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Abstract. We consider a lattice gas evolving in a bounded cylinder of length 2N +1
and interacting via a Neuman Kac interaction of range NV, in contact with particles
reservoirs at different densities. We investigate the associated law of large numbers
and large deviations of the empirical current and of the density. The hydrody-
namic limit for the empirical density, obtained in the diffusive scaling, is given by
a nonlocal, nonlinear evolution equation with Dirichlet boundary conditions.

1. Introduction

The large deviations principle is an inportant topic of interest for the study of
macroscopic properties of non-equilibrium systems. In the last years, many papers
have been devoted to the subject. We just quote a few of them where the issue is
addressed in the context of lattice gas dynamics for which large deviation princi-
ples can be derived in the hydrodynamic scaling, Bertini et al. (2001); Bodineau
and Derrida (2006); Derrida (2007); Bertini et al. (2006a) and references therein.
Typical examples are systems in contact with two thermostats at different temper-
atures or with two reservoirs at different densities. A mathematical model for such
systems is provided by reversible systems of hopping dynamics combined with the
action of an external mechanism of creation and annihilation of particles, modeling
the exchange reservoirs. The action of the reservoirs makes the full process non
reversible. A principal generic feature of these systems is that they exhibit long
range correlations in their steady state.

In this paper we consider a microscopic conservative system, with long range
interaction with open boundaries. The system is contained in a cylinder Ay =
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{=N,--- N} x ']I“]i\f1 of length 2N + 1 with axis in direction wu, with Tﬁl\fl the
(d — 1)-dimensional microscopic torus of length 2N + 1 and N a scaling parameter,
namely we impose periodic boundary conditions in all directions but w;. In the
bulk, particles evolve according to conservative dynamics (Kawasaki) perturbed by
a modified version of Kac potential which we call Neuman Kac potential. The
Kac potentials Jy are two-body interactions with range N and strength N~¢:
In(u) = N=%J(u), u € R% where J is a smooth function with compact support.
They have been introduced in Kac et al. (1963); Uhlenbeck et al. (1963); Hemmer
et al. (1964), and then generalized in Lebowitz and Penrose (1966), to present a
rigorous derivation of the van der Waals theory of a gas-liquid phase transition.
There have been many interesting results on Kac Ising spin systems in equilibrium
statistical mechanics. We refer for a survey to the book Presutti (2009). The so
called Neuman Kac potential, J"(u) = N4 jneum(y) y € RY (see (2.1) below)
is the modification of the Kac potential that takes into account the fact that the
particles are confined in a bounded domain.
Given 8 > 0 and a chemical potential A € R, we consider the Hamiltonian

HYm)==B Y J¥"™(@yn@)n) + X > n(),

T, YEAN TEAN

where n = (n(x), x € Z), n(x) € 0,1; n(x) = 1 if there is a particle at site x and
n(z) = 0 if site x is empty. One can construct in a standard way an evolution
conserving the total number of particles, the so-called Kawasaki dynamics, which
can be described as follows. Particles attempt to jump to nearest neighbour sites
at rates depending on the energy difference before and after the exchange, provided
the nearest neighbour target sites are empty; attempted jumps to occupied sites are
suppressed. The rates are chosen in such a way that the system satisfies a detailed
balance condition with respect to a family of Gibbs measures, parametrized by
the so-called chemical potential A € R and fixed 8. To model the presence of
the reservoirs, we superimpose at the boundary to the bulk dynamics a birth and
death process. For a fixed smooth function b(-) defined on the boundary of the
domain, the rates of this birth and death process are chosen so that a Bernoulli
product measure of varying parameter b is reversible for it. This latter dynamics
is of course not conservative and keeps the fixed value of the density equal to b
at the boundary. This dynamics defines an irreducible Markov jump process on a
finite state space; its stationary measure ,uf\’;’b is unique. There is a flow of mass
through the full system and uf\?’b encodes its long time behavior. The full dynamics
is reversible only if § = 0 and b is constant. We introduce the empirical density
7V of particles and the integrated empirical current W', which measures the total
net flow of particles in the time interval [0, ¢], associated to a trajectory (7.).

We analyze here the behavior as N 1 oo of the system when the time is rescaled
by N? (diffusive limit). Our purpose is to investigate the behavior of the current of
particles. Problems of this kind have been studied in Bertini et al. (2006b) and in
Bodineau and Lagouge (2012). In both documents the large deviations rate func-
tionals are convex. The paper Bertini et al. (2006b), studied the simple exclusion
process, in the torus with periodic conditions. The paper Bodineau and Lagouge
(2012) is concerned by the reaction diffusion process, in a one-dimensional interval
with two types of currents (conservative and non conservative); some conditions
on the convexity on the functionals were imposed. Our goal is to extend these
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results to the d-dimentional boundary driven systems with long range interactions,
for which the dynamical large deviations functionals are non-convex.

For important classes of models, the hydrodynamic limit and dynamical large
deviations for the empirical density have been proven, see for example Kipnis et al.
(1989); Quastel et al. (1999) for equilibrium dynamics and Bertini et al. (2006a);
Bodineau and Derrida (2006); Bertini et al. (2009) in nonequilibrium dynamics. For
Kawasaki dynamics with Kac potential, the law of large numbers for the empirical
density has been proved on the torus with periodic boundary conditions in Gia-
comin and Lebowitz (1997), on the whole lattice in Marra and Mourragui (2000),
and finally on a one-dimensional bounded interval (boundary driven) in Mour-
ragui and Orlandi (2013). The hydrodynamic equation obtained for the boundary
driven dynamics is the following nonlocal, nonlinear partial differential equation
with Dirichlet conditions at the boundary I' of the domain,

i = 5 S g ¥ )} = {0}
pt|l. = b(:) for 0<t<T, (1.1)
po(u) =~(u),

where x stands for the spatial convolution and o(p) = 2p(1 — p) is the mobility
of the system. In the above formula J?(p;) is the instantaneous current at time ¢
associated to the trajectory p:

I%(p) = =Vpi+ Bo(p) V("™ x pr) . (1.2)

We shall denote by p the unique stationary solution of the hydrodynamic equation,
i.e. p is the typical density profile for the stationary nonequilibrium state.

It follows from the hydrodynamic limit that the empirical current WV converges
weakly to the time integral of J(p,) in the time interval [0,#] (cf. Proposition 2.3).
In addition to this we prove that when (3 is small enough, then the empirical particle
density 7V obeys a law of large numbers with respect to the stationary measures
(hydrostatic), i.e. it converges weakly under the unique stationary measure of
the evolution process to the stationary solution p, (see Proposition 2.2). This is
obtained by deriving first the hydrodynamic behavior of the process (7{¥) when
7o is distributed according to the stationary measure. Then we exploit that for £
small enough, the stationary solution p is unique and is a global attractor for the
macroscopic evolution with a decay rate uniform with respect to the initial datum.
This holds only for 8 < By where 8y > 0 depends on the diameter of the domain and
on the chosen interaction J. Similar strategy for proving the hydrostatic is used in
Farfan et al. (2011); Mourragui and Orlandi (2013). It results from the hydrostatics
that if initially the particles are distributed according to the stationary state uf\’;’b,
then for each ¢ > 0, the mean empirical current W} /¢ converges weakly to J?(p)
as N 1 oo (see Proposition 2.4).

Further, we investigate the large deviations for the couple (current, density)=
(WY, 7]V), that is we compute the asymptotic probability of observing an atypical
macroscopic trajectory of the (current, density)= (Wy, p;), when the number of
particles tends to infinity. The result can be informally stated as follows. Given a
trajectory (W, pt)iefo,r] on a fixed interval of time [0, 7, we have

PR (WY, 7%) = (W) ~ exp { — N7 (W, )}
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where ]P’]BV is the law of microscopic dynamics, ~ denotes the logarithmic equivalence
as N 1 oo and (WY, 7V) ~ (W, p) means that the trajectory (W™, 7™V) is in some
neighborhood of (W, p) for an appropriate topology. The rate functional Jr is
infinite in the set E° of all paths (W, p) that do not satisfy the continuity equation
dp+ V- W, =0, and for which some suitable energy estimate does not holds (cf.
(2.12)). Outside this set,

1
a(pt)

where W, is the instantaneous current at time ¢, (-,+) denotes integration with
respect to the space variables and J?(-) is defined in (1.2).

Our proof relies on the method developed to study hydrodynamic large devia-
tions for the density in Kipnis et al. (1989); Quastel et al. (1999); Bertini et al.
(2009) and for the current Bertini et al. (2006b). The basic strategy of the proof
of the lower bound consists of two steps, we first obtain this bound for smooth
paths, then we extend it for general trajectories by showing that, for any given
trajectory (W, p) with finite rate functional Jr(W, p) one constructs a sequence
of smooth paths (W™, p™) so that (W™, p™) — (W, p) in a suitable topology and
Jr(W", p") — Jr(W, p). The proof in Bertini et al. (2006b) relies on the convex-
ity of the rate functional. In the present case, because of the lack of convexity we
modify the definition of the rate functional declaring it infinite in the set E€. The
modified rate functional Jr makes the proof of the lower and upper bounds harder
than the one in Bertini et al. (2006b).

The last result of this paper is the large deviations for the empirical density.
In one dimension, it has been done in Mowrragui and Orlandi (2013). In our
context, one can achieve the proof either following the same scheme as in Mourragui
and Orlandi (2013), or adapting the strategy of Bertini et al. (2006b), using the
contraction principle.

Jr(W,p) = 1/0 dt<[Wt—JB(Pt)]7

, (We = 3%()])

The paper is organized as follows. In section 2, we introduce the model and state
the main results. In Section 3, we introduce the perturbed model, we prove the law
of large numbers for the current, and we collect some basic estimates needed along
the paper. In Section 4, we state and prove some properties of the rate functionals.
In sections 5 and 6, we derive the upper and lower bounds large deviations for the
couple (current, density). Finally the density large deviations are recovered using
the contraction principle in section 7.

2. Notation and Results

Fix a positive integer d > 2. Denote by A the open set (—1,1) x T?~! and by
A =[-1,1] x T4~ its closure, where T* is the k-dimensional torus [0, 1), and by
I' = OA the boundary of A: ' = {(uq,...,uq) € A:uy = £1}.

We introduce a smooth, symmetric, translational invariant probability kernel
of range 1 on Sy = R x T9~1 that is, a function J : Sg x Sg — [0, 1] such that
J(u,v) = J(v,u) = J(0,v—u) for all u,v € Sy, J(0,-) is continuously differentiable,
J(0,u) = 0, for all u such that |ui| > 1, and [ J(u,v)dv =1, for all u € S4. This
is the so called the Kac interaction on Sy.

The Neuman Kac interaction J"**™ is a symmetric probability kernel on A
defined by imposing a reflection rule: when (u,v) € A x A, u interacts with v and
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with the reflected points of v where reflections are the ones with respect to the left
and right boundaries of A. That is for all v and v in A

J (y,v) = J(u,v) + J(u,v +2(1 —vr)er) + J(u,v — 2(1 +v1)er),  (2.1)

where v; stands for the first cordinate of the vector v = (v, -+ ,v4) and {e1,...,eq}
stands for the canonical basis of R?. By the assumption on J, J"¢%"(u,v) =
Jrewm (y,u) and [ J™4™ (u,v)dv = 1 for all u € A, see Lemma 3.2. We defined the
interaction (2.1) by boundary reflections only for convenience. It has the advantage
to keep J"¢"™ a symmetric probability kernel. This choice of the potential has been
done already in De Masi et al. (2011); Mourragui and Orlandi (2013).

For an integer N > 1, denote by ']I‘jl\fl ={0,..., N —1}41 the discrete (d — 1)-
dimensional torus of length N. Let Ay = {—N, ..., N}xT% ! be the cylinder in Z¢
of length 2N + 1 and basis T?V_l and let T'y = {(z1,...,2q4) € Z X ']I‘?V_l |zy = £N}
be the boundary of Ay. The elements of Ay are denoted by letters z,y and the
elements of A by the letters u,v.

The configuration space is ¥ := {0, 1}*~; elements of ¥ are denoted by 7 so
that n(z) = 1, (resp. 0) if site « is occupied, (resp. empty) for the configuration 7.

Fix a positive parameter 5 > 0, and a positive function b : I' — R,. Assume
that there exists a neighbourhood V of A and a smooth function § : V' — (0,1)
in C2(V) such that 6 is bounded below by a strictly positive constant, bounded
above by a constant smaller than 1 and such that the restriction of 8 to I' is equal
to b. The boundary driven Kawasaki process with Neuman Kac interaction is the
Markov process on ¥ whose generator £y := £33 n can be decomposed as

Ey = N°Lgn +N?* Ly . (2.2)

The generator Lg, n describes the bulk dynamics which preserves the total num-
ber of particles. The pair interaction between x and y in Ay is given by

x
In(e,y) = N0 (5, 0.

The total interaction energy among particles is defined by the following Hamiltonian
Hy(m)=— Y JIn(yn)ny). (2.3)
z,yEAN

The action of Lg y on functions f : ¥y — R is then given by

d
LonHm =D > Cllmz+esn) [fn™) - f(n)] ,

i=1 x,x+e; EAN

whith the rate of exchange occupancies C]’(f, given by

g v
Chlavyin) = exp { =Dl (o) ~ )] | (2.4
where 1*+¥ is the configuration obtained from 1 € ¥y, by exchanging the occupation

variables n(z) and n(y), i.e.
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The generator L, y models the particle reservoir at the boundary of Ay, it is
defined by the infinitesimal generator of a birth and death process acting on I'; as

(Lonf)m) = > ra(bl@/N),n)[f(e™n) = f(n)],
z€l' N
where o7 is the configuration obtained from 7 by flipping the configuration at =z,
i.e.

(an)(z) p— {1 - ﬂ(x) if z=2

n(2) if z#u,
and for z € Iy and A € (0,1) the rate r, (A, ) is given by
ro(An) = ML =n(x)) + (1= N)n(z). (2.5)

For any 8 > 0, the operator Lg y is self-adjoint w.r.t. the Gibbs measures ,uﬁ,’k
associated to the Hamiltonian (2.3) and chemical potentials A € R:

W) = oy exp{-BHN() 4+ A 3 n(@)) . me Sy,
N

TEAN

where Z]%A is the normalization constant. This means that the rates of the bulk
dynamics {C]’[f,(a:, y;m), x,y € Ay}, satisfies the detailed balance conditions:

O (a,ysn) = e AHNOTI=HNICT (y sy,

For a smooth function p : A — (0,1) and z € Ay, let Vé\(’.) be the Bernoulli
product measure on Xy with marginals given by

Voo (n(z) =1) = p(z/N) .

Let ¢(a) :=loglar/(1 — a)] be the chemical potential of the density a. It is easy to
see that, Vé\([.) can be rewritten as

N _ eP(p(x/N))n(z)
voi =11 11 erlo@/N) (2.6)

Tz€EAN

and if p(u) = b(u) for all uw € T, then Z/IJ)\(’_) is reversible for the process with generator
Ly .

Notice that in view of the diffusive scaling limit, the generator has been speeded
up by N2. We denote by (1;) the Markov process on ¥ with generator £y. Since
the Markov process (1) is irreducible, for each N > 1, 8 > 0, there exists a unique
invariant measure p3t = 3¢ (3, b) in which we drop the dependence on 3 and b from
the notation. Moreover, if b is not constant then the invariant measure p3¢ cannot
be written in simple form.

For an integer 1 < m < +oo denote by C™(A) the space of m-continuously
differentiable real functions defined on A. Let Cj*(A) (resp. C™(A)), 1 < m < +oo0,
be the subset of functions in C"™(A) which vanish at the boundary of A (resp.
with compact support in A). We denote by M = M(A) the space of finite signed
measures on A, endowed with the weak topology. For a finite signed measure m and
a continuous function F' € C°(A), we let (m, F) be the integral of F with respect
to m.
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For each configuration 7, denote by 7 = 7™V (n) € M the positive measure

obtained by assigning mass N~% to each particle of 7 :

N - N Z n(x) 0z/n

rEAN
where §,, is the Dirac measure concentrated on u. Notice that for each n € Xy, the
total mass of the positive measure 7™ (1) is bounded by 3.

For ¢t > 0 and two neighboring sites z,y € Ay, denote by N;*¥ the total number
of particles that jumped from z to y in the macroscopic time interval [0,t]. For
1 <j<dand 2,z +e; € Ay, we denote by W;"*F = NP*H _ NTT7 the
current through the edge (z, z+e¢;). We now define the current entering and leaving
the system through the border points in the direction e;. For x € 'y, let Nf’+
(resp. N7'7) be the number of particles created (resp. killed) at x due to the
reservoir in the macroscopic time interval [0,¢], the current through I'y is then
defined by W = N{"t = NP~ if 2 € I'y and W = N7~ — N7 if o € '), where
I'y, resp. FE stands for the left, resp. right, boundary of Ap:

% = {(z1,-- ,24) €Ty : 21 = £N}.

For t > 0, we define the empirical current WY = (Wle,WL{Vt) e M4 =
{M(A)}¢ as the vector-valued finite signed measure on A induced by the net flow
of particles in the time interval [0, ¢]:

1 1
N T,x+e1 T
Wi = §am Z Wi Ou/N + NarL Z Wi bz/n

1 z,x+e1 EAN zel'ny (27)
,Ttey
Wl = Nt S WPty for k=2,....d.
TEAN

For a continuous vector field G = (G1,...,Gyq) € (C°(A))¢ the integral of G with
respect to W}V, also denoted by (W, G), is given by

d
(WY, G) = > (W, Gy, (2.8)
k=1
where
W, Gy = N*(d“){ Yo Gile/NWET 1 S Gi(z/N) Wt}
z,x+e1 EAN zel' Ny

and for 2 <k <d,
(Wil Gr) = N~ 37 Grla/N) Wi tes

T€EAN
The purpose of this article is to prove hydrodynamic limit and large deviations
for the empirical current and for the density of particles. Fix T > 0. Let F! be
the subset of M of all absolutely continuous positive measures with respect to the
Lebesgue measure with positive density bounded by 1:

Fl={reM:n(du) =p(u)du and 0<p(u) <1 ae.}.

For a metric space E (E = M,F', M4 Yy,---), let D([0,T],E) be the set of
right continuous with left limits trajectories with values in F, endowed with the
Skorohod topology and equipped with its Borel o— algebra. For a probability
measure gy on Yy denote by (1:)iep0,r) the Markov process with generator £y
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starting, at time t = 0, by 7 distributed according to pun. Denote by ]P’ﬁN =
]P’ﬁ]é\' the probability measure on the path space D([0,T],Xx) corresponding to
the Markov process (1;)¢ejo,r] and by Ej = the expectation with respect to P% .
When pn = d,~ for some configuration nN € Yy, we write simply IPgN = IP’?’]]X
n

and JE;BIN = ESB - We denote by 7V the map from D([0,T],%x) to D([0,T], M)
n
defined by 7V (n.); = 7™ (n;) and by QﬁN = ]P’EN o (m¥)~! the law of the process
N
(7 (nt))te[O,T]'

2.1. Hydrodynamics and hydrostatics. The hydrodynamic and hydrostatic limits
for the empirical measures 7 has been proved in one dimension in Mourragui
and Orlandi (2013). The analysis in all dimension can be deducted from the same
strategy. We shall therefore summarize the results omitting their proofs.

For integers n and m we denote by C™™([0,7] x A) the space of functions
F = Fy(u) : [0,T] x A — R with n derivatives in time and m derivatives in space
which are continuous up to the boundary. We denote by Cj"™ ([0, T] x A) the subset
of C™™([0,T] x A) of functions vanishing at the boundary of A, i.e. Ft|r =0 for
all t € [0,T]. We finaly denote by C»™([0,T] x A) the subset of C™™([0,T] x A)
of functions with compact support in [0, 7] x A.

Let L2(A) be the Hilbert space of functions F : A — R such that / |F(u)Pdu <
A

oo equipped with the inner product
(F,G) = / F(u) G(u) du .
A

The norm of L?(A) is denoted by || - ||z, (a)-

Let H'(A) be the Sobolev space of functions F with generalized derivatives
VF = (O\F,--+ ,04F) in L*(A). H'(A) endowed with the scalar product (-, )1,
defined by

d
(F.G) = (F,G)+ Y (0iF, 9,G)
i=1
is a Hilbert space. The corresponding norm is denoted by | - || 7. Denote by H}(A)
the closure of C°(A) in H(A).

Denote by Tr : H'(A) — L*(T) the continuous linear operator called trace
operator, defined as the unique extension of the linear operator from C°(A) to
L?(T") which associates to any F € H*(A)NC%(A) its boundary value: Tr(F) = F’F
(Zeidler (1990), Theorem 21.A.(e)). Recall that the space H}(A) is the space of
functions F' in H'(A) with zero trace:

H)(A) = {F e H'(A): Tr(F) =0} .

To state the hydrodynamic equation, we need some more notation. For a Banach
space (B, || ||s) we denote by L?([0, 7], B) the Banach space of measurable functions
U :10,T] — B for which

T
10122018 = / VR dt < oo
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holds. For m € Lo (A) and u € A, we set
(JHM %m) (u) = / JN (u, v)ym(v)do ,
A

and o(m) = 2m(1 — m). For any smooth function F, let AF be the laplacian
with respect to the space variables of a function . For F' € Cé’Q([O,T] x A),
p € D([0,T],F") denote

T
0h(p) = {pr, Fr) — (po, Fo) —/ dt (p¢, 0, Fy)
0
_/0 dt {ps, AFy) + /0 dt/rb(r) ny(r) (01F;)(r)dS(r)

T
iy / (0(p), (V) - V(I py)dt

where n=(ny,...,ny) stands for the outward unit normal vector to the boundary
surface I and dS for an element of surface on I'. For u,v € R?, u-v is the usual scalar

product of v and v in R%, we denote by |-| the associated norm: |u| = \/Zle s |2.
Denote by Ao, 1) C D([O, T, F 1) the set of all weak solutions of the boundary
value problem (1.1):

Ao = {p e P(0.T], H' (M)« VFeC(0,T) x A), th(p) =0}

Proposition 2.1. For any sequence of initial probability measures (fin)nN>1, the
sequence of probability measures (ijN)Nzl s weakly relatively compact and all its
converging subsequences converge to some limit Q* that is concentrated on abso-
lutely continuous paths whose densities p € C([0,T], F*(A)) are in Ao,r7. More-
over, if for any 6 > 0 and for any function F € CO(A)

N—o0

lim uN{\<7rN,F> - /A'y(u)F(u)du’ > 5} —0, (2.9)

for an initial profile v € F', then the sequence of probability measures (QQN)NEI
converges to the Dirac measure concentrated on the unique weak solution p(-,-) of
the boundary value problem (1.1). Accordingly, for any t € [0,T], any § > 0 and
any function F € C°(A)

N—o00

lim PﬁN{’m(m),m - /Ap(t,u)F(u)du‘ 25} ~0.

The proof of this Proposition is similar to the one of Theorem 2.1. in Mourragui
and Orlandi (2013). Recall that the stationary measure % depends on 3 and b.
The asymptotic behavior of the empirical measure under the stationary state pit
can be stated as follows.

Proposition 2.2. There exists 5y depending on A and J"“™ so that, for any
B < Bo, for any F € C°(A), for any § > 0,

tim_ 5| (v (). F) - /A () F(u)du > 8] =0,

N—o00
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where p is the unique weak solution of the following boundary value problem

Ap(u) — BV - {o(p(u))V(J"e“m* p)(u)} =0, uecA,
p()|p = b() -

The proof of this Proposition is similar to the one of Theorem 2.3 in Mourragui
and Orlandi (2013) and therefore is omitted. As noticed in the introduction, we
need to show the uniqueness of the solution of the equation (2.10), and that the
hydrodynamic equation (1.1) satisfy a comparison principle. For values of 8 larger
than Sy, we are not able to show these two main ingredients used in Farfan et al.
(2011); Mourragui and Orlandi (2013) to derive the hydrostatic limit.

(2.10)

Proposition 2.3. Fiz an initial profile v € F' and consider a sequence of prob-
ability measures N associated to y in the sense of (2.9). Let p be the solution of

the equation (1.1). Then, for each T >0, § >0 and G € (C’l(A))d,

N—00

lim PL[(WY,G) - /OTdt<{—th—i-ﬂo(pt)V(J"e“m*pt)}, G)|>d] = 0.

Next result concerns the asymptotic behavior of the mean empirical current
WX /T under the sequence of stationary measures {u3 : N > 1}.

Proposition 2.4. There exists 5y depending on A and J"™ so that, for any
B < Bo, forany T >0,6 >0 and G € (Cl(A))d,

1
lim PO [(ZWH,G) = ({ = Vp+Bo(p)V(I" "« )}, G)| >8] = 0.

N—oc0

where p is the unique weak solution of the boundary value problem (2.10).

The proof of Proposition 2.3 is given for more general processes in section 3. We
obtain then Proposition 2.4 as an immediate consequence from Proposition 2.2.

2.2. Large deviations. Fix a positive time T > 0 and an initial profile v € F'. We
are interested both on large deviations of the couple (W{¥, 7 (1;))¢eo,r) and on
large deviations of the empirical measure (7 (n;)):e(0,7] during the interval time
[0,T] and starting from the profile ~.

Let 21, be the set of trajectories (W, ) in D([0, 7], M?*1) such that for any
t €[0,T] and any G € C}(A)

(1, G) = (1, G) = (W4, VG). (2.11)
Define the energy functional £Y = €18 . D([0,T], Ma*1) — [0, 00] by

o(r) if (W,m)eA,ND(0,T], M? x Fl),

2.12
400 otherwise, ( )

E1(W,7) = {

where the functional Q : D([0,T],F!) — [0,00] is given for a trajectory m €
D([0,T), F') with 7, = ps(u)du, t € [0,T] by the formula

ZSUP{/ dt (py, OpHy) —Q/Tdﬂff(ﬂt)HthO}a
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in which the supremum is carried over all H € C°([0,T] x A). It has been proved
in Bertini et al. (2009); Farfan et al. (2011) that Q(w) is finite if and only if p €
L*([0,T], H'(A)), and

1

T 1
Q) = 5 [ (i Vo). (2.13)

Notice that 2,ND([0, 7], M?x F1) is a closed and convex subset of D([0, T, M?*+1).
It follows immediately from the concavity of o(-) that the functional £7 is convex
and lower semicontinuous.

We now define the large deviations functional for the pair (W, 7V) in the time

interval [0, 7] with initial condition ~. For each V € (C*1([0,T] x A))d, define the
functional j{, = j{,ﬁ :D([0,T), M x FY) = R if 7y = pe(u)du, t € [0,T] by
~ 1 T
IL(W, ) = LS (W, 1) — 5/ dt (o(ps), Vi - Vi), (2.14)
0

where Lf,(W7 )= L@,T(W, m) is a linear function on V:

LY (W,m) = (Wp, Vp) — /0 dt (W, 0, V)
T T
- /0 dt (1, V - V) + /O dt /F b(r) s (1) Vi (£, 1) dS(r)

iy /O (0 (o), Vi - T (I 5 o))

The large deviations fuctional for (W™, 7%) is finally defined from
D([0,T], M3*1) to [0, +o0] by

Jr(W,m) if EY(W,m) < o0,
v _
Jr(W,m) = { +00 otherwise , (2.15)
where
IJr(W,m) = sup JL(W, ).

ve(cri(oryxn))"

It remains to define the rate functional for the empirical measure. Fix an initial
profile v : A — [0, 1], denote

T
05 (ply) = {pr. Fr) — (7, Fo) —/0 dt (pr, O, Fy)
T T
—/ dt (pe, AF;) + / dt/b(r) ny(r) (01 F)(r)dS(r)  (2.16)
0 0 r

T
=8 [ (op0). (VE) - 9w g,
0
Denote by 17, = 127 : D([0,T], F') — [0, o0] the functional given for a trajec-
tory 7 with m(du) = pi(u)du, t € [0,T] by

(7)) = sup 57 (), (2.17)
FeCh?([0,T]xA)
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where for any function F € CJ*([0,T] x A), ﬁ?ﬁ = ﬁ”’ﬁz D([0,T],F') — R is
given by

1 T
ffﬂ(ﬁ) = flﬁ;(ph) - 5/0 dt <J(pt),VFt . VFt> .

The rate functional Z. : D([0,T], M) — [0, cc] for the empirical measure is then
given by

D) = {n}(w) if 7e D([0,T],F)and Q(r) < +00, 218)

+00 otherwise .
We are now ready to state the large deviations results:

Theorem 2.5. Fiz T > 0 and an initial profile vy in C°(A). Consider a sequence
{nN © N > 1} of configurations associated to v in the sense of (2.9). Then, for
each closed set C and each open set U of D([0,T], ML), we have

1
. 3 N N _ : Y
J\;EgoNdloanN{(“ . )GC} S Wil Ir(Wom),

1
lim —— 1 Pﬂ[WN,Neu}>_ inf (W, 7).
Jim 7 log P (W, =) Z i, Ir (W)

The functional J7 (-, ) is lower semi-continuous.

We prove this Theorem in sections 5 and 6. We have the following dynamical
large deviation principle for the empirical measure.

Theorem 2.6. Fiz T > 0 and an initial profile vy in C°(A). Consider a sequence
{nN N > 1} of configurations associated to y in the sense of (2.9). Then, the
sequence of probability measures {Qf;N : N > 1} on D([0,T], M) satisfies a large
deviation principle with speed N and rate function I7.(-), defined in (2.18):

— 1

T, e (e <€) <~ Thm)
. 1 B N .
i aor @ (€ U) = = T

for any closed set C C D([0,T), M) and open set U C D([0,T], M). The functional
T)(-) is lower semi-continuous and has compact level sets.

The proof of this Theorem is given in Section 7. It relies on Theorem 2.5 and
the contraction principle.

3. The perturbed dynamics and basic tools

In this section, we consider the perturbation of the original process (2.2), and
we prove some results needed either to caracterize the behavior of the empirical
current and the empirical density, either to prove large deviations principle.
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3.1. The modified process. Fix T > 0, a time dependent vector-valued function
V=(Vi,...,Vy) € (C%°([0,T) x A))d and a smooth function H € C*°([0,T] x I).
Define at time t, 0 < t < T, the following generators of a time inhomogeneous
Markov process on Xn

d

(LYNH) ) =D > Oz +esn) [f™ ) — f(n)] .

i=1 z,x+e;EAN
(L D) = > v (b@/N),n) [f(en) — fn)] ,
zel'n

where the rate function Cf,‘t/l (xz, 2z + e;;m) is defined through the rate C]BV by

Oy (@, x +esm) = Op(a, @ + e p)e” @re)n@INTVitta/N) (3.1)
and the rate at the boundary rZ, (b(z/N),n)) is defined through the rate r, as
— -1 T
Tf,t (b(x/N),n) = ry(b(z/N), 77)e(zn(ac) DN~H(t,x/N) (3.2)

For a probability measure py on Xy denote by szy H the law of the inhomo-
geneous Markov process (7;)¢cjo,7) on the path space D([O, T,% N) with generator
SX’H = N2L’XN + NZLfN and initial distribution p. Let Qﬁ}VV’H be the measure
of the process (7TtN)t€[0’T] on the state space D([O, T], M) induced from ]P’ﬁ[yH

Proposition 3.1. Let uy be a sequence of probability measures on X correspond-
ing to a macroscopic profile y in the sense of (2.9). Then the sequence of probability
measures QﬁyH converges as N 1 0o, to Q%Y. This limit point is concentrated on
the unique weak solution p®V in L*([0,T], H'(A)) of the following boundary value
problem

Op+ V-{a(p)[BV (I xp) + V]} = Ap

p(t, )|F =b(:) for 0<t<T, (3.3)
po(u) = v(u) .
Moreover, for eacht >0, § >0 and G € (C*(A))?, we have
t
Jm B[ (W) - / ds(3PV).G) >8] =0, (34
0

where J(p?V) is is the instantaneous current associated to p>V and is given by
IPPY) = =V o (oY) [V ") £ V]

We postpone the derivation of this Proposition at the end of this section.

3.2. Some useful tools. In this subsection we collect some technical results which
will be used in the proof both of the hydrodynamic limit and of the dynamical large
deviation principle. We start by some properties of the potential J""™(-,.) easily
obtained by its definition.

Lemma 3.2. The potential J™“™(-,-) is a symmetric probability kernel. Moreover
for any reqular function F : A - R and 1 < k < d, we have the following:

‘ak( /A J"e“m(u,v)F(v)dv)‘ < /A Ty, 0) |0 F (v)]dv, (3.5)
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where for 1 < k < d, Oy F is the partial derivative in the direction e. In particular,
if | - |1 stands for the I norme of R?, then

IV(J % F)(u)|, < (J*|VF|,)(u). (3.6)

The proof of this Lemma is similar to the one of Lemma 3.1. in Mourragui and
Orlandi (2013) and therefore is omitted.

Next, we show that for ¢ > 0 and V = (V4,..., V) € (CV1([0,T] x A))?, the

rates CIBV"t/i, 1 < i < d of the generator ﬁ,XN are a perturbation of the rates of the

symmetric simple exclusion generator. For any F € C}'(A),u € Aand 1 <k < d
denote by 9 F(u) the discrete (space) derivative in the direction ey:

O F(u) = N[F(u+ex/N)—F(u)], if u+ep/N€eA. (3.7)

Lemma 3.3. Fiz t > 0 and V = (Vi,...,Vy) € (CY([0,T] x A))d. For any
1<k<d, ne Xy and any v € Ay with x + e, € Ay,

Cx (@ +erin) =1 = N7 (n(@ +ex) = n(@) YL (7 (n), t,2/N) + O(N?),
where
Y (N ().t 2/N) = BOY (T x 7™ () (x/N) + Vi(t,a/N),
Proof: Recall from (3.1) that
Cf,’f’c (2,2 + ex;n) = C’ﬁ,(x, T+ ep: n)ef[n(erek)fn(:r)]N‘lVk(t,r/N). (3.8)

By definition of Hy, for all z,y € Ay and n € Xy,

Hix (™) — Hox(n) = 50 () = ()" (7" (G, 20y — e 0,0))
+ (n(=) - n(y))% > n(z) [Jneum(%, %) - Jneum(%7 %)] .
zEAN

Thus, by Taylor expansion,
ON (@, a+ex;n) = 1=B(n(z+er) —n(@)) N1 [(7) %™ ()] (2/N)+O(N?) .

To conclude the proof of the Lemma, it remains to apply again Taylor expansion
to the expression e~ [1(@Fex) =n@IN""Vi(ta/N) i (3 g). O

It is well known that one of the main steps in the derivation of a large deviations
principle for the empirical density is a superexponential estimate which allows the
replacement of local functions by functionals of the empirical density in the large
deviations regime. Essentially, the problem consists in bounding expression such
as (Z, f) s in terms of Dirichlet form N*(—£x+/f(n), /(1)) s, where Z is a
local function and (-, -) pst represents the inner product with respect to stationary
measure p5t. In the context of boundary driven process, the fact that the invari-
ant measure is not explicitly known introduces a technical difficulty. We fix as
reference measure a product measure ué\(’A), see (2.6), where 6 is a smooth func-
tion with the only requirement that 6|r = b. There is therefore no reasons for

N2(—Ln+/f(n), \/f(n)>ué\l(.) to be positive. Next lemma estimates this quantity.
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For each probability measure v on ¥ and each function f € L?(v), define the
following functionals

Do (/,7) Z > [ - fw) v,

i=1 x,x+e; EAN (39)

Dox(fr) =3 3 [ ralbta/N).n) (Fo™n) = S0 dv).
xeFN
Lemma 3.4. Let  : A — (0,1) be a smooth function such that 6(- ’1‘ = b(").
There exist two positive constants Cy = Co(||VO||oo, J™*™, V), C) = Ci(b, H) so
that for any a > 0 and for f € L? (I/é\é)),
v Ny, o
<fa £ﬁ7Nf>yé\£) < *(1 - Q)DO,N(f7 Vg(,)) + ;

—2+d 2
N f
(3.10)

CH
(Fo Linfluy = —(1=a)Don(frvp) + —EN 2 |2

The proof of this lemma is similar to the one of Lemma 3.3 in Mourragui and
Orlandi (2013) and is thus omitted.

This lemma permits us to prove the superexponential estimate. For a cylinder
function \Il denote the expectation of U with respect to the Bernoulli product
measure v by U(q):

T () = E¥ [T].
For a positive integer | and = € Ay, denote the empirical mean density on a box
of size 21 + 1 centered at x by n'(z):

0 (x) = |Aix‘ > ),

yeN (x)
where
A(z) = Ana(e) ={y € Ay : [y — 2| <1} (3.11)
For1 <j < d7 define the cylinder function ¥; = [n(e;) — n(0)]?, For each V =
Vi, ,Va), G = (Gy,--+ ,Gyq) in (CO([0,T] x A))?, and each € > 0, let
gGVﬁ 51 Ndz Z Gj(s,z/N)
i sateehn (3.12)

< X7V (7 (), 5,3/N) [705(0) = T3 ("N (2))] -
For a continuous function H : [0, 7] x ' = R, let

() = s 2 His o/ N)[n(e) = bla/N)] (3.13)

xeln

Proposition 3.5. Fiz G,V € (C%°([0,T] x A))¢, H in C*°([0,7] x ') and 3 > 0.
For any sequence of initial measures pun and every § > 0,

lim lim N—log]P’ﬁVH / QGVBsnS)ds‘>5] = —o0,

e—=+0 N—oo

hm W log]P’B Vs H / HE (s,m5) ds
0

>5} = —00.
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We conclude this section by the Girsanov formula needed in the proof of the
large deviations. Indeed, in order to compare the original dynamics to a perturbed
dynamics with regular drifts V, H (3.1) and (3.2), we have to compute the Radon-
Nikodym derivative of the modified process with respect to the original one (see
Kipnis and Landim (1999), Appendix 1, Proposition 7.3). Fix a vector-valued
function V € (C%9([0,T] x A))? and a function H € C%°([0,T] x I'). For any initial
measure py and any positive time ¢ > 0, the Radon-Nikodym derivative of Pﬁ}y H
with respect to ]P’ﬁ  Testricted to the time interval [0,] is gives by

8,V,H
dP)g

W((ns)se[o,t]) =MV x By, (3.14)
KN

where Mf 'V and IB%? H are two exponential martingales given by,

d
MY —e (DY {/t %Vk(s,x/]\f) AWzt

k=1z,x+exEAN 0
t

N / [1e(2) + 1a(@ + )1C% (2, + exi )
0

[er [V @l Veter /) _ g},

b,H K 1
B :exp( 3 {/O ~H(s,x/N)dW?

FASINN
t

N / ro (b(/N), s ) [el2ns Uk HE /M) q]gs )Y,
0

where the rate r,(-,-) is given by (2.5) and for any function g : ¥y — R and
x,y € Ay, we have denoted V*¥g(n) = [g(n™Y) — g(n)].

3.3. Proof of Prposition 3.1. The identification of the limit for the empirical density
(7™ (1¢))sejo,r) is similar to the one of Mourragui and Orlandi (2013). We therefore
switch to the limit (3.4). Following the same steps as in Bertini et al. (2006b), we
consider the family of jump martingales

Wf’y — WY N2 /Ot [77(33) — n(y)]C’ﬁY‘ (z,y;ms)ds fory=x +e;, x,y € Ay,
WY =Wy - N? /Ot {7e@)(1 = bly/N))eN /)

— (L= (y)bly/N)e™ HevN sy ey,
WY =W} - N’ /Ot {0 = na@)bly/Nye N G0N

—nu )L = b(y/N)eN eI ds -y eTy.

Recall from (2.7) the definition of the empirical measures (Wj{\i)tzo , 1 <5 <d.

Fix a smooth vector field G = (Gy,---,Gq) € (CH([0,T] x A))?, and consider the
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Pi}y’H—martingale WtGVH = WS’V’H’N’B, t €[0,T], defined by

d

oD SRV Y
k=1
]V2 t BV
~ NaiL > Gk(:v/N)/ [1s(2) = ne(x + ex)|Cyy ($79€+€k;ns)d8}
zr,x+erEAN 0
N? ' -
- 2 Gale/NMmi(a/N) [ {nn(a)(1 = bla/m))eN
xeln

- (1= ns(x))b(x/N)efN*sz/N)}ds.

From Lemma 3.3 and Taylor expansion the integral term of the last expression is
equal to

2 d ¢
S X Gue/N) [ o) e+ )] ds

k=1z,x+er€EAN

d t
—w Y X G [ @) et ] YN )./ N) ds

k=1lz,x+er€AN
1 ¢ 1
_ W$§N Gl(x/N)nl(x/N)/O [ns(x) — b(x/N)]ds + Oggv,u(N~"'),

where for 1 <k <d,ne€ Xy,s>0and x € Ay,
YoV (N (n),s,a/N) = BoR ("™ % 7 (n,))(@/N) + Vi(s,/N),

for any smooth function G, 6'JNG is defined in (3.7), and O gv.0 (Nfl) is an
expression whose absolute value is bounded by C N~! for some constant depending

on G, 8, J*" V and H. A summation by parts and Taylor expansion permit to

rewrite the martmgale WG VAH as

d
‘NNtG,V,H _ <va, G) — idz Z / ds (0rGy) (z/N)ns(z)
k=1

EAN\T'N

dZ 3 /dsGk 2/N)[1a(a) — n(a + )] "TEY (x (1.), 5, 2/N)]

k=1z€AN\T'y

s X Gila/MmaGe/) [ oyas

zel' N

_ % Z Gl(z/N)nl(x/N)/O [ns(z) — b(z/N)]ds + Ogpv,u(N7"').

zel'n
Here, I'y, resp. Fj\',, stands for the left, resp. right, boundary of Ay:

Fﬁ»:‘K$1f",$d)€ FN'lezziJV}
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Next, we use the replacement lemma stated in Proposition 3.5. We obtain that the
. oGV, H
martingal W, can be replaced by

(WY, @) —/Otds{gj <N (). G > | + /Otds/FGl(r) b(r) 1 (r) dS(r)

t d
1 \%
- [a{Y X Gue/me (@) 1Y (Y s/
0 k=1zeANn\T'n
On the other hand, a simple computation shows that the expectation of the qua-
dratic variation of the martingale WltG V-H vanishes as N 1 +o0o. Therefore, by
Doob’s inequality, for every é > 0,

A}im ]P’ﬁ;y’H sup [WSV-H| >5} =0. (3.15)
—00 0<t<T

Finally, recall that by the first part of the proposition, the empirical density con-
verges to the solution of the equation (3.3). This concludes the proof. o

Remark 3.6. The hydrodynamic equation (3.3) of the perturbed process does not
depend on the function H. This follows from Lemma 3.5 and Lemma 3.4, where it
is shown that the density at the boundary can be replaced by the function b when
N 1 +o0.

4. Properties of the rate functionals

In this section, we prove representation results for the rates J7(-) and Z7.(-), see
Lemma 4.5, the lower semicontinuity and the compactness of the level sets , see
Proposition 4.2.

4.1. Lower semicontinuity. We first prove that the functional 77! is larger than Z:
Lemma 4.1. For any (W,r) € D([0,T], M*1),
Iy(m) < T3 (W,m).

Proof: When J7(W, ) = 400, the inequality is trivially verified. Suppose then
that JZ(W,7m) < +4oc. This implies that 7 € D([0,T],F"), (W,m) € 2,
Q(r) < 400 and J7(W,n) = Jp(W, 7). Furthermore, by definition, since 7 €
D([0,T],F') and Q(m) < 400, we have Z7.(1) = LIJ.(1).

Let F € Cy([0,T] x A), since (W, ) € 2, we have

137 (m) = TS p(W,m) < JL(W, 7).

To conclude the proof, it is enough to take the supremum over all F' € CS’Q([O, T] x
A), on the left hand side of the last inequality. O

The main result of this subsection is stated in the following proposition.

Proposition 4.2. For every profile v € F', the functional Jg, resp. I} de-
fined in (2.15), resp. (2.18) is lower semicontinuous for the topology of the space
D([0,T), M3*1), resp. D([0,T],M). Moreoever the functional I,. has compact
level sets in D([0,T], M).
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The proof is split in several lemmata. We follow the general scheme used in
Quastel et al. (1999); Bertini et al. (2009). Denote

B = {(m(du))iejo,r) = (pe(w)du)icpoy = p € LP([0,T], H' (M),
po(:) =~();  Tr(p:)(-) =b(:), for a.e. t € (0,7T]}.

Lemma 4.3. Let 7 be a trajectory in D([0,T), M) such that Z).(w) < co. Then
belongs to Bf’y N C([0,T), FY). Furthermore, there exists a positive constant Cy =
Co(8, J™e“™) such that

Q(m) < Co{1+Z7(m)}. (4.1)

Proof: The proof of the first statement of this Lemma is similar to the one of
Lemma 4.1 in Farfan et al. (2011) and is therefore omitted. One can prove (4.1) by
using the same arguments as in the proof of Proposition 4.3. Quastel et al. (1999)
or Lemma 4.9. in Bertini et al. (2009). O

The proof of the lower-semicontinuity of the rate function Z7. is based on com-
pactness arguments; its basic tools is given by the next Proposition. We refer to
Bertini et al. (2009); Farfan et al. (2011) for the proof.

Proposition 4.4. Let {7 : n > 1} be a sequence of functions in D([0,T], M) such
that

sup {Z(7")} < o0
neN

with ©"(t,du) = p"(t,u)du, for t € [0,T] and n € N. Suppose that the sequence
p" converges weakly in L%([0,T] x A) to some p. Then, p" converges strongly in
L2([0,T] x A) to p.

Proof of Proposition /.2. The proof for the functional Z7. is omitted since it’s the
same as for the one dimensional boundary driven Kawasaki process with Neuman
Kac interaction Mourragui and Orlandi (2013).

To prove the lower semicontinuity of the functional 7!, we have to show that
for all a > 0 the set

E, = {(W,Tf‘) € D([0,T], M) + J2(W,7) < a}

is closed in D([0,T], M*1). Fix a > 0 and consider a sequence {(W" ") :n > 1}
in E, converging to some (W, ) in D([0,7], M%*1), and denote by 7} (du) =
pi(u)du. Then for all V in (C([0,T] x A))? and F in C([0,T] x A),

T T
lim dt (W}, V) = / dt (W, Vi),

., " (4.2)
lim dt <7T?,Ft> = / dt <7Tt,Ft>.

We claim that £7(W,7) < +oc. Indeed, from the lower semicontinuity of Z7.,
Lemma 4.1 and Lemma 4.3, m belongs to Bf’{ and Q(m) < C, for some positive
constant C,. Moreover, for any F € C}(A)

0 = lim sup {(x',F) ~ (3, F) - (W}, VF)}

n=00 40,7
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proving that (W,n) € 2, and then £Y(W,7) < +oo, so that J}(W,m) =
Jr(W, ).

Denote by p the density of m: m¢(du) = pi(u)du. Since p" converges weakly to
pin L([0,T] x A) (cf. (4.2)), by Proposition 4.4, p, converges strongly to p in
L2([0,T] x A), hence for any V in (C11([0,T] x A))4

lim {L@(W”,w”) - ;/()Tdﬂa(p?),Vt.Vﬁ}

n—oo

2

Since (W™, ™) belongs to E,, the left hand side is bounded by a. Taking the
supremum over V in (C11([0,T] x A))¢ we obtain that J7(W, ) < a and conclude
the proof of the lower semicontinuity of j:}y . [}

=Ly (W,n) — 1/ dt (o(p), Vi - V).
0

4.2. Representation theorem. Given a path = € D([0,T]; F') with 7(t,du) =
p(t,u)du, we denote by L2(c (7)) the Hilbert space of (equivalence classes of ) mea-

surable vector-valued functions {G : [0,7] x A — R% : fOT<U(p(t7u)),G(t, u) -
G(t,u))dt < oo} endowed with the inner product ((-,-))s(r) induced by

T
(V.G = /0 dt /A duo(r(t, ) V(t,u) - G(t,u) .

The norm of L?(c (7)) is denoted by || - [[L2(y(x))-
Denote by H{(o(m)) the Hilbert space obtained by quotienting and completing
03’2([0, T] x A) with respect to the pre-inner product defined by

<Fa H>17O'(7T) = <<VF7 VH>>0'(7r) .
The norm of H{ (o (m)) is denoted by || - | 3 (o ()

Lemma 4.5. Let (W, ) € D([0,T], M4*1) such that 7 (W, n) < co. There exists
a function U in L2(o(n)) such that (W, ) is the weak solution of the equation

HW, = =Vp+0o(p)[BV(I" " % p;) + U], Wo=0, (4.3)

in the following sense : for any G € (CY1([0,T] x A))d,

T
LL(W,7) = (G U)yem) = / dt (o(x,), G, - Uy),
0

where the linear function G — LBG(W, 7) is defined by (2.14).

Furthermore, there exists a function F € Hg(o(m)) such that p(-,-) solves the
equation (3.3) and V - (o(p)(U — VF)) = 0 in the weak sense described by (1.6).
Moreover,

1 I
Ir(W,m) =5 U2y = 5/0 dt (o (pt), Up - Uy) (4.4)

and

1 1 (7
Ir(m) = 5 1F a0y = 5/0 dt (o(p1), VF - VF). (4.5)
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Proof: Assume that J!(W,7) < oo, then £7(W,n) < oo and Jp(W,7) < oo.
Following the arguments in Kipnis and Landim (1999, §10.5), from Riesz represen-
tation theorem, we derive the existence of a function U in L?(o (7)) satisfying (4.4)
and (4.3).

On the other hand, from Lemma 4.1, we have Z7.(7) < oo. Using again the
Riesz representation theorem (cf. Kipnis and Landim (1999, §10.5)), we derive
the existence of a function F in Hg(o()) such that p is the weak solution of the
boundary value problem (3.3), with V. = VF. Then, the representation (4.5) for
the functional 77 follows immediately. Finally, equation (4.3) and the fact that
(W, m) € 2, yield,

((U=VF),VG)o( = 0, (4.6)

for all G € Cy*([0,T] x A). 0

5. large deviations upper bound for the empirical current

In this section, we prove the large deviations upper bounds stated in Theorem 2.5
and in Theorem 2.6. In view of the definitions of the energy functional £ and the
rate functional for the large deviations, we need to exclude in the large deviations
regime, paths (Wy, m;)scjo,7) which do not belong to 2, and with infinite energy
Q(m) = 4o0.

5.1. The set 2. Fix a positive profile v and let 5[7 be the set of trajectories (W, 7)
in D([0,T], M¥*1) such that for any G € C3(A) and any ¢ € C1([0,T))

sup V’Zgw)(w,w) =0,

0<t<T

where for (G, ¢) € C3(A) x C1([0,T]) and 0 < ¢ < T,

V(W) =(m, G)lt) — (1, G)p(0) — / ds(ms, G) ' (3)
0 (5.1)

t
~ (WL, VG)plt) + [ ds(W., TG)p'(s).
0
Here ¢’ stands for the time derivative of (.

Lemma 5.1. Fiz (W, 7) in D([0,T], MY such that

ty
sup sup V “]'7 T < 0,
(G,¢) Ogth{ (Gw)( )}
where the supremum is taken over all (G,p) € C3(A) x C*([0,T]). Then (W,m)
belongs to A .

Proof: Let M > 0 be such that VEC:{ (P)(W,ﬂ') < M, for all (G,¢) € C3(A) x

CY([0,T]), and 0 < t < T. Fix a function G € C3(A) and 0 < t; < to < T, we have
{<7Tt1,G> - <7Tt2,G>} - {<Wt1,VG> - <Wt2,VG>} S M .

Applying this last inequality to the functions —G and then to AG for positive

number A > 0, we get,

M

[{(7,G) = (m2, G} = {(W, VG) — (W, VG| < =
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for all A > 0. It remains to let A T +o0. O

The following lemma is needed for the proof of the upper bound of the large
deviations, which consists in two steps. We shall prove at first an upper bound
with an auxiliary rate functional §, for small a > 0 (Proposition 5.6). This new
rate functional will allow to take the large deviations rate functional equal to 4+oo
on the set of paths (W, ), which do not belong to 5{7.

Lemma 5.2. Fix a sequence {nN € ¥n : N > 1} of configurations. For any
(G, ) € C3(A) x CL([0,T)) and any a > 0, we have

s 1 B d ty N _N

JL va osFo [ (0 sup Vig (W a)] < 0.
Proof: The proof follows the general scheme used in Bertini et al. (2006b). Notice
however that in our context there are some additional difficulties due to the bound-
ary terms. Fix (G, p) € C3(A) x C1([0,T]). For any time s € [0,7], we have the
following microscopic relation

d WE—en® _Woetenif e Ay \ Ty,
na(@) = mo(2)+y_ (W= m—Wrete) 1 we — woater if g e Ty
i=2 We—ent W2 ifp el

Since G vanishes at the boundary I, the classical spatial summations
by parts and integrations by parts in time, permit to rewrite the two terms of

Vzg,w) (WY 7N as

(0. G)o(t) — (0. G)p(0) — / ds(ms, G/ (5)

d t
1 ,
-y X[ orcamemanses,

jleGAN\FE

(W, VG)p(t) - / ds(W,, VG)'(s)

d t
1 )
“gmY X[ aGamsanze

i— +
J=lgeAn\T'}

¢
g 2 [ BGE/ N /N )pl) e
zel'ny
where ON G(x/N) is the discrete derivative defined in (3.7) and 9;G is the partial
derivative of the function G in the direction e;. Let H : I' — R be the function
given by H(s,u) = —01G(u)ni(u)e(s) and for 1 < j < d and N > 1, denote
by VN = (V}¥,--- [ V) the time dependent vector valued function defined by

V;V(s,u) = N[@;VG(U) — 0;G(u)]¢(s), we obtain

d t
dyrt, N _Ny_ @ N z,x+e;
ANV (W) = S S /Ovj (5, /N )dW=+e.

= +
J 1xEAN\FN

Jr% Z /0 H(s,z/N)dWZ.

zel'n
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Thus by Cauchy-Schwarz inequality,

1 B d t,y N _N
a o8B [ (o 2y e W )]

< ﬁlogEﬁN[exp (— sup Z > / (5, 0/N)AW )| (5.9)

0<t<T
J=lgeAn\T}

b i log By [exp (%aoi‘;ET 3 / H(s, 2/ N)aws)] .

Next, we control separately the two terms of the right hand side of (5.2) using

2a
the mean one exponential martingales Mf MV and B22* defined in the Girsanov
formula (3.14):

2a 2a
M) MY = ex ( Z 3 /VNsx/N Jawzete — RV,
Jj= lzGA \1_‘+ (53)
Bb2eH exp Z / H(s,z/N)dW? — RQGH),
TEFN
where

Ré@tv:sz $ / 1(2) + 1z + )]CE (2, + €51m) X

J=lgeAn\T'}
(e Voot eing (2)] 25 VN (s,2/N) _ )}ds

R2aH — N2 Z / b(z/N),ns(z )) (6[2775(1)71]%1‘[(5,1/]\’) _ 1>d5.

zel' N

We start by the boundary term which differs from the proof of Bertini et al.
(2006b). Recall from (3.13) the definition of H(s,n). Let 6 > 0, and define the
set

T
ol {n. e D([0,7],Sy) : ‘/O Hﬁ(t,nt)dt‘ < 5}.

b,2a H
B,

According to the definition of and using the following inequality,

— 1 — 1 — 1
A}gnoo Wlog(aN +bn) < max{}\}gnoo N log aN,A}E)nOO N log bN} , (5.4)

we reduce the control of the second term of the right hand side of (5.2) to the
following claims For any ¢ > 0,

b,2aH a
hm 2Nd logE [O?gT {BtrQ X exp (RZ,tH)}l(Eﬁ,a)“} - 0. (5.5)
and
B b,2aH 2aH
fm lm oo 2Nd log By [ 4 {Bt x exp (Rp )}1E{315} <0. (5.6)

0<t<T

By Schwartz inequality, the expression in the first limit is bounded above by

b,2aH
hm 4Nd logE {OiltlgT (Bt xexp(RQGH)) }+ lim mlogﬂ” [<Eﬁ’5)c}.
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From Lemma 3.5, for any § > 0, the second term in the last expression is equal
to —oo. Consider the first term. Since G € CZ(A), a Taylor expansion shows that

sup \R2“H| < Na(1 + %)C(H, T) for some constant C(H,T) depending on H
0<t<T

and 7. Moreover, we can write the martingale IB%?’QGH as
2
]B?JaH _ (B?,aH) exp (2Rfi R2aH)
b\ 2 a (5.7)
< (Bt’ ) exp {a(l+ N)C(H’ T)}.

Here and below C(H,T) is a bounded constant depending on H and 7" whose value
may change from line to line. Therefore,

Nd log E’B [ sup (B?’%H X exp (RQQH))Q}

4 0<t<T
a 2
1+ YowH, T log E7 [ (IB%Z”Z“H) }
a(l+ )CH,T) + 4Nd og S (B
Since (IB%Q”Q“H)te[O 71 18 a positive martingale equal to 1 at time 0, by Doob’s in-

equality (cf. Proposition 2.16. in Ethier and Kurtz (1986)), the last expression in
bounded above by

a 8 b2aH 2
a1+ L)C(H,T) + 4Nd 1ogE [4(153 ) } s
a B bdaH]| a
<a(l+ 2)O(H,T) + 4Nd log B, [IB } = a(l+ )C(H, 1),

where we have used again the identity (5.7). This concludes the proof of (5.5).
On the other hand, a Taylor expansion shows that on the set Ef 5, for any
0<t<T, we have
(R3] < Na(6+ - C(H)),
for some positive constant C(H). We then check the limit (5.6) by using again the
same arguments as in (5.7), (5.8) and letting N 1 oo then § | 0.
We now consider the first term of the right hand side of (5.2). Since G € C3(A),

Lemma 3.3, a Taylor expansion and a summation by parts allow to show that for
any 0 <t <T,

R"”N < aoy (1 Z Z/ dtni(z) + aBTNIIC(V) + ta®?N472C(V, B)

j=lzeAN

B a d
< — —
< a{ov(l) + NC(V) + NQC(V,B)}N T,
where oy (1) is an expression depending on V which vanishes as N 1 co. It remains

2a
to apply again the same arguments as in (5.7), (5.8) for the martingale Mf’ NV
2a a 2 a 2a
vy Y = (MY ) exp (2R)FY - RPVY)
< (M?%V)Q 6Nﬂl?"N(V,a,T) ,

where rn(V, a,T) stands for an expression depending on V, a and T which vanishes
as N 1 oo. O
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5.2. The enerqgy estimate Q. In this subsection, we state an energy estimate which
is one of the main ingredients in the proof of large deviations and also in the proof
of hydrodynamic limit. For 7 € D([O,T},}"l), with 7 (du) = pe(u)du, 0 <t < T,
0>0,1<i<d,and H € C*([0,T] x A) define

. T T
Q?ﬁH(TF) = / dt<7Tt,8th> - 6/ dt<0’(pt)Ht,Ht> 5 (59)
0 0
) = swp {3},
HeC([0,T]xA)

Notice that .
)= > QXm)
i=1

where Q(-) is defined in (2.12). We shall denote Q; = Q2, so that Q = Z?Zl Q.
For each € > 0 and 7 in M, denote by ¢ the absolutely continuous measure
obtained by smoothing the measure m:

1 7m(A

T(Acw) o
< A(u)]

where A (u) = {v € A: v —u| <e}, \A| stands for the Lebesgue measure of the

set A, and {k. : € > 0} is a strictly decreasing sequence converging to 1. Denote

A = (@)
and notice that for N sufficiently large 7V°¢ belongs to F' because . > 1. More-
over, for any G' € C°(A),

(WV4,G) = 5 3 G/ (@) + O(N.e)
rzEAN

where O(N, ¢) is absolutely bounded by C{N~! + ¢} for some finite constant C
depending only on G.

7w (du) =

Lemma 5.3. Fiz a sequence {9 € Yy : N > 1} of configurations and H €
C>([0,T] x A). There exists a positive constant C7 depending only on b and B so
that for any given 50 >0, for any 6, 0 < 9§ < dg and any 1 <i < d, we have
B d A N,e
hn})]\;gnoo W log B, [exp <5N Q% (m ))} < Ci(T+1).

The proof of this Lemma is similar to the one of Lemma 3.8. in Mourragui and
Orlandi (2013), and therefore is omitted.

Corollary 5.4. Fiz a sequence {nN € Yn : N > 1} of configurations and H €
C([0,T) x A). There exists a positive constant Cy depending only on b and 8 so
that for any given do >0, for any §, 0 < < b,

- B d ~(_50 N,e <
;%ngnoo Nd log B [exp <6N 1S§111'Ig)d Q% (T ))} < Ci(T+1). (5.10)

Proof: From the inequality (5.4) the limit in (5.10) is bounded above by

B d 50 N,E
o, { T L, ok [enp (59° (™))

The thesis follows By Lemma 5.3. [l
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5.3. The functional &Y. For (G,p) € C3(A) x CH([0,T]) and H € C=([0,T] x A),

denote by &7 | the functional

(GsO)
e (W, r) = su ; + sup {VE7 (W, 5.11
(@) ( ™) = 1<zgd{Q i } 0< tET{ (G” W)} ( )

where Q; (7)) = QfH( ) with 6 = 2, and Vtg o are defined in (5.9) and (5.1).

Lemma 5.5. Fiz a sequence {n™ € Sx : N > 1} of configurations, (G,¢) €
C2(A) x CH[0,T]) and H € C([0,T] x A). There exists a positive constant Co
depending only on b and B so that, for any 0 <6 <1 and any 1 <1i <d,

d v, H N _N,e <
T Tim NdlogE [exp (6N e (W n ))} < Co(T+1).

Proof: By Schwarz inequality,

dlogIEﬁ [exp(cSNd(’E’(yH)(WN Ns))}

N
N N,e
< 2Nd logE [exp (25N OiltlgT {V(G o) (WS, ))}
log E)y | exp (26 N (V)]
e e [exn (8 s Q)
The result is an imediate consequence of Lemma 5.2 and of Corollary 5.4. ]

5.4. Upper bound. In this section we investigate the upper bound of the large devi-
ations principle for compact sets and then for closed sets of the couple (W, 71V)
on the topological space D([0,T), M?*t1). We follow the strategy of Mourragui and
Orlandi (2013), relying on some properties of the rate function that we proved in
the last subsections. Notice however that in the present case the proof is slightly
more demanding due to the definition of the energy functional £7. We first prove
an upper bound with an auxiliary rate functional.

Recall from (5.11) the definition of Qiz’gip). We introduce the functional &7 :

D([0,T], M?® x F') — [0, +00] defined by

Y (W,r) = sup <& (W, , 5.12
(W) = sup {€,(W.m)} (5.12)

where the supremum is carried over all (G, ¢, H) € C3(A) x C1([0,T]) x C°([0, T] x
A). Notice that €"(W,7) < +o0 if and only if £7(W, ) < 4o00.

For each 0 < a < 1, let §, : D([0,T], M?*1) — [0, +oc] be the functional given
by
Jr(W,m)+a® (W,n) if D([0,T], M% x F'),
+00 otherwise .

Sa(wvﬂ-) = {
Proposition 5.6. Let K be a compact set of D([0,T], M**1). There exists a

positive constants Co, such that for any 0 < a <1,

1
1 log Q° < - f W
im Nd 0g @, ~(K) < T+ a (ng)e Sa(W,m) + T+ a

Co(T+1).
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Proof: Fix a compact set K of D([0,T], M%*1) and functions (G,¢) € C3(A) x
CL([0,T)), H € C=([0,T] x A), V = (V4,---, V) € (CH1([0,T] x A))?. Denote by
O the vector-valued function (0, - - - ,0), where each component is the zero function
and recall from (3.12) and (3.13), the definition of QV 08 and HAV1. For 6 > 0,

let B]\V/?f, E'91 Y1 be the sets of trajectories (m)te[o,T] defined by

T
BN = {n. € D([0,T],2nN) : ]/ g}v’;f’ﬁ(t,m)dt‘ < 5},
0
. T
B}y = {n- € D([0,T],%N) : ]/ H?\}Vl(t,nt)dt‘ < 5}
0
and set
v, v,0, .V,
ANsﬁa = BNsaﬁﬂE sl

By (5.4) and the superexponential estimates stated in Proposition 3.5, for any
6>0

fim Tim —logQﬁ (kN (aN2,)7) = o0, (5.13)

e—+0 N—oo
where (Axf 5)C stands for the complementary of the set Axf 5
Recall from (5.11) the definition of Gzé - To short notation we denote by
ICVB(; —ICQAN€5, and write

legQB (KﬂAXfa) =

~ d ,H N _N, d H N _N,
Nd logEﬁ [H{Kxﬁg}@_ﬁ]v €&,y (W 'E)eli“ €lep) (W E)} .
763

N

N
By Holder inequality the right hand side of the last equality is bounded above by
1
T a i 1ogE5 []l{ICx sre” N, (W )}
+a ] L et e e (5.14)
1+a NlegE e Gt J
From Lemma 5.5, the limsup when N 1 oo and ¢ | 0 of the second term of this
inequality is bounded by %CQ (T 4 1), while the first term can be rewriten as
a
the expectation with respect to the perturbed process introduced in Subsection 3.1
whose law is given by ]P’g }\,V, that is

SFV,6y —aN%el [
NEC} (G.9)

d]P’
L1y Eﬂ"{ (5.15)

(WNJTN’E):|
1+aNd '

By (3.14), the Radon—Nikodym derivative of ]P’,ﬁm with respect to the probability
Pg;vv defined by the Girsanov formula satisfies on the set AX:’B 5
dPB

NN df 7T N _ N,
pEg = expN{ Iy (W 8 + r(N,s,cS,V)},

where j{,() is the functional defined in (2.14), and r(N, e, ¢, V) is a quanity satis-
fying
lim lim lim r(N,e,0, V) =

§—0e—0 N—oo
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We now exclude paths whose densities are not absolutely continuous with respect
to the Lebesgue measure. Fix a sequence {f; : & > 1} of smooth nonnegative
functions dense in C°(A) for the uniform topology. For k > 1 and o > 0, let

Dy, = {(w,w) e D([0,T], MHH1) ;

0 << m, f >§/fk($)d$+CkQ, OStST}7
A

where C, = C(||V fx]loo) is positive constants depending on the gradient V fi of fy.
The sets Dy, p, k > 1, 0 > 0 are closed subsets of € D([0,T], M?*1), as well as

m
©m7g: ﬂDk,ga mz].
k=1

Note that the empirical measure 7 belongs to ®,, , for N sufficiently large. We
have that
D([O,T],Md X .7:1) =MNp>1 Nm>1 @m71/n. (5.16)

For m,n € Z,, let g'(véeg)l’z : D([0,T], M%) — RU{co} be the functional given
by
H ~

5.17
(G,p),H +00 otherwise . ( )

It is lower semicontinuous because so is (W, m) — @?C’;;)(W,WE), and because
D,1/n 18 closed.

Recollecting all previous estimates. Using the inequality (5.4), optimizing over
7 in K and letting N 1 oo, we obtain that, for any myn € Zy, 0 <a <1, >0
and € small enough
lim ﬁlogQﬁN (IC) <

N—o0

1 ~a,b,e,m,n
sup GV e (W, ). (5.18)
T+ a (wabex V,H.G,p

Here, we have denoted
Sy e (W, m) = max { ( — TH(W,7%) + aRg5s ™ (W, w)) , Un.a(V, 5)} ,

where

Ry (W, m) = —E 0 (W, m) + Ura(G, @, Hoe) +7(N,e,6,V),

(G.p

eNdQ”’H )(WN,ﬂ'N’E):|
)

Ul,a(Gv<P,Ha5) = ngnoo m log]EnN [
— 1 c
Uoa(V.e) = (1+a) T ~logQ0y (KN (AV2,)).
Note that, for each m,n € Z,, 0 < a <1, § > 0 and ¢ > 0, the functional

6%,’5;’2?’;1 is lower semicontinuous. Minimizing the right hand side of the inequality
|4
)

— 1 B . =<a,d,e,m,n
]\;E)noo m IOg QnN (}C) S 1 +a (V\;Q’,I;E)EK 5.,51,1375n GV’H’G’LP (W’ ﬂ—) ’

By (5.13), (5.4), (5.16) and Lemma 5.5
lim lim Tim Tim &%y e (W, m) < —§50(W, 1) + aCy(T + 1),

§—0e—0m—o0 n—o0
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where
§Cea(w, ) = VW) + a€lyt (W.m)  if e D([0,T),M? x F'),
. +00 otherwise .

This result and the last inequality imply,
i, o Qe (K)

{5 W.m |+ =0T +1),

14 a (W,n)ek 1+

for any V, H, G, ¢. To conclude the proof of the proposition, it remains to Minimize
the last inequality over V, H, G, ¢, and to use again Lemma A2.3.3 in Kipnis and
Landim (1999) for the compact K. O

Proof of the upper bound. Denote by £ : D([0, T], M*1) the lower semicontinuous
functional

; d

. {EWm) i (Wom) € D(0.7], M 7).
400 otherwise .

Let K be a compact set of D([0,7], M%1). If for all (W,n) € K,

EY(W,m) = +oo then the upper bound is trivially satisfied. Suppose that

inf {g (W, 7r)} < 00, from Proposition 5.6, for any 0 < a <1,
(W,m)ek

_ 1 a
R log @ n (K) < l+a A<V\},13)fe;c Sa(W,7) + 1+aC2(T+1)
Ey (W, m)<oo
- i V(W (W } % oy(T+1
o AT W) (W) T )
~ a
< _ inf V(W) — inf  E,(W 4 (T +1).
- 1+a(W1,2)eICjT( ™) 1—|—a(w172)e1c i ’ﬂ)+1—|—a 2T +1)

To conclude the proof of the upper bound for compact sets, it remains to let a | 0.

To pass from compact sets to closed sets, we have to obtain exponential tightness
for the sequence {QﬁN, N > 1}. The proof presented in Bertini et al. (2006b);
Bodineau and Lagouge (2012) is easily adapted to our context. ml

6. large deviations lower bound for the empirical current

The strategy of the proof of the lower bound consists of two steps. We first
get a lower bound for neighbourhoods of regular trajectories. Then we extend the
lower bound for all open set by showing in Theorem 6.3 that the set of all regualar
trajectories is J;!-dense in the following sens:

Definition 6.1. A subset A of D([0, 7], M?t1) is said to be Jj-dense if for ev-
ery (W, ) in D([0,T], M?*1) such that J; (W, ) < oo, there exists a sequence
{(W",7™) : n > 1} in A such that (W™, 7") converge to (W, ) in D([0, T], M4+1)
and nlirr;o TE(W™ ™) = T (W, ).
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To clarify the meaning of regular trajectory, we consider the heat equation given
by the boundary value problem (1.1) for 5 = 0:

Op = Ap in A x (0,7,
wl) = %) A (6.1)
pelr = b for 0<t<T.

Denote by p(© its unique weak solution, and set Wgo)(du) = pgo) (u)du. Let

(Wgo))te[o,T] be the solution of the equation
0ip° +V-0W, =0,
given by linear forms

(W, V) = /t<17—Vp2-V>ds, Ve (c'n)!, telo,T).

Notice that, and an approximation of ( (0)) by smooth functions shows that

Q(p®) < oo, (see Bertini et al. (2009), (5.1)). Moreover, by construction
(WO 7)) e 2, and

T (WO, 70 /dt/|V

(see Mourragui and Orlandi (2013), Lemma 5.8.)

Definition 6.2. A trajectory (W, ) € D([O,T},M‘Hl) is said to be regular if
(i) JF(W,7) < oo, 7(t,du) = pi(u)du.
(i) There exists ¢ > 0 such that (W, 7) = (W? 7%) in the time interval [0, c].
(iii) For all 0 < 0 < T, there exists € > 0 such that ¢ < py(u) < 1 —¢ for
(t,u) € [6,T] x A.
(iv) There exists V € (CY*([0,T] x A))d such that p is the solution of the
boundary value problem (3.3).

We denote by A° the class of all regular trajectories.

The proof of the lower bound for regular trajectories is similar to the one in
the convex periodic case. We show that for any path (W,w) in A°, for each
neighborhood Nw ) of (W, ),

lim —logIP’ N{J\f(w o) > JT (W, ). (6.2)
N—oc0
We refer to Kipnis and Landim (1999), section 10.5 or Mourragui and Orlandi
(2013), section 6.4 for the proof of (6.2) for (W, ) in A°.
As mentioned at the beginning of this section, the lower bound of the large
deviations principle is then accomplished for general trajectotries using the next
result.

Theorem 6.3. The class A° is J}-dense.
The proof of this theorem is an adaptation of the I-density presented in Bertini
et al. (2009); Farfan et al. (2011); Mourragui and Orlandi (2013) for the couple

(W, 7). We therefore provide only a presentation of its main steps, with an outline
of the proofs.
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Lemma 6.4. The set of all trajectories satisfying (i) and (ii) is J;-dense.
Proof: Fix a path (W, 7) such that J (W, m) < co. For £ > 0, define (W<, %) as

(W,EO), Wt(o)) for 0 <t <e,
(Wiomi) = ¢ (Wi, ms) ) fore<t< 2,
(Wt_gg,m_gg) for 2e <t <T.

Clearly, lim._,o (W¢,7°) = (W, ) in D([0,T], M%1). The same strategy as in

Lemma 5.4, Bertini et al. (2009) or Lemma 5.11, Mourragui and Orlandi (2013),

yields J7 (W€, 7€) < oo, for all € > 0, and lin%) T (We, 7)) = J7 (W, 7). This
E—r

concludes the proof. O

Lemma 6.5. The set of all trajectories satisfying (i), (i) and (i) is J7.-dense.

Proof: Denote by A the set of all trajectories (W, 7) satisfying (i), (ii) and (iii).
By the previous lemma, it is enough to show that each trajectory (W, r) satisfying
(i) and (ii) can be approximated by trajectories in A'. Fix such trajectory (W, ).
For each 0 < e <1, let (W*,7) given by

We=(1-e)W+cWO 728 =1 —g)r4+en®.
Repeating the arguments presented in Mourragui and Orlandi (2013, Lemma 5.12.),
one can prove that lim._,o (W¢,7¢) = (W,7) in D([0,T], M**T1), T} (W*,7°) <
oo, for all € > 0 and lir% T (We,7) = T2 (W, 7). O
e—

Proof of Theorem 6.5. Recall that A! stands for the set of all trajectories (W, )
satisfying (i), (ii) and (iii). From the previous lemmata, it is enough to show that
each trajectory (W, ) in A! can be approximated by trajectories of A! satisfying
(iv). Fix (W, 7) € Al and denote p;(-) the density of m; for 0 <t < T. By Lemma
4.5, there exist U = (Uy, -+ ,Uy) € L?(o(7)) and F € Hi(o(m)) such that p solves
the equation (3.3) with V.= VF and W solves the equation (4.3). We claim
that U € (L2([0,T] x A))* and F € L2([0,T], H'(A)). Indeed, from condition

(ii), p is the weak solution of (6.1) in some time interval [0, 2] for some ¢ > 0.
t

In particular, p; = §°), W, = 7/ Vpgo)ds for 0 < t < 24, which implies that

0
U; = VE, = —BV(J™""™ % p;) a.e in [0, 26] x 2. On the other hand, from condition
(iil), there exists € > 0 such that e < p;(-) < 1—¢ for § <t <T. Hence, by Lemma
41,
1

T 5
dt/ U(t,u 2du§/ dt/52VJ“e“m*p W) [Pdu+ —— U1
| [(oewfaus [ o [ e )Pt 0o oy
2

T
2 2 v
<p /0 dt/A|th(u)| du+0(6)jT(W,7r)<oo,
1

5
2 neum 2 2
/0 dt/A,B [V % pe) ()t S IE i o
2

T
/0 dt/A|VFt(u)| du
2 1 ? —T(7m) < o0
<p /0 dt/A|th(u)| du+a(6)IT( ) < .

Let {U" = (Up,---,U7), n > 1} c (CYY([0,T] x A)? and
{F", n>1} c C*([0, T]xA) be two sequences of functions such that lim U" =

n—-+oo

IN
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U in (LQ([O,T] X A))d7 and 1ir_ir_1 F" = Fin LQ([O,T],Hl(A)). For each integer
n—-+oo
n > 0, let W be the weak solution of the equation
OW, = =Vp}l +a(p})[BV(I*" % p') + UF],  Wo=0, (6.3)

where p™ is the weak solution of (3.3) with VF™ in place of V. We set n"(¢,du) =
P (t, u)du.

We examine in this paragraph the energy £Y(W™, 7). Recall from Lemme 4.5
that V- o(p™)(U™ — VF™) = 0 in the weak sense. Since W" solves the equation
(6.3), and p™ solves the equation (3.3), we have for any G' € C}(A), t € [0,T],

t
WPVG) = [ (L[~ 90t 4 Aol V™ « )] - VG
t
", U - VG
+ [ ato) ds

= (r},G) — (n},G /ds o(p?), (=VF+U?%)-VG)
= (m",G) — (5, G

This proves that (W",7™) € 2,. On the other hand, since o(7™) is bounded above
by 1/2, from Lemma 4.1

T
/0 dt (o(o}), VE? - VE)

< TU(W".n / dt (o(p), UF - UY)

gf/ dt/}U" ]du

In particular, {Z7.(7"), n > 1} and {JZ (W™, 7™), n > 1} are uniformly bounded.
Thus, Lemma 4.3, implies the uniform boundedness of the sequence {Q(7"), n >
1}.

In order to extract a converging subsequence from the sequence {(W”, ™), n >
1}, we need to show the relative compactness of the set {(W",7r")7 n > 1} in
the topological space D([0,T], M*1). By construction, for any s,t € [0,7], any
V e (CY(A))? and any G € C3(A),

’(W?’V> + <7T?v G> - <W?7V> - <7Tn7 G>‘

S

= ‘ / (L, [=Vpl 4+ a(pl)BV(JI™™ x p)] - (V + VG) )dr
+ /t (o(p?), [U2-V + VFI'- VG]>dT‘ .

For shortness of notation, we shall denote Ap = [0,7] x A and for a vector val-
ued measurable function H € (LQ(AT))d (resp. V € (LQ(A))d), we shall denote

IH| 2(ar) = fo dt [, [H(u )[2du (resp. IVIi2ay = [y |V (u)|?du). Since o(-) is
bounded by 1/2, by Schwartz inequality, the right hand side of the last equality is
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bounded above by
w—sl(HVHm 196 ) {1907 Lzzamy + DIV 5 5 xar )

|t - S {HV||L2(A |Un||L2 (Ar) T HVGHH A)HVF ||L2(AT }

Recall that for each u, J"°"™ (u, v)dv is a probability density, by Lemma 3.2 , Jensen
inequality and Fubini’s Theorem,

I s )25, / dt / TR (G2 = V2, -

Hence, for any s,t € [0, 7],
’<W;L7V> + <7Ttn7G> - <W27V> - <7Tn G>‘
<

s

(6.4)
VIS {1V oy + 16 g }
where the constant M = C(p, U, F| 8) is such that
sup { (14 5)IVP" lizam + 10" 2 an) + SIVE li2ar) | < M-
ot 2 2 2
Analogously, we obtain
sup sup ([[W¢[+ [|7'])
n>10<t<T
(6.5)

<1+ MVTsup {90 sy + U xam | < 00

for some positive constant M’ = M'(|A],5), where for each n > 1, ||[W™] (resp.
|l7™||) stands for the total variation of the signed measure W™ (resp. of the measure
™).

The relative compactness for the set {(W”7 ™), n > 1}, follows from (6.4),(6.5)
and the compactness criterium for the Skorohod topology (see Ethier and Kurtz
(1986) Theorem 6.3 page 123).

Let {(W™ ™) : k > 1} be a subsequence of {(W" 7™) : n > 1} converging
to some (W* 7*) in D([0,T], M%*1) and denote by p* the density of 7*. We
claim that (W*,7*) = (W,7) and kh—>Holo JE (W™, ™) = J1(W,m). On the

one hand, {p™ : k > 1} converges weakly to p* in L?(Ar). Since J7 (W™, 7") is
uniformly bounded, by Proposition 4.4 and Lemma 4.1, p"* converges to p* strongly
in L2(A7). For every G in Co*(Ar), we have
T
(x Gr) — (.G = [ di (", 0,G1)
0
T T
+ / dt (7% AGy) — / dt / b(r) s (r) (L F3) () dS(r)
0 0 r

T
+ / (VG oo ) [BY (T % pi) + VEP]) dt
0

Letting k — oo, we obtain that p* is a weak solution of equation (3.3) with V.= VF.
Thus, by uniqueness of weak solutions of (3.3), #* = w. On the other hand, for
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every V in (CY1(Ar))? and any k > 1, we have

(W, Vr) = / L (W 0,V
0
T T
—|—/ dt (m* V- V) — -/0 dt/rb(r)nl(r)Vl(t,r)dS(r)

0 T
+8 / (0 (%), Vi - [V (7 % gy + U™yt

Since {W"* : k > 1} converges weakly to W* in L? (AT) and p™* converges to p
strongly in L?(Ar), letting k — oo, we obtain that W* is a weak solution of the
equation (4.3) (associated to p and U). This proves the first part of the claim. To
conclude the proof it remains to prove that klggo TE (W™ g = J (W, m). The

sequence (p"*)g>o converges to p strongly in L?(Ar) and the sequence (U™ )z~
converges to U in L?(A7). Taking into account that p is bounded and ¢ is Lipschitz,
we obtain

k—o0

T
i THW,7) =t 5 [t (ol U U7
— 00 0

= %/O dt <O'<pt),Ut Ut> = j’?‘/(wﬁﬂ-)

This concludes the proof. |

7. large deviations for the empirical density

In this section we prove Theorem 2.6. As we mentioned in the introduction, the
large deviations principle for the empirical density can be recovered from the one for
the current. Indeed, it follows from Theorem 2.5 and the contraction principle, that
the rate function Z7. for the empirical density is given by the variational formula

Ti(r) = inf (W, ), 7.1
Hm) = B TH(W) (71)
where 2[, is defined by (2.11). To conclude the proof of Theorem 2.6, we then need
to show that the functional Z7}. in (2.18) coincides with the functional Z). on the
whole space D([0,T], M).
Fix 7 € D([0,T], M). From Lemma 4.1, we have

Z}(r) < Th(r). (7.2)

Conversely, suppose that Z].(71) < oo, then by Lemma 4.5, there exists F €
H}(o(m)) such that w(t,du) = p(t,u)du and p solves the equation (3.3) with
V = VF. Let WI the weak solution of the equation (4.3) with U = VF, it
is easy to check that (W', ) € 2, and

L) < LW, m) = T)(m) . (7.3)

We deduce from (7.2) and (7.3), that for each 7 € D([0,T], M), ZT}(7) < 400
if and only if Z7.(7) < 4+oc and then Z7.(7) = Z}.(7) which concludes the proof of
(7.1). O
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