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Abstract. We investigate the windings around the origin of the two-dimensional
Markov process (X,L) having the stable Lévy process L and its primitive X as
coordinates, in the non-trivial case when |L| is not a subordinator. First, we show
that these windings have an almost sure limit velocity, extending the result of
McKean (1963) in the Brownian case. Second, we evaluate precisely the upper tails
of the distribution of the half-winding times, connecting the results of our recent
papers Profeta (2014); Profeta and Simon (2014).

1. Introduction and statement of the results

A celebrated theorem by Spitzer (1958) states that the angular part {ω(t), t ≥ 0}
of a two-dimensional Brownian motion starting away from the origin satisfies the
following limit theorem

2ω(t)

log t

d−→ C as t → +∞,

where C denotes the standard Cauchy law. An analogue of this result for isotropic
stable Lévy processes was given in Bertoin and Werner (1996), with a slower speed
in

√
log t and a centered Gaussian limit law. Notice that both these results can be

obtained as functional limit theorems with respect to the Skorohod topology. We
refer to Doney and Vakeroudis (2013) for a recent paper revisiting these problems,
with further results and an updated bibliography.
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In a different direction, McKean (1963) had observed that the windings of the
Kolmogorov diffusion, which is the two-dimensional process Z having a linear Brow-
nian motion as second coordinate and its running integral as first coordinate, obey
an almost sure limit theorem. More precisely, if {ω(t), t ≥ 0} denotes the angular
part of the process Z starting away from the origin, it is shown in Section 4.3 of
McKean (1963) that

ω(t)

log t

a.s.−→ −
√
3

2
as t → +∞

(the constant which is given in McKean (1963) is actually −
√
3/8, but it will be

observed below that the evaluation of the relevant improper integral in McKean
(1963) was slightly erroneous). Of course, the degeneracy of the Kolmogorov diffu-
sion makes it wind in a very particular way, since this process visits a.s. alternatively
and clockwise the left and right half-planes. The regularity of this behaviour, which
contrasts sharply with the complexity of planar Brownian motion, makes it possible
to use the law of large numbers and to get an almost sure limit theorem.

The first aim of this paper is to obtain an analogue of McKean’s result in replac-
ing Brownian motion by a strictly α−stable Lévy process L = {Lt, t ≥ 0}. Without
loss of generality, we choose the following normalization for the characteristic ex-
ponent

Ψ(λ) = log(E[eiλL1 ]) = −(iλ)αe−iπαρ sgn(λ), λ ∈ R, (1.1)

where α ∈ (0, 2] is the self-similarity parameter and ρ = P[L1 ≥ 0] is the positivity
parameter. We refer to Samorodnitsky and Taqqu (1994); Zolotarev (1986) for
accounts on stable laws and processes, and to the introduction of our previous
paper Profeta and Simon (2014) for a discussion on this specific parametrization.

Recall that if α = 2, then necessarily ρ = 1/2 and L = {
√
2Bt, t ≥ 0} is a rescaled

Brownian motion. Introduce the primitive process

Xt =

∫ t

0

Ls ds, t ≥ 0,

and denote by P(x,y) the law of the strong Markov process Z = (X,L) started
from (x, y). By analogy with the classical Kolmogorov diffusion - see Kolmogoroff
(1934), this process may and will be called the stable Kolmogorov process. When
(x, y) 6= (0, 0), it can be shown without much difficulty - see Lemma 2.3 below -
that under P(x,y), the process Z never hits (0, 0). Filling in the gaps made by the
jumps of L by vertical lines - see the figure below - and reasoning exactly as in
Bertoin and Werner (1996) p.1270 it is possible to define the algebraic angle

ω(t) = ̂(Z0, Zt)

measured in the trigonometric orientation.
If ρ = 1 resp. ρ = 0, then |L| is a stable subordinator and it is easy to see that
Z stays for large times within the positive resp. the negative quadrant with a.s.
Xt/Lt → +∞, so that ω(t) converges a.s. to a finite limit which is

̂(Z0,Ox) resp. ̂(−Z0,Ox).

When ρ ∈ (0, 1) and (x, y) 6= (0, 0), the Lévy process L oscillates and the Kol-
mogorov process Z winds clockwise and infinitely often around the origin as soon
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Figure 1.1. One path of ((Xt, Lt), t ≤ 100) with α = 3/2 and
ρ = 1/2, starting from X0 = −1 and L0 = 0.

as (x, y) 6= (0, 0). Indeed, considering the partition R2 \{(0, 0)} = P− ∪ P+ with

P− = {x < 0} ∪ {x = 0, y < 0} and P+ = {x > 0} ∪ {x = 0, y > 0},

we see that if (x, y) ∈ P− the continuous process X visits alternatively the negative
and positive half-lines, starting negative, and that its speed when it hits zero is
alternatively positive and negative, starting positive. When (x, y) ∈ P+ the same
alternating scheme occurs, with opposite signs. In particular, the function ω(t) is
a.s. negative for all t large enough. In order to state our first result, which computes
the a.s. limit velocity of ω(t), let us finally introduce the parameters

γ =
ρα

1 + α
∈ (0, 1/2) and γ =

(1− ρ)α

1 + α
∈ (0, 1/2).

Theorem A. Assume ρ ∈ (0, 1) and (x, y) 6= (0, 0). Then, under P(x,y), one has

ω(t)

log t

a.s.−→ −2 sin(πγ) sin(πγ)

α sin(π(γ + γ))
as t → +∞.

Note that in the Brownian motion case α = 2, we have ρ = 1/2 and γ = γ = 1/3,
so that

2 sin(πγ) sin(πγ)

α sin(π(γ + γ))
=

√
3

2
·

The constant −
√
3/8 which is given in Section 4.3 of McKean (1963) is not the

right one because of the erroneous evaluation of the integral in (3.8.a) therein:

this integral equals actually π/
√
3, as can be checked by an appropriate contour

integration. The proof of Theorem A goes basically along the same lines as in
McKean (1963). We consider the successive hitting times of 0 for the integrated
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process X :

T
(1)
0 = T0 = inf{t > 0, Xt = 0} and T

(n)
0 = inf{t > T

(n−1)
0 , Xt = 0},

which can be viewed as the half-winding times of Z. We first check that n 7→ T
(n)
0

increases a.s. to +∞ as soon as (x, y) 6= (0, 0). The exact exponential rate of es-

cape of T
(n)
0 , which yields the exact winding velocity, is computed thanks to an

elementary large deviation argument involving the law of LT0 under P(x,0), a cer-
tain transform of the half-Cauchy distribution as observed in Profeta and Simon
(2014). Notice that contrary to McKean (1963) where the proof is only sketched,
we provide here an argument with complete details.

In the Brownian case α = 2, an expression of the law of the bivariate random

variable (T
(n)
0 , |L

T
(n)
0

|) under P(0,y) has been given in Theorem 1 of Lachal (1997),

in terms of the modified Bessel function of the first kind. This expression becomes
very complicated under P(x,y) when x 6= 0, even for n = 1 - see Formula (2) p.4 in
Lachal (1997). In all cases, this expression is not informative enough to evaluate

the upper tails of T
(n)
0 . In Profeta (2014) it was shown that

P(x,y)[T
(n)
0 ≥ t] � t−1/4 (log t)n−1 as t → +∞

where, here and throughout, the notation f(t) � g(t) means that there exist two
constants 0 < κ1 ≤ κ2 < +∞ such that κ1f(t) ≤ g(t) ≤ κ2f(t) as t → +∞. On
the other hand, Theorem A in our previous paper Profeta and Simon (2014) shows
the non-trivial asymptotics

P(x,y)[T0 > t] � t−θ as t → +∞

for (x, y) ∈ P−, with θ = ρ/(1+α(1−ρ)). By symmetry, the latter result also shows

that P(x,y)[T0 > t] � t−θ as t → +∞ for (x, y) ∈ P+, with θ = (1 − ρ)/(1 + αρ).
The second main result of this paper connects the two above estimates.

Theorem B. Assume that ρ ∈ (0, 1) and (x, y) ∈ P−. For every n ≥ 2, the following
asymptotics hold as t → +∞ :

P(x,y)[T
(n)
0 > t] � t−θ (log t)[

n−1
2 ] if ρ < 1/2,

P(x,y)[T
(n)
0 > t] � t−θ (log t)[

n
2 ]−1 if ρ > 1/2,

P(x,y)[T
(n)
0 > t] � t−θ (log t)n−1 if ρ = 1/2.

By symmetry, the same result holds for (x, y) ∈ P+ with θ and θ switched. In the
above statement, the separation of cases is intuitively clear, since for ρ < 1/2 resp.
ρ > 1/2 the negative resp. positive excursions below 0 will tend to prevail. The
main difficulty in the proof of Theorem B is to show that the required asymptotic
behaviour does not depend on the starting point (x, y) ∈ P−. This is handled
thanks to a uniform estimate on the Mellin transform of the harmonic measure
P(x,y)[LT0 ∈ .], and a general estimate on the upper tails of the product of two
positive independent random variables. These two estimates both have independent

interest. Note also that, except in the Brownian case where the law of T
(n)
0 is

explicitly known, getting exact asymptotics in Theorem B seems a difficult task.
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This is essentially due to the fact that, in Profeta and Simon (2014), the estimate
for T0 is obtained from that of LT0 via a scaling argument :

P(x,y)[T0 > t] � P(x,y)[|LT0 |α > t] as t → +∞.

Hence, although the asymptotics of LT0 is exactly known is some particular cases,
as such, the change of scale does not allow us to get the analogous constant for T0.

2. Proofs

2.1. Preliminary results. As mentioned before, we first establish some estimates on
the harmonic measure of the left half-plane with respect to the stable Kolmogorov
process. When starting from (x, y) ∈ P−, the process (X,L) ends up in exiting
P− on the positive vertical axis, and its exit distribution is given by the law of
LT0 under P(x,y). This distribution is called the harmonic measure since by the
generalized Poisson formula, it allows one to construct harmonic functions with
respect to the degenerate operator

Lα,ρ
y + y

∂

∂x
on the half-plane, where Lα,ρ

y is the generator of the stable Lévy process L. However,
we shall not pursue these lines of research here.

Lemma 2.1. Assume that (x, y) ∈ P−. The Mellin transform s 7→ E(x,y)[L
s−1
T0

]
is real-analytic on (1/(γ − 1), 1/(1 − γ)), with two simple poles at 1/(γ − 1) and
1/(1− γ). In particular, the random variable LT0 has a smooth density f0

x,y under
P(x,y), and there exist c1, c2 > 0 such that

f0
x,y(z) ∼

z→0
c1 z

αθ/γ and f0
x,y(z) ∼

z→+∞
c2 z

−αθ−1.

Proof : Observe first that the smoothness and the asymptotic behaviour of the
density function of LT0 are a direct consequence of the statement on the Mellin
transform, thanks to the converse mapping theorem stated e.g. as Theorem 4 in
Flajolet et al. (1995). This latter statement is also a direct consequence of Theorem
B in Profeta and Simon (2014) when either x = 0 or y = 0. From now on we shall
therefore assume that xy 6= 0. By Proposition 2 (i) and Equation (3.2) in Profeta
and Simon (2014) we have

E(x,y)

[
Ls−1
T0

]
=

π

∫ +∞

0

E(x,y)

[
X−ν

t 1{Xt>0}
]
dt

(1 + α)1−ν (Γ (1− ν))
2
Γ(1− s) sin(πs(1− γ))

(2.1)

with s = (1− ν)(1 +α) ∈ (0, 1). However, it does not seem easy to study the poles
of the right-hand side directly since the integral is not expressed in closed form, and
for this reason we shall perform a further Mellin transformation in space. First, we
know from Proposition 1 in Profeta and Simon (2014) that

E(x,y)[X
−ν
t 1{Xt>0}]

=
Γ(1− ν)

π

∫ ∞

0

λν−1e−cα,ρλ
αtα+1

sin(λ(x+ yt) + sα,ρλ
αtα+1 + πν/2) dλ

for every ν ∈ (0, 1), with

sα,ρ =
sin(πα(ρ− 1/2))

α+ 1
∈ (−1, 1) and cα,ρ =

cos(πα(ρ− 1/2))

α+ 1
∈ (0, 1).
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For every β ∈ (0, ν) this yields

π

Γ(1− ν)

∫ 0

−∞
|x|β−1E(x,y)[X

−ν
t 1{Xt>0}]dx

=

∫ +∞

0

λν−1e−cα,ρλ
αtα+1

∫ 0

−∞
|x|β−1 sin(λ(x+ yt) + sα,ρλ

αtα+1 + πν/2) dx dλ

= Γ(β)

∫ +∞

0

λν−β−1e−cα,ρλ
αtα+1

sin(λyt+ sα,ρλ
αtα+1 + π(ν − β)/2) dλ

=
πΓ(β)

Γ(1− ν + β)
E(0,y)

[
X−ν+β

t 1{Xt>0}

]
where the switching of the first equality is justified exactly as in Lemma 1 of Profeta
and Simon (2014), and the second equality follows from trigonometry and gener-
alized Fresnel integrals - see (2.1) and (2.2) in Profeta and Simon (2014). Assume
first that y < 0. From Proposition 2 (ii) in Profeta and Simon (2014), we obtain

π

Γ(1− ν)

∫ +∞

0

∫ 0

−∞
|x|β−1E(x,y)[X

−ν
t 1{Xt>0}] dx dt

= Γ(β)Γ(1−ν+β) (α+1)1−ν+β Γ(1−s−β(1+α)) sin(πραβ+πγs) |y|s+β(1+α)−1

for every β ∈ (0, (1−s)/(α+1)). Putting this together with (2.1), we finally deduce∫ 0

−∞
|x|β−1E(x,y)

[
Ls−1
T0

]
dx

= (α+1)β
Γ(β) sin(πραβ + πγs)Γ(1− ν + β)Γ(1− s− β(1 + α))

Γ(1− ν)Γ(1− s) sin(πs(1− γ))
|y|s+β(1+α)−1.

(2.2)

We shall now invert this Mellin transform in the variable β in order to get a suitable
integral expression for E(x,y)[L

s−1
T0

]. Fix β ∈ (0, (1− s)/(α+ 1)). On the one hand,
since ρα < 1, we have

Γ(β) cos((πραβ + πγs)/2) =

∫ ∞

0

xβ−1 e−x cos(πρα/2) cos(x sin(πρα/2) + πγs/2) dx

and

Γ(1− ν + β) sin((πραβ + πγs)/2) = Γ(1− ν + β) sin
(πρα

2
(β + 1− ν)

)
=

∫ ∞

0

xβ−νe−x cos(πρα/2) sin(x sin(πρα/2)) dx.

On the other hand, a change of variable in the definition of the Gamma function
shows that

Γ(1− s− β(1 + α)) =
1

1 + α

∫ +∞

0

xβ−1x
s−1
1+α e−x−1/(1+α)

dx.

Setting

Ks(ξ) =

∫ +∞

0

z
s

1+α−1e− cos(πρα/2)(ξ/z+z)

× cos

(
ξ

z
sin(πρα/2) + πγs/2

)
sin(z sin(πρα/2)) dz,
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we can now invert (2.2) and obtain, applying Fubini’s theorem and using the nota-
tion x̃ = x(1 + α)|y|1+α, a new expression for the Mellin transform of LT0 :

E(x̃,y)

[
Ls−1
T0

]
=

2|y|s−1|x|
s−1
1+α (1− s)

Γ
(

s
1+α

)
Γ(2− s) sin(πs(1− γ))

∫ +∞

0

ξ
1−s
1+α−1e−(

ξ
|x| )

1/(1+α)

Ks (ξ) dξ.

Since 1
1−γ = 1 + αρ

α+(1−αρ) < 1 + ρ < 2, it remains to prove that the function

Hs(x) = (1− s)

∫ ∞

0

ξ
1−s
1+α−1e−(

ξ
|x| )

1/(1+α)

Ks (ξ) dξ

admits an analytic continuation on [1/(γ−1), 1/(1−γ)]. Observe first that for any
s > −1− α, the function Ks is uniformly bounded on [0,+∞) by

|Ks(ξ)| ≤ sin(πρα/2)

∫ +∞

0

z
s

1+α e− cos(πρα/2)z dz

=
sin(πρα/2)

(cos(πρα/2))
s

1+α+1
Γ

(
s

1 + α
+ 1

)
.

As a consequence, the function Hs has an analytic continuation on (−1 − α, 1) ⊃
[1/(γ − 1), 1) since 1

γ−1 = − 1+α
1+α(1−ρ) > −1 − α. Next for every s ∈ (0, 1) an

integration by parts shows that

Hs(x)

1 + α
=

∫ ∞

0

ξ
1−s
1+α

d

dξ

(
e−(

ξ
|x| )

1/(1+α)

Ks (ξ)

)
dξ

=

∫ ∞

0

ξ
1−s
1+α e−(

ξ
|x| )

1
1+α

K ′
s (ξ) dξ −

1

|x|
1

1+α

∫ +∞

0

ξ
1−s−α
1+α e−(

ξ
|x| )

1
1+α

Ks (ξ) dξ,

where K ′
s is well-defined on [0,+∞) for any s > 0, and bounded by

|K ′
s(ξ)| ≤ 2 sin(πρα/2)

∫ ∞

0

z
s

1+α−1e− cos(πρα/2)zdz

=
2 sin(πρα/2)

(cos(πρα/2))
s/(1+α)

Γ

(
s

1 + α

)
.

Consequently, the function Hs also admits an analytic continuation on (0, 2) ⊃
(0, 1/(1− γ)]. This completes the proof in the case y < 0. The case y > 0 may be
dealt with in an entirely similar way, and we leave the details to the reader.

�
Our second preliminary result is elementary, but we could not find any exact

reference in the literature - see however the corollary after Theorem 3 in Embrechts
and Goldie (1980) and Theorem 4 (v) in Cline (1986) for tightly related estimates
- and we hence provide a proof.

Lemma 2.2. Let µ ≥ ν > 0 and n, p ∈ N. Assume that X and Y are two
independent positive random variables such that :

P[X ≥ z] �
z→+∞

z−ν(log z)n and P[Y ≥ z] �
z→+∞

z−µ(log z)p.

Then 
P[XY ≥ z] �

z→+∞
z−ν(log z)n+p+1 if µ = ν,

P[XY ≥ z] �
z→+∞

z−ν(log z)n if µ > ν.



122 C. Profeta and T. Simon

Proof : We first decompose the product as

P[XY ≥ z] =

∫ ∞

0

P[X ≥ zy−1]P[Y ∈ dy].

Therefore, for z > A large enough,

P[XY ≥ z] ≥
∫ √

z

A

P[X ≥ zy−1]P[Y ∈ dy]

≥ κ1

zν

∫ √
z

A

yν(log(zy−1))n P[Y ∈ dy] ≥ κ1(log(z))
n

2nzν

∫ √
z

A

yν P[Y ∈ dy].

Then, integrating by parts,∫ √
z

A

yν P[Y ∈ dy] = AνP[Y ≥ A]− zν/2P[Y ≥
√
z] + ν

∫ √
z

A

yν−1 P[Y ≥ y]dy.

Now, if ν < µ, this expression remains bounded as z → +∞. Assume therefore
that µ = ν. In this case, we have :∫ √

z

A

yν P[Y ∈ dy] ≥ AνP[Y ≥ A] − κ2

2p
(log z)p + νκ1

∫ √
z

A

(log y)p

y
dy

where, as z → +∞, the right-hand side is seen to be equivalent to
νκ1 (log z)

p+1

2p+1(p+ 1)
.

This gives the lower bound. To obtain the upper bound, we separate the integral
in three parts and proceed similarly, with ε small enough:∫ 1/ε

0

P
[
X ≥ z

y

]
P[Y ∈ dy] +

∫ εz

1/ε

P
[
X ≥ z

y

]
P[Y ∈ dy] +

∫ ∞

εz

P
[
X ≥ z

y

]
P[Y ∈ dy]

≤ P[X ≥ εz]+
κ2(log(εz))

n

zν

∫ εz

1/ε

yνP[Y ∈ dy] + P[Y ≥ εz]

and the proof is concluded as before, using an integration by parts and looking
separately at both cases ν < µ and ν = µ.

�

2.2. Proof of Theorem A. By symmetry, it is enough to show Theorem A for (x, y) ∈
P−. Consider the sequence (

T
(n)
0 , |L

T
(n)
0

|
)
n≥1

and set {Fn, n ≥ 1} for its natural completed filtration. It is easy to see from the
strong Markov and scaling properties of Z that this sequence is Markovian. To be
more precise, starting from P− and taking into account the possible asymmetry of
the process L, we have the following identities for all p ≥ 1.(

T
(2p)
0 , |L

T
(2p)
0

|
)

d
=
(
T

(2p−1)
0 + |L

T
(2p−1)
0

|ατ+, |L
T

(2p−1)
0

|`+
)

with (τ+, `+) ⊥ F2p−1 distributed as (T0, |LT0 |) under P(0,1), and(
T

(2p+1)
0 , |L

T
(2p+1)
0

|
)

d
=
(
T

(2p)
0 + |L

T
(2p)
0

|ατ−, |L
T

(2p)
0

|`−
)
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with (τ−, `−) ⊥ F2p distributed as (T0, |LT0 |) under P(0,−1). The starting term

(T0, |LT0 |) has the same law as (τ−, `−) if x = 0 and y = −1. By induction we
deduce the identities

|L
T

(2p)
0

| d
= |LT0 | ×

p−1∏
k=1

`−k ×
p∏

k=1

`+k and |L
T

(2p+1)
0

| d
= |LT0 | ×

p∏
k=1

`−k ×
p∏

k=1

`+k

where, here and throughout, (τ±k , `±k )k≥1 are two i.i.d. sequences distributed as
(τ±, `±), and all products are assumed independent. From Theorem B (i) in Profeta
and Simon (2014) and its symmetric version, the Mellin tranforms of `± are given
by

E
[
(`−)s−1

]
=

sin(πγs)

sin(π(1− γ)s)
and E

[
(`+)s−1

]
=

sin(πγs)

sin(π(1− γ)s)
(2.3)

for each real s in the respective domain of definition, which is in both cases an open
interval containing 1. This entails that E[| log(`±)|] < +∞, with

E
[
log(`−)

]
= π cot(πγ) > 0 and E

[
log(`+)

]
= π cot(πγ) > 0. (2.4)

The following lemma is intuitively obvious.

Lemma 2.3. Assume (x, y) ∈ P−. Then one has T
(n)
0 → +∞ and the process Z

never hits the origin, a.s. under P(x,y).

Proof : To prove the first statement, it is enough to show that Sn = T
(n)
0 −T

(n−1)
0 →

+∞ a.s. as n → ∞. Set

κα,ρ =
πα

2
(cot(πγ) + cot(πγ)) =

πα sin(π(γ + γ))

2 sin(πγ) sin(πγ)
> 0.

From the above discussion, we have

S2p
d
= |LT0 |α × τ+ ×

(
p−1∏
k=1

`−k × `+k

)α

(2.5)

for every p ≥ 2, with independent products on the right-hand side. For every
ε ∈ (0, κα,ρ), this entails

P(x,y)

[
S2p ≤ e2(p−1)(κα,ρ−ε)

]
≤ P(x,y)

[
|LT0 | ≤ e−ε(p−1)/2α

]
+ P

[
τ+ ≤ e−ε(p−1)/2

]
+ P

[
1

p− 1

p−1∑
k=1

log(`−k ) ≤ π cot(πγ)− ε/2

]

+ P

[
1

p− 1

p−1∑
k=1

log(`+k ) ≤ π cot(πγ)− ε/2

]
.

From Lemma 2.1, there exists θ1(ε) > 0 such that P(x,y)

[
|LT0 | ≤ e−ε(p−1)/2α

]
<

e−pθ1(ε) for p large enough. On the other hand, we have

P
[
τ+ ≤ e−ε(p−1)/2

]
≤ P(0,1)

[
inf{Lt, t ≤ e−ε(p−1)/2} < 0

]
= P(0,0)

[
sup{L̂t, t ≤ 1} > eε(p−1)/2α

]
≤ e−pθ2(ε)

for some θ2(ε) > 0 and all p large enough, where we have set L̂ = −L, the equality
following from translation invariance and self-similarity, and the second inequality
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from the general estimate of Theorem 12.6.1 in Samorodnitsky and Taqqu (1994).
Last, the existence of some θ3(ε) > 0 such that both remaining terms can be
bounded from above by e−pθ3(ε) for p large enough is a standard consequence of
(2.3), (2.4) and Cramér’s theorem - see e.g. Theorem 1.4 in den Hollander (2000),
recalling that the assumption (I.5) can be replaced by (I.17) therein. We can finally
appeal to the Borel-Cantelli lemma to deduce, having let ε → 0,

lim inf
p→∞

1

2p
log(S2p) ≥ κα,ρ > 0 a.s. (2.6)

This shows that S2p → +∞ a.s. and an entirely similar argument yields S2p+1 →
+∞ a.s. This concludes the proof of the first part of the lemma.

The second part is easier. If α ≤ 1, it is well-known that L never hits zero, so
that Z never hits the origin. If α > 1, we see from Lemma 2.1 that LT0 has no atom
at zero under P(x,y) and because `± are absolutely continuous, all L

T
(n)
0

’s have no

atom at zero. We finally get

P(x,y) [Z visits the origin] = P(x,y)

∪
n≥1

{
L
T

(n)
0

= 0
} = 0

where the first identification comes from the fact that T
(n)
0 → +∞ a.s. �

We can now finish the proof of Theorem A. Set θ0 = Ẑ0ZT0 ∈ (−π, 0) a.s.
Observing as in McKean (1963) the a.s. identifications

{ω(t) ≥ −(n− 1)π + θ0} = {T (n)
0 ≥ t}

and {ω(t) ≤ −(n− 2)π + θ0} = {T (n−1)
0 ≤ t},

we see that Theorem A amounts to show that

1

n
log(T

(n)
0 )

a.s.−→ πα sin(π(γ + γ))

2 sin(πγ) sin(πγ)
= κα,ρ as n → +∞.

Firstly, with the above notation, we have a.s. under P(x,y)

lim inf
n→∞

1

n
log(T

(n)
0 ) ≥ lim inf

n→∞

1

n
log(Sn) ≥ κα,ρ,

where the second inequality comes from (2.6) and its analogue for n odd. To obtain
the upper bound, we will proceed as in the above Lemma 2.3. Fixing ε > 0, we
have

P(x,y)

[
T

(n)
0 ≥ en(κα,ρ+ε)

]
≤

n∑
k=1

P(x,y)

[
Sk ≥ n−1en(κα,ρ+ε)

]
≤

n∑
k=1

P(x,y)

[
Sk ≥ en(κα,ρ+ε/2)

]
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for n large enough, with the above notation for Sk and having set S1 = T0. Recalling
(2.5) we have for every k = 2p ≤ n

P(x,y)

[
S2p ≥ en(κα,ρ+ε/2)

]
≤ P(x,y)

[
|LT0 | ≥ enε/8α

]
+ P

[
τ+ ≥ enε/8

]
+ P

[
2

n

p−1∑
k=1

log(`−k ) ≥ π cot(πγ) + ε/4

]

+ P

[
2

n

p−1∑
k=1

log(`+k ) ≥ π cot(πγ) + ε/4

]
.

Again from Lemma 2.1, there exists θ4(ε) > 0 such that P(x,y)

[
|LT0 | ≥ enε/8α

]
<

e−nθ4(ε) for n large enough, whereas

P
[
τ+ ≥ enε/8

]
≤ P(0,0)

[
sup{L̂t, t ≤ 1} < e−nε/8α

]
≤ e−nθ5(ε)

for some θ5(ε) > 0 and n large enough, the second inequality following e.g. from
Proposition VIII.2 in Bertoin (1996). To handle the third term, we separate ac-
cording as p ≤

√
n or p >

√
n. In the first case, we have the upper bound

P

[
2

n

p−1∑
k=1

log(`−k ) ≥ π cot(πγ) + ε/4

]
≤

√
n∑

k=1

P
[

2√
n

log(`−k ) ≥ π cot(πγ) + ε/4

]
≤ e−θ6(ε)

√
n

for some θ6(ε) > 0 and n large enough, using Lemma 2.1 for the second inequality.
In the second case, applying Cramér’s theorem exactly as in Lemma 2.3 gives the
upper bound

P

[
2

n

p−1∑
k=1

log(`−k ) ≥ π cot(πγ) + ε/4

]
≤ e−θ7(ε)

√
n

for some θ7(ε) > 0 and n large enough. The fourth term is estimated in the same
way and we finally get the existence of some θ(ε) > 0 such that, for n large enough :

P(x,y)

[
S2p ≥ en(κα,ρ+ε/2)

]
≤ e−θ(ε)

√
n.

An analogous estimate is obtained for P(x,y)

[
S2p+1 ≥ en(κα,ρ+ε/2)

]
and we can ap-

ply as usual the Borel-Cantelli lemma to show the required upper bound

lim sup
n→∞

1

n
log(T

(n)
0 ) ≤ κα,ρ + ε,

for all ε > 0, a.s. under P(x,y).
�
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2.3. Proof of Theorem B. Recall the decomposition T
(n)
0 = S1 + · · ·+ Sn with

S1
d
= T0,

S2p
d
= |LT0 |α × τ+ ×

(
p−1∏
k=1

`−k × `+k

)α

,

S2p+1
d
= |LT0 |α × τ− ×

(
p−1∏
k=1

`−k ×
p∏

k=1

`+k

)α

,

and the above notation for (τ±, `±). Let us first investigate the upper tails of the
distribution of each Sk under P(x,y). We know that

P(x,y)[T0 > t] � P(x,y)[|LT0 |α > t] � P[τ− > t] � P[(`−)α > t] � t−θ

and
P[τ+ > t] � P[(`+)α > t] � t−θ

as t → +∞. Supposing first ρ = 1/2 viz. θ = θ, a successive application of Lemma
2.2 shows that

P(x,y)[Sk > t] � t−θ(log t)k−1 as t → +∞

for every k ≥ 1. Suppose then ρ < 1/2 viz. θ < θ, we obtain in a similar way

P(x,y)[S2p > t] � t−θ(log t)p−1 and P(x,y)[S2p+1 > t] � t−θ(log t)p as t → +∞,

for every p ≥ 1. Last, if ρ > 1/2 we find

P(x,y)[S2p > t] � t−θ(log t)p−1 and P(x,y)[S2p+1 > t] � t−θ(log t)p−1 as t → +∞,

for every p ≥ 1. All in all, for all k ≥ 2, this shows that
P(x,y)[Sk > t] � t−θ (log t)[

k−1
2 ] if ρ < 1/2

P(x,y)[Sk > t] � t−θ (log t)[
k
2 ]−1 if ρ > 1/2

P(x,y)[Sk > t] � t−θ (log t)k−1 if ρ = 1/2,

and we also know that P(x,y)[S1 > t] � t−θ. The immediate estimate P(x,y)[T
(n)
0 >

t] ≥ P(x,y)[Sn > t] yields the required lower bound. To get the upper bounds, it
suffices to write

P(x,y)[T
(n)
0 > t] ≤

n∑
k=1

P(x,y)[Sk > t/n]

and to control the sum separately according as ρ < 1/2, ρ > 1/2 and ρ = 1/2. We
leave the details to the reader.

�
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de Probabilités XLV, volume 2078 of Lecture Notes in Math., pages 277–300.
Springer, Cham (2013). MR3185918.

P. Embrechts and C.M. Goldie. On closure and factorization properties of subexpo-
nential and related distributions. J. Austral. Math. Soc. Ser. A 29 (2), 243–256
(1980). MR566289.

P. Flajolet, X. Gourdon and P. Dumas. Mellin transforms and asymptotics: har-
monic sums. Theoret. Comput. Sci. 144 (1-2), 3–58 (1995). Special volume on
mathematical analysis of algorithms. MR1337752.

F. den Hollander. Large deviations, volume 14 of Fields Institute Monographs.
American Mathematical Society, Providence, RI (2000). ISBN 0-8218-1989-5.
MR1739680.

A. Kolmogoroff. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung).
Ann. of Math. (2) 35 (1), 116–117 (1934). MR1503147.

A. Lachal. Les temps de passage successifs de l’intégrale du mouvement brownien.
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