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Abstract. Let (T , d) be the random real tree with root ρ coded by a Brownian
excursion. So (T , d) is (up to normalisation) Aldous CRT Aldous (1991) (see Le Gall
(1991)). The a-level set of T is the set T (a) of all points in T that are at distance
a from the root. We know from Duquesne and Le Gall (2006) that for any fixed
a ∈ (0,∞), the measure `a that is induced on T (a) by the local time at a of the
Brownian excursion, is equal, up to a multiplicative constant, to the Hausdorff
measure in T with gauge function g(r) = r log log 1/r, restricted to T (a). As
suggested by a result due to Perkins (1988, 1989) for super-Brownian motion, we
prove in this paper a more precise statement that holds almost surely uniformly in
a, and we specify the multiplicative constant. Namely, we prove that almost surely
for any a ∈ (0,∞), `a(·) = 1

2Hg( · ∩ T (a)), where Hg stands for the g-Hausdorff
measure.

1. Introduction.

The Continuum Random Tree was introduced by Aldous (1991) as a random
compact metric space (T1, d,m1), endowed with a mass measure m1 such that
almost surely m1(T1) = 1. It appears as the scaling limit of a large class of discrete
models of random trees, and can be alternatively encoded by a normalised Brownian
excursion (see Le Gall (1991)). This encoding procedure will be the viewpoint of
the present paper, but for the sake of simplicity, we will not ask the total mass to
be equal to one. Instead, we work on the tree encoded by a Brownian excursion
(et, t ≥ 0), under its excursion measure N. Let us mention that our result remains
true for the CRT.

The Brownian tree has a distinguished vertex ρ called the root, so it makes sense
to define, for all a ∈ (0,∞) the a-level set T (a) = {σ ∈ T : d(ρ, σ) = a}. Moreover,
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one can define the collection of measures (`a(dσ), σ ∈ T , a ∈ (0,∞)), as the image
of the local times on the levels of the excursion. Those measures are called local
time measures. Indeed, N-a.e. for all a ∈ (0,∞), the topological support of `a is
included in T (a). Duquesne and Le Gall (2006) showed that for a fixed level a, one
has

N-a.e. `a(·) = cHg( · ∩ T (a)), (1.1)

where Hg stands for the Hausdorff measure associated with the gauge function
g(r) = r log log 1/r and c ∈ (0,∞) is a multiplicative constant. In this paper, we
prove that c = 1

2 and that the result holds N-a.e. simultaneously for all levels a. Let

us mention that the value 1
2 depends on the normalisation chosen for the excursion

measure N. The later leads to an underlying branching process with branching
mechanism ψ(λ) = λ2 (see 1.12). A result similar to (1.1) has been obtained by
Perkins (1988, 1989) for Super Brownian Motion. Briefly, let (Za, a ≥ 0) a version of
this measure-valued process on Rd, defined on (Ω,F ,P). Perkins proves that if the
dimension d of the space is such that d ≥ 3 (which corresponds to the supercritical
dimension case), there exists two constants cd, Cd in (0,∞), only depending on d
such that the following holds

P-a.s. ∀a ∈ (0,∞) cdHg (· ∩ supp (Za)) ≤ Za (·) ≤ CdHg (· ∩ supp (Za)) ,
(1.2)

where supp (Za) is the topological support of the measure Za and Hg is the Haus-
dorff measure associated to the gauge function g(r) = r2 log log 1/r. In this paper,
we use the ideas and techniques of Perkins (1988, 1989) to get a result similar to
(1.2), an equality being accessible in the setting of trees.

Before stating formally our result, let us recall precisely basic facts. A metric
space (T, d) is a real tree if and only if the following two properties hold for any
σ1, σ2 in T :

(i) There is a unique isometric map fσ1,σ2 from [0, d(σ1, σ2)] into T such that
fσ1,σ2(0) = σ1 and fσ1,σ2(d(σ1, σ2)) = σ2. We set Jσ1, σ2K =
fσ1,σ2 ([0, d(σ1, σ2)]) that is the geodesic path joining σ1 and σ2.

(ii) If q is a continuous injective map from [0, 1] into T , such that q(0) = σ1
and q(1) = σ2, we have

q([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]).

If σ1 ∈ Jρ, σ2K, we will say that σ1 is an ancestor of σ2 (σ2 is a descendant of σ1).

Real trees can be derived from continuous functions that represent their contour
functions. Namely, let us consider a (deterministic) excursion e, that is to say a
continuous function for which there exists ζ ∈ (0,∞) such that : ∀t ≥ ζ, e(0) =
e(t) = 0, and ∀t ∈ (0, ζ), e(t) > 0. A real tree T can be associated with e in the
following way. For s, t ∈ [0, ζ], we set

d(s, t) = e(s) + e(t)− 2 inf
r∈[s∧t,s∨t]

e(r).

It is easy to see that d is a pseudo-distance on [0, ζ]. Defining the equivalence
relation s ∼ t iff d(s, t) = 0, one can set

T = [0, ζ]/ ∼ . (1.3)
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The function d induces a distance on the quotient set T . For a fixed excursion e,
let

p : [0, ζ] −→ (T, d) (1.4)

be the canonical projection. Clearly p is continuous, which implies that (T, d) is
a compact metric space. Moreover, it can be shown (see Duquesne and Le Gall
(2005) for a proof) that (T, d) is a real tree
We take ρ = p(0) as the root of T . For all a ∈ (0,∞), the a-level set T (a) =
{σ ∈ T : d(ρ, σ) = a} is the image by p of the set {t ∈ [0, ζ] : e(t) = a}. The total
height of the tree is defined by

h(T ) = sup {d(ρ, σ);σ ∈ T} . (1.5)

We define the Brownian tree as the metric space (T , d) coded by the Brownian
excursion. More precisely, let (Ω,F ,P) a probability space, large enough to carry all
the random variables we need. We consider on that space a process (Xt, t ∈ [0,∞))
such that ( 1√

2
Xt, t ∈ [0,∞)) is a standard real-valued Brownian motion (the choice

of the normalizing constant
√
2 is explained below). Let us set Xt = infs∈[0,t]Xs.

Then, the reflected process X −X is a strong Markov process, and the state 0 is
instantaneous in (0,∞) and recurrent (see Bertoin (1996), chapter VI). We denote
by N the excursion measure associated with the local time −X; N is a sigma-
finite measure on the space of continuous functions on [0,∞), denoted C0 in this
work. More precisely, let

∪
j∈J (lj , rj) = {t > 0 : Xt − Xt > 0} be the excursion

intervals of the reflected process, and for all j ∈ J , we set ej(s) = X(lj+s)∧rj −X lj
,

s ∈ [0,∞). Then,

M(dt,de) =
∑
j∈J

δ(−Xlj
,ej)

is a Poisson point measure on [0,∞)×C0 of intensity dtN(de). Let us recall that
the two processes (|Xt|, 2Lt)t≥0 and (Xt −Xt,−Xt)t≥0 have the same law under

P by a celebrated result of Lévy (see Blumenthal (1992), Th. II 2.2) where the

process (Lt, t ≥ 0) is defined by the approximation Lt = lim
ε→0

(2ε)−1
∫ t

0
1{|Xs|≤ε}ds

that holds uniformly in t on compact subsets of [0,∞).

We shall denote by (et, t ≥ 0) the canonical process on C0. Under N, it is a
strong Markov process, with transition kernel of the original process X killed when
it hits 0 (see Blumenthal (1992) III 3(f)). The following properties hold for the
process N-a.e. : there exists a unique real ζ ∈ (0,∞) such that ∀t ∈ (0, ζ), e(t) > 0,
and ∀t ∈ [ζ,∞), e(t) = e(0) = 0. Moreover, with our normalization, one has (see
Blumenthal (1992) IV 1.1)

∀λ ∈ [0,∞),N(1− e−λζ) =
√
λ and N(ζ ∈ dr) =

r−3/2

2
√
π
dr. (1.6)

One can show that N (· | ζ ∈ [1− ε, 1 + ε]) converges when ε goes to 0, towards a
probability measure that is denoted by N(· | ζ = 1). It can be seen as the law of the
excursion of X −X conditioned to have length one. The tree encoded by e under
N(· | ζ = 1) is the CRT defined in Aldous (1991). The choice of the normalising

constant
√
2 is explained by the following. Let τn be uniformly distributed as the

set of rooted planar trees with n vertices. We view it as a real tree, the edges of
τn being intervals of length one, and we denote by (τn, dn) the resulting metric



888 Xan Duhalde

space. Denote by (C
(n)
t , t ∈ [0, 2(n−1)]) its contour function that is (informally)

defined as follows. We let a particle explore the planar tree at speed one, from

the left to the right, beginning at the root. We set C
(n)
t as the distance from the

root of the particle at time t. It can be shown (see Le Gall (2005) Th. 1.17)

that (C
(n)
t , t ∈ [0, 2(n−1)]) has the law of a simple random walk conditioned to

be positive on [1, 2(n−1) − 1] and null at 2(n−1). The rescaled contour function

(n−1/2C
(n)
2(n−1)t, t ∈ [0, 1]) converges in law towards the law of (et, t ∈ [0, 1]) under

N(· | ζ = 1) (see e.g. Aldous (1993)). In terms of trees, (τn, n
−1/2dn) converges

towards the CRT, that is the tree (T1, d) coded by e under N(· | ζ = 1). The latter
convergence can be stated using the distance of Gromov-Hausdorff (see Evans et al.
(2006)).

Recalling definition (1.5), we get from Blumenthal (1992) IV 1.1 that with our
normalization,

∀a ∈ (0,∞) N
(

sup
t∈[0,ζ]

et > a
)
= N

(
h(T ) > a

)
=

1

a
. (1.7)

In the paper, for a ∈ (0,∞) we shall use the probability measure,

Na = N (· | h(T ) > a) = aN
(
·1{h(T )>a}

)
. (1.8)

Recall that the a-level set of the Brownian tree is defined by

T (a) = {σ ∈ T : d(ρ, σ) = a} . (1.9)

As a consequence of Trotter’s theorem on the regularity of Brownian local time
(Blumenthal (1992) sec VI.3) there exists a [0,∞)-valued process (La

t )a,t∈[0,∞) such
that N-a.e. the following holds true:

• (a, t) 7→ La
t is continuous,

• for all a ∈ [0,∞), t 7→ La
t is non-decreasing,

• for all a ∈ [0,∞), for all t ∈ [0,∞) and for all b ∈ (0,∞),

lim
ε→0

N
(
1{sup e>b} sup

0≤s≤t∧ζ

∣∣∣1
ε

∫ s

0

1{a−ε<e(u)≤a}du− La
s

∣∣∣) = 0 . (1.10)

We refer to Duquesne and Le Gall (2002), Proposition 1.3.3. for details in a more
general setting.

The image by the projection p : [0, ζ] → T of those local times defines the
collection of local time measures on the tree, (`a(dσ), σ ∈ T , a ∈ (0,∞)). More
precisely,

N-a.e. for all f : T meas.→ [0,∞) ∀a ∈ (0,∞)

∫
T
f(σ)`a(dσ) =

∫ ζ

0

f(p(t))dLa
t .

(1.11)
See Duquesne and Le Gall (2005), Th. 4.2 for an intrinsic definition of the measure
`a (for fixed a). Let Ga the σ-field generated by the excursion below level a (formal
definitions and details on what follows are given in Section 3.1). The approximation
(1.10) entails that for fixed a, `a(T ) = La

ζ is Ga measurable. Moreover, the Ray-

Knight theorem (Blumenthal (1992) VI 2.10) entails that under Na(·) conditionally
on Ga, the process

(
`a+a′

(T ), a′ ≥ 0
)

is a Feller diffusion started at `a(T ). In
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particular, one has

∀a, λ ∈ (0,∞) N
[
1− e−λ`a(T )

]
=

λ

1 + aλ
, (1.12)

which implies that under Na, `
a(T ) is exponentially distributed with mean a. The

regularity of a 7→ `a(T ) is extended by Duquesne and Le Gall (2005) : they prove
that N-a.e. the process a 7→ `a is continuous for the weak topology of measures.
In the same work, the topological support of the level set measures is described as
follows. A vertex σ ∈ T is called an extinction point if there exists ε ∈ (0,∞) such
that d(ρ, σ) = sup{d(ρ, τ), τ ∈ B(σ, ε)}, where B(σ, ε) is the open ball in T with
centre σ and radius ε. For s ∈ [0, ζ], the vertex p(s) ∈ T is an extinction point iff
s ∈ [0, ζ] is a local maximum of e. We then say that e(s) in an extinction level and
we denote E the (countable) set of all extinction levels. Let us denote supp (µ) for
the topological support of the measure µ. The result states that

N-a.e. ∀a ∈ (0,∞)\E , supp (`a) = T (a), and ∀a ∈ E , supp (`a) = T (a)\{σa},
(1.13)

where σa is the (unique) extinction point at level a (see Perkins (1990) for previous
results on Super-Brownian motion).

Let us briefly introduce the construction of the Hausdorff measure. We set the
gauge function g as

g(r) = r log log 1/r, r ∈ (0, e−1). (1.14)

In all the paper it will be assumed implicitly that g(r) is considered only for r ∈
(0, e−1). On that interval, g is an increasing continuous function. For any subset A
of T , one can define

Hg(A) = lim
ε→0

inf

{∑
i∈N

g (diam(Ei)) ;A ⊂
∪
i∈N

Ei, diam(Ei) < ε

}
. (1.15)

Standard results on Hausdorff measures (see e.g. Rogers (1998)) ensure that Hg

defines a Borel-regular outer measure on T called the g-Hausdorff measure on T .
The main result of the paper is the following.

Theorem 1.1. Let T be the Brownian tree, that is the tree encoded by the excursion
e under N. Let (`a(dσ), σ ∈ T , a ∈ (0,∞)) the collection of local time measures and
Hg the g-Hausdorff measure on T , where g(r) = r log log 1/r. Then, the following
holds :

N-a.e. ∀a ∈ (0,∞) `a(·) = 1

2
Hg (· ∩ T (a)) . (1.16)

Comment. Thanks to the scaling properties of the Brownian excursion, one can
derive from Theorem 1.1 a similar statement for the tree coded by e under N(· |
ζ = 1), that is Aldous CRT.

Comment. Our result seems close to a theorem of Perkins Perkins (1981) on linear
Brownian motion. Let (La

t , t ≥ 0, a ∈ R) be the bi-continuous version of the local
times for the process (Xt, t ≥ 0) defined above. Those local times are given by an
approximation of the type of (1.10). Perkins proves that almost surely, uniformly
in a, one has La

t = Hg({s ∈ [0, t] : Xs = x}), where Hg stands for the Hausdorff

measure on the line associated with the gauge g(r) =
√
r log log 1/r (the result for

fixed a had been obtain by Taylor and Wendel in Taylor and Wendel (1966)). The
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Brownian tree being coded by the Brownian excursion, everything happens as if the
projection mapping p : [0, ζ] → T is 1/2-Hölder and induces a strong ”doubling”,
such that the entire gauge function is squared. Nevertheless, we don’t see how to
derive our result from Perkins (1981).

The paper is organised as follows. In Section 2, we state some deterministic
facts on the geometry of the level sets for a real tree. In particular, we provide two
comparison lemmas with respect to Hausdorff measure on real trees. The second
one, that is specific to our setting, seems new to us. In Section 3, we recall basic
facts on the Brownian tree and we establish some technical estimates. Section 4 is
devoted to the proof of Theorem 1.1. As a first step, we give an upper bound for
the local time measures. To that end, we need to control the total mass of the balls
that are ”too large”. Providing a lower bound requires a control of the number of
balls that are ”too small”. Let us mention again that our strategy and many ideas
in this work were borrowed from Perkins (1988, 1989).

Acknowledgments. I would like to thank my advisor Thomas Duquesne for
introducing this problem, as well as for his help and the many improvements he
suggested. I thank the anonymous referee for his/her careful reading.

2. Geometric properties of the level sets of real trees.

2.1. The balls of the level sets of real trees. Let (T, d, ρ) be a compact rooted real
tree as defined in the introduction. Recall that for any σ, σ′ ∈ T , [[σ, σ′]] stands
for the unique geodesic path joining σ to σ′. We shall view T as a family tree
whose ancestor is the root ρ and we then denote by σ∧σ′ the most recent common
ancestor of σ and σ′ that is formally defined by

[[ρ, σ ∧ σ′]] = [[ρ, σ]] ∩ [[ρ, σ′]] .

Observe that

∀σ, σ′ ∈ T, d(σ, σ′) = d(ρ, σ) + d(ρ, σ′)− 2d(ρ, σ ∧ σ′) . (2.1)

Let a ∈ [0,∞). Recall that the a-level set of T is given by

T (a) =
{
σ ∈ T : d(ρ, σ) = a

}
.

Subtrees above level b. Let b ∈ [0,∞) and denote by (T o,b
j )j∈Jb

the connected

components of the open set {σ ∈ T : d(ρ, σ) > b}:∪
j∈Jb

T o,b
j =

{
σ ∈ T : d(ρ, σ) > b

}
.

Then for any j ∈ Jb, there exists a unique point σj ∈ T (b) such that T b
j :=

T o,b
j ∪ {σj} is the closure of T o,b

j in T . Note that (T b
j , d, σj) is a compact rooted

real tree and that

∀j ∈ Jb, ∀σ ∈ T b
j , σj ∈ [[ρ, σ]] .
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Open balls in T (a). Recall that B(σ, r) stands for the open ball in T with center
σ and radius r. We shall also denote by Γ(σ, r) the open ball with center σ and
radius r in the level set of σ, namely

Γ(σ, r) = B(σ, r) ∩ T (a) , where a = d(ρ, σ). (2.2)

If σ ∈ T (a), then we call Γ(σ, r) a T (a)-ball with radius r; we denote by Ba,r the
set of all the T (a)-balls with radius r:

Ba,r =
{
Γ(σ, r);σ ∈ T (a)

}
. (2.3)

The following proposition provides the geometric properties of T (a)-balls that we
shall use. The last point could be proved by noticing that restricted to a level-set
T (a), the distance d in the tree is ultrametric.

Proposition 2.1. Let (T, d, ρ) be a compact rooted real tree. Let a, r ∈ (0,∞) be
such that a ≥ r/2. Then, the number of T (a)-balls with radius r is finite. Moreover,
denoting

Za,r = #Ba,r and
{
Γi, 1≤ i≤Za,r

}
= Ba,r. (2.4)

the following holds true.

(i) Set b = a− 1
2 r. Then, there are Za,r distinct subtrees above b denoted by

(T b
ji
, d, σji), ji ∈ Jb, 1 ≤ i ≤ Za,r such that

Γi = T (a) ∩ T b
ji = {σ′ ∈ T b

ji : d(σji , σ
′) = r/2

}
.

Thus, the T (a)-balls with radius r are pairwise disjoint.
(ii) For all σ∈T (a), one has diam(Γ(σ, r))≤r. If furthermore r∈ (0, 2a), then

diam(Γ(σ, r))<r and

∀r′ ∈
(
diam(Γ(σ, r)), r

)
Γ(σ, r′) = Γ(σ, r) . (2.5)

Therefore, the set of all T (a)-balls is countable.
(iii) Two T (a)-balls are either contained one in the other or disjoint. Namely,

for all r′ < r and all σ, σ′ ∈ T (a), either Γ(σ′, r′) ⊂ Γ(σ, r) or Γ(σ′, r′) ∩
Γ(σ, r) = ∅.

Proof. Let us prove (i). Let σ, σ′ ∈ T (a) and set b= a− 1
2 r. By (2.1), d(σ, σ′) =

2a − 2d(ρ, σ ∧ σ′). Thus, d(σ, σ′) < r iff d(ρ, σ ∧ σ′) > b. Let j ∈ Jb be such that
σ ∈ T b

j ; namely, T b
j is the unique subtree above b containing σ and σj is the unique

point γ ∈ [[ρ, σ]] such that d(ρ, γ) = b. Now observe that for all σ′ ∈ T (a),

d(ρ, σ ∧ σ′) > b ⇐⇒ σ ∧ σ′∈ ]]σj , σ]] ⇐⇒ σ′∈T b
j .

This proves that
Γ(σ, r) = T (a) ∩ T b

j . (2.6)

Conversely, let j ∈ Jb be such that h(T b
j ) := max

{
d(σj , γ); γ ∈ T b

j

}
≥ r/2. Let

σ ∈ T (a) ∩ T b
j ; then the previous arguments imply (2.6). Since T is compact, the

set {j ∈ Jb : h(T
b
j ) ≥ r/2} is finite, which completes the proof of (i).

Let us prove (ii): let σ ∈ T (a), let r ∈ (0, 2a) and set δ = diam(Γ(σ, r)).
Then (2.6) implies that Γ(σ, r) is compact and there are σ1, σ2 ∈ Γ(σ, r) such that
d(σ1, σ2) = δ. Observe that it implies

Γ(σ, r) =
{
σ′ ∈ T (a) : σ1 ∧ σ2 ∈ [[ρ, σ′]]

}
.

Thus, Γ(σ, r) = Γ(σ, δ), that is the closure of Γ(σ, δ), and it implies (2.5). The set
of all T (a)-balls is therefore

∪
q∈Q∩[0,∞) Ba,q, which is a countable set.
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Let us prove (iii): r′ < r and σ, σ′ ∈ T (a) and suppose that Γ(σ′, r′)∩Γ(σ, r) 6= ∅.
Then (i) and (ii) implies that Γ(σ, r) = Γ(σ′, r), which implies that Γ(σ′, r′) ⊂
Γ(σ, r). �

2.2. Comparison lemmas for Hausdorff measures on real trees. Let (T, d, ρ) be a
compact real tree. We briefly recall the definition of Hausdorff measures on T and
we state two comparison lemmas that are used in the proofs. Let r0 ∈ (0,∞) and
let g : [0, r0) → [0,∞) be a function that is assumed to be increasing, continuous
and such that g(0) = 0. For all ε ∈ (0, r0) and all A ⊂ T , we set

H (ε)
g (A) = inf

{∑
n∈N

g (diam(En)) ; A ⊂
∪
n∈N

En, diam(En) < ε

}
and

Hg(A) = lim
ε↓0

H (ε)
g (A) .

Under our assumptions, Hg is a Borel-regular outer measure : this is the g-
Hausdorff measure on T (see Rogers (1998)). The following comparison lemma
was first stated for Euclidean spaces by Rogers and Taylor (1961). The proof can
be easily adapted to general metric spaces (see Edgar (2007)). We include a brief
proof of it in order to make the paper self-contained.

Lemma 2.2. Let (T, d, ρ) be a compact rooted real tree. Let µ be a Borel measure
on T . Let A be a Borel subset of T and let c ∈ (0,∞). Assume that

∀σ ∈ A lim sup
r→0

µ (B(σ, r))

g(r)
< c .

Then, µ(A) ≤ cHg(A).

Proof. For any ε∈(0, r0), set

Aε =
{
σ∈A : sup

r∈(0,ε)

µ(B(σ, r))

g(r)
<c
}
.

Observe that for all ε′ < ε, Aε ⊂ Aε′ ⊂ A and A=
∪

ε∈(0,r0)
Aε. Let (En)n∈N be

a ε-covering of Aε: namely Aε ⊂
∪

n∈NEn and diam(En) < ε, for all n ∈ N. Set
I = {n ∈ N : En∩Aε 6= ∅} and for all n ∈ I, fix σn ∈ En∩Aε. Since g is continuous,
for all n ∈ I there exists rn ∈ (diam(En), ε) such that

En ⊂ B(σn, rn) and g(rn) ≤ 2−n−1ε+ g(diam(En)) .

Observe that µ(B(σn, rn))<cg(rn) and that Aε⊂
∪

n∈I B(σn, rn). Thus,

µ(Aε) ≤ µ
( ∪

n∈I

B(σn, rn)
)
≤
∑
n∈I

µ(B(σn, rn))

≤
∑
n∈I

c g(rn) ≤ cε+
∑
n∈N

c g(diam(En)) .

Taking the infimum over all the possible ε-coverings of Aε yields

µ(Aε) ≤ cε+ cH (ε)
g (Aε) ≤ cε+ cHg(Aε) ≤ cε+ cHg(A) ,

which implies the desired result since µ(A) = limε↓0 ↑ µ(Aε). �
In the next comparison lemma, that seems new to us, we restrict our attention

to the level sets of real trees. A more general variant of this result involves a
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multiplicative constant depending on the gauge function. It has been first stated
in Euclidean spaces by Rogers and Taylor (1961) (see also Perkins (1988)) and in
general metric spaces (see Edgar (2007)).

Lemma 2.3. Let (T, d, ρ) be a compact rooted real tree. Let a ∈ (0,∞) be such
that the a-level set T (a) is not empty. Let µ be a finite Borel measure on T such
that µ(T\T (a)) = 0. Let A ⊂ T (a) be a Borel subset and let c ∈ (0,∞). Assume
that

∀σ ∈ A lim sup
r→0

µ (B(σ, r))

g(r)
> c .

Then, µ(A) ≥ cHg(A).

Proof. Let ε ∈ (0, (2a) ∧ r0). Let U be an open set of T such that A ⊂ U . For all
σ ∈ A, there exists rσ ∈ (0, ε) such that

µ (Γ(σ, rσ)) = µ (B(σ, rσ)) > cg(rσ) and Γ(σ, rσ) ⊂ U .

Thus, A ⊂
∪

σ∈A Γ(σ, rσ) ⊂ U . Then, Proposition 2.1 (ii) asserts that the set of
all T (a)-balls is countable and Proposition 2.1 (iii) asserts that two T (a)-balls are
either contained one in the other or disjoint. Therefore, there exists I ⊂ N and
σn ∈ A, n ∈ I, such that the Γ(σn, rσn), n ∈ I, are pairwise disjoint and A ⊂∪

n∈I Γ(σn, rσn) ⊂ U . Moreover, by Proposition 2.1 (ii), diam(Γ(σn, rσn)) ≤ rσn .
Thus, we get

cH (ε)
g (A) ≤

∑
n∈I

c g
(
diam(Γ(σn, rσn))

)
≤
∑
n∈I

c g(rσn)

≤
∑
n∈I

µ
(
Γ(σn, rσn)

)
= µ

( ∪
n∈I

Γ(σn, rσn)
)
≤ µ(U) .

As ε → 0, it entails cHg(A) ≤ µ(U), for all open set U containing A. Since µ is
a finite Borel measure, it is outer-regular for the open subsets, which implies the
desired result. �

3. Preliminary results on the Brownian tree.

3.1. Basic facts on the Brownian excursion. We work under the excursion measure
N defined in the introduction and e denote the canonical excursion whose duration
is denoted by ζ (see (1.6)). We shall denote by (T , d, ρ) the compact rooted real
tree coded by e.
The branching property. Fix b ∈ (0,∞). We discuss here a decomposition of e in
terms of its excursions above level b; this yields a decomposition of the Brownian
tree called the branching property. To that end we first introduce the following
time change: for all t ∈ [0,∞), we set

τb(t) = inf
{
s ∈ [0,∞) :

∫ s

0

1{eu≤b}du > t
}

and ẽb(t) = e(τb(t)). (3.1)

Note that (ẽb(t))t∈[0,∞) codes the tree below b namely {σ ∈ T : d(ρ, σ) ≤ b}
that is the closed ball with center ρ and radius b. We denote by Gb, the sigma-
field generated by (ẽb(t))t∈[0,∞) and completed with the N-negligible sets. The

approximation (1.10) implies that Lb
ζ is Gb-measurable. Then denote by (αj , βj),
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j ∈ Jb, the connected components of the time-set {s ∈ [0,∞) : e(s) > b}. Namely,∪
j∈Jb

(αj , βj) = {s ∈ [0,∞) : e(s) > b} ,

and we call (αj , βj) the excursion intervals of e above level b. For all j ∈ Jb, we
next set

lbj = Lb
τb(αj)

and ∀s ∈ [0,∞), ebj(s) = e(αj+s)∧βj
− b .

Then, the (ebj)j∈Jb
are the excursions of e above level b. Recall from (1.7) and (1.8)

the notation Nb = N( · | sup e > b), that is a probability measure. The branching
property asserts the following: under Nb and conditionally on Gb, the measure

Mb(dl,de) =
∑
j∈Jb

δ(lbj ,ebj) (3.2)

is a Poisson point measure on [0, Lb
ζ ]×C0 with intensity 1[0,Lb

ζ ]
(l)dlN(de).

The above decomposition of e is interpreted in terms of the Brownian tree T as
follows. Recall that p : [0, ζ] → T stands for the canonical projection. Then for all
j ∈ Jb, we set

σj = p(αj) = p(βj) , T o,b
j = p

(
(αj , βj)

)
and T b

j = p
(
[αj , βj ]

)
.

Then, we easily check that the T o,b
j , j ∈ Jb, are the connected components of the

open subset {σ∈T : d(ρ, σ)>b} and that T o,b
j = T b

j \{σj}. Namely, the (Tj , d, σj),
j ∈ Jb are the subtrees above level b of T as introduced in Section 2.1. Moreover
note that for all j ∈ Jb, the rooted compact real tree (Tj , d, σj) is isometric to the
tree coded by the excursion ebj . We next use this and Proposition 2.1 to discuss the
balls in a fixed level of T .

To that end, we fix a, r ∈ (0,∞) such that a > r/2 and we conveniently set
b= a−r/2. Recall that T (a) = {σ ∈T : d(ρ, σ)= a} and that for all σ ∈T (a), we
have set Γ(σ, r)=T (a) ∩ B(σ, r) that is the ball in T (a) with center σ and radius
r. We also recall that Ba,r = {Γ(σ, r);σ∈T (a)} stands for the set of all T (a)-balls
with radius r. By Proposition 2.1, Ba,r is a finite set and that

Ba,r =
{
T (a) ∩ T b

j ; j∈Jb : h(T b
j ) ≥ r/2

}
,

where the trees (T b
j , d, σj), j∈Jb, are the subtrees of T above level b as previously

defined; here h(T b
j ) = supσ∈T b

j
d(σj , σ) stands for the total height of T b

j . Note that

h(T b
j ) = sup ebj that is maximum of the excursion corresponding to T b

j , as explained
above.

Then, we set Za,r = #Ba,r, that is the number of T (a)-ball with radius r.
Assume that Za,r ≥ 1. We then define the indices j1, . . . , jZa,r ∈ Jb by

{j1, . . . , jZa,r} =
{
j∈Jb : h(T b

j ) ≥ r/2
}

and αj1 < . . . < αjZa,r
.

and we set
∀i ∈ {1, . . . , Za,r}, Γi := T (a) ∩ T b

ji . (3.3)

Namely Ba,r =
{
Γi ; 1 ≤ i ≤ Za,r

}
is the set of the T (a)-balls with radius r listed

in their order of visit by the excursion e coding T .

Lemma 3.1. Let a, r ∈ (0,∞) such that a > r/2. Let
{
Γi ; 1 ≤ i ≤ Za,r

}
is the

set of the T (a)-balls with radius r listed in their order of visit as explained above.
Then the following holds true.
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(i) Under Na = N( · | sup e > a), Za,r has a geometric law with mean 2a/r.
Namely,

∀k ≥ 1, Na[Za,r = k] =
(
1− r

2a

)k−1 r

2a
.

(ii) For all k ≥ 1, under Na( · |Za,r=k), the r.v. (`a(Γi))1≤i≤k are independent
and exponentially distributed with mean r/2.

Proof. Let a ∈ (0,∞) and denote b = a−r/2. Let k ≥ 1 and F1, . . . Fk : C0 →
[0,∞) be measurable functionals. Recall from (1.7) that N(sup e ≥ r/2) = 2/r.
Then, the definition of the ji combined with the branching property and basic
results on Poisson point measures entail

Nb

[
1{Za,r=k}

∏
1≤i≤k

Fi(e
b
ji)
∣∣∣Gb

]
=

( 2rL
b
ζ)

k

k!
e−

2
rL

b
ζ

∏
1≤i≤k

Nr/2

[
Fi(e)

]
. (3.4)

Then recall (1.12) that implies that Lb
ζ under Nb is exponentially distributed

with mean b. Thus,

1

k!
Nb

[ ( 2
r
Lb
ζ

)k
e−

2
rL

b
ζ
]
=

( 2r b)
k

(1 + 2
r b)

k+1
=

r

2a

(
1− r

2a

)k
,

because b = a−r/2 and (1 + 2
r b)

−1 = r/(2a). It implies

Nb

[
1{Za,r=k}

∏
1≤i≤k

Fi(e
b
ji)
]
=

r

2a

(
1− r

2a

)k ∏
1≤i≤k

Nr/2

[
Fi(e)

]
.

Next observe that Nb-a.s. 1{sup e>a} = 1{Za,r≥1}. Thus, we get

Na

[
1{Za,r=k}

∏
1≤i≤k

Fi(e
b
ji)
]

=
a

b
Nb

[
1{Za,r=k}

∏
1≤i≤k

Fi(e
b
ji)
]

=
r

2a

(
1− r

2a

)k−1 ∏
1≤i≤k

Nr/2

(
Fi(e)

)
(3.5)

because a/b=(1− r
2a )

−1. Recall that (1.12) implies that under Nr/2, `
r/2(T )=L

r/2
ζ

is exponentially distributed with mean r/2. By taking Fi(e)=fi(L
r/2
ζ ) in (3.5) we

then get

Na

[
1{Za,r=k}

∏
1≤i≤k

fi
(
`a(Γi)

)]
=

r

2a

(
1− r

2a

)k−1∏
1≤i≤k

∫ ∞

0

fi(s)
2

r
e−

2
r sds ,

with entails the desired result. �
Ray-Knight theorem under N. We first recall the definition of Feller diffusion,
namely a Continuous States space Branching Process (CSBP) with branching mech-
anism ψ(λ) = λ2 (see ). Let x ∈ [0,∞) and let (Y x

a )a∈[0,∞) be a [0,∞)-valued con-
tinuous process defined on the probability space (Ω,F ,P). It is a Feller diffusion
with branching mechanism ψ(λ) = λ2 and initial value Y x

0 = x if it is a Markov
process such that

E
[
exp(−λY x

a+a′)
∣∣Y x

a

]
= exp

(
− Y x

a λ

1 + a′λ

)
, a, a′, λ ∈ [0,∞) ,

(see e.g. Le Gall (1999)). Recall notation Na = N(·
∣∣ sup e > a) and Ga for the

sigma-field generated by the excursion ẽa defined in (3.1). Recall that `a(T ) = La
ζ ,

the total mass of the local-time measure at level a, is Ga-measurable.
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We shall use the following statement of Ray-Knight theorem. Let a ∈ (0,∞).

(i) Na[exp(−λ`a(T ))] = 1
1+aλ .

(ii) Under Na and conditionally given Ga, the process (`a+a′
(T ))a′∈[0,∞) is

a Feller diffusion with branching mechanism ψ(λ) = λ2 and initial value
`a(T ).

This is an immediate consequence of the Ray-Knight theorem for standard Brown-
ian motion and of the Markov property under N : see Blumenthal (1992) III 3 and
VI 2.10.

Combined with the branching property, the above Ray-Knight theorem, has the
following consequence. Let us recall that we enumerate the T (a)-balls of Ba,r as
{Γi, 1 ≤ i ≤ Za,r} (see (3.3)). Let Γ such a T (a)-ball. For a′ ≥ 0, we define

Γa+a′
= {σ ∈ T (a+ a′) ∃σ′ ∈ Γ : σ′ ∈ Jρ, σK} , (3.6)

the set of vertices at level a + a′ that have an ancestor in Γ (notice that Γa = Γ).
The following lemma is a straightforward consequence of Ray-Knight theorem.

Lemma 3.2. Let a ∈ (0,∞), r ∈ [0, 2a]. Let {Γi, 1 ≤ i ≤ Za,r} the set of T (a)-balls

of radius r. Under Na conditionally on Ga, the processes
(
`a+a′

(Γa+a′

i ), a′ ≥ 0
)
,1≤

i ≤ Za,r, are independent Feller diffusions started at (`a(Γi)) , 1 ≤ i ≤ Za,r.

Proof. Recalling for b = a−r/2 the decomposition (3.3), we see that

∀i ∈ {1, . . . , Za,r}, Γa+a′

i := T (a+ a′) ∩ T b
ji . (3.7)

Hence, one can use (3.4), and the Ray-Knight theorem (see (ii) above) to get the
desired result. �
Spinal decomposition. We recall another decomposition of the Brownian tree called
spinal decomposition. This is a consequence of Bismut’s decomposition of the Brow-
nian excursion that we recall here.

Let X be a real valued process defined on (Ω,F ,P) such that ( 1√
2
Xt)t∈[0,∞)

is distributed as a standard Brownian motion with initial value 0. Let X ′ be an
independent copy of X on (Ω,F ,P). We fix a ∈ (0,∞) and we set

Ta = inf{t ∈ [0,∞) : Xt = −a} and T ′
a = inf{t ∈ [0,∞) : X ′

t = −a} .

We next set for any s ∈ [0,∞),

ěts = e(t−s)+ and êts = et+s .

Then Bismut’s identity (see Bismut (1985) or Le Gall (1993)) states that for any
non-negative measurable functional F on (C0)2,

N
[ ∫ ζ

0

dLa
t F
(
ět ; êt

)]
= E

[
F (a+X·∧Ta ; a+X ′

·∧T ′
a
)
]
. (3.8)

We derive from (3.8) an identity involving the excursions above the infimum of êt

and ět. To that end, we introduce the following. Let g : [0,∞) → [0,∞) with
compact support. We define a point measure N (g) as follows: set g(t) = inf [0,t] g
and denote by (lj , rj), j ∈ I(g) the excursion intervals of g − g away from 0 that
are the connected component of the open set {t ≥ 0 : g(t) − g(t) > 0}. For any

j ∈ I(g), set gj(s) = ((g − g)((lj + s) ∧ rj) , s ≥ 0) and denote hj := gj(lj) the
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height where the excursion gj starts. We then define N (g) as the point measure on
[0,∞)×C0 given by

N (g) =
∑

j∈I(g)

δ(hj ,gj) .

Then, for any t, a ∈ (0,∞),

Nt := N (ět) +N (êt) (3.9)

and

N ∗
a := N (a+X·∧Ta) +N (a+X ′

·∧T ′
a
) (3.10)

We deduce from (3.8) that for all any a and for all nonnegative measurable function
F on the set of positive measures on [0,∞)×C0, one has

N
[ ∫ ζ

0

dLa
t F
(
Nt

)]
= E

[
F (N ∗

a )
]

(3.11)

and as consequence of Itô’s decomposition of Brownian motion above its infimum,
N ∗

a is a Poisson point measure on [0,∞)×C0 with intensity 21[0,a](h)dhN(de).

Let us interpret this decomposition in terms of the Brownian tree. Choose t ∈
(0, ζ) such that et = a and set σ = p(t) ∈ T (namely σ ∈ T (a)). Then, the geodesic
[[ρ, σ]] is interpreted as the ancestral line of σ. Let us denote by T o

j , j ∈ J , the
connected components of the open set T \[[ρ, σ]] and denote by Tj the closure of T o

j .
Then, there exists a point σj ∈ [[ρ, σ]] such that Tj = {σj}∪T o

j . Recall notation Nt

from (3.9) and let us denote Nt =
∑

j∈It
δ(ht

j ,e
t,j). Recall also the definition (3.10)

of N ∗
a and denote N ∗

a =
∑

j∈I∗
a
δ(h∗

j ,e
∗j) . The specific coding of T by e entails that

for any j ∈ J there exists a unique j′ ∈ It such that d(ρ, σj) = htj′ and such that

the rooted compact real tree (Tj , d, σj) is isometric to the tree coded by et,j
′
.

Recall that p(t) = σ. We fix r, r′ ∈ [0, 2a) such that r′ ≤ r. We now compute
the mass of the ring B(σ, r) \ B(σ, r′) in terms of Nt. First, observe that for any
s ∈ [0, ζ] such that es = a, we have

r′ ≤ d(s, t) < r ⇐⇒ a− (r′/2) ≥ inf
u∈[s∧t,s∨t]

eu > a− (r/2) .

We then get

`a
(
B(σ, r)\B(σ, r′)

)
=
∑
j∈It

1(a− r
2 , a− r′

2 ](h
t
j)L

a−ht
j

ζt
j

(t, j) , (3.12)

where L
a−ht

j

ζt
j

(t, j) stands for the local time at level a− htj of the excursion et,j .

Then, for any a ∈ (0,∞) and any r, r′ ∈ (0, 2a) such that r′ ≤ r, we also set

Λa
r′,r =

∑
j∈I∗

a

1(a− r
2 , a− r′

2 ](h
∗
j )L

a−h∗
j

ζ∗
j

, (3.13)

where, L
a−h∗

j

ζ∗
j

stands for the local time at level a− h∗j of the excursion e∗j defined

in (3.10). Let us consider a ∈ (0,∞), n ∈ N∗ and (r1, r2, . . . , rn) such that the
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0 < rn < . . . < r2 < r1 < 2a. Then, (3.11) implies that for all non-negative
measurable function F on Rn−1

N
[ ∫

T
`a(dσ)F

(
`a
(
B(σ, rk)\B(σ, rk+1)

)
; 1≤k≤n−1

) ]
=

E
[
F
(
Λa
rk+1,rk

; 1≤k≤n−1
) ] (3.14)

On the right-hand-side, the dependency with respect to the level a is a bit artificial.
Indeed, for a ∈ (0,∞), the Poisson point measure N ∗

a (dhde) has its law invariant
under the transformation (h, e) 7→ (a − h, e). Thus, let us consider on (Ω,F ,P) a
new Poisson point measure M∗ =

∑
j∈I∗

δ(h∗
j ,e

∗
j )

with intensity 2dhN(de) (we abuse

notations and keep the notation (h∗j , e
∗
j ) for the atoms). We set

Λ∗
r′,r =

∑
j∈I∗

1[ r
′
2 , r

2 )
(h∗j )L

h∗
j

ζ∗
j
, (3.15)

where L
h∗
j

ζ∗
j
stands for the local time at height h∗j for the excursion e∗j . One can now

rewrite (3.14) as

N
[ ∫

T
`a(dσ)F

(
`a
(
B(σ, rk)\B(σ, rk+1)

)
; 1≤k≤n−1

) ]
=

= E
[
F
(
Λ∗
rk+1,rk

; 1≤k≤n−1
)]

(3.16)

The law of the Λ∗
r′,r is quite explicit as shown by the following lemma.

Lemma 3.3. Let 0≤rn≤rn−1≤ . . .≤r1 ≤ 2a. Then,

Λ∗
rn,rn−1

, Λ∗
rn−1,rn−2

, . . . , Λ∗
r2,r1

are independent. Moreover, for any 0≤r′≤r≤2a,

∀y ∈ (0,∞) P
(
Λ∗
r′,r > y

)
=

(
1− r′

r

)2
2y

r
e−2y/r +

(
1−

(r′
r

)2)
e−2y/r,

and P(Λ∗
r′,r = 0) = (r′/r)2.

Proof. The intervals [rk+1/2, rk/2) being pairwise disjoint, the independence of
the increments is a straightforward consequence of the properties the Poisson point
measure M∗. Using Campbell’s formula and (1.12), we compute, for all λ ≥ 0,

E
[
e−λΛ∗

2r′,2r

]
= exp

(
−
∫ r

r′
2dhN

[
1− e−λ`h(T )

])
= exp

(
−
∫ r

r′
2dh

λ

1 + hλ

)
=

(
1 + r′λ

1 + rλ

)2

.

Thus, Λ∗
2r′,2r

(law)
= X1 +X2, where X1 and X2 are i.i.d random variables where

E
[
e−λX1

]
=
r′

r
+

(
1− r′

r

)
1

1 + rλ
.
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Thus, X1 = 0 with probability r′/r and conditionally on being non-zero, it is
exponentially distributed with mean r. Thus, for y > 0,

P
(
Λ∗
2r′,2r > y

)
= 2P (X1 = 0; X2 > y) +P (X1 > 0 ; X2 > 0 ; X1 +X2 > y)

= 2
r′

r
P(X1 > y) +

(
1− r′

r

)2

P (Z > y) ,

where Z has law Gamma(2, 1/r). The result proceeds now from elementary com-
putations. �

3.2. Estimates. The following elementary computation is needed twice in our
proofs.

Lemma 3.4. Let (Xn)n≥1 a sequence of i.i.d real valued random variables on
(Ω,F ,P), with mean 0 and a moment of order 4. Let Z be a random variable
taking its values in N, independent of the sequence (Xn). Then

E
[
(X1 +X2 + · · ·+XZ)

4
]
≤ 3E[X4

1 ]E
[
Z2
]
.

Moreover, for X an arbitrary random variable with a fourth moment, the following
holds :

E
[
(X −E[X])

4
]
≤ 2E[X4].

Proof. One has

E
[
(X1 +X2 + · · ·+XZ)

4 | Z
]
=

∑
1≤i1,i2,i3,i4≤Z

E [Xi1Xi2Xi3Xi4 ] .

When (i1, i2, i3, i4) contains an index that is distinct of the three others, then the
contribution of the corresponding term will be null. Thus the latter mean equals
ZE[X4

1 ] + 3Z(Z−1)E[X2
1 ]

2 ≤ 3Z2E[X4
1 ] (using Jensen’s inequality). The second

statement follows from

E
[
(X −E[X])

4
]

= E
[
(X −E[X])

4
1{X≥E[X]}

]
+E

[
(X −E[X])

4
1{X<E[X]}

]
≤ E

[
X4
]
+E[X]4,

and using Jensen’s inequality. �

We explained in Section 3.1 the link between the process (`a(T ), a ∈ (0,∞)) and
the Feller diffusion, for which we provide here some basic estimates.

Lemma 3.5. Let (Y x
a )a≥0 be a Feller diffusion starting at x ≥ 0, defined on

(Ω,F ,P). For all x, y ∈ [0,∞), for all a ∈ (0,∞), the following inequalities hold :

(i) If y ≤ x, then P

(
inf

b∈[0,a]
Y x
b ≤ y

)
≤ exp

(
− 1

a (
√
x−√

y)2
)
.

(ii) If y ≥ x, then P

(
sup

b∈[0,a]

Y x
b ≥ y

)
≤ exp

(
− 1

a (
√
y −

√
x)2
)
.

Proof. Let us prove (i). Recall that for all x, b, λ ∈ [0,∞), E
[
e−λY x

b

]
=

exp
(
− λx

1+bλ

)
. Thus, for fixed a ∈ (0,∞), and for λ ∈ [0, 1a ), we set

∀b ∈ [0, a], M
(λ,x)
b := exp

(
− λY x

b

1− bλ

)
. (3.17)
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We stress that for b ∈ [0, a], one has 1− bλ ≥ 1− aλ > 0, and one can compute

E[M
(λ,x)
b ] = exp

(
− λ

1− bλ
x
/(

1 +
bλ

1− bλ

))
= e−λx.

Combined with the Markov property, this entails that (M
(λ,x)
b , b ∈ [0, a]) is a mar-

tingale. Moreover, on { inf
b∈[0,a]

Y x
b ≤ y}, one has inf

b∈[0,a]

λY x
b

1−bλ ≤ inf
b∈[0,a]

λY x
b

1−aλ ≤ λy
1−aλ .

Hence, the maximal inequality for sub-martingales entails

P

(
inf

b∈[0,a]
Y x
b ≤ y

)
≤ P

(
sup

b∈[0,a]

M
(λ,x)
b ≥ e−

λy
1−aλ

)

≤ e
λy

1−aλE
[
M (λ,x)

a

]
= exp

(
λy

1− aλ
− λx

)
.

The reader can check using elementary computations that the function λ 7→ λy
1−aλ −

λx has a negative minimum on (0, 1/a) at the value λ = 1
a

(
1−

√
y
x

)
, and this min-

imum is − 1
a (
√
x−√

y)2, which completes the proof.

In order to prove (ii), one could extend the definition of (M
(λ,x)
b , b ∈ [0, a]) for

λ ∈ (−1/a, 0). In what follows, we use a simpler argument. Let us begin with the
following remark: let b ∈ (0,∞), let E be a r.v. on (Ω,F ,P) that is exponentially
distributed with mean b, then for all λ ≥ 0, E[e−λE ] = 1

1+bλ , and this Laplace

transform remains finite for λ ∈ (−1/b, 0). Moreover, one can plainly check that

for x, b ∈ (0,∞), Y x
b has the same law as

N∑
i=1

Ei, where the Ei are independent copies

of E and N is an independent Poisson r.v. with mean x/b. Thus, one has

∀µ ∈ (0, 1/b), E
[
eµY

x
b

]
= exp

(
µx

1− µb

)
. (3.18)

The Feller diffusion (Y x
b , b ≥ 0) is a martingale, so by convexity (eµY

x
b , b ≥ 0) is a

submartingale. Thus, for all µ ∈ (0, 1/a), and y ≥ x ≥ 0, one has

P

(
sup

b∈[0,a]

Y x
b ≥ y

)
≤ P

(
sup

b∈[0,a]

eµY
x
b ≥ eµy

)

≤ e−µyE
[
eµY

x
a

]
= exp

(
µx

1− aµ
− µy

)
,

and the result follows by optimizing the same function as before. �

The next result is a corollary of Lemma 3.5 (ii).

Lemma 3.6. Let m ∈ (0, 1/2). For all y ∈ (0,∞),

N

(
sup

b∈[m,m−1]

`b(T ) > y

)
≤ (2/m) exp (−my/2) .

Proof. Let m ∈ (0, 1/2) and recall from (3.1) the definition of Gm. As recalled
in Section 3.1, under Nm, conditionally on Gm, the process (`b(T ), b ≥ m) is a
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Feller diffusion started at `m(T ). Hence, conditioning with respect to Gm and
using Lemma 3.5 (ii), we get

Nm

(
sup

b∈[m,m−1]

`b(T ) > y

)
≤ Nm

[
exp

(
−m

(√
y −

√
`m(T )

)2)]
.

Expanding (
√
u/2 −

√
2v)2, one shows that for all u, v ≥ 0, (

√
u−

√
v)

2 ≥ u/2 −

v. Thus, Nm

(
sup

b∈[m,m−1]

`m(T ) > y

)
≤ exp

(
−my

2

)
Nm

[
em`m(T )

]
. Recalling from

(1.12) that under Nm, `m(T ) is exponentially distributed with mean m, we get
Nm

[
em`m(T )

]
= (1−m2)−1 ≤ 2, because m < 1/2. This entails the desired result,

recalling that Nm(·) = mN
(
·1{h(T )>m}

)
and that the events {h(T ) > m} and

{`m(T ) > 0} are equal, up to a N negligible set. �
Estimates for small balls. We consider here a level a ∈ (0,∞) and recall that T (a)
is the a-level set of the Brownian tree T . If r ∈ [0, 2a], we recall from (2.2) the
notation Γ(σ, r) for the T (a)-ball of radius r and center σ ∈ T (a), the set of T (a)-
balls of radius r being denoted Ba,r. Let Γ be a T (a)-ball of radius r′, where
r′ ∈ [0, 2a]. From Proposition 2.1 (iii), we know that if r ∈ [r′, 2a], there exists a
unique T (a)-ball of radius r that contains Γ, and we shall denote this ”enlarged”
ball by

Γ[r] := Υ where Υ ∈ Ba,r and Γ ⊂ Υ. (3.19)

We consider positive real numbers r1 > r2 > . . . > rn > 0, and ε1 > . . . > εn−1 >
0, where n ∈ N∗. We set r = {r1, . . . , rn} and ε = {ε1, . . . , εn−1}. We shall say that
Γ, a T (a)-ball of radius rn, is (r, ε)-small if and only if for all 1 ≤ k ≤ n−1, the
enlarged ball of radius rk has a local time smaller than εk, namely

∀k ∈ {1, . . . , n−1} `a (Γ[rk]) ≤ εk. (3.20)

We denote by Sa,r,ε the total number of such (r, ε)-small balls at level a:

Sa,r,ε :=
∑

Γ∈Ba,rn

1{Γ is (r,ε)−small}. (3.21)

To control that number, we introduce

µ(r, ε) := N
[
Sr1/2,r,ε

]
. (3.22)

Let us stress that its definition does not depend on a.

Lemma 3.7. Let a ∈ (0,∞), r = {r1, . . . , rn}, and ε = {ε1, . . . , εn−1}, where
r1 > . . . > rn > 0, and ε1 > . . . > εn−1 > 0. There exists a constant c0 ∈ (0, 104]
such that if a/r1 > 1 and r1/rn > 2,

N
[
(Sa,r,ε − µ(r, ε)`a(T ))

4
]
≤ c0a

r21
r4n
.

Proof. Let a, r, ε as above. From Proposition 2.1 (iii), we know that the T (a)-balls
of radius rn are disjoint and that for all Υ ∈ Ba,rn , there exists a unique T (a)-ball
Γ ∈ Ba,r1 such that Υ ⊂ Γ. Let us enumerate Ba,r1 as {Γi, 1 ≤ i ≤ Za,r1}, and set

∀i∈{1 . . . Za,r1}, B(i)
a,rn ={Υ∈Ba,rn : Υ⊂Γi}

and S(i)
a,r,ε= #

{
Υ ∈ B(i)

a,rn : Υ is (r, ε)-small
}
.
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One has

Sa,r,ε − µ(r, ε)`a(T ) =

Za,r1∑
i=1

(
S(i)
a,r,ε − µ(r, ε)`a(Γi)

)
=:

Za,r1∑
i=1

Xi. (3.23)

Let us denote b = a − r1/2 and recall from (3.1) the definition of the sigma-
field Gb. Adapting the proof of Lemma 3.1, it is not difficult to see that under
Nb, conditionally on Gb, and conditionally on {Za,r1 = k}, the r.v. X1, . . . Xk

are independent and have the same law as Sr1/2,r,ε − µ(r, ε)`r1/2(T ) under Nr1/2.

Recalling from (1.12) that N
[
`r1/2(T )

]
= (2/r1)Nr1/2

[
`r1/2(T )

]
= 1, we see that

Nb[X1 | Gb] = Nr1/2

[
Sr1/2,r,ε − µ(r, ε)`r1/2(T )

]
= 0,

which explains the definition (3.22). We thus apply Lemma 3.4 to get from (3.23):

Nb

[
(Sa,r,ε − µ(r, ε)`a(T ))

4 | Gb

]
≤ 3Nr1/2

[
X4

1

]
Nb

[
Z2
a,r1 | Gb

]
. (3.24)

The second assertion in Lemma 3.4 entails

Nr1/2[X
4
1 ] = Nr1/2[Sr1/2,r,ε − µ(r, ε)`r1/2(T )] ≤ 2Nr1/2

[
S4
r1/2,r,ε

]
.

Moreover, we can use that Sr1/2,r,ε is smaller than Zr1/2,rn , the total number of
T (r1/2)-balls of radius rn which has under Nr1/2 a geometric distribution with
success probability rn/r1 < 1/2. Thus,

Nr1/2

[
X4

1

]
≤ 2Nr1/2

[
S4
r1/2,r,ε

]
≤ 2Nr1/2

[
Z4
r1/2,rn

]
≤ 48

1− rn/r1

(
r1
rn

)4

≤ 96

(
r1
rn

)4

.
(3.25)

In addition, according to the branching property, under Nb, conditionally on Gb,
Za,r1 is a Poisson variable with mean N (h(T ) > r1/2) `

b(T ) = (2/r1)`
b(T ). Thus,

Nb

[
Z2
a,r1

]
= (2/r1)Nb

[
`b(T )

]
+ (2/r1)

2Nb

[
`b(T )2

]
. (3.26)

We know from (1.12) under Nb, `
b(T ) has exponential law with mean b. Thus,

Nb

[
`b(T )

]
= b and Nb

[
`b(T )2

]
= 2b2. Recall that b = a− r1/2 ≤ a, so we

get (2/r1)Nb

[
`b(T )

]
≤ 2a

r1
≤ 2a2

r21
because we assumed that a/r1 > 1. Moreover

(2/r1)
2Nb

[
`b(T )2

]
= 8b2/r21 ≤ 8b2/r21. Thus Nb

[
Z2
a,r1

]
≤ 10a2/r21. Combined

with (3.24) and (3.25) it entails

Nb

[
(Sa,r,ε − µ(r, ε)`a(T ))

4
]
≤ c0a

2 r
2
1

r4n
,

with c0 a positive constant smaller than (1/2)104. This implies the desired result,
using that N (h(T ) > b) = 1/b ≤ 2/a. �

We state now the main technical Lemma of the paper. Let us recall from (3.22)
the definition of µ(r, ε). The proof of the lemma makes use of the spinal decom-
position described in Section 3.1. In particular, a geometric argument allows to
reduce the problem to the variables introduced in (3.15).
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Lemma 3.8. Let r = {r1, . . . , rn}, where r1 > . . . > rn > 0, and ε = {ε1, . . . , εn−1},
where ε1 > . . . > εn−1 > 0. The following inequality holds :

µ(r, ε) ≤ 5

rn

√√√√n−1∏
k=1

P
(
Λ∗
rk+1,rk

≤ εk

)
. (3.27)

Proof. Let r = {r1, . . . , rn} and {ε1, . . . εn−1} as above. In that proof, we denote,
for convenience, b = r1/2; hence, a dependency with respect to b is actually a
dependency with respect to r. Let us consider Γ a T (b)-ball of radius rn and
recall the notation (3.19). The ball Γ is (r, ε)-small iff (3.20) holds. But, for all
σ ∈ Γ, k ∈ J1, n−1K,

Γ[rk] = Γ(σ, rk) ⊃ Γ(σ, rk) \ Γ(σ, rk+1).

Thus, if Γ is (r, ε)-small, then all the vertices in Γ belong to the set

S (r, ε) :=
{
σ ∈ T (b) : ∀k ∈ {1 . . . n−1} `b (Γ(σ, rk) \ Γ(σ, rk+1)) ≤ εk

}
. (3.28)

The last set is easy to handle using the spinal decomposition. Indeed, according to
(3.16) and the independence stated in Lemma 3.3, one has

ν(r, ε) := N

[∫
`b(dσ)1{σ∈S (r,ε)}

]
=

n−1∏
k=1

P
(
Λ∗
rk+1,rk

≤ εk

)
. (3.29)

To relate µ(r, ε) and ν(r, ε), one can write

1{Γ is (r,ε)−small} ≤ 1{`b(Γ)≤rn
√

ν(r,ε)} +
`b(Γ)

rn
√
ν(r, ε)

1{Γ is (r,ε)−small}. (3.30)

Moreover, (3.28) entails that `b(Γ)1{Γ is (r,ε)−small} ≤
∫
Γ
`b(dσ)1{σ∈S (r,ε)}. Recall

now from Proposition 2.1 (i) that the balls of the set Bb,rn are pairwise disjoint.
Summing in (3.30) over this set entails

Sb,r,ε ≤
∑

Γ∈Bb,rn

1{
`b(Γ)≤rn

√
ν(r,ε)

} +

∫
`b(dσ)1{σ∈S (r,ε)}

rn
√
ν(r, ε)

. (3.31)

Now, recalling Lemma 3.1, we compute

Nb

 ∑
Γ∈Bb,rn

1{
`b(Γ)≤rn

√
ν(r,ε)

}
 = Nb [Zb,rn ]

(
1− exp

(
−(2/rn)rn

√
ν(r, ε)

))
≤ r1
rn

2
√
ν(r, ε),

so theN-measure of the first term in (3.31) is smaller than 2b−1r1
rn

√
ν(r, ε). Recalling

that b = r1/2, we get that the latter equals 4
rn

√
ν(r, ε). Moreover, by the mere

definition (3.29), the N-measure of the second term in (3.31) equals 1
rn

√
ν(r, ε), so

the first inequality is checked. �
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4. Proof of Theorem 1.1.

The proof of Theorem 1.1 will combine the following two theorems.

Theorem 4.1. Let κ ∈ ( 12 ,∞) and m ∈ (0, 12 ). Then, there exists a Borel subset

V = V(κ,m) ⊂ C0 such that N
(
C0 \V

)
= 0 and such that

on V, for all Borel subset A ⊂ T , ∀a ∈ [m,m−1], `a(A) ≤ κHg (A ∩ T (a)) .

For all a, α ∈ (0,∞), let us set

∆α
a :=

{
σ ∈ T (a) : lim sup

r→0

`a (B(σ, r))

g(r)
< α

}
. (4.1)

Theorem 4.2. Let α ∈ (0, 12 ) and m ∈ (0, 1/2). Then, there exists a Borel subset

V′ = V′(α,m) ⊂ C0 such that N
(
C0 \V′) = 0 and such that

on V′, ∀a ∈ [m,m−1], Hg (∆
α
a ) = 0.

The proofs of Theorem 4.1 and 4.2 share a common strategy, taken from Perkins
(1988, 1989). We need to control the mass, or the number of ”bad” T (a)-balls
where ”bad” means too large or too small. And we want to do it uniformly for all
levels a. This problem will be linked with a discrete one using a finite grid, and
the measure or the number of bad T (a)-balls will be compared with a convenient
multiple of `a(T ), the total mass at level a.

4.1. Proof of Theorem 4.1.

4.1.1. Large balls. Let us fix a level a ∈ (0,∞), and recall from Section 3.1 the
definition of the sigma-field Ga, generated by the excursion below level a. We also
recall the definition of T (a)-balls (2.2). We fix a threshold y ∈ (0,∞) and we
consider the following set of ”large” points on T (a) :

La,r,y = {σ ∈ T (a) : `a(Γ(σ, r)) > y}. (4.2)

According to Lemma 3.1, the ”total large mass”

`a (La,r,y) =
∑

Γ∈Ba,r

`a(Γ)1{`a(Γ)>y}

is Ga-measurable.

Lemma 4.3. For all a, l, y, r, δ ∈ (0,∞), for all c ∈ (1,∞),

N
(
`a
(
La,r,y/c

)
≤ l ; sup

b∈[a,a+δ]

`b
(
Lb,r,y

)
> 4l

)
≤1

a
exp (−l/δ)

+
2

r
exp

(
−(1−c−1/2)2y/δ

)
.

Proof. Let a, l, y, r, δ ∈ (0,∞), where r ≤ 2a, and c ∈ (1,∞). We define A0, a
Borel subset of C0, as the event

A0 =

{
`a
(
La,r,y/c

)
≤ l ; sup

b∈[a,a+δ]

`b (Lb,r,y) > 4l

}
. (4.3)

We recall from Proposition 2.1 that Ba,r = {Γi, 1 ≤ i ≤ Za,r} is the collection
of T (a)-balls of radius r at level a. For Γ a T (a)-ball and b ∈ [a,∞), we defined



Unif. Hausdorff measure of the level sets of the Brownian tree. 905

Γb = {σ ∈ T (b) : ∃σ′ ∈ Γ, σ′ ∈ Jρ, σK} as the set of vertices at level b having an
ancestor in Γ (see (3.7) for details). Next we define A1 a Borel subset of C0 as the
event

A1 :=

{
∃i ∈ {1, . . . , Za,r}, `a(Γi) ≤ y/c and sup

b∈[a,a+δ]

`b
(
Γb
i

)
> y

}
, (4.4)

and set

Lb
a,r,y/c :=

∪
i∈{1,...,Za,r}
`a(Γi)>y/c

Γb
i ⊂ T (b), (4.5)

which is the set of all vertices at level b having a ”large” ancestor at level a. We
prove the following :

on C0 \A1, ∀b ∈ [a, a+ δ] Lb,r,y ⊂ Lb
a,r,y/c. (4.6)

Proof of (4.6). Let b ∈ [a, a + δ] and let σ ∈ Lb,r,y. Thus, the ball Γ := Γ(σ, r) ∈
Bb,r is such that `b(Γ) ≥ y. Let σa the unique ancestor of σ at level a, namely
d(ρ, σa) = a and σa ∈ Jρ, σK. We set Υ := Γ(σa, r) ∈ Ba,r and we first claim that
Γ ⊂ Υb. Indeed, let σ′ ∈ Γ (so d(σ, σ′) < r) and let σ′

a the unique ancestor of
σ′ at level a. Recalling that σ ∧ σ′ stands for the most recent common ancestor
of σ and σ′, one get d(ρ, σ ∧ σ′) = 1

2 (2b− d(σ, σ′)). Then two cases may occur.

First, if d(σ, σ′) ≤ 2(b − a), then d(ρ, σ ∧ σ′) ≥ a, thus σa = σ′
a and σ′ ∈ Υb.

If d(σ, σ′) ∈ (2(b − a), r). Then, one has d(ρ, σ ∧ σ′) < a. We deduce from that
inequality that σa 6= σ′

a and that σa ∧ σ′
a = σ ∧ σ′. Hence,

d(σa, σ
′
a) = 2a− 2d (ρ, σa ∧ σ′

a)

= 2b− 2d (ρ, σ ∧ σ′) + 2a− 2b

= d(σ, σ′)− 2(b− a) < r.

Thus σ′
a ∈ Υ and σ′ ∈ Υb, which ends the proof of the inclusion Γ ⊂ Υb. We get

that for all b ∈ [a, a + δ], `b(Υb) ≥ `b(Γ) > y. On C0 \ A1, one cannot have both
`a(Υ) ≤ y/c and sup

b∈[a,a+δ]

`b
(
Υb
)
> y, which entails that here, `a(Υ) > y/c.

To sum up, on C0 \ A1, a vertex σ, taken in Lb,r,y, has an ancestor in a ball Υ,
such that `a(Υ) > y/c. Thus, this ancestor belongs to La,r,y/c and σ ∈ Lb

a,r,y/c.

End of the proof of (4.6).

Let us finish the proof of the lemma. From (4.6), we see that

N(A0) ≤ N (A1) + N
(
A0 ∩ (C0 \A1)

)
≤ N (A1) + N (A2) , (4.7)

where A2 is defined by

A2 :=

{
`a
(
La,r,y/c

)
≤ l ; sup

b∈[a,a+δ]

`b
(
Lb
a,r,y/c

)
≥ 4l

}
. (4.8)

We control N(A1) and N(A2) thanks to Lemma 3.5 (ii). Indeed, Lemma 3.2

states that under Na, conditionally on Ga, the processes
(
`a+a′

(Γa+a′

i ), a′ ≥ 0
)
,1 ≤
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i ≤ Za,r are independent Feller diffusions started at `a(Γi), 1 ≤ i ≤ Za,r. Sub-
additivity and Lemma 3.5 (ii) entails

N (A1) ≤
1

a
Na

Za,r∑
i=1

1{`a(Γi)≤y/c} exp

(
−δ−1

(√
y −

√
`a(Γi)

)2)
≤ 1

a
exp

(
−(1−c−1/2)2δ−1y

)
Na[Za,r] =

2

r
exp

(
−(1−c−1/2)2δ−1y

)
. (4.9)

Since `b
(
Lb
a,r,y/c

)
=
∑Za,r

i=1 1{`a(Γi)>y/c}`
b(Γb

i ), it implies that
(
`a+a′

(La+a′

a,r,y/c), a
′ ≥

0
)
is a Feller diffusion started at `a

(
La,r,y/c

)
. Thus, we use Lemma 3.5 (ii) again

to get

N (A2) ≤
1

a
Na

[
1{`a(La,r,y/c)≤l} exp

(
−δ−1

(
2
√
l −
√
`a
(
La,r,y/c

))2
)]

≤ 1

a
exp (−l/δ) . (4.10)

Hence, the desired result follows from (4.7), (4.9), and (4.10). �

Recall that g(r) = r log log(1/r). We fix κ ∈ ( 12 ,∞), and we shall apply the

previous lemma with y = κg(r). The next lemma allows `a
(
La,r,κg(r)

)
to be con-

trolled uniformly for all levels a. Its proof involves a discrete grid : for m < 1/2
and r ∈ (0,∞), we set

G(r,m) :=
{
m+ kδr, k ∈ N∗

}
∩ [m,m−1], (4.11)

where δr is the mesh of the grid, defined by

δr = r3/2. (4.12)

Note that G(r,m) contains less than (mδr)
−1 points.

Lemma 4.4. Let m ∈ (0, 1/2). Let κ ∈ ( 12 ,∞) and β ∈ (1,∞) such that 2κ−β > 0.
There exists a constant r1 ∈ (0,∞) only depending on κ, β,m, such that

∀r ∈ (0, r1), N

(
sup

b∈[m,m−1]

`b
(
Lb,r,κg(r)

)
> 4 log(1/r)−β

)
≤ log(1/r)−2. (4.13)

Proof. In what follows, we denote T0 the left-hand-side of (4.13). Let us consider
c ∈ (1,∞) such that 2κ/c− β > 0. Recall that G(r,m) stands for the grid defined
by (4.11). Then we have T0 ≤ T1 + T2, where:

T1 = N

(
sup

a∈G(r,m)

`a
(
La,r,κg(r)/c

)
≤ log(1/r)−β ;

sup
b∈[m,m−1]

`b
(
Lb,r,κg(r)

)
≥ 4 log(1/r)−β

)
,

T2 = N

(
sup

a∈G(r,m)

`a
(
La,r,κg(r)/c

)
> log(1/r)−β

)
.



Unif. Hausdorff measure of the level sets of the Brownian tree. 907

Using sub-additivity and Lemma 4.3, one gets

T1 = N
( ∪

a∈G(r,m)

{
`a
(
La,r,κg(r)/c

)
≤ log(1/r)−β ;

sup
b∈[a,a+δr]

`b
(
Lb,r,κg(r)

)
≥ 4 log(1/r)−β

})
≤ (mδr)

−1 sup
a∈G(r,m)

N
(
`a
(
La,r,κg(r)/c

)
≤ log(1/r)−β ;

sup
b∈[a,a+δr]

`b
(
Lb,r,κg(r)

)
≥ 4 log(1/r)−β

)
≤ (mδr)

−1

(
m−1 exp

(
−δ−1

r log(1/r)−β
)

+
2

r
exp

(
−(1−c−1/2)2κδ−1

r g(r)
))

.

One has δ−1
r log(1/r)−β ≥ r−1 and δ−1

r g(r) ≥ r−1/2 for all r sufficiently small. Thus,
for example, T1 ≤ exp(−r−1/4) ≤ (1/2) log(1/r)−2 for all r sufficiently small.

Let us bound T2. To that end, we set

λ(r, κ, c) := (2/r)E
[
E1{E>κg(r)/c}

]
, (4.14)

where E is a r.v. on (Ω,F ,P) exponentially distributed with mean r/2. For fixed
κ and c, elementary computations entail

λ(r, κ, c) = (2/r)P (E > κg(r)/c)E[κg(r)/c+ E ]
= (2/r) exp (−2(κ/c) log log 1/r) ((κ/c)r log log 1/r + r/2)

∼
r→0

(2κ/c) log(1/r)−2κ/c log log 1/r. (4.15)

We set T2 ≤ T3 + T4, where

T3 = N

(
sup

a∈G(r,m)

∣∣`a (La,r,κg(r)/c

)
− λ(r, κ, c)`a(T )

∣∣ > 1

2
log(1/r)−β

)
,

T4 = N

(
sup

a∈G(r,m)

λ(r, κ, c)`a(T ) >
1

2
log(1/r)−β

)
.

By sub-additivity and a Markov inequality involving a moment of order 4, we get

T3 ≤ (mδr)
−1 sup

a∈G(r,m)

N

(∣∣`a (La,r,κg(r)/c

)
− λ(r, κ, c)`a(T )

∣∣ > 1

2
log(1/r)−β

)
≤ (mδr)

−124 log(1/r)4β sup
a∈G(r,m)

a−1Na

[(
`a
(
La,r,κg(r)/c

)
− λ(r, κ, c)`a(T )

)4]
.

(4.16)

Recall notation Ba,r = {Γi , 1≤ i≤Za,r} for the set of T (a)-balls with radius r.
Then, consider the decomposition

`a
(
La,r,κg(r)/c

)
− λ(r, κ, c)`a(T ) =

Za,r∑
i=1

Xi,

where Xi := `a(Γi)
(
1{`a(Γi)≥κg(r)/c} − λ(r, κ, c)

)
. Using Lemma 3.1, we see that

under Na, conditionally on Za,r, the random variables `a(Γ1), . . . `
a(ΓZa,r ) are inde-

pendent and exponentially distributed with mean r/2. Thus, the definition (4.14)
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of λ(r, κ, c) entails that under Na, conditionally on Za,r, the r.v. X1, . . . XZa,r are
i.i.d., with mean 0 and a moment of order 4. Then, by Lemma 3.4,

Na


Za,r∑

i=1

Xi

4
 ≤ 3Na(X

4
1 )Na

[
Z2
a,r

]
. (4.17)

From (4.15), we know that λ(r, κ, c)
r→0−→ 0, so for all sufficiently small r, λ(r, κ, c) ≤

1/2 and |X1| ≤ `a(Γ1), which implies Na[X
4
1 ] ≤ Na[`

a(Γ1)
4] = 3

2r
4 for all suf-

ficiently small r. Moreover, Za,r is under Na a geometric r.v. with ”success”
probability p = r/2a (see Lemma 3.1), thus Na

[
Z2
a,r

]
= (2 − p)/p2 ≤ 8a2/r2.

Combining (4.16) and (4.17), we get, for all sufficiently small r,

T3 ≤ 3.24.(mδr)
−1 log(1/r)4β sup

a∈G(r,m)

a−1
3r4

2

8a2

r2
≤ 103m−2 log(1/r)4βr1/2,

(4.18)
recalling that δr = r3/2. Observe now that the right hand side is smaller than
(1/4) log(1/r)−2 for all sufficiently small r.

For the term T4, Lemma 3.6 entails

T4 ≤ N

(
sup

b∈[m,m−1]

`b (T ) >
1

2
λ(r, κ, c)−1 log(1/r)−β

)
≤ (2/m) exp

(
−(m/4)λ(r, κ, c)−1 log(1/r)−β

)
. (4.19)

By (4.15),

λ(r, κ, c)−1 log(1/r)−β ∼
r→0

c

2κ
log(1/r)2κ/c−β log log(1/r)−1.

Recall that 2κ/c−β > 0 and take ε ∈ (0, 2κ/c−β). Thus, for all sufficiently small
r,

T4 ≤ (2/m) exp (− log(1/r)ε) ,

which is smaller than (1/4) log(1/r)−2 for all sufficiently small r. �

4.1.2. Proof of Theorem 4.1. Let κ ∈ (1/2,∞), and letm ∈ (0, 1/2). Let β ∈ (1,∞)
such that 2κ− β > 0. For all a ∈ (0,∞), y ∈ (1,∞) recall from (4.1) the definition
:

∆yκ
a =

{
σ ∈ T (a) : lim sup

r→0

`a(B(σ, r))

g(r)
< yκ

}
. (4.20)

For any p ∈ N, set rp := y−p. By Lemma 4.4, for all sufficiently large p,

N

(
sup

a∈[m,m−1]

`a
(
La,rp,κg(rp)

)
> 4 log(1/rp)

−β

)
≤ log(1/rp)

−2 = log(y)−2p−2,

(4.21)
whose sum over p is finite. By the Borel Cantelli lemma,

N-a.e., for all sufficiently large p, sup
a∈[m,m−1]

`a
(
La,rp,κg(rp)

)
≤ 4 log(1/rp)

−β .

(4.22)
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Moreover, log(1/rp)
−β = log(y)−βp−β , and recall that β > 1. Thus, (4.22) entails

that there exists a Borel subset Vy ⊂ C0, such that N(C0 \Vy) = 0, and on Vy:

∀a ∈ [m,m−1],

∞∑
p=1

`a
(
La,rp,κg(rp)

)
=

∞∑
p=1

`a ({σ : `a(B(σ, rp))>κg(rp)})<∞.

We can apply again the Borel-Cantelli Lemma, to the finite measures `a to get
that,

on Vy ∀a ∈ [m,m−1], `a(dσ)-a.e. ∃p0(a, σ),

∀p ≥ p0(a, σ),
`a(B(σ, rp))

g(rp)
≤ κ.

(4.23)

If u ∈ (rp+1, rp], one has `a(B(σ,u))
g(u) <

`a(B(σ,rp))
g(rp+1)

≤ y
`a(B(σ,rp))

g(rp)
. Combined with

(4.23), this entails that on Vy, for all a in [m,m−1], for `a-almost every σ in T (a),
lim supr→0 `

a(B(σ, r))/g(r) < yκ. This can be rewritten in

on Vy, ∀a ∈ [m,m−1], `a (T (a) \∆yκ
a ) = 0. (4.24)

Now set V =
∩
{Vy; y > 1; y ∈ Q}. Clearly, N(C0\V) = 0 and by monotonicity,

for all κ′ ∈ (κ,∞), T (a) \∆κ′

a ⊂
∪

y>1;y∈Q
{T (a) \∆yκ

a }. It follows easily from (4.24)

that

on V, ∀a ∈ [m,m−1], ∀κ′ ∈ (κ,∞) `a
(
T (a) \∆κ′

a

)
= 0. (4.25)

Thus, using Lemma 2.2, we get :

on V ∀A Borel subset of T ∀a ∈ [m,m−1] ∀κ′ ∈ (κ,∞)

`a (A) = `a
(
A ∩∆κ′

a

)
≤ κ′Hg

(
A ∩∆κ′

a

)
≤ κ′Hg (A ∩ T (a)) .

This ends the proof of Theorem 4.1 letting κ′ ↘ κ.

4.2. Proof of Theorem 4.2.

4.2.1. Small balls. For given level a ∈ (0,∞) and r ∈ (0,∞) we recall the notation
Ba,r for the set of T (a)-balls of radius r. We recall from (3.19) that for r ≥ r′ > 0,
a ball Γ ∈ Ba,r′ is contained in a unique ball in Ba,r, denoted Γ[r]. Let r =
(r1, . . . , rn) and ε = (ε1, . . . , εn−1), where the ri and the εi are strictly decreasing.
Recall from (3.20) that Γ, a T (a)-ball of radius rn is (r, ε)-small iff

∀k ∈ J1, n−1K `a (Γ[rk]) ≤ εk.

The total number of (r, ε)-small balls at level a is denoted by Sa,r,ε (see (3.21)).
For u ∈ (0,∞), we write ur = (ur1, . . . , urn). We recall from (3.6) the following
notation : if Γ is a T (a)-ball, then, for all b ≥ a, Γb is the subset of all the vertices
in T (b) having an ancestor in Γ. Namely, Γb = {σ ∈ T (b), ∃σ′ ∈ Γ : σ′ ∈ Jρ, σK}.
Lemma 4.5. Let a, δ ∈ (0,∞), and n ≥ 2. Let r = (r1, . . . , rn) and ε =
(ε1, . . . , εn−1), where the ri and the εi are strictly decreasing. Let c ∈ (1, 2),
α ∈ (0, 1/2) and α̃ ∈ (α, 1/2). If δ < c−1

2c rn, then
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N

(
sup

b∈[a,a+δ]

Sb,r,αε > Sa,c−1r,α̃ε

)
≤ 4n

rn
exp

(
−
(√

α̃−
√
α
)2
εn−1/δ

)
.

Proof. Let us denote B0 =
{
supb∈[a,a+δ] Sb,r,αε > Sa,c−1r,α̃ε

}
. Next, we define the

event B1 by

B1 =
{
∃k∈{1 . . . , n− 1}, ∃Γ∈Ba,rk/c : `a(Γ) ≥ α̃εk and inf

b∈[a,a+δ]
`b(Γb)<αεk

}
.

(4.26)
We will prove that B0 ⊂ B1, that is to say

on C0 \B1, sup
b∈[a,a+δ]

Sb,r,αε ≤ Sa,c−1r,α̃ε. (4.27)

Proof of (4.27). We work deterministically on C0\B1. The inequality (4.27) follows
from the following claim.

For every b ∈ [a, a+ δ], for every Γ, a T (b)-ball of radius rn which is (r, αε)-small,
there exists Υ a T (a)-ball of radius rn/c such that Υ is (c−1r, α̃ε)-small and

Υb ⊂ Γ.

Assume that the latter is true. Then, to any (r, αε)-small ball at level b corresponds
a (c−1r, α̃ε)-small ball at level a and the correspondence is injective. Summing over
all T (b)-balls, we obtain (4.27).
Now let b ∈ [a, a+ δ] and Γ ∈ Bb,rn such that Γ is (r, αε)-small. Let σ ∈ Γ and let
σa its unique ancestor at level a. Namely σa ∈ T (a) and σa ∈ Jρ, σK. We denote
Υ = Γ(σa, rn/c) ∈ Ba,rn/c the T (a)-ball of radius rn/c that contains σa. We claim

that Υ is (c−1r, α̃ε)-small and that Υb ⊂ Γ. To prove this, we show

∀k ∈ {1, . . . , n} (Υ[rk/c])
b ⊂ Γ[rk]. (4.28)

Let k ∈ {1, . . . , n} and let γ ∈ (Υ[rk/c])
b
. Its unique ancestor at level a, denoted

γa, is such that γa ∈ Υ[rk/c]. Two cases may occur. First, if d(σ, γ) ≤ 2(b − a),
then we have 2(b − a) ≤ 2δ < c−1

c rn < rn ≤ rk. The other case corresponds to

d(σ, γ) > 2(b − a). Then d(ρ, σ ∧ γ) = 1
2 (2b− d(σ, γ)) < a. Thus, σ ∧ γ = σa ∧ γa

and we have

d(σ, γ) = 2b− 2d(ρ, σ ∧ γ)
= 2a− 2d(ρ, σa ∧ γa) + 2b− 2a

≤ d(σa, γa) + 2δ

<
rk
c

+
c− 1

c
rn ≤ rk,

where we used in the last line that σa ∈ Υ ⊂ Υ[rk/c]. In both cases, d(σ, γ) < rk
so γ ∈ Γ(σ, rk) = Γ[rk], the last equality being a consequence of Proposition 2.1
(ii), and the definition of Γ = Γ(σ, rn). Thus, (4.28) is proved and it implies

∀k ∈ {1 . . . n−1} `b
(
(Υ[rk/c])

b
)
≤ `b (Γ[rk]) ≤ αεk,

which, on C0 \B1, implies

∀k ∈ {1 . . . n−1} `a (Υ[rk/c]) ≤ α̃εk.

This entails that Υ is (c−1r, α̃ε)-small. The inclusion Υb ⊂ Γ was proved at line
(4.28) with k = n because Υ = Υ[rn/c] ⊂ Γ[rn] = Γ.
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End of the proof of (4.27)

As in the proof of Lemma 4.3, we can use the fact that underNa, conditionally on

Ga, if Γ is a T (a)-ball, then the process
{
`a+a′

(Γa+a′
), a′ ≥ 0

}
is a Feller diffusion

started at `a(Γ). Using sub-additivity and Lemma 3.5 (i), we get

N (B1) ≤
n−1∑
k=1

1

a
Na

Za,rk/c∑
i=1

1{`a(Γi)≥α̃εk} exp

(
−δ−1

(√
`a(Γi)−

√
αεk

)2)
(4.29)

≤ 1

a
exp

(
−δ−1

(√
α̃εk −

√
αεk

)2) n−1∑
k=1

Na

[
Za,rk/c

]
(4.30)

The proof is completed recalling that for all k ∈ {1 . . . n−1}, εk ≤ εn−1, and that,
by Lemma 3.1, Na

[
Za,rk/c

]
= 2a

rk/c
≤ 2ac

rn
≤ 4a

rn
. �

Let us introduce

∀j ∈ N, rj = 2−j and εj = g(rj) (4.31)

and then

∀p ∈ N, jp=b(4/3)pc, r(p)=(rj ; jp ≤ j ≤ jp+1−1) and

ε(p) = (εj ; jp≤j <jp+1−1).
(4.32)

Let m ∈ (0, 1/2), we also introduce the following discrete grid

G′(p,m) := {m+ kδp, k ∈ N∗} ∩ [m,m−1], (4.33)

where δp is the mesh of the grid, given by

δp = r
5/4
jp+1

. (4.34)

Note that G′(p,m) contains less than (mδp)
−1 points.

Lemma 4.6. Let α ∈ (0, 1/2), m ∈ (0, 1/2). For p ∈ N, denote up :=

g
(
rjp+1

)−1
p−2. Then there exists p0 ∈ N only depending on α,m such that for

all p ≥ p0,

N

(
sup

b∈[m,m−1]

Sb,r(p),αε(p) > up

)
≤ p−2. (4.35)

Proof. Let α̃ ∈ (α, 1/2) and c in (1,∞) such that 2cα̃ ∈ (0, 1). In what follows, we
denote T ′

0 the left-hand-side of (4.35). Observe that T ′
0 ≤ T ′

1 + T ′
2, where we have

set

T ′
1 = N

(
sup

a∈G′(p,m)

Sa,c−1r(p),α̃ε(p) ≤ up ; sup
b∈[m,m−1]

Sb,r(p),αε(p) > up

)
,

T ′
2 = N

(
sup

a∈G′(p,m)

Sa,c−1r(p),α̃ε(p) > up

)
.
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Using sub-additivity and Lemma 4.5, we get

T ′
1 ≤ N

 ∪
a∈G′(p,m)

{
sup

b∈[a,a+δp]

Sb,r(p),αε(p) > Sa,c−1r(p),α̃ε(p)

}
≤ (mδp)

−1 sup
a∈G′(p,m)

N

(
sup

b∈[a,a+δp]

Sb,r(p),αε(p) > Sa,c−1r(p),α̃ε(p)

)

≤ (mδp)
−1 4(jp+1 − jp)

r(jp+1)
exp

(
−
(√

α̃−
√
α
)2
δ−1p g(r(jp+1−2))

)
.

One has δ−1p g(r(jp+1−2)) ≥ δ−1p g(r(jp+1)) = r(jp+1)
−1/4 log log 1/r(jp+1), which im-

plies that T ′
1 is smaller than (1/2)p−2, for all p sufficiently large (it is obviously not

a sharp bound).

Recalling the definitions (3.22), we set

µp = µ(c−1r(p), α̃ε(p)) = N
(
Sr(jp)/(2c),c−1r(p),α̃ε(p)

)
. (4.36)

We will use that T ′
2 ≤ T ′

3 + T ′
4, where

T ′
3 = N

(
sup

a∈G′(p,m)

|Sa,c−1r(p),α̃ε(p) − µp`
a (T )| > up/2

)
,

T ′
4 = N

(
sup

a∈G′(p,m)

µp`
a (T ) > up/2

)
.

By sub-additivity and a Markov inequality involving a moment of order 4, we get

T ′
3 ≤ (mδp)

−1 sup
a∈G′(p,m)

N
(
|Sa,c−1r(p),α̃ε(p) − µp`

a (T )| > up/2
)

≤ (mδp)
−124u−4p sup

a∈G′(p,m)

N
[(
Sa,c−1r(p),α̃ε(p) − µp`

a (T )
)4]

. (4.37)

We want to apply Lemma 3.7 with r = c−1r(p) and ε = α̃ε(p). Thus, recalling (4.31)
and (4.32), we check that for all sufficiently large p, m/r(jp) > 1 and r(jp)/r(jp+1−
1) > 2. Recalling that c0 ∈ (0, 104] is the universal constant given by Lemma 3.7,
we get from (4.37)

T ′
3 ≤ (mδp)

−124u−4p sup
a∈G′(p,m)

c0a
r(jp)

2

r(jp+1−1)4
≤ 24c0m

−2 r(jp)
2

δpu4pr(jp+1)4
. (4.38)

Recall that up = g(r(jp+1))
−1p−2, and by (4.31) and (4.32), we get

log log(1/r(jp)) ∼
p→∞

p log(4/3). Hence, up ≥ p−3r(jp+1)
−1 and (4.38) implies

T ′
3 ≤ 24c0m

−2p12
r(jp)

2����r(jp+1)
4

r(jp+1)5/4����r(jp+1)
4 . (4.39)

Now, one can plainly check that
r(jp)

2

r(jp+1)5/4
is smaller than r(jp)

1/3. Thus, T ′
3 is

smaller than (1/4)p−2 for all p sufficiently large.

For the term T ′
4, we use Lemma 3.6 to obtain

T ′
4 ≤ (2/m) exp

(
−(m/4)upµ

−1
p

)
. (4.40)
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Recalling (4.36) and Lemma 3.8, we get that for all p,

µp ≤ 5

r(jp+1)

jp+1−2∏
j=jp

P

(
Λ∗
rj+1/c,rj/c

≤ α̃rj log log(1/rj)

)1/2

(4.41)

We want to get an lower bound of upµ
−1
p , so we compute an upper bound for u−1

p µp.

Recalling that up ≥ p−3r(jp+1)
−1, one has

u−1
p µp ≤ 5p3 exp

 1

2

jp+1−2∑
j=jp

log (1− qj)

 ≤ 5p3 exp

−1

2

jp+1−2∑
j=jp

qj

 , (4.42)

where qj = P
(
Λ∗
rj+1/c,rj/c

> α̃rj log log(1/rj)
)
. Recalling that rj = 2−j , it follows

from Lemma 3.3 that

qj =

(
1− 1

2

)2
2α̃��rj log log 1/rj

��rj/c
exp

(
−2α̃��rj log log 1/rj

��rj/c

)
+

(
1− 1

4

)
exp

(
−2α̃��rj log log 1/rj

��rj/c

)
∼

j→∞

α̃c

2
log log(1/rj)e

−2α̃c log log(1/rj)

∼
j→∞

c′ log(j)j−2α̃c,

where c′ is a positive constant depending on α, α̃, c. We stress that the particular
choice of c was made to ensure that χ := 1 − 2α̃c is strictly positive, so that the
following is true for all large p :

jp+1−2∑
jp

qj ≥
jp+1−2∑

jp

j−2α̃c ≥
∫ jp+1−1

jp

x−2α̃cdx ∼
p→∞

χ−1 ((4/3)χ−1)

(
4

3

)pχ

.

Thus, for all p sufficiently large,
∑jp+1

jp
qj ≥ 2p which, combined with (4.42),

entails that u−1
p µp ≤ 5p3 exp (−p). Thus, upµ

−1
p ≥ 5−1p−3ep. Finally, we see from

(4.40) that T ′
4 is smaller than (1/4)p−2 for all p sufficiently large, which ends the

proof. �

4.2.2. Proof of Theorem 4.2. Let α ∈ (0, 1/2). For a level a ∈ (0,∞), we recall the
definition (4.1) of ∆α

a . To show that the g-Hausdorff measure of ∆α
a is null, we need

an efficient covering of this set. Let us recall the integer sequence jp = b(4/3)pc
and the radii rj = 2−j . For p ∈ N, we recall the definition of the finite subsets

r(p) = {rj , jp ≤ j ≤ jp+1−1}, and ε(p) = {εj , jp ≤ j < jp+1−1} where εj = g(rj).
Recalling the definition (3.20) for small balls, we set

Cn :=

∞∪
p=n

{
Γ ∈ Ba,r(jp+1) : Γ is (r(p), αε(p))−small

}
.

Observe that if σ ∈ ∆α
a , then the T (a)-ball Γ (σ, r(jp+1)) is (r(p), αε(p))-small for

all large p, thus for all n ∈ N, we have ∆α
a ⊂ Cn. Let us recall the definition (1.15)
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of Hausdorff measures, and the fact that the diameter of a T (a)-ball is smaller than
its radius. We get

∀a ∈ [m,m−1] H
(r(jn+1))

g (∆α
a ) ≤

∞∑
p=n

Sa,r(p),αε(p) . g (r(jn+1)) , (4.43)

because ∆α
a ⊂ Cn. Thus,

∀a ∈ [m,m−1] Hg (∆
α
a ) ≤ lim sup

n→∞

∞∑
p=n

Sa,r(p),αε(p) .g (r(jp+1)) . (4.44)

Now, let m ∈ (0, 1/2). Applying Lemma 4.6, we easily get that

∞∑
p=1

N

(
sup

a∈[m,m−1]

Sa,r(p),αε(p) > up

)
<∞,

where we recall the notation up = g (r(jp+1))
−1
p−2. By Borel-Cantelli lemma there

exists a subset V′ ⊂ C0 such that N
(
C0 \V′) = 0 and such that

on V′, g (r(jp+1)) sup
a∈[m,m−1]

Sa,r(p),αε(p) ≤ p−2, for all suff. large p.

Combined with (4.44), we deduce on V′, for a ∈ [m,m−1], one has

Hg (∆
α
a ) ≤ lim

n→∞

∞∑
p=n

p−2 = 0,

which is the desired result.

4.3. Proof of Theorem 1.1. Let κ ∈ ( 12 ,∞), α ∈ (0, 12 ), and m ∈ (0, 1/2). The-

orem 4.1 entails that there exists a Borel subset V = V(κ,m) ⊂ C0 such that
N
(
C0 \V

)
= 0 and

on V(κ,m), for all Borel subset A ⊂ T , ∀a ∈ [m,m−1],

`a(A) ≤ κHg (A ∩ T (a)) .
(4.45)

Now, let us rewrite the definition (4.1)

∆α
a =

{
σ ∈ T (a) : lim sup

r→0

`a (B(σ, r))

g(r)
< α

}
. (4.46)

According to Theorem 4.2, there exists a Borel subset V′ = V′(α,m) ⊂ C0 such
that N

(
C0 \V′) = 0 and

on V′(α,m) ∀a ∈ [m,m−1] Hg (∆
α
a ) = 0. (4.47)

Let α′ < α and notice that T (a) \ ∆α
a ⊂

{
σ : lim sup

r→0

`a(B(σ,r))
g(r) > α′

}
. Moreover,

from (1.13), we know that N-a.e. for all a ∈ (0,∞), `a(T \ T (a)) = 0. Thus, on
V′, for all Borel subset A ⊂ T , and for all a ∈ [m,m−1] and all α̃ < α, Lemma 2.3
entails

`a (A) ≥ `a (A ∩ (T (a) \∆α
a )) ≥ α′Hg (A ∩ (T (a) \∆α

a )) = α′Hg (A ∩ T (a)) ,
(4.48)
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where we used (4.47) for the last equality. Letting α′ → α, we get

on V′(α,m) for all Borel subset A ⊂ T ,
∀a ∈ [m,m−1] `a (A) ≥ αH g (A ∩ T (a)) .

(4.49)

Now, let us set

Ṽ :=

 ∩
κ∈(1/2,∞)∩Q
m∈(0,1/2)∩Q

V(κ,m)

∩
 ∩

α∈(0,1/2)∩Q
m∈(0,1/2)∩Q

V′(α,m)

 . (4.50)

Clearly, Ṽ is a Borel subset of C0 such that N
(
C0 \ Ṽ

)
= 0. Moreover, combining

(4.45) and (4.49), we get that on Ṽ, for all Borel subset A ⊂ T , and for all level
a ∈ (0,∞), one has `a (A) = 1

2Hg (A ∩ T (a)).
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