

11{K̂F,V,β
N,ε,c }e−aNdEγ,H

(G,ϕ)
(WN ,πN,ε)

]
. (5.15)

By (3.14), the Radon-Nikodym derivative of Pβ
ηN

with respect to the probability

Pβ,V
ηN

defined by the Girsanov formula satisfies on the set AV,β
N,ε,δ

dPβ
ηN

dPβ,V
ηN

= expNd
{
− ĴTV(WN , πN,ε) + r(N, ε, δ,V)

}
,

where ĴTV(·) is the functional defined in (2.14), and r(N, ε, c,V) is a quanity satis-
fying

lim
δ→0

lim
ε→0

lim
N→∞

r(N, ε, δ,V) = 0 .



670 M. Mourragui

We now exclude paths whose densities are not absolutely continuous with respect
to the Lebesgue measure. Fix a sequence {fk : k ≥ 1} of smooth nonnegative
functions dense in C0(Λ) for the uniform topology. For k ≥ 1 and % > 0, let

Dk,% =
{
(W, π) ∈ D([0, T ],Md+1) :

0 ≤< πt, fk >≤
∫
Λ

fk(x) dx + Ck% , 0 ≤ t ≤ T
}
,

where Ck = C(‖∇fk‖∞) is positive constants depending on the gradient ∇fk of fk.
The sets Dk,%, k ≥ 1, % > 0 are closed subsets of ∈ D([0, T ],Md+1), as well as

Dm,% =

m∩
k=1

Dk,% , m ≥ 1 .

Note that the empirical measure πN belongs to Dm,% for N sufficiently large. We
have that

D([0, T ],Md ×F1) = ∩n≥1 ∩m≥1 Dm,1/n. (5.16)

For m,n ∈ Z+, let Êγ,ε,m,n
(G,ϕ),H : D([0, T ],Md+1) → R∪{∞} be the functional given

by

Êγ,ε,m,n
(G,ϕ),H(W, π) =

{
Eγ,H
(G,ϕ)(W, πε) if π ∈ Dm, 1

n
,

+∞ otherwise .
(5.17)

It is lower semicontinuous because so is (W, π) 7→ Eγ,H
(G,ϕ)(W, πε), and because

Dm,1/n is closed.
Recollecting all previous estimates. Using the inequality (5.4), optimizing over

π in K and letting N ↑ ∞, we obtain that, for any m,n ∈ Z+, 0 < a ≤ 1, δ > 0
and ε small enough

lim
N→∞

1

Nd
logQβ

ηN

(
K
)

≤ 1

1 + a
sup

(W,π)∈K
Ŝa,δ,ε,m,n

V,H,G,ϕ (W, π) . (5.18)

Here, we have denoted

Ŝa,δ,ε,m,n
V,H,G,ϕ (W, π) = max

{(
− ĴTV(W, πε) + aRa,δ,ε,m,n

H,G,ϕ (W, π)
)
, U0,a(V, ε)

}
,

where

Ra,δ,ε,m,n
H,G,ϕ (W, π) = −Êγ,ε,m,n

(G,ϕ),H(W, π) + U1,a(G,ϕ,H, ε) + r(N, ε, δ,V) ,

U1,a(G,ϕ,H, ε) = lim
N→∞

1

Nd
logEβ

ηN

[
e
NdEγ,H

(G,ϕ)
(WN ,πN,ε)

]
,

U0,a(V, ε) = (1 + a) lim
N→∞

1

Nd
logQβ

ηN

(
K ∩

(
AV,β

N,ε,δ

)c)
.

Note that, for each m,n ∈ Z+, 0 < a ≤ 1, δ > 0 and ε > 0, the functional

Ŝa,δ,ε,m,n
V,H,G,ϕ is lower semicontinuous. Minimizing the right hand side of the inequality

(5.18) over m,n ∈ Z+, δ > 0 and 0 < ε < 1, and using Lemma A2.3.3 in Kipnis
and Landim (1999) for our compact K, we get

lim
N→∞

1

Nd
logQβ

ηN

(
K
)

≤ 1

1 + a
sup

(W,π)∈K
inf

δ,ε,m,n
Ŝa,δ,ε,m,n

V,H,G,ϕ (W, π) .

By (5.13), (5.4), (5.16) and Lemma 5.5

lim
δ→0

lim
ε→0

lim
m→∞

lim
n→∞

Ŝa,δ,ε,m,n
V,H,G,ϕ (W, π) ≤ −F(G,ϕ),a

V,H
(W, π) + aC2(T + 1) ,
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where

F(G,ϕ),a
V,H

(W, π) =

{
ĴTV(W, π) + aEγ,H

(G,ϕ)(W, π) if π ∈ D([0, T ],Md ×F1) ,

+∞ otherwise .

This result and the last inequality imply,

lim
N→∞

1

Nd
logQβ

ηN

(
K
)

≤ − 1

1 + a
inf

(W,π)∈K

{
F(G,ϕ),a

V,H
(W, π)

}
+

a

1 + a
C2(T + 1) ,

for any V,H,G, ϕ. To conclude the proof of the proposition, it remains to Minimize
the last inequality over V,H,G, ϕ, and to use again Lemma A2.3.3 in Kipnis and
Landim (1999) for the compact K. �

Proof of the upper bound. Denote by Êγ : D([0, T ],Md+1) the lower semicontinuous
functional

Êγ(W, π) =

{
Eγ(W, π) if (W, π) ∈ D([0, T ],Md ×F1) ,

+∞ otherwise .

Let K be a compact set of D([0, T ],Md+1). If for all (W, π) ∈ K,

Êγ(W, π) = +∞ then the upper bound is trivially satisfied. Suppose that

inf
(W,π)∈K

{
Êγ(W, π)

}
< ∞, from Proposition 5.6, for any 0 < a ≤ 1,

lim
N→∞

1

Nd
logQβ

ηN

(
K
)

≤ − 1

1 + a
inf

(W,π)∈K
Êγ (W,π)<∞

Fa(W, π) +
a

1 + a
C2(T + 1)

= − 1

1 + a
inf

(W,π)∈K

{
J γ
T (W, π) + aÊγ(W, π)

}
+

a

1 + a
C2(T + 1)

≤ − 1

1 + a
inf

(W,π)∈K
JT

γ(W, π)− a

1 + a
inf

(W,π)∈K
Êγ(W, π) +

a

1 + a
C2(T + 1) .

To conclude the proof of the upper bound for compact sets, it remains to let a ↓ 0.
To pass from compact sets to closed sets, we have to obtain exponential tightness

for the sequence
{
Qβ

ηN , N ≥ 1
}
. The proof presented in Bertini et al. (2006b);

Bodineau and Lagouge (2012) is easily adapted to our context.

6. large deviations lower bound for the empirical current

The strategy of the proof of the lower bound consists of two steps. We first
get a lower bound for neighbourhoods of regular trajectories. Then we extend the
lower bound for all open set by showing in Theorem 6.3 that the set of all regualar
trajectories is J γ

T -dense in the following sens:

Definition 6.1. A subset A of D([0, T ],Md+1) is said to be J γ
T -dense if for ev-

ery (W, π) in D([0, T ],Md+1) such that J γ
T (W, π) < ∞, there exists a sequence

{(Wn, πn) : n ≥ 1} in A such that (Wn, πn) converge to (W, π) in D([0, T ],Md+1)
and lim

n→∞
J γ
T (W

n, πn) = J γ
T (W, π).
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To clarify the meaning of regular trajectory, we consider the heat equation given
by the boundary value problem (1.1) for β = 0:

∂tρ = ∆ρ in Λ× (0, T ),

ρ0(·) = γ(·) in Λ,

ρt|Γ = b for 0 ≤ t ≤ T .

(6.1)

Denote by ρ(0) its unique weak solution, and set π
(0)
t (du) = ρ

(0)
t (u)du. Let

(W
(0)
t )t∈[0,T ] be the solution of the equation

∂tρ
0 +∇ · ∂tWt = 0 ,

given by linear forms

〈Wt,V〉 =

∫ t

0

〈
1,−∇ρ0s ·V

〉
ds , V ∈

(
C1(Λ)

)d
, t ∈ [0, T ] .

Notice that, and an approximation of ∇ρ(0)

σ(ρ(0))
by smooth functions shows that

Q(ρ(0)) < ∞, (see Bertini et al. (2009), (5.1)). Moreover, by construction
(W0, π(0)) ∈ Aγ , and

J γ(W0, π0) ≤ β2

4

∫ T

0

dt

∫
Λ

∣∣∇ρ
(0)
t

∣∣2 < ∞ .

(see Mourragui and Orlandi (2013), Lemma 5.8.).

Definition 6.2. A trajectory (W, π) ∈ D([0, T ],Md+1) is said to be regular if

(i) J γ
T (W, π) < ∞, π(t, du) = ρt(u)du.

(ii) There exists c > 0 such that (W, π) = (W0, π0) in the time interval [0, c].
(iii) For all 0 < δ ≤ T , there exists ε > 0 such that ε ≤ ρt(u) ≤ 1 − ε for

(t, u) ∈ [δ, T ]× Λ.

(iv) There exists V ∈
(
C1,1([0, T ] × Λ)

)d
such that ρ is the solution of the

boundary value problem (3.3).

We denote by A0 the class of all regular trajectories.

The proof of the lower bound for regular trajectories is similar to the one in
the convex periodic case. We show that for any path (W, π) in A0, for each
neighborhood N(W,π) of (W, π),

lim
N→∞

1

Nd
logPβ

ηN

{
N(W,π)

}
≥ −J β

T (W, π) . (6.2)

We refer to Kipnis and Landim (1999), section 10.5 or Mourragui and Orlandi
(2013), section 6.4 for the proof of (6.2) for (W, π) in A0.

As mentioned at the beginning of this section, the lower bound of the large
deviations principle is then accomplished for general trajectotries using the next
result.

Theorem 6.3. The class A0 is J γ
T -dense.

The proof of this theorem is an adaptation of the I-density presented in Bertini
et al. (2009); Farfan et al. (2011); Mourragui and Orlandi (2013) for the couple
(W, π). We therefore provide only a presentation of its main steps, with an outline
of the proofs.
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Lemma 6.4. The set of all trajectories satisfying (i) and (ii) is J γ
T -dense.

Proof : Fix a path (W, π) such that J γ
T (W, π) < ∞. For ε > 0, define (Wε, πε) as

(
Wε

t , π
ε
t

)
=


(
W

(0)
t , π

(0)
t

)
for 0 ≤ t ≤ ε,(

W
(0)
2ε−t, π

(0)
2ε−t

)
for ε ≤ t ≤ 2ε,(

Wt−2ε, πt−2ε

)
for 2ε ≤ t ≤ T .

Clearly, limε→0

(
Wε, πε

)
=

(
W, π

)
in D([0, T ],Md+1). The same strategy as in

Lemma 5.4, Bertini et al. (2009) or Lemma 5.11, Mourragui and Orlandi (2013),
yields J γ

T

(
Wε, πε

)
< ∞, for all ε > 0, and lim

ε→0
J γ
T

(
Wε, πε

)
= J γ

T

(
W, π

)
. This

concludes the proof. �
Lemma 6.5. The set of all trajectories satisfying (i), (ii) and (iii) is J γ

T -dense.

Proof : Denote by A1 the set of all trajectories (W, π) satisfying (i), (ii) and (iii).
By the previous lemma, it is enough to show that each trajectory (W, π) satisfying
(i) and (ii) can be approximated by trajectories in A1. Fix such trajectory (W, π).
For each 0 < ε ≤ 1, let (Wε, πε) given by

Wε = (1− ε)W + εW(0) , πε = (1− ε)π + επ(0) .

Repeating the arguments presented in Mourragui and Orlandi (2013, Lemma 5.12.),
one can prove that limε→0

(
Wε, πε

)
=

(
W, π

)
in D([0, T ],Md+1), J γ

T

(
Wε, πε

)
<

∞, for all ε > 0 and lim
ε→0

J γ
T

(
Wε, πε

)
= J γ

T

(
W, π

)
. �

Proof of Theorem 6.3. Recall that A1 stands for the set of all trajectories (W, π)
satisfying (i), (ii) and (iii). From the previous lemmata, it is enough to show that
each trajectory (W, π) in A1 can be approximated by trajectories of A1 satisfying
(iv). Fix (W, π) ∈ A1 and denote ρt(·) the density of πt for 0 ≤ t ≤ T . By Lemma
4.5, there exist U = (U1, · · · , Ud) ∈ L2(σ(π)) and F ∈ H1

0 (σ(π)) such that ρ solves
the equation (3.3) with V = ∇F and W solves the equation (4.3). We claim

that U ∈
(
L2([0, T ] × Λ)

)d
and F ∈ L2([0, T ],H1(Λ)). Indeed, from condition

(ii), ρ is the weak solution of (6.1) in some time interval [0, 2δ] for some δ > 0.

In particular, ρt = ρ
(0)
t , Wt = −

∫ t

0

∇ρ(0)s ds for 0 ≤ t ≤ 2δ, which implies that

Ut = ∇Ft = −β∇(Jneum ? ρt) a.e in [0, 2δ]×Ω. On the other hand, from condition
(iii), there exists ε > 0 such that ε ≤ ρt(·) ≤ 1− ε for δ ≤ t ≤ T . Hence, by Lemma
4.1,∫ T

0

dt

∫
Λ

∣∣U(t, u)
∣∣2du ≤

∫ δ

0

dt

∫
Λ

β2|∇(Jneum ? ρt)(u)
∣∣2du+

1

σ(ε)
‖U‖2L2(σ(π))

≤ β2

∫ T

0

dt

∫
Λ

∣∣∇ρt(u)
∣∣2du+

2

σ(ε)
J γ
T (W, π) < ∞ ,∫ T

0

dt

∫
Λ

∣∣∇Ft(u)
∣∣2du ≤

∫ δ

0

dt

∫
Λ

β2
∣∣∇(Jneum ? ρt)(u)

∣∣2du+
1

σ(ε)
‖F‖2H1

0 (σ(π))

≤ β2

∫ T

0

dt

∫
Λ

∣∣∇ρt(u)
∣∣2du+

2

σ(ε)
Iγ
T (π) < ∞ .

Let
{
Un = (Un

1 , · · · , Un
d ), n ≥ 1

}
⊂ (C1,1([0, T ] × Λ))d and{

Fn, n ≥ 1
}
⊂ C1,2([0, T ]×Λ) be two sequences of functions such that lim

n→+∞
Un =
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U in
(
L2

(
[0, T ] × Λ

))d
, and lim

n→+∞
Fn = F in L2

(
[0, T ],H1(Λ)

)
. For each integer

n > 0, let Wn be the weak solution of the equation

∂tWt = −∇ρnt + σ(ρnt )
[
β∇(Jneum ? ρnt ) + Un

t

]
, W0 = 0 , (6.3)

where ρn is the weak solution of (3.3) with ∇Fn in place of V. We set πn(t, du) =
ρn(t, u)du.

We examine in this paragraph the energy Eγ(Wn, πn). Recall from Lemme 4.5
that ∇ · σ(ρn)

(
Un − ∇Fn) = 0 in the weak sense. Since Wn solves the equation

(6.3), and ρn solves the equation (3.3), we have for any G ∈ C1
0(Λ), t ∈ [0, T ],

〈Wn
t ,∇G〉 =

∫ t

0

〈
1,
[
−∇ρns + βσ(ρns )∇(Jneum ? ρns )

]
· ∇G

〉
ds

+

∫ t

0

〈
σ(ρns ),U

n
s · ∇G

〉
ds

= 〈πn
t , G〉 − 〈πn

0 , G〉+
∫ t

0

ds〈σ(ρns ), (−∇Fn
s +Un

s ) · ∇G〉

= 〈πn
t , G〉 − 〈πn

0 , G〉 .

This proves that (Wn, πn) ∈ Aγ . On the other hand, since σ(πn) is bounded above
by 1/2, from Lemma 4.1

Iγ
T (π

n) =
1

2

∫ T

0

dt 〈σ(ρnt ),∇Fn
t · ∇Fn

t 〉

≤ J γ(Wn, πn) =
1

2

∫ T

0

dt 〈σ(ρnt ),Un
t ·Un

t 〉

≤ 1

4

∫ T

0

dt

∫
Λ

∣∣Un
t (u)

∣∣2du .
In particular, {Iγ

T (π
n), n ≥ 1} and {J γ

T (W
n, πn), n ≥ 1} are uniformly bounded.

Thus, Lemma 4.3, implies the uniform boundedness of the sequence {Q(πn), n ≥
1}.

In order to extract a converging subsequence from the sequence
{
(Wn, πn), n ≥

1
}
, we need to show the relative compactness of the set

{
(Wn, πn), n ≥ 1

}
in

the topological space D([0, T ],Md+1). By construction, for any s, t ∈ [0, T ], any

V ∈
(
C1(Λ)

)d
and any G ∈ C2

0(Λ),∣∣〈Wn
t ,V〉+ 〈πn

t , G〉 − 〈Wn
s ,V〉 − 〈πn

s , G〉
∣∣

=
∣∣∣ ∫ t

s

〈
1,
[
−∇ρnτ + σ(ρnτ )β∇(Jneum ? ρnτ )

]
·
(
V +∇G

)〉
dτ

+

∫ t

s

〈
σ(ρnτ ),

[
Un

τ ·V + ∇Fn
τ · ∇G

]〉
dτ

∣∣∣ .
For shortness of notation, we shall denote ΛT = [0, T ] × Λ and for a vector val-

ued measurable function H ∈
(
L2(ΛT )

)d
(resp. V ∈

(
L2(Λ)

)d
), we shall denote

‖H‖L2(ΛT ) =
∫ T

0
dt

∫
Λ
|Ht(u)|2du (resp. ‖V‖L2(Λ) =

∫
Λ
|V(u)|2du). Since σ(·) is

bounded by 1/2, by Schwartz inequality, the right hand side of the last equality is
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bounded above by√
|t− s|

(∥∥V∥∥
L2(Λ)

+
∥∥∇G

∥∥
L2(Λ)

){
‖∇ρn‖L2(ΛT ) +

β

2
‖∇(Jneum ? ρn)‖L2(ΛT )

}
+
√
|t− s|1

2

{∥∥V∥∥
L2(Λ)

‖Un‖L2(ΛT ) +
∥∥∇G

∥∥
L2(Λ)

‖∇Fn‖L2(ΛT )

}
.

Recall that for each u, Jneum(u, v)dv is a probability density, by Lemma 3.2 , Jensen
inequality and Fubini’s Theorem,

‖∇(Jneum ? ρn)‖2L2(ΛT ) ≤
∫ T

0

dt

∫
Λ

Jneum ? |∇ρnt |2 = ‖∇ρn‖2L2(ΛT ) .

Hence, for any s, t ∈ [0, T ],∣∣〈Wn
t ,V〉+ 〈πn

t , G〉 − 〈Wn
s ,V〉 − 〈πn

s , G〉
∣∣

≤
√
|t− s|M

{∥∥V∥∥
L2(Λ)

+
∥∥G∥∥

L2(Λ)

}
,

(6.4)

where the constant M = C(ρ,U, F, β) is such that

sup
n≥1

{(
1 +

β

2

)
‖∇ρn‖L2(ΛT ) +

1

2
‖Un‖L2(ΛT ) +

1

2
‖∇Fn‖L2(ΛT )

}
≤ M .

Analogously, we obtain

sup
n≥1

sup
0≤t≤T

(
‖Wn

t ‖+ ‖πn
t ‖

)
≤ 1 +M ′

√
T sup

n≥1

{
‖∇ρn‖L2(ΛT ) + ‖Un‖L2(ΛT )

}
< ∞

(6.5)

for some positive constant M ′ = M ′(|Λ|, β), where for each n ≥ 1, ‖Wn‖ (resp.
‖πn‖) stands for the total variation of the signed measure Wn (resp. of the measure
πn).

The relative compactness for the set
{
(Wn, πn), n ≥ 1

}
, follows from (6.4),(6.5)

and the compactness criterium for the Skorohod topology (see Ethier and Kurtz
(1986) Theorem 6.3 page 123).

Let {(Wnk , πnk) : k ≥ 1} be a subsequence of {(Wn, πn) : n ≥ 1} converging
to some (W∗, π∗) in D([0, T ],Md+1) and denote by ρ∗ the density of π∗. We
claim that (W∗, π∗) = (W, π) and lim

k→∞
J γ
T

(
Wnk , πnk

)
= J γ

T

(
W, π

)
. On the

one hand, {ρnk : k ≥ 1} converges weakly to ρ∗ in L2
(
ΛT

)
. Since J γ

T (W
n, πn) is

uniformly bounded, by Proposition 4.4 and Lemma 4.1, ρnk converges to ρ∗ strongly
in L2(ΛT ). For every G in C1,2

0 (ΛT ), we have

〈πnk

T , GT 〉 − 〈γ,G0〉 =
∫ T

0

dt 〈πnk
t , ∂tGt〉

+

∫ T

0

dt 〈πnk
t ,∆Gt〉 −

∫ T

0

dt

∫
Γ

b(r)n1(r) (∂1Ft)(r) dS(r)

+

∫ T

0

〈∇Gt, σ(ρ
nk
t )

[
β∇(Jneum ? ρnk

t ) +∇Fnk
t

]
〉 dt.

Letting k → ∞, we obtain that ρ∗ is a weak solution of equation (3.3) withV = ∇F .
Thus, by uniqueness of weak solutions of (3.3), π∗ = π. On the other hand, for
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every V in (C1,1(ΛT ))
d and any k ≥ 1, we have

〈Wnk

T ,VT 〉 =

∫ T

0

dt 〈Wnk
t , ∂tVt〉

+

∫ T

0

dt 〈πnk
t ,∇ ·Vt〉 −

∫ T

0

dt

∫
Γ

b(r)n1(r)V1(t, r) dS(r)

+ β

∫ T

0

〈σ(ρnk
t ),Vt ·

[
∇(Jneum ? ρnk

t ) +Unk
]
〉dt .

Since {Wnk : k ≥ 1} converges weakly to W∗ in L2
(
ΛT

)
and ρnk converges to ρ

strongly in L2(ΛT ), letting k → ∞, we obtain that W∗ is a weak solution of the
equation (4.3) (associated to ρ and U). This proves the first part of the claim. To
conclude the proof it remains to prove that lim

k→∞
J γ
T (W

nk , πnk) = J γ
T (W, π). The

sequence (ρnk)k>0 converges to ρ strongly in L2(ΛT ) and the sequence (Unk)k>0

converges toU in L2(ΛT ). Taking into account that ρ is bounded and σ is Lipschitz,
we obtain

lim
k→∞

J γ
T (W

nk , πnk) = lim
k→∞

1

2

∫ T

0

dt 〈σ(ρnk
t ),Unk

t ·Unk
t 〉

=
1

2

∫ T

0

dt 〈σ(ρt),Ut ·Ut〉 = J γ
T (W, π) .

This concludes the proof.

7. large deviations for the empirical density

In this section we prove Theorem 2.6. As we mentioned in the introduction, the
large deviations principle for the empirical density can be recovered from the one for
the current. Indeed, it follows from Theorem 2.5 and the contraction principle, that

the rate function Ĩγ
T for the empirical density is given by the variational formula

Ĩγ
T (π) = inf

W :(W,π)∈Aγ

J γ
T (W, π) , (7.1)

where Aγ is defined by (2.11). To conclude the proof of Theorem 2.6, we then need

to show that the functional Iγ
T in (2.18) coincides with the functional Ĩγ

T on the
whole space D([0, T ],M).

Fix π ∈ D([0, T ],M). From Lemma 4.1, we have

Iγ
T (π) ≤ Ĩγ

T (π) . (7.2)

Conversely, suppose that Iγ
T (π) < ∞, then by Lemma 4.5, there exists F ∈

H1
0 (σ(π)) such that π(t, du) = ρ(t, u)du and ρ solves the equation (3.3) with

V = ∇F . Let WF the weak solution of the equation (4.3) with U = ∇F , it
is easy to check that (WF , π) ∈ Aγ and

Ĩγ
T (π) ≤ J γ

T (W
F , π) = Iγ

T (π) . (7.3)

We deduce from (7.2) and (7.3), that for each π ∈ D([0, T ],M), Iγ
T (π) < +∞

if and only if Ĩγ
T (π) < +∞ and then Ĩγ

T (π) = Iγ
T (π) which concludes the proof of

(7.1). �
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