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Abstract. Using a method developed by Durrett and Resnick (1978) we establish
general criteria for the convergence of properly rescaled clock processes of random
dynamics in random environments on infinite graphs. This complements the re-
sults of Gayrard (2012), Bovier and Gayrard (2013), and Bovier et al. (2013): put
together these results provide a unified framework for proving convergence of clock
processes. As a first application we prove that Bouchaud’s asymmetric trap model
on Zd exhibits a normal aging behavior for all d ≥ 2. Namely, we show that certain
two-time correlation functions, among which the classical probability to find the
process at the same site at two time points, converge, as the age of the process
diverges, to the distribution function of the arcsine law. As a byproduct we prove
that the fractional kinetics process ages.

1. Introduction and main results

This introduction is made of three parts. In the first we describe the general
setting and formulate the problems of interest. We state our abstract results in
Section 1.2. Section 1.3 contains the application to Bouchaud’s asymmetric trap
model.

1.1. Markov jump processes in random environments and clock processes. Let G =
(V,L) be a loop-free graph. The random environment is a collection of random
variables, {τ(x), x ∈ V}, defined on a common probability space (Ω,F ,P), that are
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only assumed to be positive. On V we consider a continuous time Markov jump
process, X, with initial distribution µ, whose jump rates (λ(x, y))x,y∈V satisfy

τ(x)λ(x, y) = τ(y)λ(y, x), ∀(x, y) ∈ L, x 6= y. (1.1)

This implies that X is reversible with respect to the random measure on V that
assigns to x ∈ V the mass τ(x).

Clock processes of X have recently been at the center of attention in connection
with the study of aging and/or anomalous diffusions. Relevant questions on both
topics can be formulated by writing X as a time change of another Markov process
J ,

X(t) = J(S←(t)), t ≥ 0, (1.2)

and making judicious choices of S, the so-called clock process. Here S← denotes the
generalized right continuous inverse of S. When studying aging the focus usually
is on the total time elapsed along trajectories of X of a given length. This is given
by the discrete time clock process

S(k) ≡
k−1∑
i=0

λ−1(J(i))ei, k ≥ 1, (1.3)

where J is the discrete time chain with transition probabilities

p(x, y) ≡ λ(x, y)/λ(x) if (x, y) ∈ L, (1.4)

and zero else,

λ(x) ≡
∑

y:(x,y)∈L λ(x, y), x ∈ V, (1.5)

is the inverse of the mean holding time of X at x, and {ei, i = 0, 1, 2, . . .} is an
independent collection of i.i.d. mean one exponential random variables. Knowledge
of the large k behavior of S combined with relation (1.2) then allows to deduce
information on the long time behavior of the two-time correlation functions that
are used to quantify aging in theoretical physics. When interested in scaling limits
one looks at (1.2) from a different angle. One aims at expressing the process X as
a time change of another continuous time process, J , for which the usual functional
limit theorem holds. One is then naturally led to study the continuous time clock
process

S(t) ≡
∫ t

0

λ−1(J(s))λ̃(J(s))ds, t ≥ 0, (1.6)

where λ̃(x) denotes the inverse of the mean holding time of J at x.
It emerged from the bulk of works carried out in the past decade that the oc-

currence of stable subordinators as the limit of properly rescaled clock processes
provides a basic mechanism for both aging and anomalous diffusive behaviors to
set in in two main types of models. The first are phenomenological models – the
so-called trap models of Bouchaud et al. Bouchaud (1992); Bouchaud and Dean
(1995); Rinn et al. (2000, 2001). Introduced in theoretical physics to account for
the phenomenon of aging then newly discovered in the physics of spin glasses, these
are simple Markov jump processes that describe the dynamics of spin glasses on
long time scales in terms of activated barrier crossing in landscapes made of ran-
dom ’traps’. Another class of models stems from looking at the actual dynamics of
microscopic spin glasses. Interesting such dynamics are Glauber dynamics on state
spaces Vn = {−1, 1}n reversible with respect to the Gibbs measures associated to
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random Hamiltonians of mean-field spin glasses, such as the REM and p-spin SK
models.

The first connection between microscopic dynamics of spin systems and trap
models was made in Ben Arous et al. (2003a,b, 2002) for a variant of the Glauber
dynamics of the REM (the random hopping dynamics, hereafter RHD) on time
scales close to equilibrium, and extended in Ben Arous and Černý (2008) to shorter
time scales (but still exponential in n). There it is shown that the properly rescaled
discrete time clock process (1.3) converges P-a.s. to a stable subordinator. These
results were partially extended to the p-spin SK models in Ben Arous et al. (2008),
for all p ≥ 3 and in a range of exponentially long time scales, whereas it was shown
in Ben Arous and Gün (2012) that on sub-exponential times scales the clock process
no longer converges to a stable subordinator but to an extremal process, and this
for all p ≥ 2; both these results were obtained in P-law only.

The field gained new momentum with the paper Gayrard (2012). Based on a
method developed by Durrett and Resnick (1978) in the late 70’s to prove functional
limit theorems for dependent random variables, a fresh view on the convergence
of clock processes in random environment was proposed and general criteria for
convergence of clock processes to subordinators were given. This allowed to improve
all earlier results on aging of the RHD of the REM Gayrard (2010) and p-spin SK
models Bovier and Gayrard (2013); Bovier et al. (2013), yielding P-a.s. results for
all p > 4 (in P-probability else), and paved the way for new advances Gayrard
(2015). In all the papers mentioned above clock processes are used to control
suitable time-time correlation functions, and aging is deduced.

Meanwhile, in a different line of research, an important class of trap models on
Zd known as Bouchaud’s asymmetric trap model (hereafter BATM) Rinn et al.
(2000, 2001) was fully investigated both from the view point of aging and scaling
limits, in different dimensions and for different values of the asymmetry parameter
θ ∈ [0, 1] (see Section 1.3 for the definition of BATM). In what follows we call
BTM the ’symmetric’ version of the model, obtained by setting θ = 0. Aging was
first proved in the seminal paper Fontes et al. (2002) for BTM on Z, and extended
to BATM on Z in Ben Arous and Černý (2005). Emphasis was first given to the
discrete clock process of BTM in Ben Arous and Černý (2006), for d = 2, and later
in Ben Arous and Černý (2007), for d ≥ 2. In both these papers it is proved that
for suitable scalings, the clock process converges to a stable subordinator. This is
used in Ben Arous and Černý (2006) to study aging via correlation functions, and
in Ben Arous and Černý (2007) to prove convergence of the properly normalized
BTM to the so-called Fractional-Kinetics process (see (1.48)). More recently, Fontes
and Mathieu (2014) established aging for transient variants of BTM on Zd for all
d ≥ 1. The continuous time clock process (1.6) came into play later, in the study
of BATM on Zd, d ≥ 2, Barlow and Černý (2011a); Barlow and Zheng (2010);
Černý (2011); Mourrat (2011). There, J is chosen as the so-called variable speed
random walk (hereafter VSRW), that is to say, the continuous time Markov chain

with rates λ̃(x, y) = τ(x)λ(x, y). This is a central object in the literature on
random conductance models and its scaling limit is well-understood (for the most
recent and strongest results see Barlow and Deuschel (2010) and Andres et al.
(2013)). Convergence of the rescaled clock process to a stable subordinator is
established in Barlow and Černý (2011a); Černý (2011); Mourrat (2011) under
various assumptions on d and using various techniques (see Section 1.3 for a detailed
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discussion). Consequences for the scaling limit of BATM are drawn but not, to our
knowledge, for correlation functions.

The question naturally arises as to whether the method put forward in Gayrard
(2012) could allow to make progress on this issue. How to implement it however
is not straightforward. The formulation of the general, abstract criteria for con-
vergence of clock processes of Gayrard (2012) and Bovier and Gayrard (2013) was
geared to the setting of sequences of finite graphs suited for dealing with mean field
spin glasses. Furthermore, in all applications, explicit use is made of the fact that
the discrete time chain J in (1.3) admits an invariant probability measure and is,
moreover, sufficiently fast mixing. In contrast, the arena of BATM on Zd is that of
dynamics on infinite graphs that do not admit of an invariant probability measure.

In the present paper we address this question in the general setting of Markov
jump processes on infinite graphs that satisfy (1.1). We formulate abstract sufficient
conditions for properly rescaled clock processes of the form (1.2) (both continuous
or discrete) to converge to stable subordinators. (It will be seen that the rôle of the
invariant measure is now played by a certain ’mean empirical measure’.) We then
apply this result to BATM for all d ≥ 2. This, in turn, enables us to control several
(classical or natural) correlation functions through which the aging behavior of the
process can be characterized, and prove the existence of ’normal aging’.

1.2. Main results. In this paper, we consider continuous and discrete time clock
processes in a unified setting and introduce notations that allow to handle them
simultaneously. From now on let J be either a continuous or discrete time Markov
chain having transition probabilities (1.4) and initial distribution µ. Continuous
time chains are assumed to be non-explosive (see Chapter 3.5 in Norris (1998)). To
a Markov chain J we associate a process ` = {`t(x), x ∈ V, t ≥ 0} and a sequence

Λ̃ = {λ̃(x), x ∈ V} defined as follows. When J is a continuous time Markov chain

λ̃(x) is the holding time parameter of J at x and `t(x) is the local time

`t(x) ≡
∫ t

0
1J(s)=x ds, (1.7)

namely, the total time spent by J at x in the time interval [0, t]. When J is a

discrete time Markov chain we set λ̃(x) ≡ 1. In this case `t(x) is defined through

`t(x) ≡
∑btc

i=0 ei1J(i)=x, (1.8)

where {ei, i = 0, 1, 2, . . .} is a collection of i.i.d. mean one exponential random
variables independent of everything else. Observe that this is the local time of a
continuous time Markov chain whose mean holding times are identically one. The
clock process is then given by

SJ(t) ≡
∑
x∈V

`t(x)λ̃(x)λ
−1(x), t ≥ 0. (1.9)

Notice that this definition is consistent with (1.3) and (1.6). In particular, one can
check that the relation (1.2) between SJ , J , and X is satisfied. In the sequel we
write Pµ for the law of J and Pµ for the law of X with initial distribution µ. We
also write Px ≡ Pδx and Px ≡ Pδx . We denote expectations with respect to Pµ and
Pµ respectively by Eµ and Eµ. Of course these are random measures on (Ω,F ,P).

Let an and cn be non-decreasing sequences. We think of cn as the time scale
on which the process X is observed, and of an as an auxiliary time scale for the
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Markov chain J . The question of interest now becomes to find conditions for the
re-scaled sequence

SJ
n (t) ≡ c−1n

∑
x∈V

λ̃(x)λ−1(x)`bantc(x), t ≥ 0, (1.10)

to converge weakly, as a sequence of random elements in the spaceD[0,∞) of càdlàg
functions on [0,∞), P-almost surely in the random environment.

To answer this question we use a method developed by Durrett and Resnick Dur-
rett and Resnick (1978) that yields criteria for sums of correlated random variables
to converge that are particularly useful when applied to clock processes. Following
Bovier and Gayrard (2013), we will not apply it to SJ

n directly but rather to a
‘blocked’ version of SJ

n . Namely, we introduce a new sequence, θn, chosen such
that θn � an, and use it to define the block variables

ZJ
n,k ≡ c−1n

∑
x∈V

λ̃(x)λ−1(x)
(
`θnk(x)− `θn(k−1)(x)

)
, k ≥ 1. (1.11)

The reason for this is that in many examples of interest, we do know that the jumps
of the limiting clock process do not come from isolated jumps of SJ

n but from
block variables, either because of strong local spatial correlations of the random
environment (as in spin glasses) or because of strong local temporal correlations of
the process J (as e.g. in BTM on Z2) or by a conjunction of these reasons. Set
kn(t) ≡ bbantc/θnc. The blocked clock process SJ,b

n is then defined by

SJ,b
n (t) ≡

kn(t)−1∑
k=0

ZJ
n,k+1 + ZJ

n,0, t ≥ 0. (1.12)

where the sum over k is zero whenever kn(t)− 1 < 0, and

ZJ
n,0 ≡

∑
x∈V

λ̃(x)λ−1(x)`0(x)

(note that this is non-zero for discrete time chains J only).
The convergence criteria we obtain bear on a small number of quantities that we

now introduce. For x ∈ V and u > 0 let

Qu
n(x) ≡ Px

(
ZJ
n,1 > u

)
(1.13)

be the tail distribution of ZJ
n,1, starting in x. For each fixed t > 0, we construct a

probability measure on V through

πt
n(x) ≡ Eµ

(
(kn(t))

−1
kn(t)−1∑

k=1

1J(kθn)=x

)
, x ∈ V. (1.14)

This is the empirical measure induced by the sequence {J(kθn), k = 1, . . . kn(t)−1},
averaged over Pµ. Note that Q

u
n and πt

n are not random in the chain J . Using these
quantities, we define

νtn(u,∞) ≡ kn(t)
∑
x∈V

πt
n(x)Q

u
n(x), (1.15)

and

σt
n(u,∞) ≡ kn(t)

∑
x∈V

πt
n(x)(Q

u
n(x))

2. (1.16)



786 V. Gayrard and A. Svejda

We are now ready to introduce the conditions of our main theorem. They are stated
for given sequences an, cn, θn, a given initial distribution µ, and fixed ω ∈ Ω.

(A-0) For all u > 0

lim
n→∞

Pµ

(
ZJ
n,1 + ZJ

n,0 > u
)
= 0. (1.17)

(A-1) For all t > 0 there exists c < ∞ such that, uniformly in x ∈ V,

lim
n→∞

kn(t)−1∑
k=1

Pµ(J(kθn) = x) = 0, (1.18)

and

lim
n→∞

kn(t)−1∑
k=1

Px(J(kθn) = x) < c. (1.19)

(A-2) There exists a sigma-finite measure ν on (0,∞) satisfying∫∞
0

(1 ∧ x)dν(x) < ∞ such that for all t > 0 and all u > 0 such that ν({u}) = 0,

lim
n→∞

νtn(u,∞) = tν(u,∞). (1.20)

(A-3) For all t > 0 and all u > 0 such that ν({u}) = 0,

lim
n→∞

σt
n(u,∞) = 0. (1.21)

(A-4) For all t > 0,

lim
ε→0

lim sup
n→∞

kn(t)
∑
x∈V

πt
n(x)ExZJ

n,11{ZJ
n,1≤ε} = 0. (1.22)

Theorem 1.1. Assume that there exist sequences an, cn, and θn and an initial
distribution µ such that Conditions (A-0)-(A-4) are satisfied P-a.s. Then, P-a.s.,
as n → ∞,

SJ,b
n ⇒ Vν , (1.23)

where Vν is a subordinator with Lévy measure ν and zero drift. Convergence holds
weakly in the space D[0,∞) equipped with Skorohod’s J1 topology.

Let us emphasize that our statement is made for SJ,b
n and holds in the strong

J1 topology, which immediately implies that SJ
n converges to the same limit in the

weaker M1 topology. As we just explained (see discussion below (1.11)), in many
models of interest it is not true that SJ

n converges in the J1 topology, but more
information than contained in M1 statements can be obtained by introducing a
blocked clock process, SJ,b

n . (This is the case in the p-spin SK models Ben Arous
et al. (2008), Bovier and Gayrard (2013), and BTM on Z2 Ben Arous and Černý
(2006).) Of course in the case of continuous time clock processes, forming blocks is
needed in order to make sense of writing convergence to subordinators statements in
the J1 topology. Let us finally stress that it is crucial for applications to correlation
functions to make statements that are valid in the J1 topology (see the discussion
below (1.43)).

Let us comment on Conditions (A-0)-(A-4). Condition (A-0) is a condition on
the initial distribution and ensures that the initial increment SJ,b

n (0) converges to
zero as n → ∞. Conditions (A-2)-(A-4) have the same form as Conditions (A2-
1)-(A3-1) in Bovier and Gayrard (2013) where sequences of finite state reversible
Markov jump processes are studied. There it is assumed that Jn admits a unique
invariant measure, πn, and θn is chosen large compared to the mixing time of Jn
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(see Condition (A1-1)). In the present setting, the empirical measure averaged over
Pµ replaces the measure πn, and Condition (A-1) plays the same rôle as Condition
(A1-1). More precisely these conditions allow to replace J dependent, respectively
Jn dependent, quantities by their average over Pµ, respectively Pπn . We conclude
this discussion with a lemma that sheds light on the complementarity of Theorem
1.1 and Theorem 1.3 in Bovier and Gayrard (2013); indeed the former can only be
satisfied by J ’s that are transient or null-recurrent whereas the latter is designed
for positive recurrent J ’s.

Lemma 1.2. Let x ∈ V. If x is transient then (1.18) and (1.19) are satisfied for
any θn � 1, whereas if x is positive recurrent they cannot be satisfied. In particular,
(A-1) cannot hold if J admits an invariant probability measure.

When J is random in the random environment the conditions of Theorem 1.1 may
not be easy to handle. We now present an additional condition, (B-5), that enables
us to replace πt

n in (A-2)-(A-4) by a deterministic probability measure πt
n. In this

way, all the dependence on the random environment in (A-2)-(A-4) is confined to
the Qu

n’s. The following conditions, stated for given sequences an, cn, θn, a given
initial distribution µ, and for fixed ω ∈ Ω, imply the conditions of Theorem 1.1.
(B-5) Set An = {(x, k) : x ∈ V, k ∈ [kn(t)− 1]}, where [m] ≡ {0, . . . ,m}. There
exists a sequence of functions hn : V → [0, 1] such that for all t > 0 and all n ∈ N,
the set An can be decomposed into the disjoint union of two sets, A1

n and A2
n,

satisfying

lim
n→∞

sup
(x,k)∈A1

n

|Pµ(J(kθn) = x))− hkθn(x)|
hkθn(x)

= 0, (1.24)

and

lim
n→∞

∑
(x,k)∈A2

n

∣∣Pµ(J(kθn) = x)− hkθn(x)
∣∣Qu

n(x) = 0, (1.25)

lim
n→∞

∑
(x,k)∈A2

n

∣∣Pµ(J(kθn) = x)− hkθn(x)
∣∣ExZJ

n,11{ZJ
n,1≤ε} = 0. (1.26)

Observe that proving (1.24) corresponds to proving a uniform local central limit
theorem for J .

For each t > 0 we define the measure πt
n, using hn, through

πt
n(x) = (kn(t))

−1
kn(t)−1∑

k=1

hkθn(x), x ∈ V. (1.27)

By analogy with (1.15) and (1.16) we set for t > 0, u > 0

νtn(u,∞) ≡ kn(t)
∑
x∈V

πt
n(x)Q

u
n(x), (1.28)

σt
n(u,∞) ≡ kn(t)

∑
x∈V

πt
n(x)(Q

u
n(x))

2. (1.29)

The next conditions are nothing but Conditions (A-2)-(A-4) with πt
n replaced

by πt
n.

(B-2) There exists a sigma-finite measure ν on (0,∞) satisfying
∫∞
0
(1∧x)dν(x) <

∞ such that for all t > 0 and all u > 0 such that ν({u}) = 0,

lim
n→∞

νtn(u,∞) = tν(u,∞). (1.30)
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(B-3) For all t > 0 and all u > 0 such that ν({u}) = 0,

lim
n→∞

σt
n(u,∞) = 0. (1.31)

(B-4) For all t > 0,

lim
ε→0

lim sup
n→∞

kn(t)
∑
x∈V

πt
n(x)ExZJ

n,11{ZJ
n,1≤ε} = 0. (1.32)

Theorem 1.3. Assume that there exist sequences an, cn, and θn and an initial
distribution µ such that Conditions (A-0), (A-1), (B-2)-(B-5) are satisfied P-a.s.
Then, P-a.s.,

SJ,b
n ⇒ Vν , (1.33)

where Vν is a subordinator with Lévy measure ν and zero drift. Convergence holds
weakly in the space D[0,∞) equipped with Skorohod’s J1 topology.

The following lemma is instrumental in verifying the conditions of Theorem 1.1
or Theorem 1.3.

Lemma 1.4. Let ν be a sigma finite measure on (0,∞). Suppose that for given
an, cn, θn, µ and fixed t > 0, u > 0 there exists Ωτ (u, t) ⊆ Ω with P(Ωτ (u, t)) = 1
such that, on Ωτ (u, t), (A-0)-(A-4), respectively (B-2)-(B-5), are verified. Then, for
these sequences and this initial distribution (A-0)-(A-4), respectively (B-2)-(B-5),
are satisfied P-a.s. for all t > 0, u > 0.

1.3. Application to Bouchaud’s asymmetric trap model (BATM). We now use The-
orem 1.3 to prove aging in Bouchaud’s asymmetric trap model on Zd. Here V = Zd,
d ≥ 2, L is the set of nearest neighbors on Zd, and µ ≡ δ0. The random environ-
ment,

{
τ(x), x ∈ Zd

}
, is a collection of i.i.d. random variables, with tail distribution

given by

P(τ(0) > u) =

{
Cu−α(1 + L(u)), u ∈ (c̄,∞),

1, u ∈ (0, c̄],
(1.34)

where α ∈ (0, 1), c̄, C ∈ (0,∞) are constants, and L : (0,∞) → R is a function that
obeys L(u) → 0 as u → ∞. We write x ∼ y if x, y are nearest neighbors in Zd. The
jump rates of X depend on a parameter, θ ∈ [0, 1], and are given by

λ(x, y) = (τ(x))−1(τ(x)τ(y))θ, if x ∼ y, (1.35)

and zero else. Consider now the VSRW of this model, namely, the continuous time
Markov chain, J , with jump rates

λ̃(x, y) = (τ(x)τ(y))θ, if x ∼ y, (1.36)

and zero else. Our interest is in the continuous time clock process SJ defined (as
in (1.9)) through

SJ (t) =
∑

x∈V `t(x)λ̃(x)λ
−1(x) =

∑
x∈V `t(x)τ(x). (1.37)

Our first theorem states convergence of the blocked clock process, SJ,b
n , for appro-

priate choices of block lengths, θn, in the J1 topology.
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Theorem 1.5. Let cn = n and take

θn = nαγ21d=2 + (log n)γ31d≥3, (1.38)

an = nα(log n)1−α1d=2 + nα
1d≥3, (1.39)

where γ2 ∈ (0, 1/6), γ3 > 12/(1− α). Then, P-a.s., as n → ∞,

SJ,b
n ⇒ Vα, (1.40)

where Vα is a subordinator with Lévy measure ν(u,∞)=Ku−α, for K = K(d, α, θ) >
0, and zero drift. Convergence holds weakly in the space D[0,∞) equipped with
Skorohod’s J1 topology.

All earlier papers dealing with the clock process SJ
n focused on proving scaling

limits for BATM. It was first proved in Barlow and Černý (2011a) that the properly
rescaled process converges to a fractional kinetics process for d ≥ 3. This was
extended to d = 2 in Černý (2011). Shortly after Barlow and Černý (2011a),
Mourrat (2011) gave an alternative proof of this result for d ≥ 5. The method
of Barlow and Černý (2011a); Černý (2011) relies on blocking with block length
θn = εnα. In contrast, Mourrat (2011) proposed a method of proof that does not
use blocking. Both approaches resulted in M1 convergence for SJ

n . (Note that
because SJ is a continuous time clock process, the method of Mourrat (2011) does
not allow to obtain J1 convergence statements for SJ .)

Let us comment on our choices of θn. Because J is recurrent when d = 2 and
transient otherwise two cases must be distinguished. When d = 2 we first remark
that (A-1) would be satisfied for any θn � logn. There, our constraint on θn comes
from (A-2)-(A-4). In the course of verifying these conditions one sees that θn must
be chosen in such a way that the mean values of local times in the time interval
[0, θn] are of the order of log n. Since these mean values are of order log θn we take
θn = nαγ2 . When d ≥ 3 Conditions (A-1)-(A-4) can a priori be verified for any
diverging θn. Here, the constraint (1.38) on θn comes from using precise heat kernel
estimates for J , taken from Barlow and Deuschel (2010), which are only valid for
large enough time intervals (of course this was already the case in d = 2).

We now present our results on aging. Theorem 1.5 allows to control several
correlation functions, which we now introduce. The first is the classical correlation
function

C1
s (1, ρ) ≡ P (X(s) = X(s(1 + ρ))) , s > 0, ρ > 0, (1.41)

which is the probability that at the beginning and the end of the time interval
(s, s(1 + ρ)) the process is in the same site. The second correlation function is the
probability that during a certain time interval the process stays inside a ball of a
certain radius. Specifically, writing θs ≡ θbsc,

C2
s (1, ρ) ≡ P

(
maxv∈(s,s(1+ρ)) |X(s)−X(v)| ≤ (θs log θs)

1/2
)
, s > 0, ρ > 0.

(1.42)
Notice that C1

s and C2
s clearly contain different information. Our third and last

correlation function combines them both. For s > 0, ρ > 0 we define

C3
s (1, ρ) ≡ P

(
X(s) = X(s(1 + ρ)), max

v∈(s,s(1+ρ))
|X(s)−X(v)| ≤ (θs log θs)

1/2
)
.

(1.43)
The proof of the next theorem relies on a well-known scheme, that goes back to
Ben Arous and Černý (2008), that links aging to the arcsine law for subordinators
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through the convergence of the clock process SJ,b
n . In this scheme, one aims at

deducing convergence of correlation functions from convergence of the overshoot
function of the blocked clock process, χ(SJ,b

n ). (The overshoot function of Y ∈
D[0,∞) is given by χu(Y ) = Y (Lu(Y )) − u, u > 0, where Lu is the first passage
time (see (5.2) for a definition). ) For this, one needs χ to be continuous with
respect to the topology in which SJ,b

n converges, and because this is only true in
the J1 topology, it is all important that SJ,b

n converges in that topology.
Let Aslα denote the distribution function of the generalized arcsine law,

Aslα(u) ≡ sinαπ
π

∫ u

0
(1− x)−αxα−1dx, u ∈ [0, 1]. (1.44)

Theorem 1.6. Let d ≥ 2. Under the assumptions of Theorem 1.5, for i = 1, 2, 3,
P-a.s.,

lim
s→∞

Ci
s(1, ρ) = Aslα(1/(1 + ρ)), ρ > 0. (1.45)

As pointed out below Theorem 1.5, it was proved that the rescaled process

Xs(t) ≡ a−1/2s X(st), t ≥ 0, (1.46)

converges to the fractional kinetics process. Observe that the radius of the balls in
(1.42) for which Theorem 1.6 holds is very small compared to the normalization of

Xs, namely, (θs log θs)
1/2 � a

1/2
s . From this and Theorem 1.6 one readily deduces

that the correlation function defined, for ε > 0, by

Cε
s(1, ρ) ≡ P

(
maxv∈(1,1+ρ) |Xs(1)−Xs(v)| ≤ ε

)
, s > 0, ρ > 0, (1.47)

converges to the arcsine distribution function. Interestingly, this, in turn, enables
us to deduce results on the aging behavior of the fractional kinetics process itself.
This is the content of Theorem 1.7 below. Recall that the fractional kinetics process
is defined by

Zd,α(t) ≡ Bd(V
←
α (t)), t ≥ 0, (1.48)

where Bd is a standard Brownian motion on Rd started in 0, Vα is an α-stable
subordinator with zero drift that is independent ofBd, and V←α (t) = inf{v : Vα(v) >
t} its generalized right-continuous inverse. By analogy with (1.47) define

Cε(1, ρ) ≡ P
(
maxv∈(1,1+ρ) |Zd,α(1)− Zd,α(v)| ≤ ε

)
, ρ > 0. (1.49)

Theorem 1.7. Let d ≥ 2. Under the assumptions of Theorem 1.5, P-a.s.,

lim
ε→0

lim
s→∞

Cε
s(1, ρ) = lim

ε→0
Cε(1, ρ) = Aslα(1/(1 + ρ)), ρ > 0. (1.50)

Remark 1.8. As a final remark notice that our results are only valid for d ≥ 2. It is
known that the situation in d = 1 is completely different, see Fontes et al. (2002),
Ben Arous and Černý (2005). The clock process converges to the integral of the
local time of a Brownian motion on R with respect to the so-called random speed
measure – a scaling limit of the random environment – and the scaling limit of X
is a singular diffusion on R; see e.g. Ben Arous and Černý (2007) and Černý (2011)
for further discussions.

The remainder of the paper is structured as follows. Section 2 contains the proof
of Theorem 1.1 and Theorem 1.3. In Section 3 we collect preparatory results for
the proof of Theorem 1.5. The latter is carried out in Section 4. Finally, Section 5
contains the proofs of Theorem 1.6 and Theorem 1.7. Two lemmata are proven in
the Appendix.
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2. Proof of Theorem 1.1 and Theorem 1.3

We now come to the proofs of the abstract theorems of Section 1. We first
prove Theorem 1.1. We then show that the conditions of Theorem 1.3 imply those
of Theorem 1.1, thereby proving Theorem 1.3. Finally, we prove the lemmata of
Section 1.

Proof of Theorem 1.1: As mentioned earlier, the proof is based on a result by Dur-
rett and Resnick (1978) that gives conditions for partial sum processes of dependent
random variables to converge. We use this result in a specialized form suitable for
our application that we take from Gayrard (2012), namely Theorem 2.1 p. 7.

Throughout we fix a realization ω ∈ Ω of the random environment but do not
make this explicit in the notation. We set

ŜJ,b
n (t) ≡ SJ,b

n (t)−
(
ZJ
n,1 + ZJ

n,0

)
, t > 0. (2.1)

Condition (A-0) ensures that ŜJ,b
n − SJ,b

n converges to zero, uniformly. Thus, we
must show that under Conditions (A-1)-(A-4)

ŜJ,b
n ⇒ Vν . (2.2)

This will follow if we can verify Conditions (D1)-(D3) of Theorem 2.1 in Gayrard

(2012) for ŜJ,b
n .

For this, let {Fn,k, k ≥ 0} be an array of sigma algebras, where for k ≥ 0, Fn,k is
generated by {`s(x), s ≤ θnk, x ∈ Zd}. When J is continuous Fn,k is generated by
{J(s), s ≤ θnk}, whereas when J is discrete Fn,k is generated by {J(i), ei, i ≤ θnk}.
Note that for n, k ≥ 1, ZJ

n,k is Fn,k measurable and Fn,k−1 ⊂ Fn,k.

We first establish that Condition (D1) is satisfied. For t > 0 and u > 0 we define

νJ,tn (u,∞) ≡
∑kn(t)−1

k=1 Pµ

(
ZJ
n,k+1 > u | Fn,k

)
. (2.3)

This conditions then states that for all u > 0 such that ν({u}) = 0 and all t > 0
we have in Pµ-probability

limn→∞ νJ,tn (u,∞) = tν(u,∞). (2.4)

By the Markov property, νJ,tn (u,∞) can be rewritten as

νJ,tn (u,∞) =
∑kn(t)−1

k=1

∑
x∈V 1J(kθn)=xQ

u
n(x) = kn(t)

∑
x∈V π

J,t
n (x)Qu

n(x), (2.5)

where, for x ∈ V,

πJ,t
n (x) ≡ (kn(t))

−1 ∑kn(t)−1
k=1 1J(kθn)=x, (2.6)

denotes the empirical measure induced by the sequence {J(kθn), k = 1, . . . , kn(t)−
1}. Taking the expectation with respect to Pµ, (2.5) yields

EµνJ,tn (u,∞) = kn(t)
∑

x∈V Eµ
(
πJ,t
n (x)

)
Qu

n(x) = νtn(u,∞). (2.7)

Since (A-2) ensures that limn→∞ νtn(u,∞) = tν(u,∞) it suffices to prove that

lim
n→∞

Pµ

(∣∣νJ,tn (u,∞)− νtn(u,∞)
∣∣ > ε

)
= 0, ∀ε > 0, (2.8)
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i.e. that we may replace πJ,t
n by its mean value. We do this by means of a second

order Chebyshev inequality. For x, y ∈ V and k, j ∈ N write

q̄k,j(x, y) ≡ Pµ(J(k) = x, J(j) = y) and qk(x, y) ≡ Px(J(k) = y), (2.9)

with the convention that qk(y) ≡ Pµ(J(k) = y). Then, on the one hand,

Eµ
(
νJ,tn (u,∞)

)2
=

∑
x∈V (Q

u
n(x))

2
[
kn(t)π

t
n(x) + 2

∑kn(t)−2
k=1

∑kn(t)−1
j=k+1 q̄kθn,jθn(x, x)

]
(2.10)

+ 2
∑

x,x′∈V
x6=x′

Qu
n(x)Q

u
n(x
′)
∑kn(t)−2

k=1

∑kn(t)−1
j=k+1 q̄kθn,jθn(x, x

′),

and on the other hand,(
EµνJ,tn (u,∞)

)2
≥ 2

∑
x∈V (Q

u
n(x))

2 ∑kn(t)−2
k=1

∑kn(t)−1
j=k+1 qkθn(x)qjθn(x) (2.11)

+ 2
∑

x,x′∈V
x6=x′

Qu
n(x)Q

u
n(x
′)
∑kn(t)−2

k=1

∑kn(t)−1
j=k+1 qkθn(x)qjθn(x

′).

Combining (2.10) and (2.11), we obtain that

Eµ
(
νJ,tn (u,∞)

)2 − (
EµνJ,tn (u,∞)

)2
≤ σt

n(u,∞)

+
∑

x∈V (Q
u
n(x))

2 ∑kn(t)−2
k=1

∑kn(t)−1
j=k+1 [q̄kθn,jθn(x, x)− qkθn(x)qjθn(x)]

+
∑

x,x′∈V
x 6=x′

Qu
n(x)Q

u
n(x
′)
∑kn(t)−2

k=1

∑kn(t)−1
j=k+1 [q̄kθn,jθn(x, x

′)− qkθn(x)qjθn(x
′)]

≡ (I) + (II) + (III). (2.12)

By (A-3), (I) tends to zero as n → ∞. To bound (II), we drop the terms involving
qkθn(x)qjθn(x), and use the Markov property to write

(II) ≤
∑

x∈V (Q
u
n(x))

2 ∑kn(t)−2
k=1

∑kn(t)−1
j=k+1 qkθn(x)Px (J((j − k)θn) = x)

≤
∑

x∈V (Q
u
n(x))

2 ∑kn(t)−2
k=1 qkθn(x)

∑kn(t)−1
j=1 Px (J(jθn) = x)

≤ kn(t)
∑

x∈V (Q
u
n(x))

2
πt
n(x)

∑kn(t)−1
j=1 Px (J(jθn) = x)

≤ σt
n(u,∞) supx∈V

∑kn(t)−1
j=1 Px (J(jθn) = x) . (2.13)

By (A-1) and (A-3), (II) → 0 as n → ∞.
Let us now show, using (A-1) and (A-2), that also (III) vanishes. Fix x ∈ V,

k ≥ 1, and j ≥ k + 1. For every x′ 6= x we bound the term Qu
n(x
′) by 1. Now∑

x′: x′ 6=x q̄kθn,jθn(x, x
′) = Pµ(J(kθn) = x, J(jθn) 6= x) ≤ Pµ(J(kθn) = x), (2.14)

and ∑
x′: x′ 6=x qkθn(x)qjθn(x

′) = Pµ(J(kθn) = x)Pµ(J(jθn) 6= x), (2.15)

so that, combining (2.14) and (2.15),

(III) ≤
∑

x∈V Q
u
n(x)

∑kn(t)−2
k=1 Pµ(J(kθn) = x)

∑kn(t)−1
j=1 Pµ(J(jθn) = x)

≤ νtn(u,∞) supx∈V
∑kn(t)−1

j=1 Pµ(J(jθn) = x). (2.16)
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By (A-2), νtn(u,∞) converges as n → ∞ to tν(u,∞), which is a finite number. Thus
invoking (A-1), (II) → 0 as n → ∞. Inserting our bounds in (2.12), the variance of
νJ,tn (u,∞) tends to zero as n → ∞. The verification of Condition (D1) is complete.

Next we show that Condition (D2) of Theorem 2.1 in Gayrard (2012) is satisfied.
For t > 0, u > 0 we define

σJ,t
n (u,∞) ≡

∑kn(t)−1
k=1

(
Pµ

(
ZJ
n,k+1 > u|Fn,k

))2

. (2.17)

This condition then states that for all u > 0 such that ν({u}) = 0 and all t > 0,

limn→∞ Pµ

(
σJ,t
n (u,∞) > ε

)
= 0, ∀ε > 0. (2.18)

By the Markov property,

σJ,t
n (u,∞) = kn(t)

∑
x∈V π

J,t
n (x) (Qu

n(x))
2
. (2.19)

The expectation of σJ,t
n (u,∞) with respect to Pµ is equal to σt

n(u,∞) and tends
by (A-3) to zero. Thus, Condition (D2) is satisfied.

It remains to verify Condition (D3) of Theorem 2.1 in Gayrard (2012). It is in
particular satisfied if

limε→0 lim supn→∞
∑kn(t)−1

k=1 EµZJ
n,k+11ZJ

n,k+1≤ε
= 0. (2.20)

By the Markov property the left hand side of (2.20) is equal to the left hand side
of (1.22) and vanishes by (A-4). This proving that Condition (D3) is satisfied.
Therefore, the conditions of Theorem 2.1 in Gayrard (2012) are verified, and so

ŜJ,b
n ⇒ Vν where convergence holds weakly in the space D[0,∞) equipped with

Skorohod’s J1 topology and Vν is a subordinator with Lévy measure ν and zero
drift. �

In the verification of Condition (D1) of Theorem 2.1 in Gayrard (2012), more
precisely in the proof of the claim (II), (III) → 0, one sees that Condition (A-1) is
used to replace πJ,t

n by its average over Pµ. This is to be contrasted with the setting
of Bovier and Gayrard (2013) where (II) and (III) vanish because J is already in
the invariant measure after θn steps, and hence for x, x′ ∈ V and j > k the event
{J(kθn) = x} is essentially independent of {J(jθn) = x′}.

Proof of Theorem 1.3: As in the proof of Theorem 1.1 we show that for given se-
quences an, cn, θn, a given initial distribution µ and for fixed ω ∈ Ω (B-2)-(B-5) ⇒
(A-2)-(A-4). Since both Theorems require that the conditions are satisfied P-a.s. for
all t > 0 and all u > 0, it suffices to consider a fixed realization ω ∈ Ω and fixed
u > 0, t > 0. Let us first establish that, under the assumptions of Theorem 1.3,

limn→∞
∣∣νtn(u,∞)− νtn(u,∞)

∣∣ = 0. (2.21)

By (B-2), (2.21) implies (A-2). Next∣∣νtn(u,∞)− νtn(u,∞)
∣∣

≤
∑

(x,k)∈A1
n
|P (J(kθn) = x)− hkθn(x)|Qu

n(x)

+
∑

(x,k)∈A2
n
|P (J(kθn) = x)− hkθn(x)|Qu

n(x). (2.22)
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By (1.25) of (B-5) the second summand tends to zero. The first summand is smaller
than

sup
(x,k)∈A2

n

|P (J(kθn) = x)− hkθn(x)|
hkθn(x)

∑
(x,k)∈A2

n

hkθn(x)Q
u
n(x)

≤ sup
(x,k)∈A2

n

|P (J(kθn) = x)− hkθn(x)|
hkθn(x)

νtn(u,∞), (2.23)

and (1.24) of (B-5) guarantees that it vanishes as n → ∞, proving that (A-2) is
satisfied. To establish that

limn→∞
∣∣σt

n(u,∞)− σt
n(u,∞)

∣∣ = 0, (2.24)

we proceed as in (2.22). Bounding Qu
n(x) ≤ 1, the claim of (2.24) follows from

(2.22)-(2.23) and (A-3) is satisfied as well. Condition (A-4) follows in a similar
way. This finishes the proof of Theorem 1.3. �

Proof of Lemma 1.2: Let us show that (1.18) and (1.19) are always satisfied for
transient x and never for positive recurrent x. Since the ideas of proof are similar,
we restrict ourselves to continuous time J ’s. Let x ∈ V be transient. Then, for
µ′ ∈ {δx, µ} and any θn � 1,

limn→∞
∫∞
θn

Pµ′(J(t) = x)dt = 0. (2.25)

Now, for all s < t, Pµ′(J(t) = x) ≥ Pµ′(J(t− s) = x) exp(−sλ̃−1(x)), and so∑kn(t)−1
k=1 Pµ′(J(kθn) = x) =

∑kn(t)−1
k=1

∫ kθn+1

kθn
Pµ′(J(kθn) = x)dt

≤ eλ̃
−1(x)

∫∞
θn

Pµ′(J(t) = x)dt, (2.26)

which by (2.25) tends to zero. This proves that (1.18) and (1.19) hold for transient
x ∈ V.

Since (1.19) can only be satisfied if Px(J(t) = x) → 0 and since by Theorem
1.8.3 in Norris (1998) limt→∞ Px(J(t) = x) > 0 for positive recurrent x ∈ V, (A-1)
cannot hold for positive recurrent x ∈ V. By Theorem 3.5.3 in Norris (1998) this
also proves that (A-1) cannot hold for J that admit for an invariant probability
measure. �

Proof of Lemma 1.4: Since the proofs are the same, we only prove the claim for
(A-0)-(A-4). Assume that (A-0)-(A-4) are satisfied P-a.s. for fixed u > 0, t >
0 and given an, cn, θn, and µ. We construct a set Ωτ ⊆ Ω of full measure on
which (A-0)-(A-4) are satisfied for all u > 0, t > 0. The sums on the left hand
sides of (1.18), (1.19), (1.22), and the quantities νtn(u,∞), and σt

n(u,∞) depend
on t through kn(t)π

t
n(x), x ∈ V, which is increasing in t. Moreover, as sums

of tail distributions, the quantities Pµ(S
J,b
n (0) > u), νtn(u,∞), and σt

n(u,∞) are
decreasing in u. The right hand sides of (1.18)-(1.22) are continuous in t. The
only right hand side that depends on u is that of (1.20) and in (A-2) we require
that (1.20) holds for all continuity points of the mapping u 7→ ν(u,∞). Thus,
Ωτ ≡

∩
u,t>0,t∈Q,u∈Q,ν({u})=0 Ω

τ (u, t) ⊆ Ω is of full measure and (A-0)-(A-4) hold

true for all u > 0 and all t > 0 on Ωτ . The proof of Lemma 1.4 is finished. �
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3. Application to BATM

This section and the next are devoted to the proof of Theorem 1.5. In the present
section we derive new conditions that imply (B-2)-(B-5) and are specific to BATM.
We also show that (A-0) and (A-1) hold true for BATM. In Section 4 we prove that
these new conditions are satisfied and give the conclusion of the proof.

3.1. The VSRW. We collect results for J that are used in the proof of Theorem
1.5. The VSRW is a well-studied Markov jump process in random environment
(see Barlow and Deuschel (2010); Barlow and Černý (2011a); Černý (2011); Andres
et al. (2013), and the references therein). The proof of Theorem 1.5 relies heavily
on very precise results for J that can be found in Barlow and Deuschel (2010). The
results that we are using repeatedly concern the heat kernel, which we now define.
For x, y ∈ Zd and t > 0 the heat kernel is given by

qt(x, y) ≡ Px(J(t) = y). (3.1)

The bounds for qt(x, y) that are contained in Barlow and Deuschel (2010) allow us
to control all hitting, local, and exit times of vertices and balls that we need for
the proof of Theorem 1.5. Moreover, we use the local central limit theorem which
can be found in Barlow and Deuschel (2010). Note that in virtue of Theorem 6.1
in Barlow and Deuschel (2010) and Lemma 9.1 in Barlow and Černý (2011a), these
theorems apply in the present setting. We denote by | · | the Euclidean distance.
For convenience, we restate Theorem 1.2 (a)-(c) (heat kernel bounds) and Theorem
5.14 (uniform local central limit theorem) from Barlow and Deuschel (2010).

Theorem 3.1. There exists c1 ∈ (0,∞) such that for all x, y ∈ Zd and t > 0,

qt(x, y) ≤ c1t
−d/2. (3.2)

There exist identically distributed random variables {Ux}x∈Zd whose distribution
satisfies

P(Ux > v) ≤ c1 exp(−c2v
1/3), v > 0, (3.3)

where c1, c2 ∈ (0,∞), and such that we have

qt(x, y) ≤ c1t
−d/2e−c2|x−y|{1∧|x−y|t

−1}, if |x− y| ∨ t1/2 ≥ Ux, (3.4)

qt(x, y) ≥ c1t
−d/2e−c2|x−y|

2t−1

, if t ≥ U2
x ∨ |x− y|4/3. (3.5)

For x ∈ Rd write bxc = (bx1c, . . . , bxdc). There exists cv > 0 such that, for T > 0,

lim
n→∞

sup
x∈Rd

sup
t≥T

∣∣nd/2qnt(0, bn1/2xc)− (2πcvt)
d/2e−|x|

2/2cvt
∣∣ = 0, P-a.s.. (3.6)

For x ∈ Zd, define

An(x) ≡ {ω ∈ Ω : supy:|x−y|≤2an
Uy ≤ c0(log an)

3}; (3.7)

by convention An(0) ≡ An. By (3.3), there exists c0 ∈ (0,∞) such that P(Ac
n) ≤

c1n
−(5∨2d). Therefore, writing

A ≡
∪

n≥1
∩

m≥n Am, (3.8)

we have by Borel-Cantelli Lemma that P(A) = 1. On the event A, we have for
all but finitely many n that supy:|y|≤2an

Uy ≤ c0(log an)
3. We will make use of

Theorem 3.1 on the events An and A. Whenever we do so, we check whether,
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given x, y such that |x|, |y| ≤ an and t > 0, |x − y| ∧ t1/2 ≥ c0(log an)
3 or t1/2 ≥

c0(log an)
3 ∨ |x− y|2/3.

We now state two lemmata that are needed in the proof of Theorem 1.5. Their
proofs are postponed to the appendix. The first concerns the distribution of the
exit times of certain balls. We denote by Br(x) the ball of radius r centered at x;
by convention Br ≡ Br(0). We write η(Br(x)) for the exit time of Br(x).

Lemma 3.2. Let an be as in (1.39). There exists c4 ∈ (0,∞) such that the following
holds. For all sequences mn, rn such that mn ≥ c20rn(log an)

6 and an ≥ mn, on the
event An,

Px(η(Brn(x)) ≤ mn) ≤ e−c4r
2
nm

−1
n , ∀x ∈ Ban . (3.9)

For all sequences mn, rn such that an ≥ rn ≥ c0(log an)
3 and mn ≥ 3r2n, on the

event An,

Px(η(Brn(x)) ≥ mn) ≤ e−c4m
1/2
n r−1

n , ∀x ∈ Ban . (3.10)

The second lemma provides bounds on the expected number of different sites
that J visits in certain time intervals. Given an increasing sequence of integers,
mn, we define the range of J in the time interval [0,mn] as

Rmn ≡
∑

y∈Zd 1σ(y)≤mn
, (3.11)

where σ(y) ≡ inf{t ≥ 0 : J(t) = y} is the hitting time of y.

Lemma 3.3. Let mn be such that an ≥ mn ≥ c20(log an)
6. There exists c5 ∈ (0,∞)

such that the following holds for n large enough. For d ≥ 2 and k ∈ {1, 2},

EExR
k
mn

≤ c5

(
mn(logmn)

−k
1d=2 +m

1/k
n 1d≥3

)
. (3.12)

Moreover, for d = 2 there exists fmn : (0,∞) → (0,∞) such that, on the event An,

P (σ(x) ≤ mn) ≤ fmn(|x|), for all x ∈ Bmn , (3.13)

and fmn satisfies∑
x∈Bmn

(
fmn(|x|)

)k ≤ c5mn(logmn)
−k, k ∈ {1, 2, 4}. (3.14)

Notice that by our choices of θn we may use Lemma 3.3 for mn ≥ θδn for δ > 1/2.

3.2. Specializing Theorem 1.3 for BATM. In this section we specialize Theorem 1.3
to the setting of BATM. More precisely, we will not study SJ,b

n directly, but another

process, S
J,b

n , to which only those x contribute for which τ(x) is ’large enough’. For
x ∈ Zd we set

γn(x) ≡ c−1n τ(x). (3.15)

Let εn(d) ≡ (log θn)
−6/(1−α)

1d=2 + θ
−1/3
n 1d≥3 and denote the collection of ’large’

traps by Tn ≡ {x ∈ Zd : γn(x) > εn,maxy∼x τ(y) ≤ ε
−2/α
n }. Then,

S
J,b

n (t) ≡
∑kn(t)−1

k=0

∑
x∈Zd γn(x)1x∈Tn

(
`θn(k+1)(x)− `θnk(x)

)
, t > 0, (3.16)

where `t(y) =
∫ t

0
1J(s)=yds.

Roughly speaking, the following lemma states that, P-a.s., SJ,b

n is a good approx-
imation for SJ,b

n . To simplify notation, we write P ≡ P0, respectively P ≡ P0.

Lemma 3.4. P-a.s., lim supn→∞ P(ρ∞(SJ,b
n , S

J,b

n ) > δn) = 0, where δn ≡ ε
(1−α)/2
n .
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Proof : By definition of ρ∞ it suffices to show this result with ρ∞ replaced by ρr,
Skorohod’s J1 metric on D[0, r], for all r > 0. For convenience we take r = 1 and
we get

P
(
SJ,b
n (1)− S

J,b

n (1) > δn

)
= P

(∫ an

0
γn(J(s))1J(s)/∈Tn

> δn

)
≤ P

(∫ an

0
γn(J(s))1J(s)/∈Tn,γn(J(s))≤ε−1

n
> δn

)
+ P

(
∃x ∈ Zd : γn(x) > ε−1n , `an(x) > 0

)
. (3.17)

To shorten notation, set Bn ≡ T c
n ∩ {y ∈ Zd : γn(y) ≤ ε−1n }. Using a first order

Chebyshev inequality to bound the first term in the right hand side of (3.17) and
Boole’s inequality for the second, we get that their sum is bounded above by

δ−1n

∫ an

0
Eγn(J(s))1J(s)∈Bn

ds+
∑

x∈Zd P (`an(x) > 0)1γn(x)>ε−1
n
. (3.18)

In order to establish that (3.18) tends P-a.s. to zero, let us first consider sub-
sequences of the form cN,r = exp(N + r) for r ∈ [0, 1] and establish that, uni-
formly in r ∈ [0, 1), (3.18) tends P-a.s. to zero as N → ∞. Since cn = n =
exp(blognc + (log n − blog nc)) this implies that (3.18) vanishes P-a.s. as n → ∞.
To ease notation we write aN,r ≡ aexp(N+r) for r ∈ [0, 1] and N ∈ N, and use the
same abbreviation for all n dependent quantities.

Now, the first summand in (3.18) satisfies

supr∈[0,1) δ
−1
N,r

∑
y∈BN,r

E`aN,r (y)γN,r(y) ≤ δ−1N,1

∑
y∈BN,1

E`aN,1(y)γN,0(y), (3.19)

and the supremum over r ∈ [0, 1) of the second is bounded above by∑
x∈Zd P (`aN,1(x) > 0)1γN,0(x)>ε−1

N,1
≤

∑
x P (maxy∼x `aN,1(y) > 0)1γN,0(x)>ε−1

N,1
.

(3.20)
The lemma will be proven if we can show that the sum of the expectation of the
right hand side of (3.19) and (3.20) with respect to the random environment, that
is ∑

x
1

δN,1
E
[
E`aN,1

(x)γN,0(x)1x∈BN,1

]
+
∑

x E
[
P (`aN,1

(x) > 0)
]
P(γN,0(0) > ε−1N,1),

(3.21)

tends to zero fast enough. Notice that the second sum in (3.21) bounds (3.20)
because P (maxy∼x `aN,1

(y) > 0) is independent of γN,0(x). By (3.12) of Lemma
3.3, the second sum in (3.21) is bounded above by

c5aN,1c
−α
N,0ε

α
N,1(1/ log aN,11d=2 + 1d≥3) ≤ εαN,1, (3.22)

which is summable in N . We now decompose the first sum in (3.21) into three
sums according to the size of |x|. Namely, we set D1 ≡ Bc0(log aN,1)3 , D2 ≡
B

a
1/2
N,1 log log aN,1

\ D1, and D3 ≡ (B
a
1/2
N,1 log log aN,1

)c. When x ∈ D1, we know by

(3.2) of Theorem 3.1 that E`aN,1(x) ≤ c1 log aN,1, and so

1
δN,1

∑
x∈D1

E
[
E`aN,1

(x)γN,0(x)1x∈BN,1

]
≤ c1|D1| log aN,1

δN,1
E
[
γN,0(0)10∈BN,1

]
. (3.23)

One can check that EγN,0(0)10∈BN,1
≤ cc−αN,1ε

1−α
N,1 , and so (3.23) is smaller than,

say, c
−α/2
N,1 which is summable in N . For x ∈ D3 we derive from (3.4) and (3.2)
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of Theorem 3.1 that, E`aN,1
(x) ≤ e−c2|x|

2/aN,1 + log aN,11Ux>|x|. Thus, by (3.3) of
Theorem 3.1,

1
δN,1

∑
x∈D3

E
[
E`aN,1

(x)γN,0(x)1x∈BN,1

]
≤ c

δN,1

∑
x∈D3

{
e−c2/2|x|

2/aN,1c−αN,1 + ε
−1/α
N,1 log aN,1P(Ux > |x|)

}
(3.24)

≤ e−c
′(log log aN,1)

2

,

which is summable in N . Finally, let x ∈ D2. Let AN,1 ≡ Aexp(N+1)(0) be as in
(3.7). In order to bound the contribution to the first sum in (3.21) coming from D2

we distinguish between the events AN,1 and Ac
N,1. By definition of BN,1, we have

that

1
δN,1

∑
x∈D2

E
[
E`aN,1

(x)γN,0(x)1x∈BN,1
1Ac

N,1

]
≤ εN,1

δN,1
E
[
1Ac

N,1

∑
x∈D2

E`aN,1(x)
]
≤ aN,1P(Ac

N,1) ≤ a−4N,1. (3.25)

On AN,1 we have by (3.4) of Theorem 3.1 that E`aN,1(x) ≤ c3|x|2−d if d ≥ 3, and
E`aN,1

(x) ≤ c2 log aN,1 if d = 2, and so,

1
δN,1

∑
x∈D2

E
[
E`aN,1

(x)γN,0(x)1x∈BN,1
1AN,1

]
= c

δN,1

∑
x∈D2

c−αN,1ε
1−α
N,1

(
|x|2−d1d≥3 + log aN,11d=2

)
= c

δN,1
c−αN,1ε

1−α
N,1

∑a
1/2
N,1 log log aN,1

k=1 k (1d≥3 + log aN,11d=2)

≤ c′ε−1N−1−α logN, (3.26)

where c, c′ ∈ (0,∞) and where the last line follows from (1.38), (1.39), and the
construction of cN,r. Collecting (3.22)-(3.26), the proof of Lemma 3.4 is complete.

�

Using Theorem 1.3, we can derive new conditions for the process S
J,b

n to converge.
To present these conditions, we introduce the following quantities. For x, y ∈ Zd,
u > 0, and ε > 0 we define

Qu
n(x, y) ≡ Px (`θn(y)γn(y) > u, η(Bθn(x)) > θn)1y∈Tn

, (3.27)

Mε
n(x, y) ≡ Ex

(
`θn(y)γn(y)1γn(y)`θn (y)≤ε1η(Bθn (x))>θn

)
1y∈Tn . (3.28)

Note that Qu
n(x, y) = Mε

n(x, y) = 0 for y /∈ Bθn(x). For t > 0 we set dn(t) ≡
bantc1/2 logbantc. For n ∈ N and x ∈ Zd we take hn(x) = EP (J(n) = x). Thus,
πt
n(x) = Eπt

n(x). By analogy with (1.28) and (1.29) we write, for u > 0, t > 0,

ν̃tn(u,∞) ≡ kn(t)
∑

x∈Bdn(t)
πt
n(x)

∑
y∈Zd Qu

n(x, y), (3.29)

and

σ̃t
n(u,∞) ≡ kn(t)

∑
x∈Bdn(t)

πt
n(x)

∑
y∈Zd(Qu

n(x, y))
2. (3.30)

We also define for ε > 0, t > 0

mt
n(ε) ≡ kn(t)

∑
x∈Bdn(t)

πt
n(x)

∑
y∈Zd Mε

n(x, y), (3.31)

and finally we introduce for ε > 0 the set

Bn ≡ {(x, k) ∈ Bdn(t) × [kn(t)− 1] \ {0} : |x|2 < εkθn, |x|2 > kθn/ε}. (3.32)

We are now ready to present our new conditions. They are stated for fixed ω ∈ Ω.
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(C-2) For all u > 0, t > 0

limn→∞ ν̃tn(u,∞) = tKu−α. (3.33)

(C-3) For all u > 0, t > 0

limn→∞ σ̃t
n(u,∞) = 0. (3.34)

(C-4) For all t > 0 there exists C(t) > 0 such that for all ε > 0

lim supn→∞mt
n(ε) ≤ C(t)ε1−α. (3.35)

(C-5) For all u > 0, t > 0, ε > 0 there exists C(u, t) ∈ (0,∞) and N(ε) such
that for n ≥ N(ε),∑

(x,k)∈Bn

∑
y

(kθn)
−d/2e−c2|x|

2/kθnQu
n(x, y) ≤ C(u, t)ε, (3.36)

∑
(x,k)∈Bn

∑
y

(kθn)
−d/2e−c2|x|

2/kθnMε
n(x, y) ≤ C(u, t)ε. (3.37)

Proposition 3.5. Assume that Conditions (C-2)-(C-5) are satisfied P-a.s. for fixed
u > 0, t > 0, and ε > 0. Then, P-a.s., SJ,b

n
J1=⇒ Vα, as n → ∞, where

J1=⇒ denotes
weak convergence in the space D[0,∞) equipped with Skorohod’s J1 topology.

The next lemma gives us a very helpful bound for πt
n(x) which we will use in the

proof of Proposition 3.5 and in the following sections.

Lemma 3.6. There exists c3 ∈ (0,∞) such that for all t > 0 and large enough n
we have that if d ≥ 3,

πt
n(x) ≤ (kn(t)θn)

−1

{
c3(|x| ∨ 1)2−d, if |x| ≤ a

1/2
n log θn,

c3|x|2−de−1/2(log θn)
2

, else,
(3.38)

and if d = 2,

πt
n(x) ≤ (kn(t)θn)

−1

{
c3(log(an/|x|2) ∨ (log log an)), if |x| ≤ a

1/2
n log log an,

e−c2/2(log log an)
2

, if a
1/2
n log log an < |x|.

(3.39)

We first prove Proposition 3.5 assuming Lemma 3.6 and the lemma next.

Proof of Proposition 3.5: Let us apply Theorem 1.3 to S
J,b

n . By Lemma 1.4 it
suffices to prove that the conditions of Theorem 1.3 are verified P-a.s. for fixed
u > 0, t > 0, and ε > 0.

We first prove that Condition (A-1) is satisfied. By (3.2) of Theorem 3.1 we have
for all ω ∈ Ω, all x, y ∈ Zd, and all t > 0,∑kn(t)−1

k=1 qkθn(x, y) ≤
∑kn(t)−1

k=1 c1(θnk)
−d/2≤ θ−1n

∑kn(t)−1
k=1 c1k

−1 ≤ 2c1
log ant

θn
.(3.40)

By (1.38) and (1.39) this vanishes as n → ∞, and hence (A-1) is satisfied P-a.s.
To verify (A-0) and establish that (C-2)-(C-4) ⇒ (B-2)-(B-4) we proceed as in

the proof of Lemma 3.4 and consider subsequence cN,r = exp(N + r) first (see the

paragraph below (3.18)). Since Z
J

N,r,1 ≡
∑

x∈Zd γn(x)1x∈Tn`θN,r(x) is zero unless
there is y ∈ TN,r for which `θN,r (y) > 0,

supr∈[0,1) P(Z
J

N,r,1 > u) ≤ P (η(B
θ
3/4
N,1

) ≤ θN,1) +
∑

y:|y|≤θ3/4
N,1

1y∈TN,0
. (3.41)
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By definition of A (see (3.8)) and Lemma3.2, the first term in the right hand side
of (3.41) tends P-a.s. to zero. The second term in the right hand side of (3.41) is
bounded above, when taking expectation with respect to the random environment,

by θ
3d/4
N,1 c−αN,0ε

−α
N,0. This is summable in N and hence (A-0) is satisfied P-a.s.

We establish now that (C-2)-(C-4) ⇒ (B-2)-(B-4). First we prove that (C-2) ⇒
(B-2), i.e. that supr∈[0,1) |νtN,r(u,∞)− ν̃tN,r(u,∞)| tends P-a.s. to zero as N → ∞.
We have that

supr∈[0,1) |νtN,r(u,∞)− ν̃tN,r(u,∞)| ≤ ∆1
N +∆2

N +∆3
N , (3.42)

where

∆1
N ≡ sup

r∈[0,1)
kN,r(t)

∑
x/∈BdN,r(t)

πt
N,r(x), (3.43)

∆2
N ≡ sup

r∈[0,1)
kN,r(t)

∑
x∈BdN,r(t)

πt
N,r(x)Px(η(BθN,r

(x)) ≤ θN,r), (3.44)

∆3
N ≡ sup

r∈[0,1)
kN,r(t)

∑
x∈BdN,r(t)

πt
N,r(x)

∑
y,y′:|x−y|,|x−y′|≤θn

1y,y′∈TN,r
. (3.45)

Let us now prove that, P-a.s., ∆i
N vanishes for i = 1, 2, 3 as N → ∞. We have that

∆1
N = supr∈[0,1)

∑kN,r(t)−1
k=1

∑
x/∈BdN,r(t)

EP (J(kθN,r) = x)

≤
∑kN,1(t)

k=1 EP (η(BdN,0(t)) ≤ kθN,1)

≤ kN,1(t)e
−c4θN,0 + kN,1(t)P(Ac

N,1), (3.46)

where we used (3.9) of Lemma 3.2 on AN,1 = Aexp(N+1) in the last step. By
construction, kN,1(t)P(Ac

N,1) ≤ exp(−cN), and so (3.46) is bounded above by

exp(−cN). Thus, P-a.s., ∆1
N → 0. The same arguments yield that P-a.s., ∆2

N → 0.
Finally, writing

πt
N (x) ≡ supr∈[0,1) π

t
N,r(x), (3.47)

we get by a first order Chebyshev inequality that

P
(
∆3

N > ε
)
≤ kN,1(t)

ε

∑
x∈BdN,1(t)

πt
N (x)

∑
y,y′∈BθN,1

(0),y 6=y′ E(1y,y′∈TN,0
). (3.48)

By Lemma 3.6 one can show that the sum over x ∈ BdN,1(t) of πt
N (x) is bounded

above by c3(log log aN,1)
3. The sum over y, y′ ∈ BθN,1

in (3.48) is equal to

θdN,1c
−2α
N,0 ε

−2α
N,0 . Thus, P

(
∆3

N > ε
)
� c

−α/4
N,0 . This is summable in N , and so, P-

a.s, ∆3
N → 0. Therefore, (C-2) ⇒ (B-2). In a similar way one can show that (C-3)

⇒ (B-3). We now prove that (C-4) ⇒ (B-4). Observe that for r ∈ [0, 1),∑
x∈Zd

πt
N,r(x)Ex

[
Z

J

N,r,11Z
J
N,r,1≤ε

]
≤ ∆1

N +∆2
N +

∑
x∈BdN,r(t)

πt
N,r(x)Ex

[
Z

J

N,r,11Z
J
N,r,1≤ε

1η(BθN,r
(x))>θN,r

]
. (3.49)

By (3.46), ∆1
N ,∆2

N → 0. It remains to establish that for all r ∈ [0, 1), mt
N,r(ε) is

an upper bound for the last term in the right hand side of (3.49). This term is
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equal to∑
x∈BdN,r(t)

πt
N,r(x)

∑
y∈Zd∩TN,r

Ex
[
γn(y)`θN,r

(y)1
Z

J
N,r,1≤ε

1η(BθN,r
(x))>θN,r

]
.

(3.50)

Since {ZJ

N,r,1 ≤ ε} ⊂ {`θN,r (y)γn(y) ≤ ε} for all y ∈ Zd for which `θN,r (y) > 0,

mt
N,r(ε) bounds the last term in the right hand side of (3.49) from above. Thus,

(C-4) ⇒ (B-4).
Finally we prove that (C-5) ⇒ (B-5). The local central limit theorem (3.6) of

Theorem 3.1 implies that P-a.s., for A1
n = {(x, k) : k ≥ 1, |x|2 ∈ (εkθn, kθn/ε)},

limn→∞ sup(x,k)∈A1
n
|(kθn)d/2qkθn(x)− (2πcv)

d/2e−|x|
2/(2cvkθn)| = 0, (3.51)

where qt(x) ≡ qt(0, x). By (3.3) of Theorem 3.1, (kθn)
d/2qkθn(x) ≤ c1 for all x ∈ Zd,

k ∈ N and so, by bounded convergence,

limn→∞ sup(x,k)∈A1
n
|(kθn)d/2hkθn(x)− (2πcv)

d/2e−|x|
2/(2cvkθnT )| = 0, (3.52)

where hn(x) = Eqn(x). Thus, P-a.s.,

limn→∞ sup(x,k)∈A1
n

|qkθn (x)−hkθn (x)|
hkθn (x) = 0, (3.53)

proving that (1.24) is satisfied for A1
n. Hence, it suffices to verify (1.25) and (1.26)

for the set A2
n ≡ Zd × [kn(t)− 1] \ A1

n. The set A2
n is the disjoint union of [kn(t)−

1] × Zd \ Bdn(t) and Bn. Let us now verify (1.25) and (1.26) for each of these

sets separately. Since ∆1
n → 0, P-a.s., we know that [kn(t) − 1] × Zd \ Bdn(t)

satisfies (1.25) and (1.26). By (3.4) of Theorem 3.1 we have that on the event An

qkθn(x) ≤ c1(k/θn)
−d/2e−c2|x|

2/kθn for all x ∈ Bdn(t) and all k ≥ 1. By construction,

P(Ac
n)|Bdn(t)| � a

d/2
n n−(4∨d) � n−2 which is summable in n. Thus, by Borel-

Cantelli Lemma, (C-5) implies (1.25) and (1.26) for Bn. Thus, (C-5) ⇒ (B-5). The
proof of Proposition 3.5 is complete. �
Proof of Lemma 3.6: Let us construct a bound on πt

n. By (3.4) of Theorem 3.1 we
have

E(πt
n(x)1Ux≤θn)

≤ 1
kn(t)

(∑kn(t)−1
k=b|x|2/θnc∨1(kθn)

−d/2e−c2|x|/(kθn) +
∑b|x|/θnc∧1

k=1 e−c2|x|
)

≤ c1(kn(t)θn)
−1 ∫ ant

1/2|x|∨θn s−d/2e−c2|x|
2s−1

ds, (3.54)

with the convention that
∑0

k=1 = 0. Let d ≥ 3 first. We substitute u = c2|x|2s−1
and get

E(πt
n(x)1Ux≤θn) ≤ c′′(kn(t)θn)

−1|x|2−dΓ
(
d/2− 2, |x|2/an

)
, (3.55)

where c′′ ∈ (0,∞). By (3.3), Eπt
n(x)1Ux>θn ≤ c1e

−c2θ1/3
n , and so, taking c3 large

enough we get that (3.38) holds. Now let d = 2. An asymptotic analysis reveals in

(3.54) that for |x| ≤
√
an/ log an we have for some c′ ∈ (0,∞) that

E(πt
n(x)1Ux≤θn) ≤ c′(kn(t)θn)

−1 log(an/|x|2). (3.56)

Moreover, when |x| ≥ √
an log log an, E(πt

n(x)1Ux≤θn) ≤ e−c2/2|x|
2/an . Since (3.54)

is a decreasing function of |x|, we may bound E(πt
n(x)1Ux≤θn) ≤ log log an for

|x| ∈ [
√
an/ log an,

√
an log log an]. Since Eπt

n(x)1Ux>θn ≤ c1e
−c2/2θ1/3

n , this proves
(3.39). This finishes the proof of Lemma 3.6. �
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4. Verification of Conditions (C-2)-(C-5)

In this section we show that (C-2)-(C-5) are satisfied. Let u > 0, t > 0 and
ε > 0 be fixed. In Section 4.1 we establish that limn→∞ Eν̃tn(u,∞) = tν(u,∞).
Next, in Section 4.2, we prove that P-a.s., limn→∞ ν̃tn(u,∞) = tν(u,∞). In Section
4.3 we prove that limn→∞ Eσ̃t

n(u,∞) = 0 and show that, P-a.s. σ̃t
n(u,∞) tends to

zero. In Section 4.4 we establish that Emt
n(ε) ≤ C(t)ε1−α and show that mt

n(ε)
concentrates P-a.s. around its mean value. We verify Condition (C-5) in Section
4.4. Finally, we conclude the proof of Theorem 1.3 in Section 4.5.

4.1. Convergence of Eν̃tn(u,∞). This section is devoted to the proof of convergence
of Eν̃tn(u,∞), which is the most demanding part of the proof of Theorem 1.3.

Lemma 4.1. For all u > 0, t > 0, limn→∞ Eν̃tn(u,∞) = tν(u,∞).

Proof of Lemma 4.1: Since the τ ’s are identically distributed we have∑
y∈Zd EQu

n(x, y) =
∑

y∈Zd EQu
n(0, y), ∀x ∈ Bdn(t). (4.1)

The statement of the lemma is thus equivalent to

limn→∞ kn(t)
∑

y∈Zd EQu
n(0, y) = tν(u,∞), ∀u > 0, ∀t > 0. (4.2)

In view of (3.27), the sum in (4.2) is over y ∈ Bθn . In fact, we can restrict it to
y ∈ Bθn \ {0} because EQn(0, 0) ≤ E(10∈Tn) = c−αn ε−αn � kn(t). Also, we have
that

P(An)E(ν̃tn(u,∞)|An) ≤ Eν̃tn(u,∞) ≤ P(An)E(ν̃tn(u,∞)|An) + kn(t)θ
d
nP(Ac

n),
(4.3)

where An is as in (3.7) and satisfies kn(t)θ
d
nP(Ac

n) ≤ c1anθ
d−1
n n−5. Therefore, it

suffices to calculate E(ν̃tn(u,∞)|An). Let us also distinguish two cases depending
on whether d ≥ 3 or d = 2.
Case 1. Let d ≥ 3 and take y ∈ Bθn \ {0}. Set k(θn) = θn(log θn)

−1 and
h(θn) = θn − k(θn). By the Markov property, writing fσ(y) for the density function
of the hitting time, σ(y), of y, we have on An

P(`θn(y)γn(y) > u, η(Bθn) > θn)

≥
∫ θn
0

fσ(y)(t)Py(`θn−t(y)γn(y) > u)dt− P (η(Bθn) ≤ θn)

≥
∫ h(θn)

0
fσ(y)(t)dt Py(`k(θn)(y)γn(y) > u)− e−c4θ

1/2
n

= P (σ(y) ≤ h(θn)) Py(`k(θn)(y)γn(y) > u)− e−c4θ
1/2
n , (4.4)

where we used (3.9) of Lemma 3.2 in the second step. We first deal with the second
probability in (4.4). Setting B1

n ≡ B√
k(θn)(log θn)−2(y) we have,

Py(`k(θn)(y)γn(y) > u) ≥ Py(`η(B1
n)
(y)γn(y) > u, η(B1

n) < k(θn))

≥ Py(`η(B1
n)
(y)γn(y) > u)− Py(η(B

1
n) ≥ k(θn)). (4.5)

By (3.10) of Lemma 3.2, on An, the second term in (4.5) is smaller than e−c4(log θn)
2

.
To bound the first term in (4.5) we use the well-know fact that when J starts in y,
`η(B1

n)
(y) is exponentially distributed. Let

gB1
n
(y) ≡ Ey

[∫ η(B1
n(y))

0
1J(s)=yds

]
(4.6)
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denote the mean value of `η(B1
n)
(y). Eq. (4.4) then becomes

Py(`k(θn)(y)γn(y) > u) ≥ e
−u

(
γn(y)gB1

n
(y)

)−1

− e−c4(log θn)
2

, (4.7)

and we get

Qu
n(0, y) ≥ P (σ(y) ≤ h(θn))

(
e
−u(γn(y)gB1

n
(y))−1

− e−c4(log θn)
2)
1y∈Tn . (4.8)

To get an upper bound we write (using the Markov property)

P(`θn(y)γn(y) > u, η(Bθn) > θn) ≤ P(`θn(y)γn(y) > u)

=
∫ θn
0

fσ(y)(t)Py(`θn−t(y)γn(y) > u)dt

≤ P (σ(y) ≤ θn)Py(`θn(y)γn(y) > u). (4.9)

Set B2
n ≡ B√θn log θn

(y). By (3.9) of Lemma 3.2 we know on An that J exits B2
n

before time θn with a probability smaller than e−c4(log θn)
2

. Thus, proceeding as in
(4.5)

Qu
n(0, y) ≤ P (σ(y) ≤ θn)

(
e
−u(γn(y)gB2

n
(y))−1

+ e−c4(log θn)
2)
1y∈Tn (4.10)

The contribution to Eν̃tn(u,∞) coming from the error terms exp(−c4(log θn)
2) in

(4.8) and (4.10) is negligible because

kn(t)
∑
|y|≤θn E

[
1y∈Tne

−c4(log θn)
2] � e−c4/2(log θn)

2

. (4.11)

To calculate E(Qu
n(0, y)|An), we distinguish whether θ > 0 or θ = 0. In the first

case several objects depend on the random environment: the distribution of σ(y),
the mean local time gBi

n
(y), and γn(y). Thus we first seek upper and lower bounds

on the distribution of σ(y) and on gBi
n
(y) that are independent of γn(y). Moreover,

we look for upper and lower bounds for gBi
n
(y) that are independent of n.

Let us begin with bounds for P (σ(y) ≤ θn). We show now that we may approx-
imate the distribution of σ(y) by that of miny′∼y σ(y

′), which is independent of
γn(y). Since y 6= 0 we know that miny′∼y σ(y

′) ≤ σ(y), implying that

P (σ(y) ≤ θn) ≤ P (miny′∼y σ(y
′) ≤ θn). (4.12)

By the definition of Tn we know that all the traps in the neighborhood y ∈ Tn have

size smaller than ε
−2/α
n . This implies that, as soon as J visits a neighbor y′ of y,

it jumps to y with probability larger than 1− 2d(ε
−2/α
n c−1n )θ. This term goes to 1

when θ > 0 and we get, for all ε > 0 and y′ ∼ y, that

Py′(ε < σ(y) ≤ h(θn)) ≤ ε−2θ/αn c−θn � c−θ/2n . (4.13)

Thus,

P (σ(y) ≤ h(θn))1y∈Tn ≥
(
P (miny′∼y σ(y

′) ≤ h(θn))− c
−θ/2
n

)
1y∈Tn . (4.14)

As in (4.11), we see that the contribution of the error c
−θ/2
n to Eν̃tn(u,∞) is of order

o(1).
Let us now approximate gBi

n
(y) by random variables, g̃∞(y), that are indepen-

dent of γn(y). This approximation follows closely the ideas of Barlow and Černý
(2011a). For i = 1, 2 we use the classical variational representation (see e.g. Chap-
ter 3 in Bovier (2009)) to write

(gBi
n
(y))−1 = inf

{
1
2

∑
x∼z λ̃(x, z)(f(x)− f(z))2 : f |y = 1, f |Bi

n
= 0

}
, (4.15)
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and define, setting N(y) ≡ {y′ : y′ ∼ y} ∪ {y},

(g̃Bi
n
(y))−1 ≡ inf

{
1
2

∑
x∼z λ̃(x, z)(f(x)− f(z))2 : f |N(y) = 1, f |Bi

n
= 0

}
. (4.16)

As in the proof of Lemma 6.2 in Barlow and Černý (2011a) one can show on An that
for all ε > 0 there exists N(ε) uniform in the realization of the random environment,
such that for n ≥ N(ε),

g̃Bi
n
(y) ≤ gBi

n
(y) ≤ (1 + ε)g̃Bi

n
(y), ∀y ∈ Tn ∩Bθn . (4.17)

Combining (4.14), (4.17), (4.8), and (4.3) we get that Eν̃tn(u,∞) is bounded below
by

kn(t)
∑
|y|≤θn

E
[
P (min

y′∼y
σ(y′) ≤ h(θn))e

−u(γn(y)g̃B1
n
(y))−1

1y∈Tn |An

]
− o(1). (4.18)

Similarly, we obtain by (4.14), (4.17), and (4.10) that Eν̃tn(u,∞) is smaller than

kn(t)
∑
|y|≤θn

E
[
P (min

y′∼y
σ(y′) ≤ θn)e

−u(1−εn)(γn(y)g̃B2
n
(y))−1

1y∈Tn |An

]
+ o(1). (4.19)

Let g∞(y) = limn→∞ gB1
n
(y) = limn→∞ gB2

n
(y). As in the proof of Lemma 3.5 in

Barlow and Černý (2011a), one can show that, on the event An, for all ε
′ > 0, there

exists N(ε′), uniform in the random environment, such that for n ≥ N(ε′) we have

(1− ε′)g∞(y) ≤ gBi
n
(y) ≤ g∞(y), ∀y ∈ Bdn(t). (4.20)

This with (4.17) implies that for all ε′′ > 0 there exists N(ε′′) such that for n ≥
N(ε′′), for all y ∈ Tn ∩ Bθn , (1 − ε′′)g̃∞(y) ≤ gBi

n
(y) ≤ (1 + ε′′)g̃∞(y), where

g̃∞(y) = limn→∞ g̃B1
n
(y) = limn→∞ g̃B2

n
(y). Equipped with (4.18) and (4.3) we

take expectation with respect to γn(y) and obtain that Eν̃tn(u,∞) is bounded below
by

t(1−ε′′)αΓ(1+α,εn)
uαθn

∑
|y|≤θn

E
[
g̃α∞(y)P (min

y′∼y
σ(y′) ≤ h(θn))(1− 1Tn(y)c)

]
− o(1), (4.21)

where Tn(y)
c = {maxy′∼y τ(y

′) > ε
−2/α
n }. The contribution to (4.21) coming from

Tn(y)
c is of order o(1): using (4.17), and (3.2) of Theorem 3.1, and proceeding as in

(4.12), it is by Lemma 3.3 smaller than c1c54d
2ε2n. Also, as in the proof of Lemma

3.3 one sees that adding |y| > θn in (4.21) produces at most an error of the order
of e−c4/2θn , and so

Eν̃tn(u,∞) ≥ t(1−ε′′)αΓ(1+α,εn)
uαθn

∑
y∈Zd

E
[
g̃α∞(y)P (min

y′∼y
σ(y′) ≤ h(θn))

]
− o(1). (4.22)

Similarly,

Eν̃tn(u,∞) ≤ tΓ(1 + α)

uαθn

∑
y∈Zd

E
[
g̃α∞(y)P (min

y′∼y
σ(y′) ≤ θn)

]
+ o(1). (4.23)

Since εn → 0, Γ(1 + α, εn) → Γ(1 + α). It remains to establish that

lim
n→∞

θ−1n

∑
y∈Zd

E
[
g̃α∞(y)P (min

y′∼y
σ(y′) ≤ hi(θn))

]
= K, for i = 1, 2, (4.24)

where h1(θn) = θn and h2(θn) = h(θn). Since h2 = h1 − o(h1), we only present the
proof for h1. For β ∈ [0, 1], set fβ

n (x) ≡
∑

y∈Zd E
[
(g̃∞(y)/c6)

βP (miny′∼y σ(y
′) ≤
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n)
]
, where c6 ∈ (0,∞) is such that c6 ≥ g∞(y) ≥ g̃∞(y) for all y ∈ Zd. Us-

ing a ’quasi’ sub-additivity argument (see (4.26) below), we now establish that
limn→∞ fβ

n /n = K ′ where K ′ = inf{fβ
n /n : n ∈ N} ∈ (0,∞). First note that by

Lemma 3.3 fβ
n /n ≤ f0

n/n ≤ 2dc5, and so, K ′ < ∞. To see that K ′ > 0, we use that
fβ
m ≥ f1

m and bound f1
m from below:∑

y∈Zd g∞(y)P (σ(y) ≤ m) ≥
∑

y∈Zd E`m(y) ≥ m (4.25)

As in the proof of (4.17) one can show that g̃∞(y) ≥ (2d)2g∞(y), and hence f1
m ≥

(2d)−2m, which proves that K ′ > 0. Let us now assume that for all ε > 0 there
exists N large enough such that for all n,m ≥ N ,

fβ
n+m ≤ (1 + ε)fβ

m + fβ
n . (4.26)

Then convergence to K ′ follows. Indeed, by construction of K ′ there exists M such

that fβ
M/M < K ′+ε/2. Now, letN? = N ′M , N ′ ≥ N , be such that fβ

2M/N? < ε/2.
For n ≥ N? write n = sM + r ≥ N? where s ≥ N , r ≤ M . Then, by (4.26),

fβ
n /n ≤ (1 + ε) s−1n fβ

M + fβ
M+r/n ≤ (1 + ε) s−1s+2f

β
M/M + fβ

2M/N? ≤ (1 + 2ε)K ′ − ε.

(4.27)
Thus, fβ

n /n converges to K ′ because by construction, fβ
n /n ≥ K ′. It remains to

establish the claim of (4.26). The difference fβ
n+m − fβ

n is equal to∑
y∈Zd E

[
( g̃∞(y)

c6
)βP (miny′∼y σ(y

′) ∈ (n, n+m))
]

≤
∑

z,y E
[
(qn(z)− Eqn(z))( g̃∞(y)

c6
)βPz(miny′∼y σ(y

′) ≤ m)
]
+ fβ

m. (4.28)

The first summand in the right hand side of (4.28) is smaller than εfβ
m if

εβm ≡
∑

z

∑
y E

[
|qn(z)− Eqn(z)|Pz(σ(y) ≤ m)

]
≤ εm. (4.29)

We divide the sum into z ∈ Bn1/2/ε′ and z /∈ Bn1/2/ε′ . Let z ∈ Bn1/2/ε′ . From the

proof of Lemma 3.3 we know that there exists c′′ ∈ (0,∞) such that∑
y∈Zd Pz(σ(y) ≤ m)) ≤ c′′

∑
|z−y|≤m1/2 logm |y|2−de−c4/2|y|2/m(g∞(y))−1

+ m(d+1)/2
1Ac

m(z) +
∑
|z−y|>m1/2 logm 1Ac

|z−y|2
(z), (4.30)

where Am(z) is as in (3.7). Let us first control the contribution to εβm coming
from the first sum in (4.30). We bound 1/g∞(y) ≤ 1/ε′ + (g∞(y))−11g∞(y)<ε′ and

call (I), respectively (II) the contribution to εβm coming from 1/ε′, respectively
(g∞(y))−11g∞(y)<ε′ . Now,

(I) = (c′′m)/ε′
∑
|z|≤n1/2/ε′ E

[
|qn(z)− Eqn(z)|/Eqn(z)

]
Eqn(z). (4.31)

Since qn(z) ≤ c1n
−d/2, the contribution to (I) from z ∈ Bε′n1/2 is smaller than

(ε′)d−1m. By (3.6) of Theorem 3.1 for z ∈ Bn1/2/ε′ \ Bε′n1/2 ,

E
[
|qn(z) − Eqn(z)|/Eqn(z)

]
tends uniformly to zero, and so (I) is bounded above

by εm. Also,

(II) ≤ c1m(ε′)−dcE
[
(g∞(0))−11g∞(0)<1/ε′

]
≤ c1m(ε′)−d exp(−c/ε′1/3) < εm,

(4.32)

where we used g∞(0) ≥ U
1/(2−d)
0 and (3.3). We now bound the contribution to

εβm coming from the second line in (4.30). By (3.2) of Theorem 3.1, |qn(z) −
Eqn(z)| ≤ n−d/2 for all z ∈ Bn1/2/ε′ . By the identical distribution of the U ’s

and since |Bn1/2/ε′ |n−d/2 ≤ ε′−d/2, it suffices to prove that m(d+1)/2P(Ac
m) +
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∑
|y|>m1/2 logm P(Ac

|y|2) vanishes as m → ∞. This follows by definition of An and

(3.3). Finally, let z /∈ Bn1/2/ε′ . By Cauchy-Schwarz inequality, the contribution to

εβm coming from z /∈ Bn1/2/ε′ is bounded above by∑
|z|>n1/2/ε′(E|qn(z)|2)1/2

∑
y(E(P (σ(y) ≤ m))2)1/2. (4.33)

By (3.3) and (3.4) of Theorem (3.1), E|qn(z)|2 ≤ n−de−2c4|z|
2/n2

. One can check

that the sum over z /∈ Bn1/2/ε′ of n
−d/2e−c4|z|

2/n2

is bounded above by e−c4/ε
′
. It

remains to establish that the sum over y in (4.33) is of smaller order than m. This
follows from (4.30) and (3.3). This proves (4.26). Thus (4.24) holds, and so,

u−αtKΓ(1 + α)(1 + ε)α + o(1) ≥ Eν̃tn(u,∞) ≥ u−αtKΓ(1 + α, εn)(1− ε)α − o(1).
(4.34)

Since ε > 0 is arbitrary we see that limn→∞ Eν̃tn(u,∞) = u−αtK, where K ≡
KΓ(1 + α). This concludes the proof of Lemma 4.1 for d ≥ 3 and θ > 0. When
θ = 0, the proof simplifies because J is independent of the random environment.
More precisely, it suffices to use Lemma 3.5 in Barlow and Černý (2011a) to replace
gBi

n
(y) by g∞(y) to get

tΓ(1+α,εn)
uαθn

∑
y∈Zd

g∞(y)αP (σ(y) ≤ h(θn))− o(1)

≤ Eν̃tn(u,∞)

≤ tΓ(1 + α)(1 + ε′)α

uαθn

∑
y∈Zd

gα∞(y)P (σ(y) ≤ θn) + o(1). (4.35)

By the same arguments as for θ > 0, we can show that both bounds converge to
u−αtK as n → ∞. This finishes the proof of Lemma 4.1 for d ≥ 3.
Case 2. Let d = 2. The pattern of proof is similar to that of Case 1 and relies on
(4.4) and (4.9). The difference lies in the behavior gBi

n
(y). By definition in (4.6),

on An,

gBi
n
(y) =

∫∞
0

Py(J(t) = y, η(B1
n) > t)dt ≥

∫ θn√
θn

Py(J(t) = y)dt− e−c4(log θn)
2

,

(4.36)
where we used (3.9) of Lemma 3.2. By (3.5) of Theorem 3.1, the integral in the right
hand side of (4.36) is larger than c1/2 log θn, showing that gBi

n
(y) diverges as n →

∞. Thus, instead of substituting g̃∞(y) for gBi
n
(y) we use (4.17) to approximate

gBi
n
(y) by g̃Bi

n
(y) for n large enough. A number of results from Černý (2011) will

allow us to deal with g̃Bi
n
(y).

Let us begin with the construction of a lower bound on Eν̃tn(u,∞). We deduce
from (4.14), that bounding P (σ(y) ≤ h(θn)) ≥ P (miny∼y′ σ(y′) ≤ h(θn)) for y ∈
Tn, produces in Eν̃tn(u,∞) an error of the order c−εn for ε > 0. We use (4.17)
to substitute g̃B1

n
(y) for gB1

n
(y). Since P (miny′∼y σ(y

′) ≤ h(θn)) and g̃B1
n
(y) are

independent of γn(y), we can proceed as in Case 1 and take expectation with respect
to γn(y). Doing this yields

Eν̃tn(u,∞) ≥ t log θnΓ(1 + α, εn)

(u log θn)αθn

∑
|y|≤θn

E
[
g̃αB1

n
(y)P

(
min
y′∼y

σ(y′) ≤ h(θn)
)
|An

]
− o(1)

≥ t log θnΓ(1 + α, εn)

(u log θn)αθn

∑
|y|≤θn

E
[
g̃αB1

n
(y)P (σ(y) ≤ h(θn))|An

]
− o(1),(4.37)
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since miny′∼y σ(y) ≤ σ(y). We now construct an upper bound on Eν̃tn(u,∞).
Again, by (4.17) and since miny′∼y σ(y) ≤ σ(y), Eν̃tn(u,∞) is bounded above by

t log θnΓ(1+α)(1+ε)
(u log θn)αθn

∑
|y|≤θn E

[
gαB2

n
(y)P (miny′∼y σ(y

′) ≤ θn)|An

]
+ o(1). (4.38)

We show now that, up to a negligible error term, we may substitute P (σ(y) ≤ θn)
for P (miny′∼y σ(y

′) ≤ θn) for all y ∈ Bθn . To see this note for y ∈ Bθn

P (miny′∼y σ(y
′) ≤ θn) ≤ P (σ(y) ≤ θn) +

∑
y′∼y P (σ(y′) ≤ θn < σ(y)). (4.39)

By the Markov property, for all y′ ∼ y, P (σ(y′) ≤ θn < σ(y)) is bounded above by

P (σ(y′) ≤ h(θn))Py′(σ(y) > k(θn)) + P (σ(y′) ∈ (h(θn), θn))

= δ1n(y
′) + δ2n(y

′). (4.40)

By (4.3) it thus suffices to establish that

θ−1n (log θn)
1−α ∑

|y|≤θn
∑

y′∼y E
[
g̃αB1

n
(y)

(
δ1n(y

′) + δ2n(y
′)
)
|An

]
= o(1). (4.41)

As in Lemma 3.3 in Černý (2011) one can show on An that there exists c9 ∈ (0,∞)
such that, for all y ∈ Bdn(t), g̃Bi

n
(y) ≤ c9 log θn for i = 1, 2. By (3.14) of Lemma

3.3,
∑

y,y′∼y δ
2
n(y
′) ≤ c5θn/(log θn)

2. Hence the contribution to the left hand side

of (4.41) coming from δ2n is of order o(1). To see that the same is true for δ1n, we
use (3.14) of Lemma 3.3 to bound

E[P (σ(y′) ≤ h(θn))Py′(σ(y) > k(θn))|An] ≤ fh(θn)(|y
′|)E[P (σ(x) > k(θn))|An],

(4.42)
where |x| = 1. By recurrence and irreducibility, E[P (σ(x) > k(θn))|An] ≤ ε for n
large enough and (4.42) implies that

∑
y δ

1
n(y) ≤ c5ε. This concludes the proof of

(4.41). Finally, combining (4.38)-(4.42),

Eν̃tn(u,∞) ≤ t log θnΓ(1+α)(1+ε)
(u log θn)αθn

∑
|y|≤θn E

[
gαB2

n
(y)P (σ(y) ≤ θn)|An

]
+ o(1). (4.43)

We now show that (4.37) and (4.43) tend to the same limit Ktu−α. By Propo-
sition 3.1 in Černý (2011) we know that there exists K̄ such that, as r → ∞,
(K̄ log r)−1g̃

B
1/2
r (0)

(0) converges P-a.s. to one for i = 1, 2. Thus, P-a.s.,

limn→∞(K̄ log θn)
−1g̃B1

n
(0) = limn→∞(K̄ log θn)

−1g̃B2
n
(0) = 1. (4.44)

For ε > 0 define Bn(y) ≡ {|(K̄ log θn)
−1gB2

n
(y)− 1| ≤ ε}. Then,

(4.43) ≤ t log θn(1 + ε)αK′

uαθn

∑
y∈Bθn

E
[
P (σ(y) ≤ θn)((1 + ε) + cα9 /K′1Bc

n(y)
)|An

]
,

(4.45)
where K′ ≡ Γ(1 + α)K̄α and where we used that g̃B1

n
(y) ≤ c9 log θn. As in Lemma

3.3 in Černý (2011), on An, we have that g̃B1
n
(y) ≥ c8 log θn, for all y ∈ Bθn . Hence,

we can bound (4.37) from below in a similar way. Thus, convergence of (4.37) and
(4.43) follows if we can establish that

limn→∞ θn(log θn)
−1E[ERθn |An] = K̄−1, (4.46)

limn→∞ θn(log θn)
−1 ∑

y∈Bθn
E
[
P (σ(y) ≤ θn)1Bc

n(y)
|An

]
= 0, (4.47)

where Rθn is defined in (3.11). Let us first prove (4.47). By (3.14) of Lemma 3.3
and (4.3)∑

y E
[
P (σ(y) ≤ θn)1Bc

n(y)
|An

]
≤

∑
y fθn(|y|)P

(
Bc
n(y)

)
+ ε ≤ θn

log θn
P
(
Bc
n

)
, (4.48)
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where we used that the τ ’s are i.i.d. By Proposition 3.1 in Černý (2011), P(Bc
n) → 0,

and so (4.47) holds. Let us now construct upper and lower bounds for
θn(log θn)

−1E[ERθn |An] that coincide in the limit. We begin with the lower bound.
By the Markov property,

θn =
∑

y∈Bθn
E`θn(y) ≤

∑
y∈Bθn

P (σ(y) ≤ θn)Ey`θn(y). (4.49)

To bound E[ERθn |An] from below it suffices to construct an upper bound on
Ey`θn(y). By Theorem 3.2 one can show on An that for all y ∈ Bdn(t), Ey`θn(y) ∈
(c8 log θn, c9 log θn), yielding

θn ≤ log θn
∑
|y|≤θn E

[
P (σ(y) ≤ θn > 0)

(
K̄(1 + ε) + c81Bc

n(y)

)
|An

]
+ o(1). (4.50)

Together with (4.47),

1 ≤ θ−1n log θnK̄(1 + ε)E[ERθn |An] + c8P(Bc
n), (4.51)

i.e. limn→∞ θ−1n log θnE[ERθn |An] is bounded below by K̄−1. For the upper bound
we again use the Markov property and get that

θn + k(θn) =
∑

y∈Bθn
E`θn+k(θn)(y) ≥

∑
y∈Bθn

P (`θn(y) > 0)Ey`k(θn)(y). (4.52)

Since k(θn) log θn/θn → 0, we can show that the upper bound coincides with the
lower bound. The claim of (4.46) is proved. Finally, using (4.46) and (4.47) in
(4.37) and (4.43),

Ku−αt(1− ε)1+α ≤ limn→∞ Eν̃tn(u,∞) ≤ Ku−αt(1 + ε)1+α, (4.53)

where K = K′K̄−1. Since ε > 0 is arbitrary this proves the convergence of
Eν̃tn(u,∞). This finishes the proof of Lemma 4.1 for d = 2. �

4.2. Convergence of ν̃tn(u,∞). Let u > 0, t > 0. In this section we prove that
P-a.s., limn→∞ ν̃tn(u,∞) = tν(u,∞). Once more, let us consider subsequences
cN,r = exp(N + r), r ∈ [0, 1) (see the paragraph below (3.18)). For r, s ∈ [0, 1), we
define

QN,r,s(x) ≡
∑

y QN,r,s(x, y), (4.54)

where we write, for x, y ∈ Zd,

QN,r,s(x, y) ≡ Px(`θN,s
(y)γN,r(y) > u, η(BθN,r

) ≤ θN,s)1y∈TN,r
, (4.55)

where TN,r is defined above(3.16). For i = 0, . . . , N , we set ri ≡ i/N and define

ν1N,i ≡
∑

x∈BdN,ri

QN,ri+1,ri,(x) infr∈Ii π
t
N,ri

(x), (4.56)

ν2N,i ≡
∑

x∈BdN,ri+1

QN,ri,ri+1(x) supr∈Ii π
t
N,ri

(x). (4.57)

Then we have that, for r ∈ Ii ≡ [ri, ri+1),

ν1N,i ≤ ν̃tN,r(u,∞) ≤ ν2N,i. (4.58)

To prove that limn→∞ ν̃tn(u,∞) = tν(u,∞) P-a.s., we use (4.58) as follows. First,

we will derive from Lemma 4.1 that, for j = 1, 2, EνjN,i converges to tν(u,∞).
Then, we will prove in Lemma 4.2 that, for d ≥ 3, respectively, d = 2, the second
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and fourth moments of νjN,i − EνjN,i are bounded above by N−3. Together with

(4.58), we thus get by Chebyshev’s inequality that

P( sup
r∈[0,1)

|ν̃tN,r(u,∞)− tν(u,∞)| > ε)

≤
N−1∑
i=0

{
P(|ν1N,i − Eν1N,i| > ε/2) + P(|ν2N,i − Eν2N,i| > ε/2)

}
≤ 32ε−4N−2, (4.59)

which is summable in N and therefore proves that P-a.s., limn→∞ ν̃tn(u,∞) =
tν(u,∞).

Fix j ∈ {1, 2}. Let us derive from Lemma 4.1 that limN→∞ EνjN,i = tν(u,∞). By

definition of ri this lemma implies that kN,ri(t)E(QN,ri+1,ri,(0)) and

kN,ri+1(t)E(QN,ri,ri+1(0)) both converge to tν(u,∞). Convergence of EνjN,i to the
same quantity will follow if we can establish that the following vanishes as N → ∞

sup
k=1,...,kN,ri

(t)

∑
x∈BdN,ri+1

sup
r,s∈Ii

E|P (J(kθN,r) = x)− P (J(kθN,s) = x)|. (4.60)

Fix k ∈ 1, . . . , kN,ri(t). We divide BdN,ri+1
into B(εkθN,1)1/2 , BdN,ri+1

\B(kθN,0/ε)1/2 ,

and B(kθN,0/ε)1/2 \B(εkθN,1)1/2 and construct bounds that are uniform in k. By (3.2)

of Theorem 3.1, the contribution to (4.60) coming from B(εkθN,1)1/2 is bounded

above by εd. By (3.3) and (3.4) of Theorem 3.1, the contribution to (4.60) coming
from BdN,ri+1

\ B(kθN,0/ε)1/2 is smaller than e−c4/ε. By definition of ri, dominated

convergence, and the uniform local central limit theorem ((3.6) of Theorem 3.1),
the contribution to (4.60) coming from B(kθN,0/ε)1/2 \ B(εkθN,1)1/2 tends to zero.

This proves that (4.60) vanishes as N → ∞.

The following lemma bounds the second and fourth moment of νjN,i − EνjN,i for
d ≥ 3, respectively, d = 2.

Lemma 4.2. Let i ∈ {0, . . . , N − 1}, j ∈ {1, 2}. For d ≥ 3, for all u > 0, t > 0,
for N large enough,

E(νjN,i − EνjN,i)
2 ≤ K(u, t)(log θN,1)

2θ
−1/2
N,1 , (4.61)

and for d = 2, for all u > 0, t > 0, for N large enough,

E(νjN,i − EνjN,i)
4 ≤ K(u, t)u−α(log log aN,1)

6(log θN,0)
−4, (4.62)

where K(u, t) ∈ (0,∞).

The proof of Lemma 4.2 relies on Lemma 4.3 below. We first prove Lemma 4.3
and Lemma 4.2 next.

Lemma 4.3. For all u > 0, for k ∈ {2, 4}, for r, s ∈ [0, 1), for N large enough,

E(QN,r,s(0))
k ≤

∑
x E(QN,0,1(0, x))

k + c
−3α/2
N,0 ≤ ρN (d, k) ≡ Ku−αρN (d, k),

(4.63)
where K ∈ (0,∞) and where we set

ρN (d, k) ≡ θN,1c
−α
N,0(log θN,0)

−k+α
1d=2 + θ

1/2
N,1c

−α
N,01d≥3. (4.64)

Proof of Lemma 4.3: Let k ∈ {2, 4} and r, s ∈ [0, 1). Since QN,r,s(x) ≤ QN,0,1(x),
we have by (4.55) and (4.54) that

E(QN,r,s(0))
k ≤

∑
y E(QN,0,1(0, y))

k +
∑

y′ 6=y
|y′−y|≤θN,1

E(1y′,y∈TN,0
). (4.65)
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The double sum in (4.65) is bounded above by∑
y′ 6=y

|y′−y|≤θN,1

E1y,y′∈TN,0 ≤ θdN,1(cN,0εN,1)
−2α ≤ c

−3α/2
N,0 , (4.66)

where we used (1.38) and (1.39). It remains to bound the first term in the right hand
side of (4.65). Since P(Ac

N,1)θ
d
N,1 ≤ ρN (d, k), it suffices to bound

E(QN,0,1(0, y)1AN,1)
k. For y ∈ BθN,1 we know by (4.9) and (4.10) that

E(QN,0,1(0, y)1AN,1)
k is smaller than

E
(
1y∈TN,0Py

(
`θN,1(y)γN,0(y) > u

)
P (σ(y) ≤ θN,1)1AN,1

)k
≤ E

(
1y∈TN,0Py

(
`B2

N,1
(y)γN,0(y) > u

)
P (σ(y) ≤ θN,1)1AN,1

)k
+ e−c4(log θN,0)

2

P(y ∈ TN,0). (4.67)

The contribution to E(QN,0,1(0, y)1AN,1)
k of the second term in the right hand

side of (4.67) is negligible because θdN,1c
−α
N,0ε

−α
N,0 � ρN (d). It remains to bound

the first summand in (4.67). Recall from the proof of Lemma 4.1 that `B2
N,1

(y) has

exponential distribution with mean value gB2
N,1

(y), which on AN,1 is bounded above

by c(log θN,11d=2 + 1d≥3), for all y ∈ BθN,1 . Also, recall that P (σ(y) ≤ θN,1) ≤
P (miny′∼y σ(y) ≤ θN,1). Thus, for all y ∈ BθN,1

E
(
1AN,1P(`B2

N,1
(y)γN,0(y) > u)1y∈TN,1

)k
≤ E

(
1AN,1

P (min
y′∼y

σ(y′) ≤ θN,1) exp(−u(γN,0(y)c(1d≥3 + log θN,11d=2))
−1)

)k

≤ E exp(−ku(γN,0(0)c(1d≥3 + log θN,11d=2))
−1)E

(
P (min

y′∼y
σ(y′) ≤ θN,1)

)k
. (4.68)

We bound the terms in (4.68) separately. The expectation with respect to γN,0(0) is
bounded above by Cu−αc−αN,0(1d≥3+log θN,11d=2), for some C ∈ (0,∞). Moreover,∑

y∈BθN,1

E
(
P (min

y′∼y
σ(y′) ≤ θn)

)k ≤
∑
y

cE(1AN,1
P (σ(y) ≤ θN,1))

k + e−c
′N , (4.69)

where c, c′ ∈ (0,∞) and where we used the definition of AN,1. By Lemma 3.3,
(4.69) is bounded above by c5θN,1(log θN,0)

−k, for d = 2. For d ≥ 3 and k = 2, the

same lemma implies that (4.69) is smaller than c5θ
1/2
N,1. Since the right hand side of

(4.69) is decreasing in k the same is true for k = 4. Collecting (4.68)-(4.69) yields∑
y∈BθN,1

E
(
P(`B2

N,1
(y)γN,0(y) > u)1y∈TN,0

)k ≤ Ku−αρN (d, k), (4.70)

for some K ∈ (0,∞). This finishes the proof of Lemma 4.3. �

We are now ready to present the proof of Lemma 4.2.

Proof of Lemma 4.2: Without loss of generality, we prove Lemma 4.2 for j = 1
only. We distinguish whether d = 2 or d ≥ 3. We begin with d ≥ 3. By (3.47), the
variance of ν1N,i is bounded above by

k2N,1(t)
∑

x∈BdN,1(t)
(πt

N (x))2E
(
QN,0,1(x)

)2
(4.71)

+ 2k2N,1(t)
∑

x 6=x′,|x−x′|≤2θN,1
πt
N (x)πt

n(x
′)E

(
QN,0,1(x)QN,0,1(x

′)
)
, (4.72)
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where we used that QN,0,1(x) only depends on τ(x) for x ∈ BθN,1
(x). By Lemma

4.3, (4.71) is bounded above by

≤
∑

x∈BdN,1(t)
(kN,1(t)π

t
N (x))2ρN (d) � K(u, t)(log θN,1)

4θ
−1/2
N,1 , (4.73)

for K(u, t) ∈ (0,∞). Since this satisfies (4.61), it suffices to control (4.72).
Fix x, x′ ∈ BdN,1(t). To bound EQN,0,1(x)QN,0,1(x

′) we distinguish two cases, de-
pending on the size of |x−x′|. We define the setsD1(x) ≡ BθN,1

\B√
θN,1(x) log θN,1

(x)

and D2(x) ≡ B√
θN,1(x) log θN,1

(x). Let x′ ∈ D1(x) first. We use the same arguments

as in the proof of Lemma 4.3 to bound E
(
QN,0,1(x)QN,0,1(x

′)
)
. By analogy with

(4.66)-(4.70),

E
(
QN,0,1(x)QN,0,1(x

′)1AN,1

)
≤ K ′2du−αc−αN,0E1AN,1IθN,1(x, x

′) + c
−3α/2
N,0 , (4.74)

for some K ′ ∈ (0,∞) and where IθN,1
(x, x′) is the expected intersection range of J

starting in x and an independent copy J ′ starting in x′,

IθN,1
(x, x′) ≡

∑
y:|x−y|∧|x′−y|≤θN,1

ExE
′
x′1σ(y)≤θN,1

1σ′(y)≤θN,1
. (4.75)

We bound IθN,1(x, x
′) by

IθN,1(x, x
′) ≤ PxP

′
x′

(
maxy∈Zd(σ(y) ∨ σ′(y)) ≤ θN,1

)(
ExRθN,1 ∨ Ex′RθN,1

)
. (4.76)

Since x′ ∈ D1(x), the probability in (4.76) is smaller than the probability that,
during the time interval [0, θn], J (or J ′) visits a point that is at distance at least
1
2

√
θn log θn from its starting point. By (3.9) of Lemma 3.2, on AN,1, this is bounded

above by e−c4/4(log θN,0)
2

. Thus, by Lemma 3.3,

EIθN,1
(x, x′)1AN,1

≤ c5θN,1 exp(−c′(log θN,0)
2), (4.77)

where c′ = c4/4. We use (4.77) and get that, for x ∈ BdN,1(t), x
′ ∈ D1(x),

E
(
QN,0,1(x)QN,0,1(x

′)1AN,1

)
≤ c5(ρN (d)θN,1e

−c′(log θN,0)
2

+ c
−3α/2
N,0 ). (4.78)

By (3.38) of Lemma 3.6 we have for any ball Br(y) with r ≤ dN,1(t) that

kN,1(t)
∑

x∈Br(y)
πt
N (x) ≤ log log aN,1

θN,1
min(r2, aN,1). (4.79)

By (4.79),

(kN,1(t))
2
∑

x∈BdN,1(t),x′∈D1(x)
πt
N (x)πt

N (x′) ≤ c3kN,1(t)(log log aN,1)
2. (4.80)

Combining (4.78) and (4.80),∑
x∈BdN,1(t),x′∈D1(x)

πt
N (x)πt

N (x′)E
(
QN,0,1(x)QN,0,1(x

′)
)
≤ K(u, t)e−c

′(log θN,0)
2

,

(4.81)
which is smaller than the right hand side of (4.61). Let x′ ∈ D2(x). By Cauchy-
Schwarz inequality, E

(
QN,0,1(x)QN,0,1(x

′)
)
≤ ρN (d) and so, by (4.79),

(kN,1(t))
2

∑
x∈BdN,1(t),x′∈D2(x)

πt
N (x)πt

N (x′)ρN (d) ≤ c3kN,1(t)ρN (d)(log θN,1)
2, (4.82)

as desired in (4.61). This finishes the proof of Lemma 4.2 for d ≥ 3.
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Let d = 2. Writing QN,ri+1,ri(x) ≡ QN,ri+1,ri(x)− EQN,ri+1,ri(x), the left hand

side of (4.62) is given by

k4N,1(t)
∑

(x1,x2,x3,x4):mini,j |xi−xj |≤2θN,1

E
( 4∏
j=1

inf
r∈Ii

πt
N,r(xj)QN,ri+1,ri(xj)

)
, (4.83)

where we used that the QN,ri+1,ri ’s are independent whenever mini,j |xi − xj | >
2θN,1. Let us distinguish three cases, depending on the size of maxi,j |xi − xj |.
Suppose first that maxi,j |xi − xj | ≤ θ

1/2
N,1 log log θN,1. Then, by Cauchy-Schwarz

inequality and Lemma 4.3,

E
(∏4

j=1 QN,ri+1,ri(xj)
)
≤ ρN (2, 4) + 24(ρN (2, 2))2. (4.84)

By (3.47) and since ρN (2, 4) ≥ (ρN (2, 2))2, it suffices to control the following quan-
tity:

k4N,1(t)
∑

(x1,...,x4):maxi,j |xi−xj |≤θ1/2
N,1 log log θN,1

∏4
j=1 π

t
N (xj)ρN (2, 4). (4.85)

This is smaller than

k4N,1(t)
∑

x1∈BdN,1(t)
πt
N (x1)

∏4
j=2

∑
xl∈B

4θ
1/2
N,1

log log θN,1
(x1)

πt
N (xj)ρN (2, 4). (4.86)

By (3.39) of Lemma 3.6 we have that

kN,1(t)
∑

x∈Br(y)
πt
N (x) ≤ θ−1N,0(r

2 ∧ aN,1)
(
log(aN,1/|y|2) ∨ log log aN,1

)
. (4.87)

This proves that the contribution to (4.83) coming from xi’s such that maxi,j |xi −
xj | ≤ θ

1/2
N,1 log log θN,1 is bounded above by K(u, t)(log log aN,1)

6(log θN,0)
−4. Now

suppose that maxi,j |xi−xj | > θ
1/2
n log θN,1. Assume that |x1−x2| = maxi,j |xi−xj |.

For j = 3, 4 we have the bound |QN,ri+1,ri(xj)| ≤ θdN,1. Then, the only term

that remains in the expectation in (4.83) is EQN,ri+1,ri(x1)QN,ri+1,ri(x2), which is
smaller than

E(QN,0,1(x1)QN,0,1(x2)1AN,1
) + e−cN ≤ 2ρN (2, 2)e−c4(log θN,0)

2

, (4.88)

where c ∈ (0,∞), and where the second inequality is proved as in (4.78). Hence,

the contribution to (4.83) coming from xi’s such that maxi,j |xi−xj | > θ
1/2
N,1 log θN,1

is bounded above by e−c(log θN,0)
2

. Finally, let θ
1/2
N,1 log log θN,1 ≤ maxi,j |xi − xj | ≤

θ
1/2
N,1 log θN,1. Suppose again that |x1 − x2| = maxi,j |xi − xj |. By Cauchy-Schwarz
and Lemma 4.3,

E
(∏4

j=1 QN,ri+1,ri(xj)
)

≤
{
E(QN,0,1(x1)QN,0,1(x2))

2ρN (2, 4)
}1/2

+c(ρN (2, 2))2. (4.89)

As in (4.88) and (4.78) we know that the first summand in(4.89) is bounded above
by

E(QN,0,1(x1)QN,0,1(x2))
2 ≤ ρN (2, 2)e−c4(log log θN,0)

2

, (4.90)

which is larger than the second summand. Hence, by (4.87), the contribution to

(4.83) coming from xi’s such that θ
1/2
N,1 log log θN,1 ≤ maxi,j |xi−xj | ≤ θ

1/2
N,1 log θN,1

is bounded above by K ′(u, t)e−c4/4(log log θN,0)
2

. The proof of Lemma 4.2 is finished.
�
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4.3. Convergence of σ̃t
n(u,∞). We establish that, P-a.s., limn→∞ Eσ̃t

n(u,∞) = 0.
As in the proof of Lemma 3.4 we consider subsequences cN,r = exp(N + r) first

(see the paragraph below (3.18)). With the notation of (4.54) and (3.47),

E supr∈[0,1) σ̃
t
N,r(u,∞) ≤ kN,1(t)

∑
x∈BdN,1(t)

πt
N (x)E(Qu

N,0,1(x))
2 ≡ Eσt

N (u,∞).

(4.91)
As in Lemma 4.3 one can show that E(Qu

N,0,1(0))
2 ≤ ρuN (d), and so, by Lemma 3.6

there exists K ′ ∈ (0,∞) such that

Eσt
N (u,∞) ≤ K ′tu−α((log θN,0)

−1
1d=2 + θ

−1/2
N,1 1d≥3). (4.92)

For d ≥ 3, this is summable in N and we get that, P-a.s., limn→∞ Eσ̃t
n(u,∞) = 0.

When d = 2, the right hand side of (4.92) is not summable in N . Thus, to prove
that σ̃t

n(u,∞) vanishes P-a.s., we bound the variance of σt
N (u,∞). Using the same

calculations as in the proof of (4.62) of Lemma 4.2 one can show that the variance
of σt

N (u,∞) is bounded above by N−4+ε. Since this is summable in N , we obtain
that, P-a.s., limn→∞ Eσ̃t

n(u,∞) = 0 for d = 2 as well.

4.4. Verification of Condition (C-4). We follow the same strategy as in the verifi-
cation of (C-2). We first prove that limn→∞ Emt

n(ε) ≤ C(t)ε1−α. Then, one can
show as in Section 4.2 that, P-a.s., limn→∞mt

n(ε) ≤ C(t)ε1−α. Since this is very
similar to Section 4.2, we leave the details to the interested reader. Let us bound
Emt

n(ε). Since the τ ’s are i.i.d. and since anθ
d
nP(Ac

n) ≤ n−3, it suffices to find
c ∈ (0,∞) such that∑

y∈Bθn
E(Mε

n(0, y)1An) ≤ cθna
−1
n ε1−α. (4.93)

Fix y ∈ Bθn and set h(θn) = θn − k(θn) for k(θn) = θ
3/4
n . As in (4.4) and (4.9), by

the Markov property,

Mε
n(0, y) ≤ εP (σ(y) ∈ (h(θn), θn))1y∈Tn (4.94)

+P (σ(y) ≤ h(θn))γn(y)Ey
(
`θn(y)1`k(θn)(y)γn(y)≤ε

)
1y∈Tn

≡ Mn,1(y) +Mn,2(y)

Let us first establish, that the sum over Mn,1(y) is as in (4.93). Following the same
argumentation as between (4.12) and (4.14), we can show that

Mn,1(y) ≤ ε(P (miny′∼y σ(y) ∈ (h(θn), θn)) + c
−θ/2
n )1y∈Tn . (4.95)

Since miny′∼y σ(y) is independent of γn(y), we get by Lemma 3.3 that∑
y E(Mn,1(y)1An) ≤

∑
y E

[
1AnP (σ(y) ∈ (h(θn), θn))1y∈Tn

]
≤ c5c

−α
n ε−αn θ

3/4
n ,

(4.96)
as desired. Let us now bound the expectation of Mn,2(y). First we calculate the
expected value with respect to Ey in Mn,2(y). As in (4.10) and (4.11), we get that,

up to an error of the order of e−c4(log θn)
2

, on An, we can bound `η(B1
n)
(y) ≤ `k(θn)(y)

and `θn(y) ≤ `η(B2
n)
(y), where B1

n = Bk(θn)1/2(log θn)−2(y) and B2
n = B

θ
1/2
n log θn

(y),

for all y ∈ Bθn ∩ Tn. Setting ε(y) ≡ {`η(B1
n)
(y)γn(y) ≤ ε}, we get

Ey`θn(y)1`k(θn)(y)γn(y)≤ε

=
(
Ey1ε(y)`η(B1

n)
(y) + Ey1ε(y)

(
`η(B2

n)
(y)− `η(B1

n)
(y)

))
. (4.97)
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By the strong Markov property, the second term in (4.97) is given by∑
z∈∂B1

n
Ey

(
1ε(y)1J(η(B1

n))=z

)
Ez

∫ η(B2
n)

0
1J(s)=yds ≤ gB2

n
(y)Py(ε(y)), (4.98)

where we used Ez

∫ η(B2
n)

0
1J(s)=yds ≤ gB2

n
(y). The first term in (4.97) equals

gB1
n
(y)

[
1− exp

(
−ε/(γn(y)gB1

n
(y))

)]
= gB1

n
(y)Py(ε(y)). (4.99)

Using (4.98) and (4.99) and the fact that gB1
n
(y) ≤ gB2

n
(y), (4.97) is bounded by

2gB2
n
(y)

[
1− exp

(
−ε/(γn(y)gB1

n
(y))

)]
≤ 2c8/c7ḡ

d
n(y)

[
1− exp

(
−ε/(γn(y)ḡ

d
n(y))

)
1An (4.100)

+ c1(log θn1d=2 + 1d≥3)1Ac
n

]
,

where by (4.20) (for d ≥ 3) and Lemma 3.3 in Černý (2011) (for d = 2), ḡdn(y) ≡
c7(log θn1d=2+ g∞(y)1d≥3). Together with (4.12), EMn,2(y)1An is bounded above
by

ε E
[
P (miny′∼y σ(y

′) ≤ θn)ḡ
d
n(y)γn(y)

(
1− e−ε(γn(y)ḡ

d
n(y))

−1)
1y∈Tn1An

]
. (4.101)

An asymptotic analysis and the fact that ḡdn(y) ≤ c7(log θn1d=2 + c61d≥3) yield

(4.101) ≤ c′ε E
[
P (min

y′∼y
σ(y′) ≤ θn)e

−2ε(c′γn(y)ḡ
d
n(y))

−1

1y∈Tn
1An

]
≤ c′′(log θn1d=2 + c61d≥3)

αc−αn ε1−αE(P (min
y′∼y

σ(y′) ≤ θn)1An). (4.102)

for some c′, c′′ ∈ (0,∞). Thus, evoking Lemma 3.3, we get that∑
y EMn,2(y)1An ≤ c′′c6c5tε

1−α, (4.103)

i.e. (4.93) is satisfied. Thus, limn→∞ Emt
n(ε) ≤ cε1−α. The verification of (C-4)

now follows as in Section 4.2.

4.5. Verification of Condition (C-5). We proceed as in the verification of (C-2) and
(C-4) to establish that (C-5) is satisfied. Namely, we first take the expected value
in the left hand side of (3.36) and (3.37) and prove that both are bounded above
by C(u, t)ε for some C(u, t) ∈ (0,∞). Then, one can proceed as in Section 4.2 to
obtain P-a.s. upper bounds. Since the proofs are similar, we only prove the claim
for (3.36). The expectation of the left hand side of (3.36) is given by∑

(x,k)∈An

(kθn)
−d/2e−c2|x|

2/kθn
∑
y

EQu
n(x, y)

≤ 2ν(u,∞)a−1n θn

kn(t)∑
k=1

(kθn)
−d/2

∑
|x|2<εkθn ∨ |x|2>kθn/ε

e−c2|x|
2/kθn , (4.104)

where we used that by (4.2), for n large enough, the second sum in (4.104) is
smaller than 2ν(u,∞)θn/an. Let us first control the contribution to the right hand
side of (4.104) coming from x ∈ B√εkθn

. Bounding the exponential term by one

and using the fact that |{x : |x|2 < εkθn}| ≤ Cεd/2(kθn)
d/2 for some C ∈ (0,∞),

this contribution is bounded above by K(u, t)εd/2 for K(u, t) ∈ (0,∞). Also, the

sum over x ∈ Bdn(t) \ B(kθn/ε)1/2 of (kθn)
−d/2e−c2|x|

2/kθn is bounded above by

K ′(t)e−c2/ε. Thus, (4.104) is bounded above by K(u, t)εd/2. The verification of
(C-5) can now be finished as in Section 4.2.
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4.6. Conclusion of the proof. We are now ready to conclude the proof of Theorem
1.5. By Lemma 4.1, for all u > 0, t > 0, Eν̃tn(u,∞) → tν(u,∞) as n → ∞.
Together with the results of Section 4.2 this shows that (C-2) is satisfied. By the
results of Section 4.3, σ̃t

n(u,∞) tends P-a.s. to zero, proving (C-3). By the same
arguments as those used to establish (C-2), (C-4) follows from the results of Section
4.4. Finally, it follows from the results of Section 4.5 that (C-5) is satisfied. Hence,

we may apply Proposition 3.5 and get that S
J,b

n
J1=⇒ Vα. By Lemma 3.4 this proves

that SJ,b
n

J1=⇒ Vα, as claimed in Theorem 1.5.

5. Aging in BATM

In this section we present the proofs of Theorem 1.6 and Theorem 1.7. Section
5.1, respectively Section 5.2 and Section 5.3, contains the proof of Theorem 1.6
for i = 1, respectively i = 2 and i = 3. We then prove Theorem 1.6 in Section
5.4. The proofs in Sections 5.1-5.3 follow a common scheme. We show that for
each i ∈ {1, 2, 3}, as s → ∞, Ci

s(1, ρ), coincides with the probability of Ms,ρ ≡
{Rs ∩ (1, 1 + ρ) = ∅}, where Rs = {SJ,b

s (t), t ≥ 0} is the range of SJ,b
s . We then

use that P-a.s.,
lims→∞ P(Ms,ρ) = Aslα(1/(1 + ρ)). (5.1)

The proof of (5.1) closely follows that of Theorem 1.6 in Gayrard (2012). We thus
only sketch it here. Namely, it relies on the continuity of the overshoot function
that maps Y ∈ D[0,∞) to

χu(Y ) = Y (Lu(Y ))− u, u > 0, (5.2)

where Lu ≡ inf{t ≥ 0 : Y (t) > u} is the time of the first passage of Y beyond
the level u > 0. For Lévy motions having P-a.s. diverging paths, this mapping is
P-a.s. continuous on D[0,∞) equipped with Skorohod’s J1 topology. Now, Ms,ρ =

{χ1(S
J,b
s ) ≥ 1 + ρ} and by Theorem 1.5, P-a.s., SJ,b

s
J1=⇒ Vα. Since Vα has P-

a.s. diverging paths we deduce that, P-a.s.,

lims→∞ P(Ms,ρ) = P(ξ1(Vα) ≥ 1 + ρ) = Aslα(1/(1 + ρ)), ρ > 0, (5.3)

where the last equality follows from the arcsine law for stable subordinators (see
Section III in Bertoin (1996)). Given (5.3), it remains to establish that, P-a.s.,

lims→∞ |P(Ms,ρ)− P(Mi
s,ρ)| = 0, ∀ρ > 0, (5.4)

where Mi
s,ρ stands for the events appearing in the right hand sides of (1.41)-(1.43),

namely Ci
s(1, ρ) = P(Mi

s,ρ). We will verify (5.4) in Sections 5.1-5.3.
For this, let A′ ⊆ A (where A as in (3.8)) such that P(A′) = 1 and such that for

all ω ∈ A′, SJ,b
s

J1=⇒ Vα. Fix ω ∈ A′. We write as ≡ absc and similarly for θs, ks, εs,
and δs (see Theorem 1.6 and Section 3.2 for their definitions).

5.1. Convergence of C1
s (1, ρ). In this section we prove that (5.4) holds for i = 1.

Step 1. Let δ > 0 and s > 0. We prove that for all s large enough,
P(Ms,ρ, (M1

s,ρ)
c) ≤ δ. For k ∈ N we define

Bk ≡ {
∑k

i=1 Z
J
s,i < 1, and

∑k+1
i=1 ZJ

s,i > (1 + ρ)}. (5.5)
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Then, Ms,ρ =
∪

k≥1 Bk. For s large enough, there exists T > 0 large enough such
that

P(Ms,ρ, (M1
s,ρ)

c) ≤ P(
∪

k≤ks(T ) Bk, (M1
s,ρ)

c) + δ, ∀s > s′, (5.6)

where ks(T ) = basT c/θs. To see the claim of (5.6) note that, since SJ,b
s

J1=⇒ Vα,

P(
∪

k≥ks(T ) Bk, (M1
s,ρ)

c) ≤ P(SJ,b
s (T ) < 1) ≤ P(Vα(T ) < 1 + δ) + δ, (5.7)

which vanishes as T → ∞ and proves (5.6). Let us now study Bk for fixed k. By
Lemma 3.4, we know that for s large enough, the contribution to Zs,k+1 coming
from y /∈ Ts is bounded above by δs and therefore, on Bk, there exists x ∈ Ts

such that `θs(k+1)(x) − `θsk(x) > 0. Moreover, as in the proof (C-2) ⇒ (B-2) (see
proof of Proposition 3.5), one can show that this x is unique. Therefore, we have
that `asT (x)γs(x) > ρ − δs. We prove now that, for all s large enough, with P-

probability larger than 1− δ, we know on Bk that γs(x) > δ
1/2
s . For this, note that

by definition of A′ (last paragraph of Section 5) and Lemma3.2, for all but finitely
many values of bsc, P(η(Bds(T )) > asT ) ≥ 1 − δ. Moreover, by the same lemma
and (3.2), we have for all s large enough, gBds(T )(x)(x) ≤ c9 log as1d=2 + c61d≥3 for
all x ∈ Bds(T ). Therefore, for s large enough,

P(∃x : γs(x)`asT (x) > ρ− δs, γs(x) ≤ δ1/2s )

≤ δ +
∑

x∈Bds(T )

Px(`η(Bds(T )(x))(x) > ρδ−1/2s ) ≤ δ + |Bds(T )| exp(−c′(log as)
2), (5.8)

where we used that δ
−1/2
s ≥ c0(log as)

3. Therefore, for s large enough, we know
with high P- probability that, on Bk, there exists a unique x ∈ T ′s ≡ {x ∈ Ts :

γs(x) > δ
1/2
s } that contributes to Zs,k+1. Since this holds for all 1 ≤ k ≤ M , we

get for s large enough that

P(Ms,ρ ∩ (M1
s,ρ)

c) ≤ P(
∪

s′∈{s,s(1+ρ)}Ms′) + 3δ, (5.9)

where

Ms′ ≡ {X(s′) /∈ T ′s} ∩ {∃s′(1− δs) < v < s′ : v : X(v) ∈ T ′s}. (5.10)

Let us now bound P(Ms′) for s
′ = s and fixed x ∈ T ′s; the proof for s′ = s(1+ ρ) is

the same. We distinguish two cases with respect to θ. We begin with θ > 0. Fix v
such that s(1− δs) < v < s and X(v) = x. Let us first bound the probability that
there exists v′ such that v ≤ v′ ≤ s and X(v′) /∈ B1(x) ≡ {x} ∪ {y ∼ x}. Writing
Nx for the number of returns to x before J escapes B1(x), we have

P(X(v) = x,∃v′ : v ≤ v′ ≤ s : X(v′) /∈ B1(x))

≤ Px(Nx ≤ δ(sδ
1/2
s ε

−2/α
s )θ) + Px(

∑δ(sδ1/2s ε−2/α
s )θ

i=1 (λ(x))−1ei ≤ δss). (5.11)

Since maxy∼x(1−p(y, x)) ≤ (sδ
1/2
s ε

−2/α
s )−θ, the first probability in (5.11) is, smaller

than δ . Since λ(x) ≤ 2ds−1+θε
−2θ/α
s δ

−(1−θ)/2
s the law of large numbers implies that

also the second probability in (5.11) is bounded above by δ, for s large enough. It
remains to bound

P(X(v) = x,X(s) 6= x,∀v ≤ v′ ≤ s : X(v′) ∈ B1(x)). (5.12)

By definition of T ′s, maxy∼x(λ(y))
−1 ≤ ε

−2θ/α
s δ

θ/2
s s−θ, and so, with probability

larger than 1 − exp(−δ
−θ/2
s ), there exists v′ such that s − v′ ≤ s−θε

−2θ/α
s and
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X(v′) = x. By the Markov property we have for all such v′,

Px(X(s− v′) 6= x) ≤ Px(e1λ
−1(x) < s− v′) ≤ 1− e−s

−1δ(1−θ)/2
s , (5.13)

which tends to zero. Thus, (5.12) tends to zero as s → ∞. This finishes the proof
for θ > 0. When θ = 0, one can bound (5.9) directly as in (5.13). This shows that
for all s large enough, P(Ms,ρ, (M1

s,ρ)
c) ≤ δ.

Step 2. Let us now show that P((Ms,ρ)
c,M1

s,ρ) → 0. Let ms,ρ ≡ (SJ )←(s(1 +

ρ))− (SJ)←(s), where (SJ)←(t) = inf{v ≥ 0 : SJ (v) > t}. Notice that (Ms,ρ)
c ⊆

{ms,ρ ≥ θs}∪ {Zs,1 > 1}. By (A-0), P(Zs,1 > ρ) tends to zero and so, for all δ > 0
there exists s large enough such that P((Ms,ρ)

c,M1
s,ρ) ≤ P(ms,ρ ≥ θs,M1

s,ρ) + δ.
Let us distinguish whether d ≥ 3 or d = 2. In the first case we use the identity
X(t) = J((SJ )←(t)) and get by (3.2) of Theorem 3.1, uniformly in x ∈ Zd,

Px(X(s(1 + ρ)) = x,ms,ρ ≥ θs) = Px(J(ms,ρ) = x,ms,ρ ≥ θs) ≤
∫∞
θs

v−d/2dv,

(5.14)

which is smaller than θ
−d/2+1
s and shows that P((Ms,ρ)

c,M1
s,ρ) → 0 for d ≥ 3.

Let d = 2. We construct a more precise bound for P((Ms,ρ)
c ∩ M1

s,ρ) than

P({ms,ρ ≥ θs}∩M1
s,ρ)+δ. Assume first that dist(Rs, 1+ρ) > δ and that there are

t, t′ > 0 such that SJ,b
s (t), SJ,b

s (t + t′) ∈ (1, 1 + ρ − δ/2). Then, s < SJ (ks(t)θs) <
SJ(ks(t+ t′)θs) < s(1+ ρ) and so ms,ρ ≥ θs(ks(t+ t′)− ks(t

′)). Moreover, by (5.7)
there exists T > 0 such that ms,ρ ≤ θsks(T ). Since dist(Rs, 1+ρ) > δ one can show
as in Step 1 that X(s(1+ρ)) = x ∈ Ts. But then, on (Ms,ρ)

c∩M1
s,ρ, we have with

probability larger than 1−(log θs)
−2 that `ms,ρ(x)−`ms,ρ−θs(x) > c log θs/ log log θs

for some c ∈ (0,∞). Rs ∩ (1, 1 + ρ) = ∅ or X(s) 6= x.) By (3.2) of Theorem 3.1 we
get, for all x ∈ Zd,

Px

(
J(ms,ρ) = x,ms,ρ ∈ (θsks(t), θsks(T )), `ms,ρ(x)− `ms,ρ−θs(x) >

c log θs
log log θs

)
≤ Px(`θsks(T )(x)− `θsks(t)−θs(x) >

c log θs
log log θs

) ≤ c c log log θs
log θs

log(T/t), (5.15)

which tends, as s → ∞, to zero. It remains to establish that for all δ′ > 0 there
exist δ > 0, t > 0 such that P(dist(Rs, 1 + ρ) > δ) ≤ 1 − δ′ and P(SJ,b

s (t + t′) ∈
(1, 1 + ρ − δ/2)|SJ,b

s (t) ∈ (1, 1 + ρ − δ)) ≥ 1 − δ′. This can be derived from the
convergence of SJ,b

s to Vα and properties of Vα (see Section III in Bertoin (1996)).
Thus, P((Ms,ρ)

c,M1
s,ρ) ≤ δ+2δ′ for d ≥ 2. Together with Step 1 this finishes the

proof of (5.4) for i = 1.

5.2. Convergence of C2
s (1, ρ). In this section we prove the claim of (5.4) for i = 2.

Step 1. We show that P
(
Ms,ρ, (M2

s,ρ)
c
)
→ 0. Note that Ms,ρ ⊆ {ms,ρ ≤ θs}.

Let x ∈ Bas . Using X(s) = J((SJ)←(s)) and the Markov property

P(X(s) = x, (M2
s,ρ)

c,ms,ρ ≤ θs)

≤ P(X(s) = x)Px(η(B(θs log θs)1/2(x)) ≤ θs), (5.16)

where η(B) is the exit time of B for J as defined in Section 3.1. By definition of
A′ (last paragraph of Section 5) and Lemma 3.2 we have for all but finitely many
values of bsc, for all x ∈ Bas ,

Px(η(B(θs log θs)1/2(x)) ≤ θs) ≤ exp(−c4 log θs). (5.17)

If we can show that P(X(s) /∈ Bas) ≤ δ, then (5.16)-(5.17) imply that
P(Ms,ρ(M2

s,ρ)
c) ≤ δ. To bound P(X(s) /∈ Bas) we recall that by (5.7), with
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probability larger than 1 − δ, (SJ)←(s) ≤ ks(T )θs for T > 0 and so, for s large
enough,

P(X(s) /∈ Bas , (S
J )←(s) ≤ asT ) ≤ P (η(Bas) ≤ asT ) ≤ e−c4a

1/2
s T−2

, (5.18)

by Lemma 3.2. This tends to zero and we conclude that P(Ms,ρ, (M2
s,ρ)

c) ≤ δ.

Step 2. Now we prove that P((Ms,ρ)
c,M2

s,ρ) vanishes. On (Ms,ρ)
c one can show

as in Section 5.1 (Step 2) that there exist t, t′ such that ms,ρ ≥ θs(ks(t + t′) −
ks(t)) � θ2s . Moreover, by (5.18) we know that, with probability larger than 1− δ,
X(s) ∈ Bas . By definition of A′ and Lemma 3.2, for all but finitely many values of
bsc, for all x ∈ Bas

Px(η(B(θs log θs)1/2(x)) > θ2s) ≤ exp(−c4 log θs). (5.19)

As in (5.16) we thus get P((Ms,ρ)
c,M2

s,ρ) → 0. Together with Step 1, the proof
of (5.4) is finished for i = 2.

5.3. Convergence of C3
s (1, ρ). We now show that (5.4) holds for C3

s (1, ρ). This
follows readily from Sections 5.1 and 5.2. Indeed on the one hand,

P((Ms,ρ)
c,M3

s,ρ) ≤ P((Ms,ρ)
c,M1

s,ρ) + P((Ms,ρ)
c,M2

s,ρ), (5.20)

and on the other hand, P(Ms,ρ, (M3
s,ρ)

c) ≤ P(Ms,ρ, (M1
s,ρ)

c). Both upper bounds

tend by Sections 5.1 and 5.2 P-a.s. to zero, which proves (5.4) for C3
s (1, ρ).

5.4. Convergence of Cε
s(1, ρ) and Cε(1, ρ). In this section we prove Theorem 1.7.

The convergence of Cε
s(1, ρ) can be proved as that of C2

s (1, ρ) and we only establish
the claim of Theorem 1.7 for Cε(1, ρ). Let us write in short Mε(ρ) for the event in
the right hand side of (1.49), i.e. Cε(1, ρ) = P(Mε(ρ)). One can show that

Cε/2
s (1− ε2, ρ+2ε2

1−ε2 )−
[
1− Cε/2

s

(
1− ε2, 2ε2

1−ε2
)]

− δs ≤ Cε(1, ρ) ≤ Cε
s(1, ρ) + δs,(5.21)

where δs ≡ δs(ρ, ε) is given by

δs = P(maxv∈(1−ε2,1+ρ+ε2) maxv′∈(1−ε2,1+ε2)

∣∣Xs(v
′)−Xs(v)

∣∣ ≤ ε/2, (Mε(ρ))c).
(5.22)

Now, by Theorem 1.3 in Barlow and Černý (2011a) (see the erratum Barlow and

Černý (2011b) to this theorem) and Theorem 1.1 in Černý (2011), P-a.s., Xs
J1=⇒

Zd,α. By definition of Skorohod’s metric, there exists δ > 0 such that, for s large
enough and λ : [0, 1 + ρ] → [0, 1 + ρ] strictly increasing and continuous,

P
(
max

{
maxv∈[0,1+ρ]

∣∣Xs(λ(v))− Zd,α(v)
∣∣,maxv∈[0,1+ρ] |λ(v)− v|

}
> ε2

)
≤ δ,
(5.23)

and so δs vanishes as first s → ∞ and then ε → 0. By the statement of Theorem 1.6

for Cε
s(1, ρ), Cε

s(1, ρ) and Cε/2
s (1− ε2, ρ+2ε2

1−ε2 ) tend to Aslα(1/(1 + ρ)) as first s → ∞
and then ε → 0. It remains to show that 1− Cε/2

s (1− ε2, 2ε2

1−ε2 ) vanishes. But this

can be done as in Section 5.2 (Step 2). The proof of Theorem 1.7 is finished.
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6. Appendix

Proof of Lemma 3.2: Fix x ∈ Ban
and take ω ∈ An. We use Proposition 2.18 in

Barlow and Deuschel (2010) to prove (3.9). This proposition states that there exists
c4 ∈ (0,∞) such that for all mn � rn for which Uz ≤ mn/rn for all z ∈ Brn(x),

Px(η(Brn(x)) ≤ mn) ≤ e−c4r
2
nm

−1
n , as desired in (3.9). Since we assume mn � rn,

it remains to verify whether Uz ≤ mn/rn for all z ∈ Brn(x). But Brn(x) ⊆ B2an

and so (3.7) implies that, Uz ≤ c0(log an)
3 ≤ mn/rn for all z ∈ Brn(x). This

finishes the proof of (3.9). The proof of (3.10) is as the proof of Lemma 3.2 in
Černý (2011), where the claim is proved for d = 2. �

Proof of Lemma 3.3: Let us first establish (3.12). We begin with the contribution
to EERk

mn
coming from y /∈ B√mn logmn

. By (3.9) of Lemma 3.2 and (3.3) of
Theorem 3.1,∑

|y|≥√mn logmn
E(P

(
σ(y) ≤ mn

)
)

≤
∑
|y|≥√mn logmn

(|y|d−1e−c4(log |y|)2 + |y|2d exp(−c2|y|1/3)), (6.1)

where we used that P
(
σ(y) ≤ mn

)
≤ P

(
σ(y) ≤ |y|2

)
for |y| ≥ √

mn logmn.

Hence, the contribution to EERk
mn

coming from such y’s tends to zero. Now, let

y ∈ B√mn logmn
. Since |B√mn logmn

|P(Ac
n) � n−2, it suffices to bound E[P (σ(y) ≤

mn)1An ]. We have that,

P (σ(y) ≤ mn) ≤ P (η(B√mn logmn
) ≤ mn) + P (σ(y) ≤ η(B√mn logmn

)). (6.2)

By (3.9) of Lemma 3.2, on An, the first probability in (6.2) is smaller than

e−c4(logmn)
2

. By the strong Markov property,

P (σ(y) ≤ η(B√mn logmn
)) = gB√

mn log mn
(0, y)(gB√

mn log mn
(y, y))−1, (6.3)

where gB(x, z) = Ex

(∫ η(B)

0
1J(t)=zdt

)
. Write

D1 = B√mn/2, and D2 = B√mn logmn
\D1.

We distinguish whether d ≥ 3 or d = 2. Let d ≥ 3 first. Take y ∈ D1. By (3.2) and

(3.4) of Theorem 3.1, gB√
mn log mn

(0, y) ≤ c3(m
−d/2+1
n ∧ |y|2−d), and so∑

y∈D1
E(P (σ(y) ≤ mn))

k ≤
∑

y∈D1
c3(m

−d/2+1
n ∧ |y|2−d)kE

(
gB√

mn log mn
(y, y)

)−k
.

(6.4)
Since B√mn

(y) ⊆ B√mn logmn
and since the τ ’s are identically distributed, (6.4) is

bounded by

Eg−kB√
mn

(0, 0)
∑

y∈D1
c3(m

−d/2+1
n ∧ |y|2−d)k ≤ c6m

1/k
n Eg−kB√

mn
(0, 0) ≤ c5m

1/k
n ,

(6.5)

where we used (3.3) and (3.5) of Theorem 3.1 to bound Eg−kB√
mn

(0, 0) ≤ c for

c ∈ (0,∞). Thus, the contribution to EERk
mn

coming from y ∈ D1 satisfies (3.12).
Now let y ∈ D2. We bound P (σ(y) ≤ mn) by∑

z: |z|=|y|/2 P (J(η(B|z|/2)) = z, η(B|y|/2) ≤ mn, σ(y) ≤ mn)

≤
∑

z: |z|=|y|/2 Pz(σ(y) ≤ mn)P (J(η(B|y|/2)) = z, η(B|y|/2) ≤ mn). (6.6)
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As in (6.2) and (6.3), Pz(σ(y) ≤ mn) ≤ 2c3|z − y|2−d(gB√
mn (y)(y, y))

−1. For

c ∈ (0,∞) large enough, 2c3|z − y|2−d ≤ c|y|2−d, and so we get that

P (σ(y) ≤ mn)

≤ c|y|2−d

gB√
mn (y)(y, y)

P (η(B|y|/2) ≤ mn)
c|y|2−d

gB√
mn (y)(y, y)

exp(− c4
4 |y|

2m−1n ), (6.7)

where we used (3.9) of Lemma 3.2 in the last step. Using (6.7) and proceeding as in
(6.5), one sees that the contribution to EERk

mn
coming from y ∈ D2 is as claimed

in (3.12). The proof of (3.12) is finished for d ≥ 3.
Let d = 2. Recall that for y ∈ D1 ∪ D2 it is sufficient to bound the expected

value on An. In fact, we will bound P (σ(y) ≤ θn) for every ω ∈ An by a function
fmn(|y|) that is as in (3.14) and this way also prove that the contribution coming
from y ∈ D1 ∪D2 satisfies (3.12). Let y ∈ D1. By (3.4) of Theorem 3.1, one can
show that g√mn logmn

(0, y) ≤ c3(log
√
mn/|y|), and so∑

y∈D1
P (σ(y) ≤ θn) ≤

∑
y∈D1

c3g
−1
B√

mn log mn
(y, y)(log

√
mn/|y|). (6.8)

As in Lemma 3.3 in Černý (2011), one sees that g√mn logmn
(y, y) ≥ gB√

mn (y)(y, y) ≥
c7 logmn. We set fmn(|y|) ≡ 2c3/c7(1−log(|y|/√mn)). A simple calculations shows
that hence the contribution coming from y ∈ D1 is as claimed in (3.12) and (3.14).
Let y ∈ D2. As in (6.6) - (6.7) we bound

Pz(σ(y) ≤ mn) ≤ 2gB√
mn log mn

(z, y)/gB√
mn (y)(y, y). (6.9)

Since |z − y| ≥ √
mn/2, one can check that gB√

mn log mn
(z, y) ≤ c to get that

P (σ(y) ≤ mn) ≤ c exp(− c4
4 |y|

2m−1n )(c7 logmn)
−1 ≡ fmn(|y|), (6.10)

where we used that, gB√
mn (y)(y, y) ≥ c7 logmn. The sum over y ∈ D2 of (fmn(|y|))k

satisfies (3.12) and (3.14) for k = 1, 2, 4. The proof of (3.12) is complete.
To finish the proof of Lemma 3.3, it remains to prove (3.14) for y ∈ Bmn \

(D1 ∪D2). By (3.10) of Lemma 3.2, on An, we know that we may set fmn(|y|) =
e−c4(log |y|)

2

for y ∈ Bmn \ (D1 ∪D2). Eq. (6.1) shows that the contribution to the
sum in (3.14) coming from these y’s vanishes. This finishes the proof of Lemma
3.3. �
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