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Abstract. We establish a variational formula for the exponential decay rate of the
Green function of Brownian motion evolving in a random stationary and ergodic
nonnegative potential. Such a variational formula is established by Schroeder (1988)
for periodic potentials and is generalised in the present article to a non-compact
setting. We show exponential decay of the Green function implicitly. This formula
for the Lyapunov exponent has several direct implications. It allows to compare
the influence of a random potential to the influence of the averaged potential. It
also leads to a variational expression for the quenched free energy.

1. Introduction and Results

Decay of the Green function for Brownian motion has been subject of study in
many respects. If Brownian motion is evolving in a random potential, additional
properties of the random structure of the potential such as ergodicity and station-
arity allow to expect that the Green function exhibits a deterministic behaviour
on the large scale. A deterministic exponential decay rate of the Green function,
also called Lyapunov exponent, has been already established in many cases. In
this article we give a variational formula for the Lyapunov exponent of Brownian
motion in a stationary ergodic potential. Such a variational expression has been
proven by Schroeder (1988). Schroeder considers periodic potentials and therefore
deals with potentials defined on compact spaces. In the present work we generalise
the results there to the non-compact setting of stationary ergodic potentials.
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We consider Brownian motion on R%. Let Z = (Z¢)t>0 be the canonical process
on the space C([0,00),R%), d € N, with the cylindrical o-field S. Let P denote
the law on S of a d-dimensional Brownian motion with drift A € R? and starting
at x € R4, let B denote the expectation under P;. If z, A = 0 we write P and E
instead of P, and E) respectively.

The Brownian motion is assumed to evolve in a random potential defined on a
probability space (§2, F,P): Let Sym({2) be the symmetric group on {2. We assume
that (R%, +) is acting on (2 via a homomorphism 7 : R — Sym(2), = + 7, such
that (z,w) — 7,w is a product measurable mapping and 7, is measure preserving.
Ergodicity of P with respect to the family of transformations {7, : x € R?} will
be crucial and assumed additionally in many cases. Then ({2, F,P,7) is said to
be an ergodic dynamical system. We denote the space of integrable functions on
2 by L'. A function V € L' that is non-negative is called potential throughout
the article. For any w € 2 we may consider the realisation of V' as a function on
R? via V,,(z) := V(r,w). In order to avoid trivialities we assume for w € 2 that
the realisation V,, of a potential V is not negligible with respect to the Lebesgue
measure.

We investigate the Green function for Brownian motion evolving in V,,. Define

Gz, A,w) = B, Uoooexp{ - /Ot Vw(Zs)ds}lA(Zt)dt} (1.1)

where z € R, w € 2 and A € B(R?), the Borel o-algebra of RY. G can be
interpreted as the expected occupation times measure of Brownian motion killed
at rate V,,, and is also called the Green measure. In this article we are generally in
the situation that for z € R? and w € 2 the Green measure possess a continuous
density g(wx,-,w) : R\ {z} — [0, 00) with respect to the Lebesgue measure, which
is called Green function, see condition (G) below. Under natural assumptions the
Green function can be interpreted as the fundamental solution to —(1/2) A+V,,,
that is

1
( 5 A—|—Vw)g(a:, W) = g,

where 0, denotes the Dirac distribution at x € RY, see Pinsky (1995, Theorem
438).

If the Green function decays exponentially fast with a deterministic exponential
decay rate, which means that for y € R?\ {0} the limit

. 1
aV(y) = Thﬁngo—;lng((),ry,w) (12)

exists and is P-a.s. constant, then the Lyapunov exponent is said to exist and is
defined as ay . Conventionally we set ay (0) := 0.

Existence of the Lyapunov exponent is shown for example for Poissonian poten-
tials by Sznitman (1994, Theorem 0.2). We refer to Sznitman (1998, Chapter 5)
where an overview can be found. Results for a discrete space counterpart are given
by Zerner (1998, Theorem A) and extended in Mourrat (2012, Theorem 1.1). The
operator —(1/2) A4V is also called a random Schrédinger operator. A compre-
hensive treatise on the theory of random Schrédinger operators can be found e.g.
in Stollmann (2001) or Carmona and Lacroix (1990). Typically (1.2) is proven by
means of subadditivity. Existence of the Lyapunov exponent is part of our main
Theorem 1.2 and we do not need the subadditive ergodic theorem.
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Variational formula in the case of periodic potential. Schroeder shows exponential
decay of the Green function and establishes a variational formula for the Lya-
punov exponent of Brownian motion in periodic potential. We recall the result
of Schroeder: Let £2 = T¢ be the d-dimensional torus equipped with the Borel o-
algebra and Lebesgue measure. For z € R and w € 2 define 7,w := w+x (mod 1).
We get an ergodic dynamical system on which realisations of potentials are periodic.
Let C*(T%) be the space of continuous functions on T¢ with continuous derivatives
of order less than or equal to k and let y € R?\ {0}. The variational expression
given by Schroeder varies over probability densities f € C?(T?) such that f > 0
and [ fdz = 1, and over divergence-free vector fields ¢ € (C'(T?))? such that
Jpa#(x)dx =y and V - ¢ = 0. The following is shown in Schroeder (1988) and is
generalised in our main Theorem 1.2:

Theorem 1.1. Schroeder (1988, (1.1)) Let V be a continuous potential on 2 = T¢
such that V(w) > 0 for w € £2. Then for allw € 2, y € R?\ {0},

. s V2 A
Tlingo—;lng(o,ry,w) = 21561f |:</Td 57 —|—Vfdx> <1gf/w 2fdx>} . (1.3)

Variational formula for more general potentials. A natural way to generalise pe-
riodicity is to study stationary ergodic potentials. Different kinds of stationary
ergodic potentials have been considered in the literature. For example random
chessboard potentials are described in Dal Maso and Modica (1986, (3.4)). A huge
class of stationary ergodic potentials is given by potentials that are generated by
random measures:

Let {2 be the set M(R?) of locally finite measures on (R¢, B(R?)) equipped with
the topology of vague convergence, and let F be the associated Borel o-algebra
on 2. Forw € 2, v € R4 A € B(RY) introduce 7,w[A] := w[A + z], and let P
be the distribution on (2 of a stationary and ergodic random measure with state
space R?. Then (£2,F,P,7) becomes an ergodic dynamical system, use e.g. Daley
and Vere-Jones (2008, Exercise 12.1.1(a)). Given a measurable ‘shape function’
W R — R>o we can define the potential generated by the random measure P by
V02 —10,00],

V(w) = /W(x)w(d:t)

Truncation leads to bounded potentials, and with the help of convolution V' can be
equipped with regularity, see Appendix 4.3. Often studied examples of this type
are potentials with an underlying Poisson point process P, also called Poissonian
potentials, see e.g. Sznitman (1998).

In order to formulate the variational expression in (1.3) for a general non-compact
stationary setting we need some more notation. If f, is differentiable we write
Df(w) for the derivative Df,(0). We introduce a space of probability densities,
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and for y € R? we introduce a space of measurable divergence-free vector fields:

F,:={f € L' : £, is differentiable of any order for all w € £2,
E[f] =1, 3¢f > 0s.t. f > ¢y, sup|D" f| < oo for any n € Ny}
19

o, :={g € (LY : ¢y, is differentiable of any order for all w € £2,
E[¢] =y, V-¢ =0, sup|D"¢| < oo for any n € Ny}.
2

Superscript ‘s’ here emphasises that spaces of ‘strongly’ differentiable functions are
considered in contrast to spaces of ‘weakly’ differentiable functions introduced in
Section 2.

In analogy to (1.3) we show in Theorem 1.2 that under sufficient conditions the
Lyapunov exponent can be represented as the variational expression

V12 . 92 \1"*
Y +VdeP’> <¢l€n£?; 2fd]P’)] . (1.4)

ret) =2 jut | (

feFs

Lyapunov exponent and the quenched free energy. On the way we obtain a rep-
resentation of the Lyapunov exponent in terms of the quenched free energy: For
y € R4\ {0} P-as.,

av(y) = R(—4Au)(y). (1.5)

Here,

t—o0

Ay(N) = limsupilnE)‘[exp{ - /Ot Vw(ZS)dsH (1.6)

is the quenched free energy, and the functional R is given as R(a) : R? — RU{4o0},
R(a)(y) :==sup{{y,N) : A € RY, X*/2 < a(\)},

with sup () := —o0, and where a is any real-valued function on R%. The functional
R also appears in Armstrong and Souganidis (2012), see (1.10) below. Note that
we only look at the limit superior in (1.6) since this suffices for our purposes. For
our results we also do not need to know whether A, is deterministic. Existence
of the deterministic limit in (1.6) is shown in many cases and an overview over
the literature can be found after Corollary 1.4. Often, this can be deduced via
homogenization, see Appendix 4.1.

Equality (1.5) also allows to give a variational expression for the quenched free
energy: Let

L*:%AJr)\-V

be the generator of Brownian motion with constant drift A € R?. We introduce
L/\
o()\) := — sup inf / (“ - v> fdP > 0,
fER2, uelU u

where F2 is a certain space of probability densities on {2, and U is a space of positive
functions on 2. These function spaces are introduced rigorously in Section 2. The
representation

Au,(A) = —o(}) (L.7)
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is given in Corollary 1.4. Quantities like ¢ appear naturally in many cases as
representation of the principle Dirichlet eigenvalue for Markov processes, see e.g.
Donsker and Varadhan (1975¢).

On a heuristic basis the following representations of ¢(0) and I'y may be derived:
We will see in Proposition 3.10 and (3.23), that

2

o(0) = inf / [VaI® + VgidP.
g2€Fs 2

Let 9Q(-,-) denote the quadratic form associated to the generator of the Markov

process wy = Tz,w on §2, t > 0, omitting existence issues and well-definedness.

Then (g, g) should equal [|Vg|?/2 + Vg?dP for g € Fy, see Sznitman (1998,

(1.4.18)). Thus, we obtain

o(0) = inf AVF, V).

which is analogous to the formula for the quenched free energy of Brownian motion
in nonnegative deterministic potential given e.g. in Sznitman (1998, (3.1.2)). These
considerations also allow the following heuristic reformulation of I'y: For y € R?,

o> 1"
ret) =2 iuf [o/F V) jng [lhae]

ey

Assumptions. The following hypotheses are imposed from time to time:
(B)  ¥max :=supy, V < 0.
(G)  9(0,,w) € C*(R?\ {0}) for w € £2,
L,g(0,-,w) =0 on R\ {0}, where L, := (1/2) A -V, for w € 2.
(E1) For any A € R? such that |A\|?/2 < ¢()\) one has P-a.s., 0(A\) < —A, ().
(E2) o(0) > 0.

There always exists a density for the Green measure with respect to the Lebesgue
measure in the present context, see e.g. Sznitman (1998, (2.2.3)). Condition (G)
holds under weak regularity assumptions on the potential, such as local Hélder
continuity, see Pinsky (1995, Theorem 4.2.5(iv)). There is a broad variety of cases
in which condition (E1) is known to be valid: In Appendix 4.1 we show that in
the stationary ergodic case, the expression of the effective Hamiltonian given in
Kosygina et al. (2006) guarantees (E1). Condition o(0) > 0 is related to the
question whether the effective Hamiltonian at zero is negative. Answers to this
question are given in Armstrong and Souganidis (2012, Proposition 5.9). If V is
strictly bounded away from zero, then o(0) > 0 trivially. A potential satisfying
(B), (G), (E1), (E2) is referred to as a regular potential throughout this article.

Results

Variational formula. Our main result is the following variational formula and im-
plicitly shows that the Green function decays exponentially fast with a deterministic
decay rate, that is, that the Lyapunov exponent exists for Brownian motion evolv-
ing in a stationary ergodic potential. Moreover, it expresses the Lyapunov exponent
in terms of o and A:
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Theorem 1.2. Assume (£2,F,P,7) is an ergodic dynamical system and V is a
regular potential. Let y € R4\ {0}, then P-a.s. the limit

1
ay(y) == lim —;lng(O,ry,w)

r—00

exists and P-a.s. one has the variational expression

ay(y) = I'v(y). (1.8)
Moreover, P-a.s. R(—A,) = I'v = R(0).

Theorem 1.2 is a generalisation of the variational formula for Lyapunov expo-
nents of Brownian motion in periodic potentials established by Schroeder (1988)
to stationary and ergodic potentials. We extend the techniques developed by
Schroeder to prove Theorem 1.2. A refined examination allowed us to express
the Lyapunov exponent in terms of o and A,,.

In order to show existence of the Lyapunov exponent, in Sznitman (1994) the
potential is assumed to satisfy a finite range dependence property and in Zerner
(1998); Mourrat (2012) the potential is assumed to be i.i.d.. In this respect, the
present work generalises the existence of the Lyapunov exponent to potentials with
long range dependencies.

Some conditions may be relaxed if only parts of the results are considered. For
example for ay < I'y we only need to impose (B) and (G), while for ay > R(0)
we require (G) and (E1). For I'y = R(o) we only need (E2) and V € L2. For
I'v = R(o) no ergodicity of P is required.

We outline alternative possible choices for the function spaces Fs and &} in
Proposition 2.2. We derive further variational expressions for the Lyapunov expo-
nent in Proposition 3.13 and Proposition 3.15. In Proposition 3.18 we show that
ay is the unique solution to a variational problem.

The non-compactness of the underlying probability space induced additional
complexity. For example our upper bound relies decisively on the quite general
and relatively new version of the Ergodic Theorem del Tenno (2009, (A.9)), which
may be interpreted as Ergodic Theorem for the ‘point of view of the particle’.
Formula (1.7) shown by Donsker and Varadhan (1975a) in the compact case and
used by Schroeder (1988, (3.7)), is not applicable in the present setting. We applied
homogenization results from Kosygina et al. (2006) to derive the required estimate,
see Proposition 4.1. Additionally, the last density statement given in Lemma 2.1
which is essential for Proposition 3.13, while obvious in the compact case, is not
trivial in the present general setting. It is crucial for the transition to the non-
compact setting to establish this density property.

Theorem 1.2 shows to be suitable to study the Lyapunov exponent in more detail.
It enables for example to derive continuity properties of the Lyapunov exponent
with respect to the potential and the underlying probability measure. It also allows
to establish strict inequalities. Results into this direction are part of a subsequent
article.

Influence of randomness. The variational formula given in Theorem 1.2 allows to
determine the influence of the randomness of the potential on the Lyapunov expo-
nent. Choosing f =1 and ¢ =y in (1.4) one has
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Corollary 1.3. Let V be a potential. Then I'y < Igy. Assume additionally that

(2, F,P,7) is an ergodic dynamical system and V is a reqular potential, then for
y € RY P-a.s.,

av(y) < agy(y). (1.9)

This inequality has been derived for Poissonian potentials in Ruefl (2012, The-
orem 4). In the discrete setting of random walk in i.i.d. random potential such a
result is available in a more general formulation more directly as proven by Zerner
(1998, Proposition 4) with the help of Jensen’s inequality. Note, that in the continu-
ous setting a direct application of Jensen’s inequality is not possible. In Ruef (2012)
a discretisation technique is applied; alternatively a generalisation of Jensen’s in-
equality to a functional analytic framework might also lead to this result if one had
an representation as in (1.10), see the comment given in Ruef3 (2012).

Long range survival probabilities. Let y € R? and B(0,1) denote the open ball with
centre 0 and radius 1 and B(0, 1) its closure. We introduce

H(0)
e(y,w) = E, [exp{ — / Vw(Zs)ds}, H(0) < oo],
0
where H(0) := inf{s > 0 : Z, € B(0,1)} is the hitting time of B(0,1). Under
suitable assumptions the results given in Armstrong and Souganidis (2012) together
with Theorem 1.2 show that the exponential decay of the Green function coincides
with the exponential decay of e(-,w), see Proposition 4.3: For y € R? P-a.s.,

1 1
lim ——Ine(—ry,w) = lim —=1ng(0,ry,w). (1.10)
r—00 'S

r—00 T

This is known already e.g. for Poissonian potentials, see Sznitman (1994, Theorem
0.2).

Quenched free energy. By Theorem 1.2 a computation of the inverse of R leads to
the following.

Corollary 1.4. Let (2, F,P,7) be an ergodic dynamical system. Let V' be a poten-
tial such that V + p is a reqular potential for u > 0. Choose ¢ € R such that P-a.s.
¢ <min{o(0), —A,(0)}. ThenP-a.s. for those A € R, which satisfy o(\)—A2/2 < ¢
or —A,(X\) — A2/2 < ¢, we have

o(\) = — A, (V). (1.11)

Since —A,(0) > 0 and o(0) > 0 we can always choose ¢ = 0. Note that for
bounded potentials o(\) — A\2/2 as well as —A,,(\) — A2/2 tend to —oo as || — oo,
see Subsection 3.4.

Equality (1.11) is known if {2 is compact, we refer to Donsker and Varadhan
(1975¢,a). In the case of non-compact (2 the investigation is much more com-
plicated, as the examples given in Donsker and Varadhan (1976a, Paragraph 9)
illustrate. For Polish {2 the non-compact setting is studied in Donsker and Varad-
han (1976a, 1983). There, L* is assumed to generate a Feller process on (2 and
the existence of special subsolutions to (L*u)/u < A for some A € R is needed.
On R? (1.11) is investigated in Donsker and Varadhan (1976b, 1975b). Discrete
space models have also been examined. For example for random walks in random
potential such formulae are given by Rassoul-Agha et al. (2013) in quite generality.
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We also refer to the detailed overview of literature given in Rassoul-Agha et al.
(2013, Subsection 1.3) concerning this topic.

To the best of our knowledge the representation (1.11) of the quenched free
energy is new in the present context. One might want to compare our results with
the series of equations given in Kosygina et al. (2006, p.1497), but the exchange
of infimum and supremum there is done heuristically and not rigorous. Note also,
that the regularity of test-functions in the continuous space setting obstructs the
direct application of a finite o-algebra approach as e.g. used in Rassoul-Agha et al.
(2013).

Organisation of this article. Section 2 contains notation and preliminary results.
In particular a list of function spaces and some denseness results are given. In
Section 3 we prove Theorem 1.2. Further representations of o and Iy, are given in
Subsection 3.3. Appendix 4 contains additional material such as conditions under
which (E1) is valid and proofs for (1.10), Corollary 1.4 as well as for the denseness
results.

2. Notation and Preliminaries

In this section we present notation and some basic results. By B(R?) we denote
the Borel o-algebra on R? and with .# the Lebesgue measure on B(R?). By |- | we
mean the Euclidean norm in R?. Unit vectors in coordinate directions are denoted
by e;. The scalar product between vectors z, y € R? is sometimes denoted by
(x,5), where (-,-) is the scalar product on (L?)?, see below. S9! is the sphere
in R, B(z,7) is the open ball in R? around z of radius 7. We write C° for the
set of real-valued functions on R¢ with compact support having derivatives of any
order. L7 . denotes the space of locally p-integrable functions on R If Ais a
subset of a topological space X, by A we mean the closure of A and by 9A the
boundary of A. For x, y € R? we say x is parallel to y if 2y = |z||y|. For bounded
measurable b : R — R? we denote by P¢ the unique solution to the martingale
problem MP(b,1) starting at dp, see Karatzas and Shreve (1991, Proposition 5.3.6,
Corollaries 5.3.11, 5.4.8). The corresponding expectation operator is denoted by
E.

For p > 1 we denote by L? the space of p-integrable functions on ({2, F,P). By
(LP)?, 1 < p < oo, we denote the vector space of measurable f : £2 — R such
that || f]l, < oo where | f|, == (Z?Zl ||fi||§)1/p in the case p < co and || f|lec :=
max; || fi|o if p = 0o. (L?)? is provided with the scalar product (¢,v) := E[¢ - 9],
#, v € (L?)?. If f € L' is essentially bounded such that f > ¢ for some ¢ > 0, then
we consider sometimes the inner product (¢,v)s := E[¢ - ¢ f] and the associated
norm ||| 5 = E[¢2f]V/2 for ¢, v € (1)1,

Let f be a measurable function on (2. If P-a.s. the realisations of f are differen-
tiable, we say that f is (classically) differentiable. The following concept of weak
differentiability on 2 is used throughout the article: Denote for the moment by
D°WVy the v-th weak derivative of a function u € L. . (if it exists), where v € (Ng)¢
is a multi-index. Here we write superscript ‘eu’ for ‘Euclidean’ space derivative.
f is said to possess a v-th weak derivative if for P-a.e. w € 2 the realisation f,
possesses v-th weak derivative and if there is a measurable function g defined on 2
such that P-a.s. Z-a.e. g,(z) = D" (f,)(x). g is called the v-th weak derivative
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of f and we denote it by DY f. If f possesses v-th weak derivative for any v such
that 0 <y +wvo+...+vg <m, meN, we say f is weakly differentiable of order
m. If f is weakly differentiable of order one we simply call f weakly differentiable.

For f weakly and classically differentiable, the classical derivative coincides with
the weak derivative P-a.s. and hence, without ambiguity we use the same symbols
for the weak and the classical (partial) differential operators. Partial derivatives are
also denoted by 0;f and 0;; f := 0; 0 9;f. As for classically differentiable functions
we introduce for weakly differentiable functions the gradient operator V and for
functions for which 0;;, i = 1,...d, exist we introduce the Laplace operator A.

For 1 < i < d the shift defines a strongly continuous one-parameter group of
unitary operators S¢ = (Si);er on L% via S! : L? — L%, f = foT.,, see e.g. Jikov
et al. (1994, (7.2)), whose generator is given by (9;, D(0;)) defined on

D(;) :={f € L*: f is weakly differentiable in direction i, d;f € L?}.

Moreover, skew-adjointness of the generator shows for f,g € D(0;) integration by
parts:

E[f0ig] = —E[(0:f)g] and E[0; ] = 0. (2.1)

These results correspond to Schmitz (2009, Lemma A.4) in the case d = 1, and can
be proven as in the Euclidean case, see e.g. Engel and Nagel (2000, 11.2.10). More
details can be found in the previous version Ruefl (2013) of this article.

Different function spaces will be needed throughout this article: We define
Iflle == 1Ifll2 + Zle |0 fll2 for f € ﬂle D(0;), and we introduce spaces of test
functions:

Dy =N, D(3),

D2 = {f €Dy : Oif €D@) for i =1,...d, [ fllocs [VSlloes | A flloo < o0},

Dg:={f €Dy : f, € C®RY)Vw € 2, sup,, |[D" f| < oo for n € Ny}
Exponential of space of test functions: U := eD‘Zm using Gilbarg and Trudinger
(1983, (7.18), Lemma 7.5),

U={feD?:3c>0st f>cPas}
Spaces of probability densities:

Fo :={feDy: Ef=1,3c>0st. f>cP-as., ||flo, |Vl < oo},

F2 :=F, ND2,

Fs:={feDs: Ef=1,3¢>0st. f>c}
Spaces of divergence-free vector fields: Let y € R,

oy ={pc (L?)4: E[(Vw)¢] = 0Vw € Dy, E¢ = y},

5 ={peMy)¢: V-¢p=0Vwe 2, Ep =y}
And we consider the following sets of spaces:

D :={D C Dy : D dense in Dy, w.rt. ||-||v},

§F={F CFy:VfeFy3(fn)n CFandc>0s.t.

Ifn = fllv = 0, inf, f, > cP-as.},
By = {P, C Py : &, dense in &) w.r.t. |2}
We establish denseness results whose proofs are postponed to Appendix 4.3:

Lemma 2.1. D, is dense in L?, and D, € D, F, € § and Dy, € Py for any y € R%.

The last statement of Lemma 2.1, while easy to see in the compact case, is quite
more involved in the non-compact framework. For the proof we rely on an argument
similar to the fact from differential geometry, that exact forms are closed. The next
result considers modifications of the spaces in the variational expression:
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Proposition 2.2. Let V be a potential. I'v remains unchanged if ; is replaced
by any of the sets &, € PB,. If V is a potential such that V € L?, then I'y
remains unchanged if Fs and @3, are replaced by any of the sets F € § and ¢, € B,
respectively.

Proof: By definition

i i v 912 )]
Fv(y)—2flggs¢lgz[</ 57 +VdeP’)( zdeP’ﬂ : (2.2)

Let F € § and choose f € Fy,. There is (f,), C F and ¢ > 0 such that f, — f
in |- ||v, infpen frn > c and f > ¢ P-a.s.. Since 9;f, — 0;f in L?, also

E[|(9:fn)* = (9:.£)%]] = 0,

in fact, E[|(0;f)% — (0:f)2]] = B0 fn — 0i f) (O frn + 0i )] < 110 fr — Oi f||21|0 fr +
Oifll2 < |0ifn, — i f||2C for some constant C' > 0. Hence, P-a.s.,

IV Fal?/ o = IV FPLEL < (VD2 = (VI (VP = (V) ful) /(f Fn)
< 2 sup{|| flloos IV AIZF (D 1@if)® = (0if)[ + 1f = fal),

K]
which shows (V f,,)?/ f, converges to (Vf)?/f in L'. In particular, E[(V f,)?/f.] —
E[(Vf)?/fl asn — oo. E[|[Vf =V ful] < [IVI2llf = full2 which converges to 0 if
V e L?. Analogously, for any ¢ € &5, E[|¢]*/f,] — E[|¢]*/f] as n — oo since
¢ is bounded. Lemma 2.1 ensures Fy € §. (2.2) and the fact that inf,inf, ... =
infy infy ... thus imply robustness with respect to the choice of F € § for &, := &},
fixed and for V € L2. An analogous reasoning using P;, € B, see Lemma 2.1, leads
to independence of the choice of @, € B,,. O

3. Proof of the Variational Formula

In this section we are going to prove Theorem 1.2. We follow closely the proof
developed in Schroeder (1988) for the periodic case.
We may restrict our consideration to y € S¢~!. Indeed, on the one hand

Jim —(1/r)g(0,ry,w) = [y| lim —(1/r)g(0,7y/|y|,w)
On the other hand I'y is positive homogeneous:
Lemma 3.1. Let V be a potential, then for ¢ >0, for y € RY,
Iy (cy) = clv (y). (3.1)

Proof: I'y(0) = 0 by choosing ¢ = 0 in the variational expression of I'y/(0). For
¢ > 0 consider the mapping p. : ;, — &%, ¢ — cp. pc is bijective. In particular,
cl'v(y) = I'v(cy) and (3.1) follows. O

3.1. Upper Bound. Throughout this subsection we assume (£2, F,P,7) to be an
ergodic dynamical system and V' to be a potential which satisfies (B) and (G). We
set F:=Fy and @, := &;. In this subsection we prove:

Proposition 3.2. Fory € R4\ {0} P-a.s.,
lim sup —(1/r) In g(0, ry. ) < L'y (y).

r—00
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We start with
Lemma 3.3. Let 0 < e < 1. Fory € R4\ {0}, for w € 92,

9(0,y,w) > calely]) e VZomsl / 9(0, 2, w)dz,
B(y,elyl)
where cq is a constant only depending on dimension d.

Proof: Choose 0 < r < ¢e|y|. For f € C*(R%) bounded and with bounded deriva-
tives up to order two, under P,,

t
e o VelZds f(7,) — / (BAf = VL )(Zs)e o VeZduds, ¢ > 0, (32)
0

is a martingale with respect to (F;);>0, where F; := 0(Z,0 < s < t), see Pinsky
(1995, Theorem 2.4.2(ii)). By (G) one has g(0,-,w) € C?*(R%\ {0}) and we may
choose in (3.2) f € C?(R?) such that f = g(0,-,w) on a neighbourhood of B(y,r)
which does not contain the origin. Let 7 be the first exit time of B(y,r). 7 is a
stopping time for (F;);>0, see Karatzas and Shreve (1991, Problem 1.2.7). Consid-
ering the stopped martingale, see Karatzas and Shreve (1991, Problem 1.3.24), (G)
implies that

e f(’t/\‘r Vw(Zs)dsg(Oa Zt/\va)7 t 2 Oa

is a martingale under P, with respect to (F;):>0. Now, using (B) the proof can be
completed as in Schroeder (1988, Lemma 2.1). (]

Lemma 3.3 implies for y € S, for w € £2,

1 1
lim sup — In g(0, 7y, w) < €y/2Vppax + limsup —— ln/ ( )g(O, z,w)dz.
B(ry,er

r—00 r—00 r

This holds for arbitrary 0 < € < 1; therefore, in order to prove Proposition 3.2 it is
sufficient to estimate

1

limsup —— ln/ 9(0, z,w)dz.
T—00 r B(ry,er)

For the following choose y € S%~1 and let r, e > 0.

Lemma 3.4. Forwe 2,t>0,

t t
/ 9(0,z,w)dz > E {exp{/ Vw(Zs)ds}/ lB(Ty,CT)(ZS)ds] . (33)
B(ry,er) 0 0

Proof: This is a consequence of the definition of the Green function as the density
for the Green measure, see (1.1): Since V' > 0,

/ g(O,z,w)dz = / 1) |:6Xp {/ Vw(Zu)du} 1B(ry,er)(Zs)] ds
B(ry,er) 0 0

>E [exp{—/ot Vw(Zu)du} /OtlB(Ty7ET)(ZS)d3}. O

Let f € IF, ¢ € ¢, and introduce for a > 0 the drift

b:—v—f—i—a?.

C2f O f
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Since ¢, Vf are bounded and since f is strictly bounded away from zero, b is
bounded. Consequently, for w € §2 b, is bounded on R? and there exists a solution
Pb‘” to the martingale problem MP(b,,I) starting at dy. Introduce 8; := Z; —
fo s)ds. By Cameron-Martin-Girsanov formula (0;); is a Brownian motion
under P0 , see Karatzas and Shreve (1991, Theorem 3.5.1, Corollary 3.5.13, proof
of Proposition 5.3.6), and for any ¢ > 0,

dPo[(Zs)s<t € - K
A Zedost € | =exp{_/ Zs)dBs — /Ib\ }
APy [(Zs)s<t € ] 0
where we used the distributive law for stochastic integration, see Durrett (1996,
(2.8.4)). This and (3.3) lead to

Lemma 3.5. Forallw e 2,t >0,

1 t t
/ 9(0, z,w)dz > Eb+ [exp{ — 7/ bw|?(Zs)ds —/ b (Zs)dps
B(ry,er) 2 Jo 0
t t
- / Vw(Zs)ds} / 1B(Ty,6r)(zs)ds}.
0 0

For w € 2, t > 0, for 6 > 0 with e > ¢ introduce the event A,(t,€,0) =
AL N A2, NAS, where
t
[0 (zas - wpes) <5},
0

/Ot Vi (Zs)ds — ]E[Vf]‘ < 5},

Zs
Al ::{ - T <a5Vs>t—(e—5)t}.

1
t
1
t

Due to the ergodic properties of the underlying dynamical system we have

Lemma 3.6. There exists G(a, f,¢) € F, PlG(a, f,9)] = 1, such that for w €
g(a7fa¢)), f0T0<5<6,

Pr[Au(t,e,0)] — 1 as t — oo,
Proof: The Ergodic Theorem given in del Tenno (2009, (A.9)) shows that for i =

1,2 P-a.s. Pb -a.s. limy o0 1 AL, = = 1. For the examination of A3 + recognise that
by the definition of b and since Z, = B, + [; bw(Zy)du,

Zs _ PBs Vo * ady

— == 4 - Z,)d du.

F ) g e [

(Bt): is a Brownian motion under Pé’w, thus, the first term in the last expression
converges to zero Pé’ “-a.s.. By the Ergodic Theorem and integration by parts (2.1)
P-a.s. P(l)"”—a.s.

1 e 1
im 2 [ Ve 7 qu = SEIVA =0, lim L [ 9%

s—=o0 s Jo wa s—=o00 5 Jg fw

9% (Z,)du = aE[g) = ay.

It follows P-a.s. POb“—a.s. limy oo 1y =1
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By dominated convergence we get P-a.e. PY* [AL ;] = 1,i=1,2,3. Here the
P-a.s. convergences guaranteed by the Ergodic Theorem depend on the choice of b
and on the functions over which the space and time averages are taken. O

We continue by choosing ¢ := r/a. On A, (r/a,€,d) one has for (1—(e—9))r/a <
s <r/athat |Z, —ry| <|Zs —asy| + |a(Z — s)y| < er. Hence, on A, (r/a,¢,0),

r/a r/a r
/ 1B(ry,e7“) (Zs)ds > / lB(ry,er) (Zs)ds > (6 — 5)7
0 (1—(e=8))r/a a
We deduce with Lemma 3.5 (choose t = r/a)
1
/ 9(0,2,w)dz > exp { L (2(5 + ~E[b]2f] + E[Vf]) } (3.4)
B(ry,er) a 2

r/a
e — 5)2ng |:exp{ —/ bw(ZS)dﬁs},Aw(r/a,e,é)}
0
We estimate the latter:
Lemma 3.7. Let 7, := Pb*[Ay(r/a,€,0)]. For allw € £,

r/a
g [ { = [ 0u(20a8. b Autr/a,e )] 2 o exp{-az 0l (r/0) ),

Proof: Introduce for ¢ > 0 the process Y; := fot bw(Zs)dBs. Jensen’s inequality
gives

r/a
Bl [exp{ - /0 bw(zodﬂs},Aw} > o oxp{ g B 1Yl A}, (35)

By Holder’s inequality and It6 isometry,

r/a 1/2
B A < B2 =20 | [ zos] . 6o

Since b,, is bounded we have E*| Or/a |b,|?(Zs)ds] < (r/a)||b]|%,. This together

with (3.5) and (3.6) shows the statement. O

The choice of € > § > 0 was arbitrary, hence, Lemma 3.6, Estimate (3.4) and
Lemma 3.7 imply on G(a, f, @),

r—00 T

limsup—lln/B( 90200 a7 QTR LBV )
ry,er

The definition of b shows
2 VPP v/ o [ 97
E[b f]—E{ if ]+2a<2f,¢)>+aE[f].
Using integration by parts (2.1) the middle term is a{(Vf)/f,¢) = a(VIn f,¢) =
—a(ln f, Vo) = 0 since ¢ € &,,.

Denote the right-hand side of (3.7) by R(a, f,$). We want to minimise over
a>0, feFand ¢ € ;. The exceptional sets G(a, f,$)° on which (3.7) does
not hold necessarily depend on a, f and ¢. In order to be sure that these do not
add up to a nontrivial set, note that there exist ‘minimising sequences’ (f,,), C F,
(an)n C (0,00) and (¢n)n C P, such that

inf inf ¢lend§y R(a, f,¢) = inf R(an, fn, én)-
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The considered families are countable, therefore, the union of the exceptional sets
G(an, fn, Pn)¢ has measure zero. In the remaining part of this subsection P-a.s.
expressions refer to (), G(an, fn, dn)-

We get from (3.7) P-a.s. that limsup,_, . —(1/r)In fB(Tyﬂ)g(O,z,w)dz is less
than or equal to

ceso| 1 IVf[? . ¢?
}rellfF;r;% L </ Sf + Vfd]P’) +a <¢1€n£y/2fd]?)] .

Set v := E[|[Vf[?/(8f) + Vf] and w := infyeq, E[¢?/(2f)]. v > E[V]ming f > 0
and 2w > E[¢?]/ maxp, f > |y|>/ maxg, f > 0 by Jensen’s inequality. The infimum

of a — v/a+ aw for positive a is therefore achieved at amin = \/v/w with minimum
2¢/vw. Thus, P-a.s.,

r—00 r

. N1 e [\
< ]1%52 {(/ T +VdeP’> ((ﬁlégy/QdeP’)} .

Therefore, for any y € R?\ {0} P-a.s. the upper bound holds which shows the
statement of Proposition 3.2.

1
limsup — — ln/ 9(0, z,w)dz
B(ry,er)

3.2. Lower Bound. In this subsection we are going to show that for potentials V'
subject to conditions (G) and (E1) P-a.s. for any y € R%\ {0},

lim inf —% Ing(0,ry,w) > R(o)(y). (3.8)

T—00
Note that (E1) contains some kind of ergodicity condition on P, and we do not
need to require explicitly (§2, F,P, 7) to be an ergodic dynamical system . We start
with

Proposition 3.8. Let V' be a potential satisfying (G). Then for w € 2, fory €
R\ {0},
1
liminf ——In g(0, ry,w) > R(—A,)(y).
r

T—00

Proof: Since V,, > 0 as well as ¢(0,-,w) > 0 we have V,g(0,-,w) > 0 on R%\
{0}. Thus (G) gives Ag(0,-,w) > 0 on R?\ {0} which implies that g(0,-,w) is
subharmonic on R%\ {0}, see Doob (1984, Paragraph 1.11.8). Hence, for all z € R?
such that |z| > 1,

9(0,2,w) < c(d) / 90, 2, w)dz,
B(z,1)

where ¢(d) is a constant depending only on d. Consequently, it suffices to get the
lower bound for

1
liminf—fln/ 9(0, z,w)dz.
B(ry,1)

r—00 r

Information on the exponential decay of r — ¢(0,7y,w) can be obtained by
determining those A € R? for which [, e*?g(0, z, w)dz is finite. We calculate

/Rd e g(0, 2, w)dz = /OOO Eo {exp {AZt - /Ot Vw(Zs)dsH dt. (3.9)



A Variational Formula for the Lyapunov Exponent 693

Considering Brownian motion with constant drift A the latter equals

oo t
/ et)‘Z/QEé‘ [exp { - / Vw(Zs)ds}] dt.
0 0

Exponential decay of Ej[e” Is VW(Zs)ds] is the quenched free energy and we get for
those A which satisfy A\2/2 < —A,,()),

o) t
/ et>‘2/2E6\ [exp{ - / Vw(Zs)dsH dt <e¢< oo
0 0

for some ¢ = ¢(w, A) > 0. With (3.9) we conclude for any r > 0,
/ 6Az9(0727w)d3 < / eAzg(O,z,w)dz <ec.
B(ry,1) R

Let 2z be the point in B(ry,1) for which e** is minimal on B(ry,1). Since |A(Z —
ry)l < 1Al

/ 9(0, z,w)dz = e_’\g/ e*9(0, z,w)dz < ce ™ < celMle v,
B(ry,1) B(ry,1)

Thus, for A with A?/2 < —A,,(A) we have liminf, o —1Ing(0,ry,w) > (y,A). O
Proposition 3.8 together with the following result implies (3.8).
Lemma 3.9. Let V be a potential satisfying (E1), then P-a.s. for any y € R?,
R(=Au)(y) = R(o)(y). (3.10)

Proof: Choose a dense countable subset {\, : n € N} of the set {\ € R?: \2/2 <
o(\)}. Since the scalar product is continuous, one has sup{(y, \,) : A2/2 <
o(An), n € N} = R(0). Let E,, € F denote the exceptional set for A, in con-
dition (E1). (3.10) is valid on (|J,, E» )¢ which is a set of probability one. Moreover,
\U,, En does not depend on y. O

3.3. Equality of the Upper and Lower Estimates. The proof of Theorem 1.2 is fin-
ished as soon as we establish equality between upper and lower estimate, that is we
have to show under sufficient conditions

R(o)=1TYy. (3.11)
We introduce the functional I appearing often in the context of large deviations of
Markov processes as defined in Donsker and Varadhan (1975a, (1.12)): For f € Fy
and \ € R? set
L u
I(f):=—inf | — fdP.
(f) inf / —/
The following characterisation of the functional I is the same as the one given in
Donsker and Varadhan (1976b, Lemma 3.3) on R? and is proven analogously:

Proposition 3.10. Let f € F2 and A € RY. For anyD € D,

I(f)=E [?}'2} IR E[[A — Vw|*f]. (3.12)

2 2 web
In particular, for potentials V,

o) = inf {IE [Vf + 'Z?'Q] LR inf E[[A - vw|2f]} BENERE)

2 2w
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Proof: The right-hand side of (3.12) is independent of the choice of D € D as
outlined in Lemma 3.11 below. Without restriction assume D = DZ. We start
calculating

I(f) =~ inf/Lkewfd}P: — inf / (L%H;Vw?) fdp.

webD ew web

For w € D define h := (1/2)In f—w. Hence, w = (1/2) In f—h and a straightforward
calculation shows
1 Af |Vf? AVf Ah |Vh? VfVh
Lw+ Z|Vu2=21 AV 28 _AVh— .
w+2|Vw| I 572 + 57 > + 5 \Y 57

h is in D, moreover, the mapping w + h is bijective from D to . Therefore,

I<f)=—/(Af vIF +Wf) fdp

Af  8f2 2f
) Aw  |[Vw|? VfVw
_$25/<_2+ g AVwo o ) JdE

Integration by parts (2.1) implies —E[(Aw)f] = E[VwVf], E[A f] = 0, and
E[AV f] = 0. Thus,

I(f) = |V8]}|2d1p—liuré%/ ('V;"'Q —Ww) fdP

which shows the statement. O

For f € L' bounded such that f > ¢ for some ¢ > 0 and Ef = 1 we introduce
an inner product on (L2)%: Let for ¢, ¢ € (L?)4,

(0.9) 5 :=E[¢vf] (3.14)
and set [|[¢]| s := E[v?f]*/2. We define for b € (L?)?, f € F,,, D € D,
H(b, ) = inf BlJb — V), (3.15)
and
_ [V
K(f) ._E{ of —s—Vf]. (3.16)

We collect some properties of H and o:

Lemma 3.11. The definition of H is independent of the choice of D € ©. H(-, f)'/?

is a seminorm on ((L?)%,|| - ||;) factorised by the vector subspace consisting of all
Vw with w € Dy. In particular, for by, by € (L?)4,
H(by + b2, )/ < H(by, [)'/? + H(bs, [)'/. (3.17)

H(-, f) is continuous with respect to || - ||2. Let n € S=1, then
0< essi%ff <H(n,f)<1and Hin,1) = 1. (3.18)
Let V be a potential. For any \ € R?,
o(A) =a(=X). (3.19)
The mapping from R — R,

A= a(N) — \?/2 = inf {K(f) - %H(/\, f)} (3.20)

fEFE
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is concave. Moreover, for n € S, the mapping from [0,00) — R,

s a(sn) —s2/2 (3.21)
is monotone decreasing. In particular,
sup{a(\) — A?/2: A € R} = o(0). (3.22)
One has
o(0) = fienIFf?N K(f), and if V € L?, for all F € § we get o(0) = }IgFK(f). (3.23)

Proof: Independence of the choice of D € ©: Fix f € Fy, and b € (L?)%. For
w € Dy, let wy, be a sequence in D converging to w in || - ||v. Then Vw, — Vw in
L?. By boundedness of f, also Vw,, = Vw in || - || . This shows E[|b — Vw,|*f] —
Bl — VP f]

One has H(b, f)'/? = infyep, ||b — V|| ;. Hence, H(-, f)'/? is a seminorm on
((L*)4,]] - ||) factorised by the vector space consisting of all Vw with w € Dy, see
e.g. Schechter (1997, 22.13.b). H(-, f) is continuous with respect to || - ||2, since

H(b, /)2 < |IFILPH®G,DY2 < I FIE2 bl (3.24)

For (3.18) choose w = 0 which shows E[|n — Vw[*f] = [|n]*fdP = 1, thus
H(n, f) < 1. On the other hand, integration by parts gives (n, Vw) = 0. Hence,
n, Vw are orthogonal to each other in L? which leads to

H(n,1) = inf E[ln — Vw[?*] = inf [1 3 =1
(n,1) = inf Elln — Vw|7] = inf [1 +[|Vw|;]
Therefore, H(n, f) > (essinfp f)H(n,1) = essinfp f > 0.

Invariance of o under reflections follows from the fact, that w — —w is a bijective
mapping on D.

The fact that H(-, f)'/? is a seminorm and convexity of x ~ x? show that
A= K(f)— (1/2)H (), f) is concave. The infimum over concave functions is again

concave which shows concavity of (3.20).
One has for A € RY,

H(\, f) = [APH (1, f), (3.25)

where 7 € S?~! is in direction of A. This follows for A = 0 by choosing w = 0 in
the definition of H(0, f). For A # 0 use the fact, that the mapping w — |A|w is
bijective on D. This shows (3.21).

(3.22) follows from (3.19) and (3.21).

Formula (3.23) is a consequence of the representation (3.13). Independence of
the choice of F € § follows as in Proposition 2.2. O

The following is a consequence of the representation for o obtained in (3.13):
Proposition 3.12. Let V be a potential. If o(0) > 0, then for any y € R?,
. 1"
H(n, f)}

Let y # 0. Then R(o)(y) > 0 if and only if 0(0) > 0. R(c) = —oo if and only if
o(0) = 0.

R(o)(y) = sup inf [2K<f>
neSd—1 FEF2,
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Proof: Let F := F2. For n € S9! denote by Sy, the set of \ € R? such that
IA|?/2 < o(\) and X parallel to n. By (3.19) S, = —S_,,. We can rewrite

R(o)(y) = sup sup (y,m[Al = sup (y,n) sup |A], (3.26)
nesSi—1 AeS, nesda—1 AES,
where the second equality is valid if there exists 7 such that S, # (. This is the
case if (0) > 0. The reverse is also true:
Let n € S9=1. By (3.13), (3.25) for A parallel to  one has |\|?/2 < o()\) if and
only if
A2

2H<n,f>} — M(A).

0 < inf { K(f) —
{0
As outlined in (3.20) and (3.21) the latter is concave decreasing in |A|. Hence,

Sy # 0 if and only if M(0) = infscr K(f) = 0(0) > 0. B
Assume inf scr K(f) > 0. Since M is concave and continuous, S, equals the set
of \ parallel to n for which

. A2
< -2 .
o< it {07 - Bt
This is true if and only if for any f € F,
A2
0< K(f)— S-Hn, f).

As H(n, f) > 0, see (3.18), the latter is equivalent to [A| < (2K (f)/H (n, f))l/z.
We get in case of o(0) > 0

sup || = sup |[A| = inf (2K(f)/H(n, f))"/*.
AES, AES, feF

This together with (3.26) shows the statement. O
On the other hand we have

Proposition 3.13. Let V be a potential. Fory € R, forD € D,

{y, > 1"
vl = jof, s {ZK(”HG’ f)] |
sn -1 9

If additionally V € L?, then the set Fy can be replaced by any F € §.

The first statement is true by the following lemma which is a consequence of
orthogonal projection in Hilbert spaces. Independence of the choice of F follows
from Proposition 2.2.

Lemma 3.14. Let f € Fy, y e R, &, € P, and D € D. Then

. Iaﬁq _ {y,n)*
e[ = ap R0

Proof: If y = 0 the statement is clear since ¢ = 0 € @y. Assume y # 0. Since
H does not depend on the choice of D € ®, see Lemma 3.11, set D := Ds. The
left-hand side does not depend on the choice of ¢, € ‘B,, see Proposition 2.2,
and we can choose &, := &. Recall, that on (L?)? we have the inner product
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(¢, 0) = Elpnpf] for ¢, ¥ € (L)%, see (3.14). We write ¢ L; 1 for (¢, 1) = 0.
Further consider the subspaces of (L?)¢

L:={n—Vuw:necR? wecDh},

K :={¢pc(L*?: (Vw,¢); = 0Vw € D, E[pf] = 0}.
By definition, L+# = K. Therefore L ® K = (L?)% which can be understood as
a variant of Weyl’s decomposition, see (4.14). For fixed y € S%! and f € F,,
consider the mapping

F:9,>K:9— (y—09)/f.

Indeed, F' maps to K: Let ¢ € @, then E[F(¢) f] = y—E[¢] = 0 and (Vw, F(¢)f) =
—(Vw, ¢) = 0 for w € D. Moreover, F is bijective with inverse F~! : ) s y — f).
For w € (L?)% let ||w — K|; == infger |w — o5

We calculate

. Ll ly - foP] _ . y I y ’
fE|—|=inf E|=—————| = inf E||= — == -K| .
g %] = e [P = ]| o] =7 ,
As a consequence of orthogonality on (L2(fP))?,
Y Y
= — KH = sup <,v> . (3.27)
H f roven =1\ /y

In fact, K is closed and for w € (L?)? there exists ¢p € K such that ||w — K||; =
lw — ¢olly and w — g € K*7, see e.g. the proof of Rudin (1991, Theorem 12.4).
Then, [lw—K|[f = [[w=dolly = sup,er, oy ,=1{w =0, 0) f = SUP, L vy, =1 (W, V) -
Choose (v,)n C L converging to v € L with respect to || - ||, where |[v]; = 1.
Then v, /||vn|lf € L and converges to v. Therefore, in (3.27) it is sufficient to take
supremum only over v € L with ||v||; = 1. We continue

Hy 2 <y >2 (/fin—Vw)}
Z K| = sup Z,v) = sup 5
f roovel ol =t N /5 pertwep: 11— Vwl}
n—Vw#0
(i) (y,m? i) (y,m)? (y,m)?

sup = sup T—————0 = sup .
neri\ [0}, wen 11— Vwlli L cgat yeplln—=Vwl}  egir H(, f)

For equality (¢) we used integration by parts and the fact that 7 = Vw if and only if
17 = Vw = 0. Indeed, if n = Vw, then n = En = E[Vw] = 0. In the case n = 0 and
Vw # 0 the term after (¢) in the above calculations equals zero and can be omitted.
For equality (ii) we used the one-to-one transformation w +— |n|w of D. O

Propositions 3.12 and 3.13 together with the following result show (3.11).

Proposition 3.15. Let V be a potential and let F € § such that F C F2. Assume
inffgp K(f) > 0, then

. R . w2 1"
AR B COE o B T o B

Proof: One estimate is obvious. If y = 0 (3.28) holds trivially. Without restriction
we assume y € S91,
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We introduce for f € Fy,,
J(f):= inf H(n, f)/(y,n)* (3.29)
neSd—1

One has J(f) > 0. Indeed, H(-, f) is continuous with respect to the topology on
Sa=1 see (3.24). S9! is compact and H (-, f) attains its infimum on S¢~1 in some
point 1 with H (no, f) > 0, see (3.18). Hence, J(f) > H (o, f)inf,c5a-1 1/(y, n)? =
H(n()? f) > 0.

Throughout the following let F € § such that F C F2. One has for [ € R,

1< InE () /(DY i and only £ 0 < InE(K(F) ~ 2T} (330)

Denote by @ the set of n € S9! which are perpendicular to y. Since H(-, f) is
positive on 91 (3.30) is equivalent to
0<inf sup {K(f)=1H(n,f)/({y,n)*}. (3.31)
feEF neSI—1\Q

We are going to interchange inf and sup with the help of a minimax theorem,
see Sion (1958, Theorem 4.1’), which we state here.

Theorem 3.16. Let M and N be any spaces, F' a function on M x N that is
concave-convezlike. If for any ¢ > sup ¢ inf,en F(u,v) there exists a finite subset
Y C N such that for any p € M there is ay € Y with F(u,y) < ¢, then
sup inf F(u,v)= inf sup F(u,v).
sup ff, (4, v) = inf sup (1, v)
A function F on M x N is defined to be concavelike in M if for any p1, pus € M
and 0 <t <1 there exists a 4 € M such that for all v € N,

EF (1, v) + (1= ) F (3, v) < F(p,v).

Convexlike is defined analogously and a concave-convexlike function is concavelike
in the first component and convexlike in the second.

We apply Theorem 3.16 to M := S9!\ @, N := F and the function F' : M x N —
R,

F(n, f):=K(f)—H(n, f)/{y,n)>.

The interchange of infimum and supremum is trivial if [ = 0. Thus let [ # 0. From
the definition of I it follows that f +— I(f) is convex. We apply the formula for I(f),
f € F2, established in Proposition 3.10 to the vector A in direction of € S9~1\ Q
with norm |\ = 1v/2/|(y,n)| and get that the functional I for L* = (1/2) A +AV
and f € F2 is given by

VP I PH@,f)
I(f)_E[ 8f ]+<yﬂ7>2 (y.m)?

use (3.25). Therefore, F(n, f) = I(f) —12/{y,n)? + E[V f] and F is convex in f for
any n € M. In particular, F' is convexlike in N.

In order to show that F(n, f) is concavelike in M, choose 7, and 7, € S?~1\ Q,
let t € [0,1]. For i = 1,2 set

i

)\i =
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which is well defined since 7; £ y. Note that tA;+(1—t)A2 # 0, since A\; € span(Az)
occurs only if A\; = Ao. Hence, we can further choose

ot (LA
=T + (1= t)xa|

One has
(Mo, y) = 1/[tAr + (1 = t)A2)], (3.32)
and 719 ¢ Q. By triangle inequality (3.17) and using convexity of z + 2,
H(th + (1 =t)A2, f) S tH (A1, f) + (1= t)H(X2, f).
With (3.32) we get for all f € F,

H(no, )/ {y,m0)® = H(tAr + (1 = t) A2, f)
<tH(ny, £)/(w,m)? + (L= t)H (2, )/ {y, m2)?,

thus F' is concavelike in the first component.

Recall that for f fixed, H (-, f) restricted to S9! is continuous, see (3.24). Hence,
F(-, f) is continuous on S%~'\ Q. We have [ > 0, and we may extend F(-, f) to
a continuous function F(-, f) : S9! — RU {—o0} by defining it to be —occ on Q.
In order to see this, recognise that the uniform lower bound H(:, f) > essinfp f
assures for C' > 0,

{ne st H(n f)/in,y)* > CY D {n € 8771+ essinf f/{n,y)* > C}.
The latter is open in S?~'. This implies continuity of F(-, f) at any n € Q, use
Willard (1970, Definition 7.1). Let

c> su inf F(n, f).

eonp o B (n, f)
We conclude as in Sion (1958, Theorem 4.2): For each f define Ay := {n € ga=1 .
F(n, f) < c}. The sets Ay, f € F, are open subsets of S4~! and cover $?~1. Since
Se=1 is compact, there exists a finite subset Y C F such that the Ay, f € Y, cover
S4=1. Hence, for any n € S9 1\ Q there exists a f € Y such that F(n, f) =

Fn, f) <e
Consequently, we can apply Theorem 3.16 to (3.31) and get

0<int s (K(f)-PHOLD/ .07
neSi-\Q

= sup inf{K(f)—1*H(n, [)/{y,n)?}. (3.33)
nESL-1\Q fer

As in Schroeder (1988, Lemma 4.5) we deduce

Lemma 3.17. Assume inf;ep K(f) > 0, then (3.33) implies

| < sup inf[K(f)(y.n)*/H(n, f)]Y2 (3.34)
nESI-1\Q feF

Proof: By (3.33) for any € > 0 exists n € S9~1\ Q, such that for f € F,
—e < K(f) = PH(n, )/ {y,n)*.
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That is, for f € F one has I2 < (K(f)+€){y,n)?/H(n, f). Let 6(0) := inf rer K(f).
Since 6(0) > 0,

P < (1+4¢€/6(0)K(f){y,n)*/H(n, ).
1+4¢€/6(0))inf per{K(f){y,n)*/H(n, f)}. Thus,

This implies 1% < (
1> < (1+¢/5(0)) sup }gg{K(f)@,n)z/H(n,f)}

neSI—I\Q
Since € > 0 is chosen arbitrarily, (3.34) follows. O
(3.34), (3.33) together with (3.30) prove Proposition 3.15. O

This completes the proof of (3.11). The previous argument also shows that I'y
solves a variational equation: Recall the definition of K and J given in (3.16) and
(3.29) respectively.

Proposition 3.18. Let V be a potential in L?>. LetF € §, D € D and y #
0. Assume o(0) > 0. Then I'y(y) is the unique nonnegative solution I of 0 =
inf rer{2K (f) — *J(f)}-

Proof: Set M(l) := inf per{ K (f)—1?J(f)}. M is decreasing and concave on [0, 00),
which follows as in (3.20) and (3.21). The statement now results from Proposition
3.13, (3.30) and M(0) = o(0) > 0. O

3.4. Almost Sure Equality on whole RY. Let (£2, F,P,7) be an ergodic dynamical
system and V be a regular potential. We have shown in subsections 3.1, 3.2 and
3.3 that for any y € R? P-a.s. I'(y) = R(—A,)(y). The stronger statement that
equality holds P-a.s. for any y is implied by the following: V is bounded and we
have 0 > A,(A\) > —vmax. Hence, sup{|A| : —A,(\) — A?/2 > 0} < oo and
we get by Lemma 4.2 continuity of R(—A,). In the same way Iy = R(o) is
continuous, use (3.20) and estimate the infimum there by choosing f = 1 to see
a(A) — A2/2 < E[V] — A?/2, where we used (3.25) and (3.18). Therefore, equality
holding P-a.s. on a dense subset of R? ensures I'y = R(—A,,) on whole R%.

4. Appendix

4.1. Condition (E1). Condition (E1) is valid as soon as homogenization takes place
and the effective Hamiltonian has a variational expression as outlined in this sub-
section. For an overview see also Kosygina (2007). Throughout the following let
F:=F2 and D := D2.

Let A € R For (t,7,w) € [0,00) x R? x 2 and € > 0 define

t/e
Ue(t, T, w) :elnE;‘/e[exp{ 7/ Vw(Zs)dsH.
0

Assuming a Feynman-Kac correspondence, see the comment after Proposition 4.1,
ue solves the Hamilton-Jacobi-Bellman equation

Ouc(t, T, w) = % Auc(t, z,w) + H <Vu€(t, z,w), x,w) (4.1)
€
with initial condition u.(0, -,w) = 0, and Hamiltonian H* : R? x R? x 2 — R given

as HA(p,z,w) == (1/2)p? + Ap — V,(x). Let L*(q,7,w) = (1/2)(qg — N)? + V,,(2),
the convex conjugate of H (-, z,w).
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In Kosygina et al. (2006) it is shown that homogenization of (4.1) takes place:
For A € R? P-as.,

tli)r(r}loilnEA[exp{ — /Ot Vw(Zs)dsH = H*0), (4.2)

where H* : RY — R is the effective Hamiltonian H*(p) := sup(y, fyee E[(pb —
LA (b, 0,w)) f], with B := L> and

£ = {(bj)eIB%xIF: ;Af:V(bf)}. (4.3)

Equation (1/2) A f = V(bf) has to be interpreted in the ‘distributional sense’ on
RY, see Kosygina (2007, (6.2)), i.e. P-a.s. for ¢ € C° one has [((1/2) A f.,)pdz =
— [bwfuVdz. By Lemma 4.6 any (b, f) € & satisfies for all w € D,

1
/ (2 Aw+ bVw) fdP =0. (4.4)
We have the following estimate on the effective Hamiltonian:
Proposition 4.1. For all A € R? one has H*(0) < —a(N).
Proof: We estimate H*(0) similarly to Kosygina et al. (2006, (5.2)-(5.6)).

i 1
sup E[—L (b, 0,w)f] @ sup sup inf < — LMby, 0,w) + = Aw + bVw> fdP
(b,f)e€ f€F beB wED 2

(44)
< sup inf /sup{(— L (by,,0,w) + ;Aw—i—bVw)f}d]P’

feFweD | pep
&) sup inf ( Aw + HNVw, O,w)) fdP.

feF weD 2
(¢) is valid by (4.4), in order to interchange sup,cp with integration in (i) note
that measurability of the sup over the integrand is guaranteed by the subsequent
calculation of the integrand. In (iii) we used the definition of £* as the convex
conjugate of H* and the fact, that the convex biconjugate of H*(-,0,w) is again
HA(-,0,w), see Dembo and Zeitouni (1998, Lemma 4.5.8). We continue inserting
the definition of H?,

1 1 L

= sup inf / ( Aw+ = |Vw|* + A\Vw — V) fdP = sup inf / (u — V) fdP,
feF web 2 2 feruel u

since €? = U, and Ae? = (Vw)2%e¥ + (Aw)e?, see Gilbarg and Trudinger (1983,

(7.18) and Theorem 7.8). O

Therefore, (4.2) is sufficient for condition (E1) to be valid. There is extensive
research concerning homogenization. For example, Kosygina et al. (2006, Theorem
2.3), Lions and Souganidis (2005, Theorem 3.1(i)) or Armstrong and Souganidis
(2012, Theorem 1) exhibit the desired convergence. In Kosygina et al. (2006) the
effective Hamiltonian is given as required. Kosygina et al. (2006, Theorem 2.3)
applies if the potential is bounded, uniformly continuous uniformly for all w € {2,
and Kosygina et al. (2006, (3.1)) needs to be valid. Kosygina et al. (2006, (3.1)) is
an optimal control problem and we refer to Fleming and Soner (2006, Paragraphs
IV.3. and IV.4) for a discussion of solvability. (4.1) is mainly a Feynman-Kac
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correspondence. Sufficient criterions for a Feynman-Kac correspondence are given
in Friedman (1975, Paragraph 6.5).

4.2. Free Energy. In this subsection we deduce the identification (1.10) and the
variational expression for the quenched free energy stated in Corollary 1.4. For
a:R% — R we introduce R : R — RU {0},

R(a)(y) ;= sup{yA: A € RY, a()\) — A\%/2 > 0}.

Of course, R(a) < R(a). We calculate the inverse of R, see also Armstrong and
Souganidis (2012, (8.2)).

Lemma 4.2. Leta: R? — R. If A = a(\) — \?/2 is concave and a(0) > 0, then
R(a) = R(a), and for ¢ < a(0), for A € R,

(a(N) = N2/2) Ae=sup{—pu: —u < ¢, \y < R(a+ p)(y)Vy € R}, (4.5)

If C :=sup{|\| : a(A) —A?/2 > 0} < oo, then R(a) is Lipschitz continuous with
Lipschitz constant C.

Proof: Let M()\) := a(\) —\?/2. In order to see the first statement use as in (3.20)
the fact that R(a)(y) = sup,cga-1 SUP;>0. pr(sm)>0 SY7- The hypotheses on a show

R(a) = R(a). We have for —p < ¢,
NeRT: MON) > —p} ={AeRY: yA < R(a+ p)(y) Yy € R4} (4.6)

In fact, C follows directly, use R(a) = R(a). For the reverse, let A such that
yA < R(a + p)(y) for y € RY Assume M(A) < —p. Since M is continuous
and M(0) > —pu, there exists 0 < ¢ < 1 maximal such that M(t\) = —u. We
have that the level set S, := {\ € R? : M(\) > —u} is convex, see Rockafellar
(1970, Theorem 4.6). Moreover, t\ is in the boundary of S,,. Thus, there exists a
supporting hyperplane 1" of S, through tA, see Rockafellar (1970, Corollary 11.6).
In particular, there is y # 0, ¥ L T and

R(a+ u)(y) =sup{yA: A € S, } =sup{y\: A € T} = yt),

which is in contrary to g\ < R(a+pu)(y). This shows (4.6). (4.5) follows from (4.6),
and from the fact that (a(\) — A2/2) Ac=sup{—p: —pu <c, a(\) — \2/2 > —pu}.

Let C < co. Then R(a)(y + 2) < R(a)(y) + R(a)(z) < R(a)(y) + C|z|. For the
lower bound use (y + z,A) > (y, \) — |z||A|, hence, R(a)(y + z) > sup{yA — |z|C :
A€ RY a(N) —A2/2 > 0} = R(a)(y) — C|z|, which shows continuity. O

For A € R% let #*(-) be the effective Hamiltonian for the homogenization problem
(4.1) given by Armstrong and Souganidis (2012, Theorem 1), if applicable. That
is, P-a.s. uc — u locally uniformly with u solution to d;u = H*(Vu), u(0,-) = 0.

Proposition 4.3. Let (2, F,P,7) be an ergodic dynamical system. Let V be a
reqular potential. Assume there exists C > 0 such that for w € £2, for x1, xo € R?,
one has |V, (x2) — Viy(x1)| < Clzg — 21|. Then (1.10) is valid.

Proof: The assumptions on the potential ensure that we can apply Armstrong and
Souganidis (2012, Theorem 1): As in (4.2) with help of a Feynman-Kac correspon-
dence (4.1) we get for any A € R% P-a.s. A,(\) = H*(0). Moreover, we have P-a.s.
for all A € RY,

Au(N) = H0). (4.7)



A Variational Formula for the Lyapunov Exponent 703

Indeed, recall that A, (\)+ A2/2 is convex and continuous in A. On the other hand,
for p, A € R? we have H (p)+212/2 = HO(p+)), use e.g. Armstrong and Souganidis
(2012, (5.35)). Thus, continuity of H*(0) 4+ A\2/2 = H°(\) follows from Armstrong
and Soug(mldis (2012, Proposition 5.5). This shows (4.7).

By assumptions we have —A,,(0) > ¢(0) > 0 P-a.s.. Lemma 4.2 thus shows
R(—A,,) = R(—A,). Therefore, Theorem 1.2 and Armstrong and Souganidis (2012,
Lemma 6.7) imply P-a.s. for y € R?,

Iv(y) = R(=Au)(y) = R(=H (0))(y) = m(~y), (4.8)
where m is the unique solution to the effective metric problem, see Armstrong and
Souganidis (2012, (6.24)),

HO(—Vin) =0 in R\ {0}, m(0) =0, llirlninf ly|~tm(y) > 0.
y|—o0

Since — In e(y, w) solves the associated metric problem, use Sznitman (1998, Propo-
sition 2.3.8), as in Armstrong and Souganidis (2012, (8.1)) with Armstrong and
Souganidis (2012, Proposition 6.9) and (4.8) the 1dent1ﬁcat10n (1.10) follows. O

Proof of Corollary 1./: Let pg > 0, pg € Q. With Theorem 1.2 we have P-a.s. for
any p >0, p € Q,
R(o+ pn) =R(—Au + p). (4.9)

Recall that A — o(\)—\2/2 is concave, see (3.20). Let ¢ < min{— A, (0)+ o, o(0)+
o} P-a.s.. We use (4.5) and get for A € R,

(0(A) + o —N/2) Ne=sup{—p € R: —pu < ¢, \y < R(0 + po + p)(y) Vy € R}

The function p — R(o + u)(y) is monotone increasing, and we can reduce the
supremum in the following to p € Q and obtain by (4.9) that the latter P-a.s. for
any A € R? equals

sup{—p € Q: — p < ¢, Ay < R(=Au + o + 1) (y) ¥y € R}
= (= Au(N) + po — A2/2) Ac.
The last equality is obtained by (4.5) and by convexity of A+ A,(\) +A2/2. O

4.3. Denseness. In order to prove the denseness results stated in Section 2 we use
the notion of convolution, see Jikov et dl (1‘)‘)4 (7. 19)) For f € L! the convolution
of f with k € C° is defined as f * k(w f fuw(z)r(x)dz, where w is in a set of
full P-measure such that f, € L. For an even functlon k € C such that
[ k(z)dz =1, k > 0, define for z € R? and € > 0 the function k. (z) := e~ ¥x(z/e).
In the following, whenever we write f. we mean f % k. where x has the prescribed
properties. If ¢ € (L?)? we also define ¢ * k := (¢; * x);. The following properties
of the convolution are needed, see e.g. Jikov et al. (1994, Chapter 7):

Lemma 4.4. Let f € L' and k € C°. Then f * k is differentiable of all orders.
Moreover,

1 * llp < [ lpllkl, for felLl, p>1, (4.10)
Oi(f x k) = (Oif) * K, for f € D(0;), (4.11)
sup o|D"(f * k)| < 0o, n € Ny, if sup ol f] < oo, (4.12)
Ilf = fellz2 = 0 as e \( O, for f € L?. (4.13)
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The space Dy serves as space of test functions:
Lemma 4.5. Dy is dense in L.

Proof: Let ¢ € L*. For M > 0 set ¢ns := ¢lig<nr- Supg |on| < oo and ¢pr — ¢
as M — oo with respect to || - ||a. Let 6 > 0 and choose M such that ||¢prr — ¢||2 <
0/2. (4.13) allows to choose € > 0 such that ||(éar)e — dmll2 < 6/2. Hence,
l(dar)e — @ll2 < & and (¢ar)e € Ds, see (4.12). O

A vector field ¥ € (L?)? is called divergence—free or solenoidal, if divyy = 0 P-a.s.,
where for those w for which ¢, € L] _ one defines (divy)),, : C° — R,

loc

(divep)y, ( /wwz O;pd.

A vector field ¢ € (L?)? is called rotation-free or potential, if roty) = 0 P-a.s., where
for those w for which 1), € L{ _ one defines (roty)),, : C° — R(g), and for ¢ < j,

loc

((rotab)o( / Vo305 — thur ;05500

We recall the orthogonal decomposition of (L?)¢ into potential and solenoidal vector
fields, called Weyl’s decomposition, see Jikov et al. (1994, Lemma 7.3):

(L) = Vot @ Vel ® RY, (4.14)

where Vpor = {¢ € (L?)? : rotp = 0, E¢p = 0} and Vio) = {¢ € (L?)? : divg =
0, E¢ = 0}.
The following lemma lifts the notion of ‘weak divergence’ to (L?)%:

Lemma 4.6. Assume ¢ € (L?)? and h € L%. Then P-a.s. for any ¢ € O,

- [ 0.Vt = [ hupd. (4.15)
if and only if for any w € Dy,

— (¢, Vw) = (h,w). (4.16)
The second statement is equivalent to (4.16) forced to hold for some space D C Dy,
which is invariant under 7., * € R, and dense in L? with respect to || - ||2.

As a consequence of Lemma 4.6, choosing h = 0, we have
Dy =y + Vsol- (4.17)

Proof: Assume (4.15) and consider ¢. and h.. Then P-a.s. for e > 0, for any
€ C,

/Vqﬁe,wcpdw = /hé,wgodx. (4.18)

In fact, P-a.s. for € > 0, for ¢ € C¢° by Fubini’s theorem

/% V(o Z//dm Duple — y)da . (y)dy

which by (4.15) and since ¢(- — y) € C° equals

/ / —y)dar(y)dy = / hew(x)p(x)da.



A Variational Formula for the Lyapunov Exponent 705

An elementary denseness argument shows that (4.18) implies P-a.s. for € > 0 Z-a.e.
Voew = hew. In fact, C and L2 are in duality, see Schacfer (1974, Paragraph

loc

IV.1). Therefore, we have for ¢ > 0 P-a.s. V¢, = he. Since ¢; ¢ — ¢i, he = h in
L?, we get for all w € D, by integration by parts, see (2.1),
—E[pVw] = 115% —E[p.Vw] = lgl(l) E[Vow] = lgr(l) Elh.w] = E[hw],
which was to show.
The proof of the reverse direction is analogous: Let € > 0 and ¢ satisfy (4.16).

For w € D it is (Ve, w) = (h,w). Indeed, using (2.1), Fubini’s theorem, invariance
of P, the fact that wo 7, € D, and that (0;w) o 7, = 9;(w o 7,,) for any z € RY,

(Voow) ==Y / E [6:0: (w 0 7] ke (2)de

= /E [(w o 7_2)] Ke(z)dx = (he, w).

D is dense in L?, hence, for all € > 0 P-a.s. Vo = he. P-ass. ¢cpi — ¢ and

hew — hy in LE . This shows along a sequence (€,,), C [0,00) converging to zero,

P-a.s. for ¢ € C¢°,

—/(wagada: = —lim/céeme(pdx = hm/V(ﬁﬁmwgodx

zlim/hemwgodx = /hwcpdx,

which shows the statement. O

Lemma 4.7. Let D be a vector subspace of L? of functions which are differentiable
of all orders, assume D is dense in L? such that &;D C D for any i and 7,0 C D
for any x € RE. Then D% N Vs is dense in Vso.

Proof: We introduce the space Y;, of vector fields ¢ of the form

(Or)1<k<d = ( Z (=1 * 19w + Z (1)ikaiwki) ) (4.19)
i<k ini>k 1<k<d
where w;, € D, 1 < i,k < d. Since the differential operator is linear and since D
is a vector space, Yi is a vector space itself. Moreover, Ys is a subspace of D?
as well as of Vso1. The second follows from a direct calculation of the divergence of
vector fields ¢ € Y;o: P-a.s.

divg =Vo¢ = Z <(_1)i_k_lakiwik + (_1)k_iaik’wik> =0,
(i,k): 1<i<k<d

where we used that 9;0,w = 9,,0;w for w differentiable of all orders.

We are now going to show that Y, in fact is dense in Vs, which together with
the fact that Yz, C D? then shows the statement.

Let 1 € (Yzo1)*. Since for any ¢ € Yo and x € R? also ¢ o 7, € Y1, we get for
€ >0,

(%) = E|:¢/¢w($)fie($)dl‘:|
= [Euaparois = [(Gor im0
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where we used Fubini’s theorem and translation invariance of P. Thus, for ¢ € Y,

0= (b)) =D (=1 F(wir, Oitbex — Otbes)-

(ik): i<k

By denseness of D in L2, for i < k one has 9;c r, — Oxbc; = 0. Therefore, for € > 0
P-a.s.

i<k

= (/(ai'(/)e,w,k: - 8kwe,w,i)()0dw) =0
i<k

for any ¢ € C®°. Using that P-a.s. in L _ one has 1., — t,, we get P-a.s.
rotyp = 0. Hence, (Y1)t C Voot B R?. Weyl’s decomposition (4.14) leads to
Yool = (Yao)) )t D (Vpor @ RY)L = Vg1, where Yoo is the closure of Yio in L2

Note that even Vo = Ygor. O

(rOtwe)w(cp) = (/ we,w,iakSo - qpe,w,kai@dx)

Proof of Lemma 2.1: Let f in Dy, and set fa := f1)5<p for M > 0. Forn € N
with the help of (4.13) and (4.11) choose € = e(n) such that ||fe — fll2 < 1/n
and Y, ||0;fe — 0if|l2 < 1/n. Using Young’s inequality (4.10) and the fact that
0i(fa)e — Oife = (f — far) * Oikie, we are able to choose M = M(e) = M(n) such
that ||(far)e — fell2 < 1/n and Y, [|0i(far)e — Oifell2 < 1/n. Then with (4.12)
((fa1(n))e(n))n C Ds converges in || - || to f for n — oco.

Let f € Fy, with f > ¢ > 0 P-a.s.. Define f := (f A||f|loo) Vc. Then f. € F and
approximates f in the desired way as before.

Note that &) = y+ Vs and &5, = y+ (Ds)? N Vo1, see (4.17). The last statement
therefore follows from Lemma 4.7 and Lemma 4.5. O
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