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Abstract. Let (7,d) be the random real tree with root p coded by a Brownian
excursion. So (7,d) is (up to normalisation) Aldous CRT Aldous (1991) (see Le Gall
(1991)). The a-level set of T is the set T (a) of all points in 7 that are at distance
a from the root. We know from Duquesne and Le Gall (2006) that for any fixed
a € (0,00), the measure ¢* that is induced on T (a) by the local time at a of the
Brownian excursion, is equal, up to a multiplicative constant, to the Hausdorff
measure in 7 with gauge function ¢(r) = rloglogl/r, restricted to T(a). As
suggested by a result due to Perkins (1988, 1989) for super-Brownian motion, we
prove in this paper a more precise statement that holds almost surely uniformly in
a, and we specify the multiplicative constant. Namely, we prove that almost surely
for any a € (0,00), £%(-) = £.,(- NT(a)), where J, stands for the g-Hausdorff

measure.

1. Introduction.

The Continuum Random Tree was introduced by Aldous (1991) as a random
compact metric space (71,d, m;), endowed with a mass measure m; such that
almost surely m; (77) = 1. It appears as the scaling limit of a large class of discrete
models of random trees, and can be alternatively encoded by a normalised Brownian
excursion (see Le Gall (1991)). This encoding procedure will be the viewpoint of
the present paper, but for the sake of simplicity, we will not ask the total mass to
be equal to one. Instead, we work on the tree encoded by a Brownian excursion
(e¢,t > 0), under its excursion measure N. Let us mention that our result remains
true for the CRT.

The Brownian tree has a distinguished vertex p called the root, so it makes sense
to define, for all a € (0,00) the a-level set T (a) = {o € T : d(p, o) = a}. Moreover,
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one can define the collection of measures (¢%(do),o € T,a € (0,00)), as the image
of the local times on the levels of the excursion. Those measures are called local
time measures. Indeed, N-a.e. for all a € (0,00), the topological support of ¢* is
included in 7 (a). Duquesne and Le Gall (2006) showed that for a fixed level a, one
has

N-a.e. 0%(-) =ct(- NT(a)), (1.1)

where % stands for the Hausdorff measure associated with the gauge function
g(r) = rloglog1/r and ¢ € (0,00) is a multiplicative constant. In this paper, we
prove that ¢ = % and that the result holds N-a.e. simultaneously for all levels a. Let
us mention that the value % depends on the normalisation chosen for the excursion
measure N. The later leads to an underlying branching process with branching
mechanism ¥ (\) = A2 (see 1.12). A result similar to (1.1) has been obtained by
Perkins (1988, 1989) for Super Brownian Motion. Briefly, let (Z,,a > 0) a version of
this measure-valued process on R?, defined on (2, F, P). Perkins proves that if the
dimension d of the space is such that d > 3 (which corresponds to the supercritical
dimension case), there exists two constants ¢4, Cy in (0,00), only depending on d
such that the following holds

P-as. Va € (0,00) cqd (-Nsupp (Z,)) < Zo (-) < Cyd€, (- Nsupp (Za)) ,
(1.2)
where supp (Z,) is the topological support of the measure Z, and J¢, is the Haus-
dorff measure associated to the gauge function g(r) = r?loglog 1/r. In this paper,
we use the ideas and techniques of Perkins (1988, 1989) to get a result similar to
(1.2), an equality being accessible in the setting of trees.

Before stating formally our result, let us recall precisely basic facts. A metric
space (T,d) is a real tree if and only if the following two properties hold for any
01,02 inT:

(i) There is a unique isometric map fy, », from [0, d(o1,02)] into T such that
fa'l,(rg (0) = 01 and f01,02 (d(Jl,Ug)) = 039. We set [[01,02]] =
for.05 ([0,d(01,02)]) that is the geodesic path joining o1 and os.

(ii) If ¢ is a continuous injective map from [0, 1] into T, such that ¢(0) = o
and ¢(1) = o9, we have

Q([Oﬂ 1]) = f01,0’2([03 d(01702)])'

If o1 € [p,02], we will say that o1 is an ancestor of oq (09 is a descendant of oy).

Real trees can be derived from continuous functions that represent their contour
functions. Namely, let us consider a (deterministic) excursion e, that is to say a
continuous function for which there exists ¢ € (0,00) such that : V& > {,e(0) =
e(t) =0, and ¥Vt € (0,(),e(t) > 0. A real tree T can be associated with e in the
following way. For s,t € [0, (], we set

d(s,t) =e(s)+e(t)—2 inf e(r).
re[sAt,sVt]
It is easy to see that d is a pseudo-distance on [0,(]. Defining the equivalence
relation s ~ ¢ iff d(s,t) = 0, one can set

T=10,¢)/ ~. (13)
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The function d induces a distance on the quotient set T'. For a fixed excursion e,
let

p:[0,{] — (T, d) (1.4)

be the canonical projection. Clearly p is continuous, which implies that (T, d) is
a compact metric space. Moreover, it can be shown (see Duquesne and Le Gall
(2005) for a proof) that (T,d) is a real tree

We take p = p(0) as the root of T. For all a € (0,00), the a-level set T(a) =
{o € T :d(p,0) = a} is the image by p of the set {¢t € [0,(] : e(t) = a}. The total
height of the tree is defined by

h(T) =sup{d(p,0);0c € T}. (1.5)

We define the Brownian tree as the metric space (7,d) coded by the Brownian
excursion. More precisely, let (2, F, P) a probability space, large enough to carry all
the random variables we need. We consider on that space a process (X¢,t € [0, 00))
such that (%Xt,t € [0,00)) is a standard real-valued Brownian motion (the choice

of the normalizing constant v/2 is explained below). Let us set X; = inf¢jo4 X.
Then, the reflected process X — X is a strong Markov process, and the state 0 is
instantaneous in (0, 00) and recurrent (see Bertoin (1996), chapter VI). We denote
by N the excursion measure associated with the local time —X; N is a sigma-
finite measure on the space of continuous functions on [0, 00), denoted C° in this
work. More precisely, let ;. ;(lj,7;) = {t > 0: X; — X, > 0} be the excursion
intervals of the reflected process, and for all j € 7, we set e;(s) = X, y5)ar, -X,
s € [0,00). Then,
M(dt,de)z 5—X e
j; (=X, e5)
is a Poisson point measure on [0, 00) x C° of intensity d¢tIN(de). Let us recall that
the two processes (|X|,2L;),~, and (X; — X, —X,),., have the same law under
P by a celebrated result of Lévy (see Blumenthal (1992), Th. II 2.2) where the
process (L, t > 0) is defined by the approximation L; = 811_1}(1)(25)’1 fot 1fx,|<eyds

that holds uniformly in ¢ on compact subsets of [0, 00).

We shall denote by (e,t > 0) the canonical process on C°. Under N, it is a
strong Markov process, with transition kernel of the original process X killed when
it hits 0 (see Blumenthal (1992) III 3(f)). The following properties hold for the
process N-a.e. : there exists a unique real ¢ € (0, 00) such that vVt € (0,(), e(t) > 0,
and Vt € [(,00),e(t) = e(0) = 0. Moreover, with our normalization, one has (see
Blumenthal (1992) IV 1.1)

F—3/2
YA €[0,00),N(1 —e ) =vX and N(¢€dr) = —=dr (1.6)

2y
One can show that N (- | ¢ € [1 —¢,1+ ¢]) converges when ¢ goes to 0, towards a
probability measure that is denoted by N(- | ¢ = 1). It can be seen as the law of the
excursion of X — X conditioned to have length one. The tree encoded by e under
N(- | ¢ = 1) is the CRT defined in Aldous (1991). The choice of the normalising
constant v/2 is explained by the following. Let 7,, be uniformly distributed as the
set of rooted planar trees with n vertices. We view it as a real tree, the edges of
Tn being intervals of length one, and we denote by (7,,d,) the resulting metric
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space. Denote by (Ct(n)ﬂf € [0,2(n—1)]) its contour function that is (informally)
defined as follows. We let a particle explore the planar tree at speed one, from
the left to the right, beginning at the root. We set C’t(") as the distance from the
root of the particle at time ¢. It can be shown (see Le Gall (2005) Th. 1.17)
that (Ct(n),t € [0,2(n—1)]) has the law of a simple random walk conditioned to
be positive on [1,2(n—1) — 1] and null at 2(n—1). The rescaled contour function

(n_l/QCé?BL_l)t,t € [0,1]) converges in law towards the law of (e;,t € [0,1]) under

N(- | ¢ = 1) (see e.g. Aldous (1993)). In terms of trees, (7,,n"/2d,) converges
towards the CRT, that is the tree (77, d) coded by e under N(- | ¢ = 1). The latter
convergence can be stated using the distance of Gromov-Hausdorff (see Evans et al.
(2006)).

Recalling definition (1.5), we get from Blumenthal (1992) IV 1.1 that with our
normalization,

Va € (0,00) N(tghl)l’)q er > a) = N(h(T) > a) = %. (1.7)

In the paper, for a € (0,00) we shall use the probability measure,

N, =N (- | h(T) > a) = aN (-1{(7)>a}) - (1.8)
Recall that the a-level set of the Brownian tree is defined by
T(a)={ceT:dp,o)=a}. (1.9)

As a consequence of Trotter’s theorem on the regularity of Brownian local time
(Blumenthal (1992) sec VI.3) there exists a [0, 0o)-valued process (L{ ), +e[0,00) Such
that N-a.e. the following holds true:

e (a,t) — L is continuous,

e for all a € [0,00), t — L¢ is non-decreasing,

e for all a € [0,00), for all ¢ € [0,00) and for all b € (0, 00),

1 S
g /Ol{a—a<e(u)§a}du — LZ’ ) = O . (110)

lim N(l ; su
50 {supe>b} Oﬁsgrt)/\g‘
We refer to Duquesne and Le Gall (2002), Proposition 1.3.3. for details in a more
general setting.

The image by the projection p : [0,{] — T of those local times defines the
collection of local time measures on the tree, (¢*(do),o € T,a € (0,00)). More
precisely,

meas C
N-a.e. forall f: 7 = [0,00) Va € (0,00) /Tf(J)E“(dJ) = /0 f(p(t))dLy.

(1.11)
See Duquesne and Le Gall (2005), Th. 4.2 for an intrinsic definition of the measure
£% (for fixed a). Let G, the o-field generated by the excursion below level a (formal
definitions and details on what follows are given in Section 3.1). The approximation
(1.10) entails that for fixed a, £*(T) = L¢ is G, measurable. Moreover, the Ray-
Knight theorem (Blumenthal (1992) VI 2.10) entails that under N, (-) conditionally

on G,, the process (E‘”“/ (T),a" > O) is a Feller diffusion started at £%(7). In
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particular, one has

A

C l+aX
which implies that under N, £%(7) is exponentially distributed with mean a. The
regularity of a — ¢%(T) is extended by Duquesne and Le Gall (2005) : they prove
that N-a.e. the process a +— £% is continuous for the weak topology of measures.
In the same work, the topological support of the level set measures is described as
follows. A vertex o € T is called an extinction point if there exists € € (0, 00) such
that d(p, o) = sup{d(p,7),7 € B(0,e)}, where B(o,¢) is the open ball in 7 with
centre o and radius . For s € [0,(], the vertex p(s) € T is an extinction point iff
s € [0,(] is a local maximum of e. We then say that e(s) in an extinction level and
we denote & the (countable) set of all extinction levels. Let us denote supp (u) for
the topological support of the measure . The result states that

N-a.e. Va € (0,00)\&,supp ({*) =T (a), and Va € &,supp (£*) =T (a)\{oa},
(1.13)

where o, is the (unique) extinction point at level a (see Perkins (1990) for previous
results on Super-Brownian motion).

Va,h e (0,00) N [1 - e_Ma(T)] (1.12)

Let us briefly introduce the construction of the Hausdorff measure. We set the
gauge function g as

g(r) =rloglog1/r, 7€ (0,e™). (1.14)

In all the paper it will be assumed implicitly that g(r) is considered only for r €

(0,e). On that interval, g is an increasing continuous function. For any subset A
of T, one can define

H(A) = igré inf {Zg (diam(FE;)) ;A C U E;,diam(F;) < 8} . (1.15)
ieN ieN

Standard results on Hausdorff measures (see e.g. Rogers (1998)) ensure that J7

defines a Borel-regular outer measure on T called the g-Hausdorff measure on 7.

The main result of the paper is the following.

Theorem 1.1. Let T be the Brownian tree, that is the tree encoded by the excursion
e under N. Let (¢*(do),o € T,a € (0,00)) the collection of local time measures and
Hy the g-Hausdorff measure on T, where g(r) = rloglog1/r. Then, the following

holds : )

N-a.e. Vae (0,00) £%(-)= 5% (-NT(a)). (1.16)
Comment. Thanks to the scaling properties of the Brownian excursion, one can
derive from Theorem 1.1 a similar statement for the tree coded by e under N(- |

¢ = 1), that is Aldous CRT.

Comment. Our result seems close to a theorem of Perkins Perkins (1981) on linear
Brownian motion. Let (L¢,t > 0,a € R) be the bi-continuous version of the local
times for the process (X;,t > 0) defined above. Those local times are given by an
approximation of the type of (1.10). Perkins proves that almost surely, uniformly
in a, one has LY = 7 ({s € [0,t] : X; = z}), where J, stands for the Hausdorff
measure on the line associated with the gauge g(r) = y/rloglog1/r (the result for
fixed a had been obtain by Taylor and Wendel in Taylor and Wendel (1966)). The
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Brownian tree being coded by the Brownian excursion, everything happens as if the
projection mapping p : [0,¢] — T is 1/2-Holder and induces a strong ”doubling”,
such that the entire gauge function is squared. Nevertheless, we don’t see how to
derive our result from Perkins (1981).

The paper is organised as follows. In Section 2, we state some deterministic
facts on the geometry of the level sets for a real tree. In particular, we provide two
comparison lemmas with respect to Hausdorff measure on real trees. The second
one, that is specific to our setting, seems new to us. In Section 3, we recall basic
facts on the Brownian tree and we establish some technical estimates. Section 4 is
devoted to the proof of Theorem 1.1. As a first step, we give an upper bound for
the local time measures. To that end, we need to control the total mass of the balls
that are "too large”. Providing a lower bound requires a control of the number of
balls that are "too small”. Let us mention again that our strategy and many ideas
in this work were borrowed from Perkins (1988, 1989).

Acknowledgments. [ would like to thank my advisor Thomas Duquesne for
introducing this problem, as well as for his help and the many improvements he
suggested. I thank the anonymous referee for his/her careful reading.

2. Geometric properties of the level sets of real trees.

2.1. The balls of the level sets of real trees. Let (T,d, p) be a compact rooted real
tree as defined in the introduction. Recall that for any o,¢’ € T, [o,0c’] stands
for the unique geodesic path joining o to o’. We shall view T as a family tree
whose ancestor is the root p and we then denote by o A ¢’ the most recent common
ancestor of o and ¢’ that is formally defined by

[p.o N’ =[p,a] N ]p,0] .
Observe that
Vo,0' €T, d(o,0")=d(p,0)+d(p,d’)—2d(p,oc Nd’). (2.1)
Let a € [0,00). Recall that the a-level set of T is given by
T(a) ={o €T :d(p,0) =a}.

Subtrees above level b. Let b € [0,00) and denote by (Tjo’b)jejb the connected
components of the open set {o € T : d(p, o) > b}:

U Tjo’b ={oceT:d(p,o)>b}.
JETD

Then for any j € Jp, there exists a unique point o; € T'(b) such that T;’ =
T;”b U {o;} is the closure of Tjo’b in T. Note that (T},d,0;) is a compact rooted
real tree and that

Vj ey, Voe T;’, oj €[p,o].
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Open balls in T'(a). Recall that B(o,r) stands for the open ball in T with center
o and radius r. We shall also denote by I'(c,r) the open ball with center o and
radius 7 in the level set of o, namely

I'(o,r) = B(o,r)NT(a), wherea=d(p,0). (2.2)

If 0 € T(a), then we call I'(o,7) a T'(a)-ball with radius r; we denote by %, , the
set of all the T'(a)-balls with radius 7:

Bay={T(0,7);0 €T(a)} . (2.3)

The following proposition provides the geometric properties of T'(a)-balls that we
shall use. The last point could be proved by noticing that restricted to a level-set
T'(a), the distance d in the tree is ultrametric.

Proposition 2.1. Let (T,d,p) be a compact rooted real tree. Let a,r € (0,00) be
such that a > /2. Then, the number of T'(a)-balls with radius r is finite. Moreover,
denoting
Zoy = #Bay and {1, 1<i<Zy,} = Bar. (2.4)
the following holds true.
(i) Set b=a—4r. Then, there are Z, , distinct subtrees above b denoted by
(Tﬁ,d, 05.), Ji € o, 1 <1< Zg, such that

Iy =T(a)NT) ={o’ €T} :d(oj,,0') =1/2} .
Thus, the T'(a)-balls with radius v are pairwise disjoint.
(ii) For all 0 €T (a), one has diam(T' (o, 7)) <r. If furthermore r € (0,2a), then
diam(T'(o,r)) <r and
vr' € (diam(I'(o,7)),7) T(o,7") =T(o,7) . (2.5)
Therefore, the set of all T'(a)-balls is countable.
(iii) Two T(a)-balls are either contained one in the other or disjoint. Namely,
for all v < r and all 0,0" € T(a), either T'(c’,7") C T'(o,r) or T(o’,7") N
[(o,r) =0.
Proof. Let us prove (i). Let 0,0’ € T(a) and set b=a—+r. By (2.1), d(o,0') =
2a — 2d(p,0 N d’). Thus, d(o,0’) < riff d(p,o0 Ao’) > b. Let j € Jp be such that
s T]b; namely, T]b is the unique subtree above b containing o and o; is the unique
point v € [p, o] such that d(p,~) = b. Now observe that for all ¢’ € T'(a),
d(p,o No') >b < oNd'€]oj,0] < o €T}
This proves that
I(o,r) =T(a)NT} . (2.6)
Conversely, let j € Jp be such that h(T?) := max {d(o;,7);y € T} } > r/2. Let
ceT(a)n T]l-’; then the previous arguments imply (2.6). Since T is compact, the
set {j e : h(TJb) > r/2} is finite, which completes the proof of ().

Let us prove (ii): let o € T(a), let r € (0,2a) and set § = diam(I'(o,7)).
Then (2.6) implies that I'(o,7) is compact and there are o1, 02 € I'(0, 1) such that
d(o1,02) = 0. Observe that it implies

L(o,r)={c" €T(a):01 Nos € [p,0]} .

Thus, I'(o,r) = T'(0,6), that is the closure of I'(¢,d), and it implies (2.5). The set
of all T'(a)-balls is therefore |J,cqn(9,00) Pa.q, Which is a countable set.
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and suppose that I'(¢’, 7' )N (o, r) #

Let us prove (#ii): 7 < r and 0,0’ € T'(a) 0
= I'(¢’,r), which implies that I'(¢’,7’) C
|

Then (i) and (i7) implies that T'(o,r)
T(o,7).

2.2. Comparison lemmas for Hausdorff measures on real trees. Let (T,d,p) be a
compact real tree. We briefly recall the definition of Hausdorff measures on T and
we state two comparison lemmas that are used in the proofs. Let rg € (0, 00) and
let g : [0,79) — [0,00) be a function that is assumed to be increasing, continuous
and such that g(0) = 0. For all € € (0,7r9) and all A C T, we set

%(5 = inf {Zg (diam(E,)) ; A C U E,, diam(E,) < 6}

neN neN
and

Ho(A) = lim ) (4)

Under our assumptions, % is a Borel-regular outer measure : this is the g-
Hausdorff measure on T (see Rogers (1998)). The following comparison lemma
was first stated for Euclidean spaces by Rogers and Taylor (1961). The proof can
be easily adapted to general metric spaces (see Edgar (2007)). We include a brief
proof of it in order to make the paper self-contained.

Lemma 2.2. Let (T,d, p) be a compact rooted real tree. Let u be a Borel measure
onT. Let A be a Borel subset of T and let ¢ € (0,00). Assume that

B
Voe A limsupm <c
r—0 g(T)

Then, u(A) < ci,(A).

Proof. For any c€(0,7g), set
B
A, = {UEA: sup M<c} .
re(0e)  9(r)
Observe that for all &’ <e, A. C Ay C Aand A=, ,,)A:- Let (En)nen be
a e-covering of A.: namely A. C |,y En and diam(E,) < ¢, for all n € N. Set

I={neN:E,NA. # 0} and for all n € I, fix 0, € F,,NA.. Since g is continuous,
for all n € I there exists 1, € (diam(E,), <) such that

E, C B(on,r,) and  g(r,) < 27" e + g(diam(E,)) .
Observe that p(B(oy,m,)) <cg(rn) and that A. CU,,c; B(on,rn). Thus,

n(A:) < u(UB(amrn) > w(B(on, )

nel nel
< ch(rn) <ce+ Z cg(diam(E,)) .
nel neN

Taking the infimum over all the possible e-coverings of A. yields
B(A2) < ez + e (AL) < ez + eHy(Ae) < ce + eHty(A)
which implies the desired result since p(A) = lim. o T p(Ae). |

In the next comparison lemma, that seems new to us, we restrict our attention
to the level sets of real trees. A more general variant of this result involves a
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multiplicative constant depending on the gauge function. It has been first stated
in Euclidean spaces by Rogers and Taylor (1961) (see also Perkins (1988)) and in
general metric spaces (see Edgar (2007)).

Lemma 2.3. Let (T,d,p) be a compact rooted real tree. Let a € (0,00) be such
that the a-level set T'(a) is not empty. Let u be a finite Borel measure on T such
that w(T\T(a)) = 0. Let A C T(a) be a Borel subset and let ¢ € (0,00). Assume

that
B
Vo e A limsupm >c.
r—0 g(r)

Then, u(A) > cHy(A).

Proof. Let € € (0, (2a) Arg). Let U be an open set of T such that A C U. For all
o € A, there exists r, € (0,¢) such that

w((o,rs)) = p(B(o,rs)) > cg(ry) and T'(o,r,) CU.

Thus, A C J,c4T'(0,75) C U. Then, Proposition 2.1 (i) asserts that the set of
all T'(a)-balls is countable and Proposition 2.1 (ii7) asserts that two T'(a)-balls are
either contained one in the other or disjoint. Therefore, there exists I C N and
on € A, n € I, such that the I'(o,,rs,), n € I, are pairwise disjoint and A C
Uner T'(on;7s5,) C U. Moreover, by Proposition 2.1 (i7), diam(I'(op, 75, )) < 7o,
Thus, we get

c%(E)(A) < ch(diam(F(an,r%))) < ZCQ(Tan)

nel nel
< Y uConre) = u( UL r,)) < uv).
nel nel

As e — 0, it entails ¢ (A) < p(U), for all open set U containing A. Since p is
a finite Borel measure, it is outer-regular for the open subsets, which implies the
desired result. [}

3. Preliminary results on the Brownian tree.

3.1. Basic facts on the Brownian excursion. We work under the excursion measure
N defined in the introduction and e denote the canonical excursion whose duration
is denoted by ¢ (see (1.6)). We shall denote by (T,d, p) the compact rooted real
tree coded by e.

The branching property. Fix b € (0,00). We discuss here a decomposition of e in
terms of its excursions above level b; this yields a decomposition of the Brownian
tree called the branching property. To that end we first introduce the following
time change: for all ¢ € [0, 00), we set

Tb(t):inf{se[O,oo):/osl{eu<b}du>t} and & (t) = e(n(t).  (3.1)

Note that (€,(t))ic[o,00) codes the tree below b namely {o € T : d(p,0) < b}
that is the closed ball with center p and radius b. We denote by G, the sigma-
field generated by (€y(t))tc[0,00) and completed with the N-negligible sets. The
approximation (1.10) implies that Lg is Gy-measurable. Then denote by (aj;, 3;),
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j € Jp, the connected components of the time-set {s € [0,00) : e(s) > b}. Namely,

U (a5,8) = {s € [0,00) : e(s) > b},
JETp
and we call (o, ;) the excursion intervals of e above level b. For all j € J,, we
next set
Z? = Ll;b(aj) and Vs € [0,00), e?(s) = €(a;+s)nB; — b -
Then, the (es)jejb are the excursions of e above level b. Recall from (1.7) and (1.8)
the notation N, = N(-| supe > b), that is a probability measure. The branching

property asserts the following: under N, and conditionally on G, the measure

My(dl,de) = Y San ety (3.2)

JETb
is a Poisson point measure on [0, Lg] x C? with intensity 1[07Lg](l)dl N(de).

The above decomposition of e is interpreted in terms of the Brownian tree T as
follows. Recall that p: [0,¢] — T stands for the canonical projection. Then for all
j € Jp, we set

oj =play) =p(B;), T"=p((ej,8;)) and T} =p([oy,B]) -
Then, we easily check that the 7}°’b, j € Jp, are the connected components of the
open subset {c €T : d(p,o)>b} and that 7}°’b = T\{o,}. Namely, the (7j,d,0;),
j € Jp are the subtrees above level b of T as introduced in Section 2.1. Moreover
note that for all j € 74, the rooted compact real tree (7;,d, ;) is isometric to the
tree coded by the excursion eé’.. We next use this and Proposition 2.1 to discuss the
balls in a fixed level of T.

To that end, we fix a,r € (0,00) such that a > r/2 and we conveniently set
b=a—r/2. Recall that T(a) = {c €T : d(p,0)=a} and that for all o € T (a), we
have set I'(o,7) =T (a) N B(o,r) that is the ball in 7 (a) with center o and radius
r. We also recall that %, , = {['(0,7);0 €T (a)} stands for the set of all T (a)-balls
with radius r. By Proposition 2.1, %4, , is a finite set and that

Baw ={T(a)NT}; j€Ty: B(T?) > 1/2} ,
where the trees (7}”, d,o;), j€Jp, are the subtrees of 7 above level b as previously
defined; here h(T}") = sup,c7s d(0;, o) stands for the total height of T,°. Note that

h(7;b) = sup eg’» that is maximum of the excursion corresponding to 7}17, as explained
above.

Then, we set Z,, = #%B,,, that is the number of 7 (a)-ball with radius r.
Assume that Z, , > 1. We then define the indices ji,...,jz,, € T by

(iesiza Y = i€ : MT)) 2 r/2} and aj, <...<ay,, .
and we set
Vie{l,....,Z.}, Ti:=T@)nNT}. (3.3)
Namely %, , = {I‘Z— 1 1<i < Za’r} is the set of the 7 (a)-balls with radius r listed

in their order of visit by the excursion e coding 7T .

Lemma 3.1. Let a,r € (0,00) such that a > r/2. Let {I';; 1 <i < Z,,} is the
set of the T (a)-balls with radius r listed in their order of visit as explained above.
Then the following holds true.
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(i) Under N, = N(-|supe > a), Z,, has a geometric law with mean 2a/r.
Namely,
k—1 o

Vk>1, NuZy,=k=(1-2)""2L.

(ii) Forallk > 1, under No(-| Z,,r=k), the r.v. (€*(T;))1<i<k are independent
and exponentially distributed with mean r/2.

Proof. Let a € (0,00) and denote b = a—r/2. Let k > 1 and Fy,...F; : C° —
[0,00) be measurable functionals. Recall from (1.7) that N(supe > r/2) = 2/r.
Then, the definition of the j; combined with the branching property and basic
results on Poisson point measures entail

2D
N, {1{&”:1@} H Fi(e}) ‘ gb} = (Tk!c) e e H N,z [Fi(e)] . (3.4)

1<i<k 1<i<k

Then recall (1.12) that implies that LZ under Nj is exponentially distributed
with mean b. Thus,

1 2 rb\k —21bq (%b)k T r\k
ﬁNb[(FLC) e C} - (1—1—%1})’”1 - %(1_ *) )
because b = a—r/2 and (1 + 2b)~! =r/(2a). It implies
r r\k
N, [I{ZQ,T:I@} 11 Fi(e?,,)] =5 (1=5)" [] Nep[Fite)
1<i<k 1<i<k

Next observe that Np-a.s. 1supesa} = 1{z, ,>1}. Thus, we get

No|1iz,=n ] Fileh)] = %Nb[l{zmzk} 11 Fi<e§i>}
1<i<k 1<i<k
=(1-5)"" I Nop(F (3.5)
1<i<k

because a/b=(1—2)~1. Recall that (1.12) implies that under N,. o, ¢"/2(T) :LZ/2

is exponentially distributed with mean r/2. By taking F;(e)= f;(L T/z) in (3.5) we
then get

N, [1{za,,.:k} H fi(éa(ri))} (1= k 1H / fi(s)2e *ds

1<i<k 1<i<k
with entails the desired result. |
Ray-Knight theorem under N. We first recall the definition of Feller diffusion,
namely a Continuous States space Branching Process (CSBP) with branching mech-
anism (X)) = A? (see ). Let 2 € [0,00) and let (Y),e[0,00) be a [0, 00)-valued con-
tinuous process defined on the probability space (2, F,P). It is a Feller diffusion
with branching mechanism ¥ (\) = A? and initial value Y¥ = z if it is a Markov
process such that

YA
H=ew(-t0s) . adaef0.00),

(see e.g. Le Gall (1999)). Recall notation N, = N(-| supe > a) and G, for the
sigma-field generated by the excursion €, defined in (3.1). Recall that ¢*(7) = L¢,
the total mass of the local-time measure at level a, is G,-measurable.

E[exp(=AY7 )
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We shall use the following statement of Ray-Knight theorem. Let a € (0, 00).
(1) Nalexp(=Al*(T))] = 175
(i) Under N, and conditionally given G,, the process (£*+¢ (T))arejo,00) 18
a Feller diffusion with branching mechanism (\) = A? and initial value
(7).
This is an immediate consequence of the Ray-Knight theorem for standard Brown-
ian motion and of the Markov property under N : see Blumenthal (1992) III 3 and
VI 2.10.
Combined with the branching property, the above Ray-Knight theorem, has the
following consequence. Let us recall that we enumerate the 7 (a)-balls of %, , as
{T:,1 <i<Z,,} (see (3.3)). Let I such a T (a)-ball. For o’ > 0, we define

rtd = (g e T(a+d) o' €T : 0 € [p o]}, (3.6)

the set of vertices at level a 4+ @’ that have an ancestor in I' (notice that I'* =T').
The following lemma is a straightforward consequence of Ray-Knight theorem.

Lemma 3.2. Leta € (0,00), r € [0,2a]. Let {I';,1 < i < Z,,} the set of T (a)-balls

of radius r. Under N, conditionally on G,, the processes (€a+“ F“Jra ,a' > O) 1<
i < Zg,r, are independent Feller diffusions started at (¢*(I';)),1 <i < Z, .

Proof. Recalling for b = a—r/2 the decomposition (3.3), we see that
Vie{l,....Z.0}, T¢" :=T(a+d)NT}. (3.7)

Hence, one can use (3.4), and the Ray-Knight theorem (see (i7) above) to get the
desired result. |
Spinal decomposition. We recall another decomposition of the Brownian tree called
spinal decomposition. This is a consequence of Bismut’s decomposition of the Brow-
nian excursion that we recall here.

Let X be a real valued process defined on (2, F,P) such that (\%Xt)te[o,m)
is distributed as a standard Brownian motion with initial value 0. Let X’ be an
independent copy of X on (2, F,P). We fix a € (0,00) and we set

T, =inf{t € [0,00) : Xy = —a} and T, =inf{t € [0,00): X[ = —a}.
We next set for any s € [0, 00),
el = €(t—s), and e =epys .

Then Bismut’s identity (see Bismut (1985) or Le Gall (1993)) states that for any
non-negative measurable functional F on (C?%)?,

N[/OiiLtaF(ét; ét)} = E[F(a—i—X./\Ta;a—l—X,’ATé)] : (3.8)

We derive from (3.8) an identity involving the excursions above the infimum of é*
and ¢é'. To that end, we introduce the following. Let g : [0,00) — [0,00) with
compact support. We define a point measure N (g) as follows: set g(t) = infjg4 g
and denote by (l;,7;), 7 € Z(g) the excursion intervals of g — g away from 0 that
are the connected component of the open set {t > 0 : g(t) — g(t) > 0}. For any
j € Z(g), set ¢7(s) = ((g — 9)((l; + s) Ar;), s > 0) and denote h; := ¢7(l;) the
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height where the excursion g/ starts. We then define N'(g) as the point measure on
[0,00) x CY given by
Z 5(hj7gj) :

JEZL(9)
Then, for any ¢, a € (0,0),
N; = N (&) + N (&) (3.9)
and
Ny = Na+ Xar,) +N(a+ X)) (3.10)

We deduce from (3.8) that for all any a and for all nonnegative measurable function
F on the set of positive measures on [0,00) x C°, one has

N{/CdLg F(Nt)] = E[F(N))] (3.11)

and as consequence of It6’s decomposition of Brownian motion above its infimum,
N is a Poisson point measure on [0, 00) x C” with intensity 21y ,(h)dh N(de).

Let us interpret this decomposition in terms of the Brownian tree. Choose t €
(0,¢) such that e, = @ and set o = p(t) € T (namely o € T (a)). Then, the geodesic
[p, o] is interpreted as the ancestral line of o. Let us denote by T, 5 € J, the
connected components of the open set 7\[p, o] and denote by T; the closure of 7.
Then, there exists a point o; € [p, o] such that T; = {o;} UT/. Recall notation N;
from (3.9) and let us denote Ny = 37,7, 6(h;’et,j). Recall also the definition (3.10)
of N and denote N = Zjezg; d(ns,e+) - The specific coding of 7" by e entails that
for any j € J there exists a unique j’ € Z; such that d(p,o;) = k!, and such that
the rooted compact real tree (7;,d, 0;) is isometric to the tree coded by et

Recall that p(t) = 0. We fix r,1’ € [0,2a) such that ' < r. We now compute
the mass of the ring B(o,r) \ B(c,7’) in terms of N;. First, observe that for any
s € [0, (] such that e; = a, we have

' <d(s,t)<r<=a—(r'/2)> inf e, >a—(r/2).

u€[sAt,sVi]
We then get
t
¢*(B(o,r)\B(o,r)) = Y 1, P ht)L "t ), (3.12)
JEL:
where L (t j) stands for the local time at level a — ht of the excursion e%7.

Then for any a € (0,00) and any r,r" € (0,2a) such that ' < r, we also set

« a hf
=) Loos amey(B) Les 7 (3.13)

JEL:

*

where, LZ_ "7 stands for the local time at level a — h’ of the excursion e*J defined
J
n (3.10). Let us consider a € (0,00), n € N* and (ry,72,...,7,) such that the
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0<r, <...<re <r < 2a Then, (3.11) implies that for all non-negative
measurable function F on R™*~!

/éa (do) F (¢*(B(o,rx)\B(o, Tk+1))§1§k§n—1)} _

E[F (Al 1<k<n—1)]

On the right-hand-side, the dependency with respect to the level a is a bit artificial.
Indeed, for a € (0,00), the Poisson point measure N;*(dhde) has its law invariant
under the transformation (h,e) — (a — h,e). Thus, let us consider on (2, F,P) a
new Poisson point measure M* = > O(hz e7) With intensity 2dhIN(de) (we abuse

(3.14)

JET*
notations and keep the notation (h},e;) for the atoms). We set
*
21%7% (h3) 4*’ (3.15)
JET*

where L K stands for the local time at height A} for the excursion ej. One can now

rewrite (’ 14) as

N[/é“(dU)F (t*(B(o,me)\B(0,7541)); 1<k<n—1) | =
T

:E{ (A* 1<k<n— 1)} (3.16)

Tk+1,Tk )
The law of the A, . is quite explicit as shown by the following lemma.
Lemma 3.3. Let 0<r,<r,_ 1<...<ry <2a. Then,

A*

Tn,Tn—1"

A7 , AT

Tn—1,Tn—-27 """ 72,71

are independent. Moreover, for any 0<r'<r<2a,

/ 2 2y T/ 9
Vy € (07 OO) P(A:’ T ) (1 - > - 672y/'r + <]. — (*) ) 672y/r7
' r)or r
and P(A}, . = 0) = (r'/r)%.
Proof. The intervals [ri11/2,7/2) being pairwise disjoint, the independence of

the increments is a straightforward consequence of the properties the Poisson point
measure M*. Using Campbell’s formula and (1.12), we compute, for all A > 0,

Bl iea] = o (- [ 20 1))
" A IR
= - 2dh
eXp( / 1+h>\> (1+m)
la:w) X1+ X5, where X; and X5 are i.i.d random variables where

_ 7 r' 1
B[] :T+(1_7’> T+7rA°

Thus, A%, 2 (
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Thus, X; = 0 with probability r’/r and conditionally on being non-zero, it is
exponentially distributed with mean r. Thus, for y > 0,

P(A;T,72T>y):2P(X1:O; Xo>y)+P(X1>0; Xo>0; X1+ Xo>y)
r ! 2
ZQTP(X1>ZJ)+<1—T> P(Z>y),

where Z has law Gamma(2,1/r). The result proceeds now from elementary com-
putations. ]

3.2. Estimates. The following elementary computation is needed twice in our
proofs.

Lemma 3.4. Let (X,,)n>1 a sequence of i.i.d real valued random variables on
(Q,F,P), with mean 0 and a moment of order 4. Let Z be a random variable
taking its values in N, independent of the sequence (X,,). Then

E[(X1+ X+ + X2)'] <3EIX{]B[27].

Moreover, for X an arbitrary random variable with a fourth moment, the following
holds :

E [(X - E[X])“} < 2E[X1].

Proof. One has
E((Xi+ X+ +X)' 2= Y EXyXuXi,Xu].
1<41,i2,i3,14<Z

When (i1,142,13,44) contains an index that is distinct of the three others, then the
contribution of the corresponding term will be null. Thus the latter mean equals
ZE[X}] + 3Z(Z—-1)E[X?)? < 3Z2E[X}] (using Jensen’s inequality). The second
statement follows from

E[(X-EX)'] = E[(X-BX)* 1penx| +B[(X - EX)* 1]
< E[X']+EX]*
and using Jensen’s inequality. [ |

We explained in Section 3.1 the link between the process (¢*(T),a € (0,00)) and
the Feller diffusion, for which we provide here some basic estimates.

Lemma 3.5. Let (Y?)o>0 be a Feller diffusion starting at x > 0, defined on
(Q,F,P). For all x,y € [0,00), for all a € (0,00), the following inequalities hold :

be[0,a]

be[0,a]

(i1) If y > x, then P ( sup Y* > y) < exp (—%(\/@— \/5)2) .

Proof. Let us prove (7). Recall that for all z,b,A € [0,00), E[e*)‘ybm]
exp (_1i§>\)' Thus, for fixed a € (0,00), and for A € [0, %), we set

. AV}
Vb e [0,a], MM :=exp (—1 f;)A) . (3.17)
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We stress that for b € [0,a], one has 1 —bA > 1 — aX > 0, and one can compute

w A bA e
E[le)" )] = exp (—1 — b)\x/ (1 + T bn bA)) =e 7,

Combined with the Markov property, this entails that (MZEA’I), b € [0,a]) is a mar-
AY < Ay

tingale. Moreover, on { inf Y;* <y}, one has inf % < inf

be[0,a be[0,a] = be[0,q) 170N T 1-ads
Hence, the maximal inequality for sub-martingales entails
P ( inf Yy < y) < P| sup MISA’”?) > e Tox
be[0,a] be[0,a]
Ay )\y

< lfakE I:M(Avx)i| — _ )\ .

< e o exp (1 x
The reader can check using elementary computations that the function A — % —

Az has a negative minimum on (0,1/a) at the value A\ = 1 (1 — \/g), and this min-

a
imum is —%(\/5 — /¥)?, which completes the proof.

In order to prove (ii), one could extend the definition of (le/\’x), b € [0,a]) for
A € (—1/a,0). In what follows, we use a simpler argument. Let us begin with the
following remark: let b € (0,00), let £ be a r.v. on (2, F,P) that is exponentially
distributed with mean b, then for all A > 0, E[e™*¢] = ﬁ, and this Laplace
transform remains finite for A € (—1/b,0). Moreover, one can plainly check that

N
for z,b € (0,00), Y}’ has the same law as ) &;, where the & are independent copies

=1
of £ and N is an independent Poisson r.v. with mean x/b. Thus, one has

Y € (0,1/b), E {e“yﬂ = exp (&) . (3.18)

The Feller diffusion (Y;¥,b > 0) is a martingale, so by convexity (e*¥ b > 0) is a
submartingale. Thus, for all © € (0,1/a), and y > = > 0, one has

P| sup V) >y < P| sup ey > ety
be[0,a] be[0,a]

e HYE [e#y::| = exp ( Hr — My) s
1—ap

and the result follows by optimizing the same function as before. ]

IN

The next result is a corollary of Lemma 3.5 (i4).
Lemma 3.6. Let m € (0,1/2). For all y € (0,00),
N ( sup (T > y> < (2/m) exp (~my/2).
be[m,m-1]

Proof. Let m € (0,1/2) and recall from (3.1) the definition of G,,. As recalled
in Section 3.1, under N,,, conditionally on G,,, the process (¢*(T),b > m) is a
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Feller diffusion started at ¢™(7). Hence, conditioning with respect to G,, and
using Lemma 3.5 (ii), we get

N, ( sup  O(T) > y> < N, [exp <—m (\[— \/W)Q)] .

be[m,m~]

Expanding (y/u/2 — v/2v)?%, one shows that for all u,v > 0, (v/u — \/5)2 >u/2 —

v. Thus, N,, sup (™(T) >y | <exp(—-m¥)N,, [emem(ﬂ] Recalling from

be[m,m=1]
(1.12) that under N,,, ¢™(7T) is exponentially distributed with mean m, we get
N,, [emem(T)] = (1 —m?)~! <2, because m < 1/2. This entails the desired result,
recalling that Ny, (-) = mN (-1{5(7)>m}) and that the events {A(7) > m} and
{€™(T) > 0} are equal, up to a N negligible set. [ |
Estimates for small balls. We consider here a level a € (0,00) and recall that 7 (a)
is the a-level set of the Brownian tree 7. If r € [0,2a], we recall from (2.2) the
notation I'(o, ) for the 7 (a)-ball of radius r and center o € T (a), the set of T (a)-
balls of radius r being denoted %, ,. Let I' be a T (a)-ball of radius 7/, where
r’ € ]0,2a]. From Proposition 2.1 (iii), we know that if r € [r’,2a], there exists a
unique 7 (a)-ball of radius 7 that contains I', and we shall denote this ”enlarged”
ball by
Ilr]:==Y where Y € B,, and ' C Y. (3.19)
We consider positive real numbers r; >ry > ... >1r, >0,ande; > ... > e,1 >
0, where n € N*. Weset r = {ry,...,r,} and € = {e1,...,e,1}. We shall say that
I, a T (a)-ball of radius r,, is (r,e)-small if and only if for all 1 < k < n—1, the
enlarged ball of radius r; has a local time smaller than e, namely

Vke{l,...,n—1} £*(DT[rg]) < eg. (3.20)
We denote by Sq.r.e the total number of such (r,€)-small balls at level a:
Sa,r,s = Z 1{1" is (r,e)—small}- (321)
reABa,rp,

To control that number, we introduce

p(r,e) :==N[S, j2re]- (3.22)

Let us stress that its definition does not depend on a.

Lemma 3.7. Let a € (0,00), r = {r1,...,mn}, and € = {e1,...,en1}, where
r>...>1r, >0, and ey > ... > e, > 0. There exists a constant ¢y € (0,10%]
such that if a/r1 > 1 and ri/r, > 2,

,r2

N |(Sare = p(r.&)*(T))'| < coa -1
Proof. Let a,r, e as above. From Proposition 2.1 (iii), we know that the T (a)-balls
of radius r,, are disjoint and that for all T € A, ,, , there exists a unique 7 (a)-ball
I' € ABq,r, such that T C I'. Let us enumerate %, », as {I;,1 <1< Z, ., }, and set

Vie{l...Zor}, BY) ={T€By,, TCT;}

n’vrn

and SU) = # {T € 935111” 1Y is (r,s)—small} .

a,r,e
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One has
Zar, Zar
Sare — p(r,e)l*(T (ngm wu(r,e)l*(T )) =: Z X;. (3.23)
i=1 i=1

Let us denote b = a — r1/2 and recall from (3.1) the definition of the sigma-
field G,. Adapting the proof of Lemma 3.1, it is not difficult to see that under
Ny, conditionally on Gy, and conditionally on {Z,,, = k}, the rv. Xj,...Xj
are independent and have the same law as Sy, /2 r.c — u(r, €)0"/2(T) under N,, /2.
Recalling from (1.12) that N [¢"/2(T)] = (2/r1)N,, ;o [("*/2(T)] = 1, we see that

Nb[Xl | gb] = Nr1/2 |:ST1/2,I',€ - /L(I‘, 5)67"1/2(7')] = 07

which explains the definition (3.22). We thus apply Lemma 3.4 to get from (3.23):

N, [(Sawe = #r, (TN 1G] <3N 2 [XIIN [22,, 1G] (3:29)
The second assertion in Lemma 3.4 entails
Ny, ol X8] = Ny ol me — (0, &) A(T)] < 2N0 o (82 o]

Moreover, we can use that S, /o, is smaller than Z, /5, , the total number of
T (r1/2)-balls of radius r, which has under N, a geometric distribution with
success probability 7, /r1 < 1/2. Thus,

1\17”1/2 [Xﬂ < 2]N-Tl/2 [S:"ll/Q,r,e} < 2NT1/2 [ r1/2, rni|

l - ’I“.,L/’I" T'n Tn

In addition, according to the branching property, under Ny, conditionally on Gy,
Za ., is a Poisson variable with mean N (h(T) > 71/2) £°(T) = (2/r1)¢*(T). Thus,

N, [Z2,,] = (2/r1)Ny [(°(T)] + (2/r1)* Ny, [°(T)?] - (3.26)

We know from (1.12) under Ny, ¢°(T) has exponential law with mean b. Thus,

N, [¢°(T)] = b and N, [¢°(T)?] = 2b*. Recall that b = a—7r1/2 < a, so we

get (2/r1)Ny [éb(T)] <2< 2£ because we assumed that a/r; > 1. Moreover

(2/r1)2N,, [(°(T)?] = 8b*/r} < 81)2/7’1 Thus N, [wal] < 10a?/r?. Combined
with (3.24) and (3.25) it entails

a 4 2T%

N |(Sare = (e, e)(T)*] < coa® 21,

with ¢y a positive constant smaller than (1/2)10%. This implies the desired result,
using that N (h(7) > b) =1/b < 2/a. [ ]

We state now the main technical Lemma of the paper. Let us recall from (3.22)
the definition of u(r,e). The proof of the lemma makes use of the spinal decom-
position described in Section 3.1. In particular, a geometric argument allows to
reduce the problem to the variables introduced in (3.15).
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Lemma 3.8. Letr={ry,...,mp}, wherery > ... >1r, >0, ande = {e1,...,6n1},
where €1 > ... > enq > 0. The following inequality holds :

n—1
u(r,e) < ri H P (A,*_Hhrk < sk). (3.27)
"\ k=1

Proof. Let r = {ry,...,r,} and {e1,...€,1} as above. In that proof, we denote,
for convenience, b = r1/2; hence, a dependency with respect to b is actually a
dependency with respect to r. Let us consider T' a T (b)-ball of radius r, and
recall the notation (3.19). The ball T' is (r,e)-small iff (3.20) holds. But, for all
ocelke[l,n-1],

Tlrg) =T(o,7rk) D T(o,rg) \ T'(o, 7k41)-

Thus, if T is (r, €)-small, then all the vertices in T belong to the set

F(re)={ceTOb) :Vke{l...n—1} (T (0,re) \I(0,7541)) <er}. (3.28)

The last set is easy to handle using the spinal decomposition. Indeed, according to
(3.16) and the independence stated in Lemma 3.3, one has

n—1
Z/(I',E) =N |:/ éb(da)l{aey(r,e)}:| = H P (A:kJrlﬂ"k < E‘k) . (329)
k=1
To relate p(r, e) and v(r, ), one can write

(*(T)

rn\/V(r, €)

1{F is (r,e)—small} < 1{€b(F)§rn\/V(r7e)} + l{F is (r,e)—small}- (330)

Moreover, (3.28) entails that Eb(F)l{p is (re)—small} < Jp Kb(da)l{gey(r,s)}. Recall

now from Proposition 2.1 (i) that the balls of the set %), are pairwise disjoint.
Summing in (3.30) over this set entails

J(do)1ipes (e

Sb,r,s < 1 + . (331)
1“e§b:M {[b(F)STn\/y(r,s)} Tn/V(r,€)

Now, recalling Lemma 3.1, we compute

N, Z 1{@”(1“)9"@} =Ny [Zpr, ] (1 — exp (—(2/rn)rn u(r,s)))

re%y,r,

< D) v(r,e),
Tn

so the N-measure of the first term in (3.31) is smaller than 2y v(r, ). Recalling

T
that b = r1/2, we get that the latter equals Ti\/u(r,s). Moreover, by the mere
definition (3.29), the N-measure of the second term in (3.31) equals -/v(r,€), so
the first inequality is checked. ]
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4. Proof of Theorem 1.1.

The proof of Theorem 1.1 will combine the following two theorems.

Theorem 4.1. Let k € (%, o0) and m € (0, %) Then, there exists a Borel subset

V =V(k,m) C C° such that N (C°\ V) =0 and such that
on V, for all Borel subset A C T, Va € [m,m '], (“(A) <k, (ANT(a)).

For all a,a € (0,00), let us set

A = {a € T (a) : limsup ¢ (Blo,)) < a} . (4.1)

“ r—0 g(?“)

Theorem 4.2. Let a € (0,3) and m € (0,1/2). Then, there exists a Borel subset
V' = V'(a,m) C C° such that N (C°\ V') =0 and such that

onV’', Vac [m,mﬁl], Iy (AF) = 0.

The proofs of Theorem 4.1 and 4.2 share a common strategy, taken from Perkins
(1988, 1989). We need to control the mass, or the number of ”bad” T (a)-balls
where ”"bad” means too large or too small. And we want to do it uniformly for all
levels a. This problem will be linked with a discrete one using a finite grid, and
the measure or the number of bad 7 (a)-balls will be compared with a convenient
multiple of £*(7T), the total mass at level a.

4.1. Proof of Theorem /.1.

4.1.1. Large balls. Let us fix a level a € (0,00), and recall from Section 3.1 the
definition of the sigma-field G,, generated by the excursion below level a. We also
recall the definition of 7 (a)-balls (2.2). We fix a threshold y € (0,00) and we
consider the following set of ”large” points on 7 (a) :

Lory={0¢€T(a): 4T (o,7)) >y} (4.2)
According to Lemma 3.1, the ”total large mass”

I (»Ca,r,y) = Z ga(r)l{ea(l")>y}
N

is G,-measurable.

Lemma 4.3. For all a,l,y,r,d € (0,00), for all ¢ € (1,00),

N(E“(Eary/c) <l sup L(Lpry) > 41) <L exp(—1/0)
v bela,a+4d] v a

+ %exp (—(1—0_1/2)2y/6> .

Proof. Let a,l,y,r,d € (0,00), where r < 2a, and ¢ € (1,00). We define Ay, a
Borel subset of C°, as the event

Ag =< 1° (Lamy/c) <l:; sup (Lopy) >4l p. (4.3)
’ bela,a+d]

We recall from Proposition 2.1 that %,, = {[';,1 < i < Z,,} is the collection
of T (a)-balls of radius r at level a. For I' a T (a)-ball and b € [a, c0), we defined
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I ={oceT(): Jo' €T,0" € [p,o]} as the set of vertices at level b having an
ancestor in I' (see (3.7) for details). Next we define A; a Borel subset of C° as the
event

A = {aie{l,...7za,r}, ¢(T;) <y/e and  sup fb(l“i-’)>y}> (4.4)
b€la,a+d]

and set

o = U 0 cT), (4.5)

a,ry/c
La(Ty)>y/c
which is the set of all vertices at level b having a ”large” ancestor at level a. We
prove the following :

on CO\ Ay, Vb€ la,a+8] Ly, CL (4.6)

ayry/er

Proof of (4.6). Let b € [a,a + ¢] and let 0 € Ly, ,. Thus, the ball T' := I'(o,r) €
By, is such that (°(T') > y. Let o, the unique ancestor of o at level a, namely
d(p,04) = a and o, € [p,0]. We set T :=T(0q4,7) € Ao, and we first claim that
' € Y’ Indeed, let ¢’ € T' (so d(0,0') < r) and let o/, the unique ancestor of
o’ at level a. Recalling that o A ¢’ stands for the most recent common ancestor
of o and o', one get d(p,0 Ao’) = 1 (2b—d(0,0")). Then two cases may occur.
First, if d(o,0’) < 2(b — a), then d(p,o A ¢') > a, thus o, = o/, and o/ € Y°.
If d(o,0") € (2(b — a),r). Then, one has d(p,0 A d’) < a. We deduce from that
inequality that o, # o/ and that o, A o), = o A ¢’. Hence,

d(oq,00) =2a—2d(p,04 A o))
=2b—2d(p,o No')+2a—2b
=d(o,0") = 2(b—a) <.

Thus o/, € T and ¢’ € Y, which ends the proof of the inclusion I' C T?. We get
that for all b € [a,a + 6], £°(Y?) > ¢*(T') > y. On C°\ Ay, one cannot have both

(YY) <y/cand sup £° (Tb) > y, which entails that here, £%(T) > y/c.
bela,a+4]

To sum up, on C° \ A;, a vertex o, taken in Ly.ry, has an ancestor in a ball T,
such that £¢(T) > y/c. Thus, this ancestor belongs to L, .,/ and o € b

a,ry/c’
End of the proof of (4.6).

Let us finish the proof of the lemma. From (4.6), we see that

N(4) < N(41) + N(4N(C°\ A1) < N(4)) + N(do),  (47)
where A, is defined by

Ay =" (Lopyse) <1; sup (L0 ) >4lp. 4.8

2 { ( my/) belaats] ( Hy/) (4.8)

We control N(A4;) and N(A3) thanks to Lemma 3.5 (ii). Indeed, Lemma 3.2
states that under N, conditionally on G,, the processes (E“"’“/ (T¢t*),a’ > 0),1 <
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i < Z,, are independent Feller diffusions started at ¢*(I';),1 < i < Z,,. Sub-
additivity and Lemma 3.5 (ii) entails

Za,r

N (4;) < 2Na > Lo, <y/e} XD (—5_1 (\/23 - JW)2>

i=1

N

IN

1 _ _ 2 _ _
o exp (—(1—0 1/2)25 1y) NylZor] = . exp (—(l—c 1/2)25 1y) . (4.9)

. Zar o ata s mrata
Since ¢° (ﬁf’w,y/c) =37 Lppa(ry)>y/ep (D), it implies that (¢2+ (ﬁa;y/c),a/ >
0) is a Feller diffusion started at ¢ (Camy/c). Thus, we use Lemma 3.5 (ii) again

to get

1 3 2
N(Ag) < aNa [1{£a(ca,r,3//c)<l} exp (5 1 <2\ﬁ va (ﬁaﬂ-,y/c)) )]
1
< gexp(—l/é). (4.10)
Hence, the desired result follows from (4.7), (4.9), and (4.10). [ |

Recall that g(r) = rloglog(1/r). We fix k € (3,00), and we shall apply the
previous lemma with y = kg(r). The next lemma allows £¢ (Ea’r’,{g(r)) to be con-
trolled uniformly for all levels a. Its proof involves a discrete grid : for m < 1/2
and r € (0,00), we set

G(r,m) := {m + kb, k € N*} N [m, m 1, (4.11)
where 9§, is the mesh of the grid, defined by
6, =132, (4.12)
Note that G(r,m) contains less than (md,) ™" points.

Lemma 4.4. Letm € (0,1/2). Let s € (3,00) and 3 € (1,00) such that 25— > 0.
There exists a constant r1 € (0,00) only depending on k, 3, m, such that

Vre (0,r1), N < sup (Lo rg(r)) > 410g(1/r)_6> <log(1/r)™%. (4.13)
be[m,m~1]

Proof. In what follows, we denote T the left-hand-side of (4.13). Let us consider

¢ € (1,00) such that 2x/c — 8 > 0. Recall that G(r,m) stands for the grid defined

by (4.11). Then we have Ty < Ty 4+ T5, where:

Ty =N ( sup & (‘Caﬂ',mg(r)/c) < IOg(l/T)iﬂa
a€G(r,m)

sup eb (‘Cb,r,ﬁg(r)) > 410g(1/r)_ﬁ> ’

be[m,m~1]

T, =N ( sup % (Larrg(r)/e) > log(l/r)_6> .
a€G(r,m)
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Using sub-additivity and Lemma 4.3, one gets

T, = N( U {Ea (Ea,r,ng(r)/c) <log(1/r)"";

a€G(r,m)

sup " (Lo g(r)) = 410g(1/7")_’3})
bela,a+6,]

S (mar)il sup N(éa (La,r,mg(r)/c) S log(l/r)iﬁ ;

a€G(r,m)

sup Zb(ﬁbm,@g(r)) > 410g(1/r)_ﬂ)
b€la,a+6,]

< (mo,)™* (m_l exp (=0, log(1/r)~") + %exp (—(1—0‘1/2)25(5;19(7“)) )

One has &, log(1/r)™# > r~—' and §; ' g(r) > r~/2 for all r sufficiently small. Thus,
for example, T} < exp(—r~"/%) < (1/2)log(1/r)~2 for all r sufficiently small.

Let us bound 75. To that end, we set

)\(’I‘7 K, C) = (2/’/“)E [51{£>mg(r)/c}] y (414)

where £ is a r.v. on (Q, F,P) exponentially distributed with mean r/2. For fixed
k and ¢, elementary computations entail

A(ry K, ¢) = (2/r)P (€ > kg(r)/c) E[rkg(r)/c + &]
= (2/r)exp (—2(k/c)loglog1/r) ((k/c)rloglog1/r 4+ r/2)
ot (2k/c) log(1/r) 2%/ loglog 1/r. (4.15)
We set T, < T3 + T}, where
T3 =N ( sup |€“ (Larrg(ry/c) — )\(T,/@,c)f’l(T)‘ > ;log(l/r)_5> ,

a€G(r,m)

1
Ty=N|[ sup A k,c)l*(T)> =log(1/r)~?|.
a€G(r,m) 2
By sub-additivity and a Markov inequality involving a moment of order 4, we get

1
T3 < (mé,)t sup N <|£“ (Larwgrye) — Alr, 5, e)*(T)| > 2log(l/r)ﬁ>
a€G(r,m)

< (mdr)_124 10g(1/7‘)46 sup a_lNa |:(£a (ﬁa,r,fcg(r)/c) - )‘(rvﬁvc)éa(T))zﬂ .
a€G(r,m)

(4.16)

Recall notation %A, , = {I'; ,1<i<Z,,} for the set of T (a)-balls with radius r.
Then, consider the decomposition

Za,r
A (ﬁa,r’,{g(r)/c) — )\(r, K, C)ga(T) - Z Xi:
i=1

where X; := (%(T';) (Lgoa(r,)>ng(r)/c} — A(75 K, ¢)). Using Lemma 3.1, we see that
under N, conditionally on Z, ,, the random variables £*(I'1), ... £*(I'z, ) are inde-
pendent and exponentially distributed with mean r/2. Thus, the definition (4.14)
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of A(r, k, c) entails that under N, conditionally on Z, ., the r.v. Xy,... Xz,  are
i.i.d., with mean 0 and a moment of order 4. Then, by Lemma 3.4,

4
Za,r
N, in < 3N.(XT)N, [Z2,]. (4.17)
=1

From (4.15), we know that A(r, k, ¢) =9 0, so for all sufficiently small 7, A(r, &, ¢) <
1/2 and |X;| < ¢%(I'y), which implies No[X{] < No[¢*(T'1)%] = 2r? for all suf-
ficiently small r. Moreover, Z,, is under N, a geometric r.v. with ”success”
probability p = r/2a (see Lemma 3.1), thus N, [Z2,] = (2 — p)/p? < 8a?/r?.
Combining (4.16) and (4.17), we get, for all sufficiently small r,
Ty < 3.94 -1 48 1 3r? 8a? 3,,—2 48,.1/2
3 < 3.2%.(mé,) " log(1/r) sup @ - < 10°m “log(1/r)*Pr /2,
a€G(r,m) r
(4.18)
recalling that 6, = r Observe now that the right hand side is smaller than
(1/4)log(1/r)=2 for all sufficiently small 7.

3/2

For the term T, Lemma 3.6 entails
1
T, <N sup L2 (T) > =A(r, k,c) " log(1/r)~"
be[m,m1] 2
< (2/m)exp (—(m/4)A(r, 5, ¢) " log(l/r)_ﬁ) . (4.19)
By (4.15),

-1 -8 < 2K/c—B -1
A(r, k, )7 log(1/7) o o log(1/r) loglog(1/r)—.

Recall that 2k/c—f8 > 0 and take ¢ € (0,2x/c—0). Thus, for all sufficiently small
r?

Ty < (2/m)exp (—log(1/7)%),
which is smaller than (1/4)log(1/r)~2 for all sufficiently small r. |

4.1.2. Proof of Theorem 4.1. Let k € (1/2,00), and let m € (0,1/2). Let 8 € (1,00)
such that 2k — 8 > 0. For all a € (0,00), y € (1,00) recall from (4.1) the definition

AU = {U € T (a) : limsup #(B(or)) < yn} . (4.20)

r—0 g(’l’)

For any p € N, set 7, := y~P. By Lemma 4.4, for all sufficiently large p,

N < sup (° (ﬁa’%,{g(rp)) > 4log(1/rp)_ﬁ> < log(l/rp)_2 = log(y)_zp_g,

a€[m,m1]
(4.21)
whose sum over p is finite. By the Borel Cantelli lemma,
N-a.e., for all sufficiently large p, sup £° (anrp,ﬁg(rp)) < 4log(1/r,)7".

a€[m,m=1]

(4.22)
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Moreover, log(1/r,) ™ = log(y)Pp~?, and recall that 3 > 1. Thus, (4.22) entails
that there exists a Borel subset V,, C C, such that N(C%\ V,) =0, and on V:

Ya € [m,m™ Y, Zﬁa (Lar, rgry)) = ZE” ({o : t4(B(o,rp)) >kg(rp)}) < co.
p=1 p=1

We can apply again the Borel-Cantelli Lemma, to the finite measures ¢* to get
that,

onV, Vaec[m,m?], (*(do)-ae. 3Ipo(a,o),

*(B 4.23

Vpro(a,O'), M < K. ( )
9(rp)

If u € (rpy1,7p], one has éa(f((g)’u)) <t ;](5’:“(;::§)) <yt (f((é’)rp)). Combined with

(4.23), this entails that on V,, for all a in [m,m™!], for £*-almost every o in T (a),
limsup,_,o £*(B(0,r))/g(r) < yk. This can be rewritten in

onV,, Vae&[m,m?], (“(T(a)\AY)=0. (4.24)
Now set V.= {V,;y > 1;y € Q}. Clearly, N(C°\'V) = 0 and by monotonicity,

for all & € (k,00), T(a)\AF ¢ U {T(a)\ AYr}. It follows easily from (4.24)
y>1;9€Q
that

on'V, Vae[mm], Vi € (ko) @ (T(a) \ Ag’) ~0. (4.25)
Thus, using Lemma 2.2, we get :
on V. VA Borel subset of 7 Va € [m,m '] V&' € (k,00)
() = e (AN AL ) < Wty (ANAL) < WAty (AN T(a)).

This ends the proof of Theorem 4.1 letting £’ \ k.
4.2. Proof of Theorem /.2.

4.2.1. Small balls. For given level a € (0,00) and r € (0, 00) we recall the notation
B, for the set of T (a)-balls of radius r. We recall from (3.19) that for r» > ' > 0,
a ball ' € A,, is contained in a unique ball in %, ,, denoted I'[r]. Let r =
(ri,...,ry) and € = (€1,...,en-1), where the r; and the g; are strictly decreasing.
Recall from (3.20) that T, a T (a)-ball of radius 7, is (r, €)-small iff

Vk € [1,n—1] €2 (Tfrg]) < .

The total number of (r,e)-small balls at level a is denoted by S, r.e (see (3.21)).
For u € (0,00), we write ur = (ury,...,ury). We recall from (3.6) the following
notation : if I' is a 7 (a)-ball, then, for all b > a, I'® is the subset of all the vertices
in 7(b) having an ancestor in I'. Namely, '’ = {o € T(b),30’ €T : ¢’ € [p,]}.

Lemma 4.5. Let a,§ € (0,00), and n > 2. Let r = (ry,...,ry) and € =
(€1y...,6n1), where the r; and the &; are strictly decreasing. Let ¢ € (1,2),
a € (0,1/2) and & € (o, 1/2). If § < Stry, then

(&
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4 2
N ( sup  Sprae > Sa7c—1r,de> < T—nexp (— (\/5—\/&) snl/é) .
be

la,a+6] n

Proof. Let us denote By = {supbe[a7a+5] Sh.r,ae > Saycflr,&s}. Next, we define the
event By by

By ={3ke{l...,n—1}, ATEB,,,/c : {*(I') > ae), and inf éb(Fb)<a5k}.

bela,a+4d]
(4.26)
We will prove that By C By, that is to say
on CO \ By, Sup Sb,r,ae < Sa,cflr,&s' (427)
bela,a+4d]
Proof of (4.27). We work deterministically on C%\ By. The inequality (4.27) follows
from the following claim.

For every b € [a,a+ 6], for every T, a T (b)-ball of radius r,, which is (7, ag)-small,
there exists Y a T (a)-ball of radius ry,/c such that T is (cr,ae)-small and
TP CT.

Assume that the latter is true. Then, to any (r, ae)-small ball at level b corresponds
a (c'r, ae)-small ball at level a and the correspondence is injective. Summing over

all T (b)-balls, we obtain (4.27).

Now let b € [a,a+d] and " € %, such that ' is (r, ae)-small. Let o € T and let
0, its unique ancestor at level a. Namely o, € T (a) and o, € [p,c]. We denote
T =T(04,rn/c) € By, /e the T (a)-ball of radius r,,/c that contains o,. We claim
that Y is (c'r, &e)-small and that Y® C T. To prove this, we show

Vke{l,....,n}  (Y[re/d)’ C Tlrl. (4.28)

Let k € {1,...,n} and let v € (Y[rx/])". Its unique ancestor at level a, denoted
Ya, is such that v, € Y[rg/c]. Two cases may occur. First, if d(o,v) < 2(b — a),
then we have 2(b—a) < 20 < %rn < rp < ri. The other case corresponds to
d(o,7) > 2(b—a). Then d(p,oc Av) = 3(2b—d(0,7)) < a. Thus, 0 Ay =04 AV
and we have
d(o,7) = 2b—2d(p,0 \7)
= 2a —2d(p, 04 NYa) +2b— 2a
< d(Jaa’ya) + 20
-1
SEI
c

where we used in the last line that o, € T C Y[ry/c]. In both cases, d(o,7) < rg
so v € ['(o,r,) = I'[rg], the last equality being a consequence of Proposition 2.1
(#i), and the definition of I' = I'(o,7,,). Thus, (4.28) is proved and it implies

Vke{l..n—1} ¢ ((T[Tk/c])b) < ¢t (T[r)) < aep,

Tn S Tk,

which, on C°\ By, implies
VEe{l...n=1} £*(Ylri/q]) < aey.

This entails that Y is (¢'r,&e)-small. The inclusion Y® C T’ was proved at line
(4.28) with k = n because T = Y[r,/c] CT'[r,] =T.
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End of the proof of (4.27)

Asin the proof of Lemma 4.3, we can use the fact that under N, conditionally on
Ga, if T is a T (a)-ball, then the process {E‘”“/ (reta’y o > 0} is a Feller diffusion
started at ¢%(T"). Using sub-additivity and Lemma 3.5 (i), we get

n—1 Zayry/e
1 _ 2
N (Bl) < gNa E 1{5“(Fi)2546k} exp (_5 ! (\/ Za(Fi) Y aEk) )
k=1 i=1

(4.29)

n—1

< Lo (=07 (Vam - vaz) ) o Na [Zu (4.30)
k=1

The proof is completed recalling that for all k € {1...n—1}, ex < €,1, and that,
by Lemma 3.1, Ny [Zg 1 je] = 2% < 20¢ < 4o, [ ]

ry/c = Th — Ta

Let us introduce

VieN, r;=277 and e¢;=g(r)) (4.31)
and then
VpeN, jp=L(4/3)"], P =(r;;jp <j<jpy1—1) and (432
e®) = (53 jp<J <Jpsr1—1).
Let m € (0,1/2), we also introduce the following discrete grid

G'(p,m) == {m + ké,,k € N} N [m,m™ ], (4.33)

where §,, is the mesh of the grid, given by
B =150 (434)

Note that G’(p, m) contains less than (md,)! points.

Lemma 4.6. Let a € (0,1/2), m € (0,1/2). For p € N, denote u, :=
g (rjpﬂ)flp*?, Then there exists pg € N only depending on a,m such that for

all p > Do,

N ( sup Sy ) e > up> <p 2. (4.35)
be[m,m1]

Proof. Let & € («,1/2) and ¢ in (1, 00) such that 2c& € (0,1). In what follows, we

denote T} the left-hand-side of (4.35). Observe that Tj) < Ty + T4, where we have

set

/
T =N SUp Sy e ae@ S Up s SUD Spr) aem > Up |
a€G’(p,m) be[m,m1]

T, =N SUp Sy 1r) get@ > Up | -
a€G’(p,m)
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Using sub-additivity and Lemma 4.5, we get

!
Ty <N U { SUp  Sp () et > Sa,c—lrw),&e(p)}
a€eG’'(p,m) b€[a,a+dy]

—1
< (mép) sup N sup Sb,r(l’),(xs(P) > Sa,cflr(m,&s(l’)
a€G’(p,m) bela,a+6,]

< gy 20 e (— (VG- V) g (r (i =) )

One has 8,'g(r(jp+1-2)) = 6, 9(r(jp+1)) = r(Jp11)"/* loglog 1/r(jp+1), which im-
plies that T} is smaller than (1/2)p~2, for all p sufficiently large (it is obviously not
a sharp bound).

Recalling the definitions (3.22), we set

Mp — M(C_lr(p)7 de(p)) — N (S’r‘(jp)/(Qc),cfll‘(p),&E(p>) . (436)
We will use that Ty < T4 + T}, where

Té =N ( sup ‘Sa,cflr(P),ds(P) - Mpéa (T)‘ ~ up/2> ’
a€G’(p,m)

a€G’'(p,m)

T;=N ( sup  ppl® (T) > up/2> :

By sub-additivity and a Markov inequality involving a moment of order 4, we get

T3 < (mdp)"  sup N (IS4 c1e0 aetr = ipl® (T)| > up/2)

a€G’(p,m)

< (mép)_124u—p4 sup N [(Sa,flr(m,de(m - Mpga (T))ﬂ . (4-37)
a€G’ (p,m)

We want to apply Lemma 3.7 with r = ¢ 'r(P) and e = Ge®). Thus, recalling (4.31)

and (4.32), we check that for all sufficiently large p, m/r(j,) > 1 and r(jp) /7 (jp+1—

1) > 2. Recalling that ¢y € (0,10%] is the universal constant given by Lemma 3.7,

we get from (4.37)

: 2 2
T < (méy) 2% sup cw%ﬁ?‘lcom&%. 4.38
3= p) P a€G’ (p,m) T(Jp+1_1)4 51)“?;7’010—1-1)4 ( )
Recall that u, = g(r(jp+1))'p %, and by (4.31) and (4.32), we get
loglog(1/r(j,)) ~ plog(4/3). Hence, u, > p~3r(jp41) ! and (4.38) implies
p—r00
Tg/) < 24com—2p12 T(ﬂpﬁw (4.39)

7 (Jpt1) > 1 Gt

Now, one can plainly check that T(;(i% is smaller than 7(j,)'/3. Thus, T} is

smaller than (1/4)p~2 for all p sufficiently large.

For the term T, we use Lemma 3.6 to obtain

Ty < (2/m)exp (—(m/4)upu;1) . (4.40)
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Recalling (4.36) and Lemma 3.8, we get that for all p,

5 Jpt1—2 1/2
Hp < —= H P(A:_H/C’T,v/c < arjlog log(l/rj)> (4.41)
7(Jp+1) =, ! !

We want to get an lower bound of up/fpl, so we compute an upper bound for u;l -
Recalling that u, > p~3r(jp+1)", one has

Jp+1—2 1 Jp+1—2

_ 1
Uy <5pPexp | 5 Z log (1 —q;) | <5p°exp | —3 Z g |, (442)
J=Jp J=Jp
where ¢; = P(A:Hl/c,rj/c > arjloglog(1/r;)). Recalling that r; = 277, it follows

from Lemma 3.3 that

< 1 ) 2 2ag4loglog 1/r; ( 2aggloglog1/r; >
g =|1-= exp | —
2 /e /e
. 1_} exp _ 2argloglog1/r;
4 /e
~ % log log(]./’f’j)672&610g log(1/r;)
Jj—o0 2
~log(j)j
j—oo
where ¢ is a positive constant depending on «, &, c. We stress that the particular
choice of ¢ was made to ensure that x := 1 — 2ac is strictly positive, so that the
following is true for all large p :

Jp1—2 Jp+1—2 Jp+1—1 4\
. —2dc - “28edy o~ xTL((4/3)X-1) (=) .
]qu_jzj _/ R N S (ST M

Jp

Thus, for all p sufficiently large, Z;Z“ ¢; > 2p which, combined with (4.42),
entails that u;l,up < 5p3exp (—p). Thus, up,u;l > 5 1p3¢eP. Finally, we see from
(4.40) that T} is smaller than (1/4)p~2 for all p sufficiently large, which ends the
proof. |

4.2.2. Proof of Theorem /.2. Let a € (0,1/2). For a level a € (0,00), we recall the
definition (4.1) of A%. To show that the g-Hausdorff measure of A% is null, we need
an efficient covering of this set. Let us recall the integer sequence j, = [(4/3)?]
and the radii r; = 277. For p € N, we recall the definition of the finite subsets
v® = {r;,j, <j <jpy1—1}, and e?) = {;, i, < j < jpp1—1} where g5 = g(r;).
Recalling the definition (3.20) for small balls, we set

(@G:

6, = {F € B [is (r®), as(”))—small} .

jp+1) :

pP=n

Observe that if ¢ € A2, then the 7 (a)-ball T (o,7(jp41)) is (r?, ae®))-small for
all large p, thus for all n € N, we have AY C %,,. Let us recall the definition (1.15)
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of Hausdorff measures, and the fact that the diameter of a T (a)-ball is smaller than
its radius. We get

Va € m,m™] A5 (AL <D 8w aew- 9 (F(Gni1) (4.43)
p=n
because A C 6,. Thus,
o0
Vae mm™] H(A) < limsup 3 Sy p00en-g ((Gpr) . (444)
n—oo
p=n

Now, let m € (0,1/2). Applying Lemma 4.6, we easily get that

oo

E N( Sup Sy p(e) qem > Up> < 00,
)

p:l ]

a€[m,m

where we recall the notation u, = g (r(jpﬂ)f1 p~2. By Borel-Cantelli lemma there
exists a subset V' C C° such that N (C°\ V') = 0 and such that

on V', g(r(jpsr1)) SUP  Surtm.aem < p~2, for all suff. large p.

a€[m,m 1]
Combined with (4.44), we deduce on V', for a € [m, m™], one has
Ay (A7) < lim Y p~? =0,
p=n

which is the desired result.

4.3. Proof of Theorem 1.1. Let k € (%,oo), a € (O,%)7 and m € (0,1/2). The-

orem 4.1 entails that there exists a Borel subset V. = V(k,m) C C° such that
N (C"\V) =0 and

on V(x,m), for all Borel subset A C T, Va € [m,m '],

4.45
((A) < Kty (ANT(a)). (4.45)
Now, let us rewrite the definition (4.1)
A = {0’ € T(a) : limsup #(Blo,r)) < oz} : (4.46)
r—0 g(r)

According to Theorem 4.2, there exists a Borel subset V/ = V’(a,m) C C° such
that N (C%\ V') =0 and

on V'(a,m) Va€[m,m™] #(AY)=0. (4.47)
Let o/ < « and notice that 7T (a) \ A% C {a : lim sup % > o/}. Moreover,
r—0

from (1.13), we know that N-a.e. for all a € (0,00), £*(T \ 7T (a)) = 0. Thus, on
V', for all Borel subset A C T, and for all a € [m,m™] and all & < o, Lemma 2.3
entails

0 (A) 2 9 (AN (T (@) \ A7) > o'y (AN (T (a) \ A)) = o/ A (AN T(a()4 )
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where we used (4.47) for the last equality. Letting o' — «, we get
on V'(a,m) for all Borel subset A C T,

. (4.49)
Va € m,m™—] (*(A) > ax? (ANT(a)).
Now, let us set
Vo= N Vs.m) | ) N Viem)|. (4.50)
RE(1/2,00)NQ «€(0,1/2)NQ
me(0,1/2)NQ me(0,1/2)NQ

Clearly, V is a Borel subset of C° such that N (CO \ V) = 0. Moreover, combining

(4.45) and (4.49), we get that on V, for all Borel subset A C T, and for all level
a € (0,00), one has (7 (A) = 1., (AN T (a)).
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