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Abstract. A multi-type continuous state and continuous time branching process
with immigration satisfying some moment conditions is identified as a pathwise
unique strong solution of certain stochastic differential equation with jumps.

1. Introduction

Continuous state and continuous time branching processes with immigration
(CBI processes) arise as high density limits of Galton—Watson branching processes
with immigration, see, e.g., Li (2011, Theorem 3.43) without immigration and
Li (2006) with immigration. A single-type continuous state and continuous time
branching process (CB process) is a non-negative Markov process with a branching
property. This class of processes has been first introduced by Jirina (1958) both in
discrete and continuous times. As a generalization of CB processes, Kawazu and
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Watanabe (1971) introduced the more general class of CBI processes, where immi-
grants may come from outer sources. They defined a single-type CBI process as an
[0, 0o]-valued Markov process with oo as a trap in terms of Laplace transforms, see
Kawazu and Watanabe (1971, Definition 1.1). An analytic characterization of CBI
processes was also presented by giving the explicit form of the corresponding non-
negative strongly continuous contraction semigroup, see Kawazu and Watanabe
(1971, Theorem 1.17). Further, limit theorems for Galton-Watson branching pro-
cesses with immigration towards CBI processes were also investigated, see Kawazu
and Watanabe (1971, Section 2). Dawson and Li (2006, Theorems 5.1 and 5.2)
proved that a general single-type CBI process is the pathwise unique strong solu-
tion of a stochastic differential equation (SDE) with jumps driven by Wiener pro-
cesses and Poisson random measures. Watanabe (1969, Definition 1.1) introduced
two-type CB processes as [0, 00)2-valued Markov processes satisfying a branching
property. He characterized them in an analytic way by giving the explicit form of
the infinitesimal generator of the corresponding non-negative strongly continuous
contraction semigroup, see Watanabe (1969, Theorem 1). Fittipaldi and Fontbona
(2012, Theorem 2.1) represented a (sub)-critical continuous time and continuous
state branching process conditioned to never be extinct as a pathwise unique strong
solution of an appropriate SDE with jumps. It was also shown that a two-type dif-
fusion CB process can be obtained as a pathwise unique strong solution of an SDE
(without jumps), see Watanabe (1969, Theorem 3). Recently, for a special two-type
(not necessarily diffusion) CBI process (with a special immigration mechanism), an
SDE with jumps (a special case of the SDE (3.2) given later on) has already been
presented by Ma (2013, Theorem 2.1) together with the existence of a pathwise
unique [0, oo)?-valued strong solution of this SDE. For a comparison of our results
with those of Ma (2013), see Section 5.

The aim of the present paper is to derive and study an SDE with jumps for a
general multi-type CBI process. Next, we give an overview of the structure of the
paper by explaining some of its technical merits and including some sort of preview
of the types of results which are proved.

In Section 2 we recall some facts about CBI processes (e.g., set of admissible
parameters, infinitesimal generator) with special emphasis on their identification
(under some moment conditions) as special immigration superprocesses. This iden-
tification turns out to be very important since it is the starting point for deriving a
formula for the expectation and an SDE with jumps for a general multi-type CBI
process (see the proofs of Lemma 3.4 and Theorem 3.7).

In Section 3 we formulate an SDE with jumps and, under the same moment
conditions, we prove that this SDE admits an [0, co)?-valued weak solution which
is unique in the sense of probability law among [0, c0)%valued weak solutions.
The idea behind of deriving such an SDE goes back to a result of Li (2011, The-
orem 9.18) that an immigration superprocess can be represented as a sum of a
continuous local martingale, a purely discontinuous local martingale and a drift
term. In our special case, this purely discontinuous local martingale takes the
form fot f[O,oo)d\{O} zNy(ds,dz), t > 0, with some (not necessarily Poisson) ran-
dom measure Ny(ds,dz) on (0,00) x ([0,00)%\ {0}), where Npy(ds,dz) de-
notes the compensation of Ny(ds,dz). The next key step is that the integral
fot f[O,oo)d\{O} zﬁo(ds,dz) can be rewritten as an appropriate sum of integrals
with respect to a Possion and compensated Poisson random measures, and some
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additional drift term, due to a representation theorem of right continuous martin-
gales, see, e.g., keda and Watanabe (1989, Chapter II, Definition 1.3 and Lemma
1.2). We also prove that any [0, 00)?-valued weak solution of this SDE is a CBI
process, see Theorem 3.7. For the proof of Theorem 3.7, we need a formula for the
first moment of a CBI process, see Lemma 3.4. The proof of Lemma 3.4 is based on
a formula for expectation of immigration superprocesses, see Li (2011, Proposition
9.11).

In Section 4 we prove that, under the same moment conditions, there is a path-
wise unique [0, 00)?-valued strong solution to the SDE (3.2) and the solution is
a CBI process, see Theorem 4.6. For the proof, we need a comparison theorem
for the SDE (3.2) (see, Lemma 4.2), which, in particular, yields that pathwise
uniqueness holds for the SDE (3.2) among [0, 00)%valued weak solutions. The
ideas of the proof of Lemma 4.2 follow those of Theorem 3.1 of Ma (2013), which
are adaptations of those of Theorem 5.5 of Fu and Li (2010). More precisely, we
derive an upper bound for an appropriate deterministic function of the difference
of two [0, 00)%-valued weak solutions of the SDE (3.2) and then apply Gronwall’s
inequality.

In Section 5 we specialize our SDE (3.2) to dimension 1 and 2, respectively, which
enables us to compare our results with those of Dawson and Li (2006, Theorems
5.1 and 5.2) (single-type) and Ma (2013, Theorem 2.1) (two-type), respectively.
Moreover, we discuss a special case of the SDE (3.2) with v =0, u; =0, @ €
{1,...,d}, i.e., without integrals with respect to (compensated) Poisson random
measures (corresponding to the so-called multi-factor Cox-Ingersoll-Ross process if
B is diagonal, see, e.g., Jagannathan et al. (2003)), and another special case with
c =0, i.e., without integral with respect to a Wiener process.

In Appendix A we present some facts about extensions of probability spaces.

Finally, we mention that our work goes beyond that of Ma (2013) in the sense
that we consider general multi-type CBI processes with arbitrary branching and
immigration mechanisms instead of two-type CBI processes with a special immi-
gration mechanism, and we carefully present some missing details in the proofs
of Ma (2013) for the general multi-type case such as the application of Theorem
9.18 in Li (2011) and of Theorem 7.4 in Chapter II in Tkeda and Watanabe (1989).
Further, in a companion paper we established Yamada-Watanabe type results for
SDEs with jumps that are needed in the proof of Theorem 4.6 (existence of pathwise
unique strong solution of the SDE (3.2)). We point out that Ma (2013) implicitly
used these results without proving or referring to them.

2. Multi-type CBI processes

Let Z,, N, R, Ry and R, denote the set of non-negative integers, posi-
tive integers, real numbers, non-negative real numbers and positive real numbers,
respectively. For z,y € R, we will use the notations z Ay := min{z,y} and
xt := max{0,z}. By || and ||A||, we denote the Euclidean norm of a vector
x € R? and the induced matrix norm of a matrix A € R%*?  respectively. The
natural basis in R? and the Borel o-algebras on R? and on Rff_ will be denoted
by ei, ..., eq, and by B(R?) and B(Ri), respectively. The d-dimensional unit
matrix is denoted by Iy. For @ = (2)icq1,...ay € R? and y = (Yi)ief1,....a} € R,
we will use the notation = < y indicating that z; < y; for all i € {1,...,d}.
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By C2(RL,R) we denote the set of twice continuously differentiable real-valued
functions on Ri with compact support. Throughout this paper, we make the

conventions f; = f(a p and 7= f(a o) forany a,b€R with a <b.

Definition 2.1. A matrix A = (a;;);je(1,..ap € R™? is called essentially non-
negative if a;; € Ry whenever 4,j € {1,...,d} with ¢ # j, ie,if A has
non-negative off-diagonal entries. The set of essentially non-negative dxd matrices

will be denoted by R{.

Definition 2.2. A tuple (d,c,3,B,v,u) is called a set of admissible parameters
if

(ci)ieqr,...ay € R,

B = (Bi)ieqr,. ay € RL,

B = (bij)ijeq1,...a € R?:)d

v is a Borel measure on Uy := R4\ {0} satisfying fUd(l/\HzH)V(dz) < o0,
pw=({1,...,pa), where, for each i € {1,...,d}, p; is a Borel measure
on U, satisfying

[ ollintzr s 3 s (e <o >y
Uq je{lv"'vd}\{i}

Remark 2.3. Our Definition 2.2 of the set of admissible parameters is a special case
of Definition 2.6 in Duffie et al. (2003), which is suitable for all affine processes.
Namely, one should take m = d, n = 0 and zero killing rate in Definition 2.6
in Duffie et al. (2003) noting also that part (v) of our Definition 2.2 is equivalent
to the corresponding one fUd Z?zl(l A z;)v(dz) < oo in Definition 2.6 in Duffie
et al. (2003). Indeed,

d d
IA|z| <1A <22> > (A Az) <d1A]z])
i=1 i=1

for all z = (z1,...,24) € RL. Further, for all i € {1,...,d}, the condition (2.1)
is equivalent to

/ Anz?+ Y (IAz)| m(dz) <
Ua GE{L,...d\{i} (2.2)
and / ||Z||]l{“z”>1} ,ui(dz) < o0
Uqg
Indeed, if (2.1) holds, then for all 7 € {1,...,d}, we have fUd 21121y mi(d2) =
Jo, (IZI A 1Z17) L2210y pi(dz) < oo, and using that z; < ||lz[| and (1A z)* =

(LA 22 Lgz<ny + (LA 20)*Lyzs1y < 2171 zp<0y + 12020513 = 2] A ll2]1%,
i € {1,...,d}, we have (2.2). If (2.2) holds, then, using again z; < ||z||, j €
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{1,...,d}, we have

/UHzIIAIIzH2+ S 5| wldz)
d

Je{1,...di\{i}

:/U 117+ Y.z | Lyzpenymi(dz)
d

Je{1,...d}\{i}

+/ Ilzl+ >z | Lyasyealdz)
Ua je{l,.dp\{i}

</ d+2 ) oz 1{\|z|\<1}m(dz)+/ 1212 ¢)2) 21y pi(dz)
Ua JE{Lmd\ (i} Ua

+ | B nz) <co. i€ (1
JEL,. ,d}\{ y U
yielding (2.1). Note that, here the finiteness of the first mtegral in (2.2) is nothing
else but condition (2.11) in Definition 2.6 in Duffie et al. (2003), and the finiteness
of the second integral in (2.2) is an additional condition that we assume compared
to Duffie et al. (2003), its role is explained in Remark 2.5. O

Theorem 2.4. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense
of Definition 2.2. Then there ezists a unique conservative transition semigroup
(P;)ter, acting on the Banach space (endowed with the supremum norm) of real-
valued bounded Borel-measurable functions on the state space Ri such that its
infinitesimal genemtor 18

zclxlf (84 B, f'(x)) + /U (f(e +2) — f(@) v(dz)
‘ (2.3)

+ Z /U (lat2) ~ @)~ @)1 ) i)

for f e C3RL,R) and x € R%L, where f/ and f/;, i€ {l,...,d}, denote

1,17
the first and second order partial derivatives of f with respect to its i-th variable,

respectively, and f'(z) = (f{(x),..., fy(x))". Moreover, the Laplace transform
of the transition semigroup (Pi)ier, has a representation

/Rd PV Py (z,dy) = e (@O v ds g e R XN eRY, te Ry,

where, for any X € ]Rff_, the continuously differentiable function Ry > t —
v(t,A) = (v1(t,N),...,vq(t, )" € RL s the unique locally bounded solution to
the system of differential equations
8tvi(t, A) = —(pi(’U(t,A)), 'UZ(O,)\) = >\i7 xS {1,...,d}7 (24)
with
©i(A) := ¢ A2 — (Be;, A) +/ (e — 1+ N(1A %)) pi(dz)
Uy
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for )\ERi and i €{1,...,d}, and

Y(A) == (B, ) 7/ (e=™® —1)p(dz), AeR?.

Ug

Further, the function Ry x RL > (¢, X) — v(t, ) is continuous.

Remark 2.5. This theorem is a special case of Theorem 2.7 of Duffie et al. (2003)
with m = d, n =0 and zero killing rate. The unique existence of a locally bounded
solution to the system of differential equations (2.4) is proved by Li (2011, page
45). Here, we point out that the moment condition given in part (vi) in Definition
2.2 (which is stronger than the one (2.11) in Definition 2.6 in Duffie et al. (2003))
ensures that the semigroup (P;)iecr, is conservative (we do not need the one-point
compactification of R%), see Duffie et al. (2003, Lemma 9.2) and Li (2011, page
45). For the continuity of the function Ry xR% 3 (¢, X) — v(¢,X), see Duffie et al.
(2003, Proposition 6.4). Finally, we note that the infinitesimal generator (2.3) can
be rewritten in another equivalent form, see formula (2.14) in Lemma 2.11. O

Definition 2.6. A conservative Markov process with state space Ri and with
transition semigroup (P;)ier, given in Theorem 2.4 is called a multi-type CBI
process with parameters (d,c, 3, B,v, p).

In what follows, we will identify a multi-type CBI process (X;)ier, with
parameters (d,c,3, B,v,u) under a moment condition as a special immigration
superprocess. First we parametrize the family of immigration superprocesses for
which Theorem 9.18 in Li (2011) is valid. We will use some notations of the book
of Li (2011). For a locally compact separable metric space E, let us introduce the
following function spaces:

e B(E) is the space of bounded real-valued Borel functions on E,
e B(E)" is the space of bounded non-negative real-valued Borel functions
on F,
e C(E) is the space of bounded continuous real-valued functions on F,
C(E)* is the space of bounded continuous non-negative real-valued func-
tions on F,
o Cyh(E) is the space of continuous real-valued functions on E vanishing at
infinity.
Let M(FE) denote the space of finite Borel measures on E. We write p(f) :=
J f(z) p(dzx) for the integral of a function f:E — R with respect to a measure
w € M(E) if the integral exists.

Definition 2.7. A tuple (E, (R¢)ter,,c,B,b, B, Hy, Hg) is called a set of admis-
sible parameters if

(i) E is alocally compact separable metric space,

(i) (R¢)ier, is the transition semigroup of a Hunt process

g = (Qv g7 (gt)t€R+7 (gt)t€R+7 (ot)t€R+a (Pz)xEE)

with values in E (see, e.g., Li (2011, page 314)) such that (R;)er,
preserves Co(E), and Ry > ¢ — R;f € Co(F) is continuous in the
supremum norm for every f € Cy(E),

(iii) c€e C(E)T,

(iv) 5 € M(E),



SDE with jumps for multi-type CBI processes 135

(v) be C(E),

(vi) Hy is a finite measure on M (E)° := M(F)\ {0} (where 0 denotes the
null measure) satisfying fM(E)O k(1) Hy(dk) < oo,

(vii) B(x,dy) is a bounded kernel on E (i.e., from E to E) and H(z,dk)
is a o-finite kernel from E to M(E)° such that E 5 z — (k(1) A
#(1)?)Ha(z,dk) is continuous with respect to the topology of weak con-
vergence in M (FE)°, and the operators

f’_> (K(f)/\ﬁ<f)2)H2('7d’%) and f'_>’7(af)
M(E)°
preserve Co(E)T, where the kernel ~(z,dy) on E is defined by
~v(z,dy) := B(z,dy) —|—/ Kz (dy) Ha(z, dk),
M(E)°

where £, (dy) denotes the restriction of k(dy) to E\{z}, and by ~(:, f)
we mean the function E >z y(x, f) == [, f(y)v(z,dy).

Remark 2.8. Note that Condition (2.25) in Li (2011) readily follows from (vii) of
Definition 2.7, since a function in Cy(FE) is bounded, hence

sup /M(E)O [£(1) A K(1)?] Ho(,dr) < oo,

zel
sup/ kz(1) Ha(z,dr) < supy(z, 1) < oo,
v€E JM(E)° v€E
where we used that B(z,1) € Ry forall z € E. O

Theorem 2.9. Let (E7 (Rt)ter,,c,B,b, B, Hy, Hg) be a set of admissible parame-
ters in the sense of Definition 2.7. Then there exists a unique transition semigroup
(Qt)ter, acting on the Banach space (endowed with the supremum norm) of real-
valued bounded Borel-measurable functions on the state space M(E) such that its
infinitesimal generator is

(AF) () = / () F" (15 2) p(de)

E

4 [ (AP s) (o B (52) = o) F ) ()
E

+ [ P s + [ sy, ) = ) i )

: /E </M<E>o (Gt 10) = F ) = w(F (1)) Hz(aad'f)) p(dz),
(2.5)
for p € M(E) and functions F s M(E) = R, F(u) = Glu(f)s-.u(fa))

where n € N, G € C*(R",R), and fi,...,fn € Do(A), where A denotes the
strong generator of (Ry)ier, defined by

Afe) ot B @) =1 (@)

, r ek,
t10 t
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where the limit is taken in the supremum norm, and the domain Dy(A) of A s
the totality of functions f € Co(E) for which the above limit exists,

F 0z) — F
F'(wx) = liﬁ)l (/~L+56) (/l)’ weM(E), z€E,
and F"(u;x) s defined by the limit with F(-) replaced by F'(-;z).
Moreover, the Laplace transform of the transition semigroup (Qq)ier, has a
representation

/ e DQy(p,dr) = e HVN =S IViDds e M(E), fe B(E)Y, teRy,
M(E) (2 6)

where, for any x € E and f € B(E)Y, the continuously differentiable function
Ry >t — Vif(x) € Ry is the unique locally bounded solution to the integral
evolution equation

Vi) = Ref(o) - [ ( /| ¢<y,v;f>Rt_s<x,dy>) ds,  teR,,
with
b, f) = e(x) f(2)? + b(x) () - / £(y) B(z, dy)
E

+ / (e_”(f) -1+ H({Q?})f(.%‘)) Hy(z,dk)
M(E)°
for x€ E and fe€ B(E)", and
I(f) = ﬂ(f) + /M(E)o (]_ — ef'{(f)) Hl(dli), f S B(E)JF

Proof: Formula (2.6), which is, in fact, formula (9.18) in Li (2011), defines a tran-
sition semigroup of an immigration superprocess corresponding to the skew con-
volution semigroup given by (9.7) in Li (2011). Theorem 9.18 in Li (2011) yields
that the infinitesimal generator of the immigration superprocess in question has the
form given in (2.5), and the unicity of the transition semigroup. (]

Definition 2.10. A Markov process with state space M(E) and with transition
semigroup (Q)ier, given in Theorem 2.9 is called an immigration superprocess
with state space M (E) with parameters (E, (Ri)ter,,c, B3,b, B, Hy, HQ).

In what follows, we identify a multi-type CBI process (X;);cr, with parameters
(d,e,8,B,v, ) under the moment condition

/U 21 Lgas1; #(d2) < oo, (2.7)
d

as a special immigration superprocess.
First, let us introduce the modified parameters B := (8i)icf1,...ay, B =

(bij)ijeqt,...ay and D :=(d;;);jeq1,.,a} given by
B:=p +/ zv(dz),  bij=b +/ (25 = 0,5) " p;(dz), (2.8)
U,i Ud

di,j = b;j —/U zilz)>1y 1 (d2), (2.9)
d
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with 4;; :=1 if ¢ =7, and d;; := 0 if 4 # j. The moment condition
o~ : . oL a >3 d
(2.7) together with the fact that v and p satisfy Definition 2.2 imply B € RY,

B¢ R?f)d and D € R?_i)d Indeed,

| el = [ anlzDigeen vidz) + [ aligmsn vdz) < oo
Uq Ua Ua

(2.10)
by part (v) of Definition 2.2 and (2.7). Moreover, for all i€ {1,...,d},

/ (2 = 1) pi(d2) </ zil{z,>1y pi(dz) </ 2l Lg)1z>1y 1i(dz) < oo
Uy Uq Uq
(2.11)

by z < ||z|, 2z €R%, and (2.2). Further, for all 4,5 € {1,...,d}, i # j,

/Ziuj(dz)Z/ Ziﬂ{zi<1}uj(dz)+/ ziliz>1y py(dz)
Ua Ya Ua (2.12)

< [ anmun) + [ ey mds) < oc
Ud Ud

by z < |z||, z € R%, part (vi) of Definition 2.2 and (2.2). Finally, d;; is
well-defined for all 4,5 € {1,...,d} because of (2.2), and, for all i,j € {1,...,d},
i s

di =bm‘+/ Ziuj(dZ)—/ zil{)z)>13 pj(dz)
Uq Uq

= b; +/U zily)z|1<1} ,uj(dz) eR,.
a

Note also that for all j € {1,...,d},

/||z||211{“z”<1}uj(dz)</ (Z?+ > Zk)1{|z|<1}w(dz)<°°
Uq Ua ke{l,...d\ {5}
(2.13)

by z < ||z|, 2 €R%, part (vi) of Definition 2.2 and (2.2).
For the discrete metric space E := {1,...,d}, we have the following identifica-
tions:
e B(E), C(E) and Cy(E) can be identified with R? since a function
f:E — R can be identified with the vector (f(1),...,f(d))" € RY,
e B(E)" and C(E)" can be identified with R%,
e M(FE) can be identified with Rff_, since a finite Borel measure p on E
can be identified with the vector (u({1}),...,u({d}))T € R4,
o for p € M(E) and [ € B(E), the integral pu(f) = [, f(z)p(dz) =
Zle F@wp{i}) can be identified with the usual Euclidean inner product
(u, f) in RY,
e M(FE)° can be identified with Uj.
If (Q,F,P) is a probability space, then, by P-null sets from a sub o-algebra
H C F, we mean the elements of the set

{ACQ :3BeH suchthat AC B and P(B) = 0}.
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A filtered probability space (€, F, (F;)ier,,P) is said to satisfy the usual hy-
potheses if (F;)ier, is right continuous and Fy contains all the P-null sets in
F.

Lemma 2.11. Let (d,c,3,B,v, ) be a set of admissible parameters in the sense
of Definition 2.2 satisfying the moment condition (2.7). Then
(Ea (Rt)t€R+7C7ﬂ7baBaHlyH2)
is a set of admissible parameters in the sense of Definition 2.7, where
(i) E:={1,...,d} with the discrete metric,
(i) (Re)ter, is the transition semigroup given by R.f := f, f € B(E),
teRy,
)
(iv) B € M(E) is given by B({i}):=B;, i€ E,
) be B(E), is given by b(i) := —b;;, i€ E,
)
and B(i,{j}) :=0b;; for 4,5 €{l,...,d} with i#j,
(vil) Hy is the measure on M(E)° identified with the measure v on Uy,
(viii) Ha(z,dk) is the kernel from E to M(E)° such that the measure Ha(i,-)
on M(E)° is identified with the measure p; on Uy for each i €
{1,...,d}.
If (0, F,(Fi)eer,.P) is a filtered probability space satisfying the usual hypotheses
and (Yi)ier, 145 an (Fi)ier, -adapted cadlag immigration superprocess with pa-
rameters (E, (Rt)teR+,c,ﬁ,b,B,H1,H2) satisfying E(Yp(1)) < oo, then X :=
(Y:({1}),...,Y:({d}))", t € Ry, is a multi-type CBI process with parameters
(d,c,B,B,v, 1) satisfying E(|| Xol||) < co. The infinitesimal generator (2.3) of
(X¢)ter, can also be written in the form

d d
(Axﬁ@0:§:qwﬁmw+§:mz;U@+¢)*ﬂ@4%%fﬁwﬂm@@
i=1 =1 d

—HB+§%f@»+ljﬂw+ﬂ—f@DWM)

(2.14)
for feC2RL,R) and = € RY.

Proof: The discrete metric space {1,...,d} is trivially a locally compact separable
metric space. Clearly, R;f := f, f € B(E), t € R4, is the transition semigroup
of the Hunt process

f = (Q7 g7 (gt)t€R+7 (5t)t€R+7 (et)t€R+7 (PI)IEE)
with Q = {1,...,d}, g =¢6G = 29, t R_A,_, §t(LU) = 9,5(&)) =w, w e,
teRy, P, =06, z€{l,...,d}. Moreover, (R;)ier, trivially satisfies (ii)
of Definition 2.7, and (iii), (iv) and (v) of Definition 2.7 trivially hold. Further
(vi) of Definition 2.7 also holds, since [, (Zle zi) v(dz) < oo follows from
(2.10) by =z < ||z|l, =z € Ri, i € {1,...,d}. The kernel B(xz,dy) on F
is bounded, since sup,cp B(z, E) = max;e(1,....a} Zje{l,...,d}\{i} bj; < oco. On
the dicrete metric space {1,...,d} every function is continuous, hence E 3>
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z — (k(1) A 5(1)?)Ha(z,dk) is continuous with respect to the topology of weak

convergence in M (E)°. In order to show that the operator

f= (k(f) A K(f)?)Ha(-, dr)
M(E)°

preserve Co(E)", it suffices to observe that for each A € RY and i€ {1,...,d},
we have

/U (A 2) AN 2)?) pi(dz) € Ry,

which follows from the estimate

/ (<>\,Z>A<>\,Z>2)m(dZ)</ [N A XD pa(dz)

Ua Ua

<ex /U (121 A 12012) i ()

— o /U (2l A 212 Ly e e pa(dz) + ea / (U2l A 212 L ggaoy ps(d2)
d

Ug
:CA/U HZHQH{HzHgl}Ni(dz)+C>\/U 2l L) 2>1y i(dz) < 00
d d

with cx := max{||[Al, A’} by (2.13) and (2.2). In order to show that the
operator f ~ (-, f) preserves Co(F)", it suffices to observe that for each
A=A, )" €RY and i€ {1,...,d}, we have

d
S NBGUH+ Y )\j/ zj pj(dz) € Ry,
j=1 je{1,....d}\{i} Ud

which follows from (2.12). Consequently, (E, (Ri)ter, ¢, B,b, B, Hy, Hg) is a set
of admissible parameters in the sense of Definition 2.7.
By Theorem 2.9, we have

E(e )| Yy = ) = / e ) Qu(p, dr) = e PV =J§ T(Vap)as
M(E)°

for pe M(E), fe€ B(E)" and ¢ € Ry, hence we obtain
E(e*O\,Xt) | Xo=x) = e~ (@)= [g w(v(s’k))ds’ zAERL, te Ry,

where, for any i € {1,...,d} and X € Ri, the function Ry 3t — v(t,A) =
(v1(t, A),...,vq(t, A)) is the unique locally bounded solution to the integral evolu-
tion equation

vi(t, A) = A — /t wi(v(s,A))ds, teRy, i1e€{l,...,d},
with ’
@iA) = Al —biihi— D bt / (=™ 14 Nizi) pa(dz)
E{L,d\ {i} Ua
for )\GR‘j_ and i€ {l,...,d}, and
Y(A) == (B, A) +/ (1—e"Mpy(dz), AeRL

Ug
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We have
©i(A) = ;A2 — (Be;, A) +/ (e ™= — 14 (X, 2) wi(dz), (2.15)
Uq
since, by (2.12),

0i(A) — A2 + <§ei, A) — / (e*<)"z> — 14 (A 2)) pi(dz)

Ug
~ d ~
= 7bi,i>\i — Z )\jbj,i + Z Ajbj,i — / ZJ ,U,z dZ =0.
JE{Lmd}\{i} j=1 Jeqt,.. d}\{ y U
Moreover, we can write the functions ¢;, i € {1,...,d}, in the form

@i(A) = ciA] — (Be;, A) +/ (e — 14+ N(1A2)) pi(dz)
Ug
for A=(A1,..., )" €RZ and i€ {l,...,d}. Indeed, by (2.11) and (2.12),
©0i(A) — ciA? + (Bej, A) — / (e_<>"z) -1+ X0A zz)) wi(dz)
Uqg

:<(Bf§)ei,)\>f/ (ML A2) — (A, 2)) ps(dz)

Ua

= —)\i (Zl — 1)+ ,ui(dz) — / (/\1(1 A Zl) — /\121) ui(dz) =0
Uq Ua

By Theorem 2.4, (Xy)ier, is a multi-type CBI with parameters (d,c,3, B,v, )
satisfying E(]| X o||) < oo.
Finally, (2.14) follows from

d
(Ax ) (@ ZCH (@) -3 /U (f@+2) — f(@) - (2. F (@) p(dz)

i=1

8+ Bz, f'(a)) - /U (fle +2) — f(@)) v(dz)

d ,
=Y /U (2. F'(@)) — f1(x) (1 A 20)) ps(d2) — (B - Bz, /()
d
N u [ (f@E-ar=2)+ Y 5@ ) wds)
i=1 /U< JE{Lyd\ {1} >
—szaf / zi — 8i )T pj(dz) = 0.
i=1 j=1
using (2.10), (2.11) and (2.12). O

3. Multi-type CBI process as a weak solution of an SDE
Let R := Uj:o R;, where R;, j€{0,1,...,d}, are disjoint sets given by

Ro = Uy x {(0,0)}% C R? x (RL x Ry ),
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and
R;={0} x Hjy x - x Hj4g CRLx (RL xR)Y,  je{l,...,d},
where
Juax Uy i i=j,
“‘&mm if i .

(Recall that U; =R, 4.) Let m be the uniquely defined measure on V := R4 x
(R% xRy ) such that m(V\R) =0 and its restrictions on R;, j € {0,1,...,d},
are

m|r, (dr) = v(dr), m|g,;(dz,du) = p;(dz)du, j€{l,...,d}, (3.1)

where we identify Rg with Uy and R4, ..., Rg with Ug x U; in a natural
way. Using again this identification, let h:R% x V — Ri be defined by
r, if x € RL, 7 € Ry,
h(z,r) == 2l{uca,y, ifx=(21,... ,xq) ERL, v = (2,u) € R, j € {L,...,d},
0, otherwise.

Consider the decomposition R = Vo UV, where Vy = U;l:l Rjo and Vi =
RoU(UJ_; Rj1) with Ryp = {0} xHy 1 px- - x Hjap, j €{1,....d}, ke {0,1},
and
Ugr x Uy if =3, {zeUyy:|z| <1} if k=0,
Hj;p = e Ugr = )
{(0,0)} if ¢ #j, {zeUy:||z]| =21} if k=1.

Then the sets V, and Vi are disjoint, and the function h can be decomposed
in the form h = f+ g with

f(z,r) = h(x,r)ly,(r), g(z,r) := h(z,r)ly, (r), (x,7) € R X V.

Let (d,e,3,B,v,u) be a set of admissible parameters in the sense of Definition
2.2 such that the moment condition (2.7) holds. Let us consider the d-dimensional
SDE

t t
Xt:XO+/ b(XS)ds+/ o(X,)dW
0 0

t t
w [ ] s Nasan s [ oo N@san, ek,
0 JVy 0 JWV

(3.2)
where the functions b:R? = R? and o :R? — R?? are defined by

d
b(xz) := B + Dz, o(x) = Z \/2cir] ee]l x € RY,
i=1

D is defined in (2.9), (Wy)ier, isa d-dimensional standard Brownian motion,
N(ds,dr) is a Poisson random measure on R;; x V  with intensity measure
dsm(dr), and N(ds,dr) := N(ds,dr) — dsm(dr). For a short review on point
measures and point processes needed for this paper, see, e.g., Barczy et al. (2015,
Section 2).
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Definition 3.1. Let n be a probability measure on (R%,B(R%)). An R%-
valued weak solution of the SDE (3.2) with initial distribution n is a tuple
(Qa‘Fv (Ft)tER+aPaW7p7X)7 where

(D1) (0, F, (Fi)ter,,P) is a filtered probability space satisfying the usual hy-
potheses;

D2) (Wy)ier, is a d-dimensional standard (F;):er,-Brownian motion;

( eRy ERy )

(D3) p is a stationary (F¢)¢cr,-Poisson point process on V' with characteristic
measure m given in (3.1);

(D4) (X¢)ter, is an Rff_—valued (F)ter, -adapted cadlag process such that
(a) the distribution of X is n,
(b) P(fy (16X )] + lo(X)]?)ds < 00) =1 for all te Ry,

() P(fy fy, 1/(Xam)[?dsm(dr) < 0o) =1 forall t € Ry,

)

(d IP’(fOt Sy, 19(Xs—,7)|| N(ds,dr) < o) = 1 for all ¢ € Ry, where
N(ds,dr) is the counting measure of p on R, xV,
(e) equation (3.2) holds P-a.s., where N(ds,dr) := N(ds,dr)—dsm(dr).

For the definitions of an (F)ier,-Brownian motion and an (F;);ecr, -Poisson
point process, see, e.g., Tkeda and Watanabe (1989, Chapter I, Definition 7.2 and
Chapter II, Definition 3.2).

Remark 3.2. If conditions (D1)—(D3) and (D4)(b)—(d) are satisfied, then the map-
pings Ry x Vo x Q3 (s,7,w) = f(Xs_(w),r) €R? and Ry xV1 xQ 3 (s,7,w)
9(X s (w),r) € R? are in the (multidimensional versions of the) classes FZ’ZOC and
F,,, respectively, defined in Ikeda and Watanabe (1989, pages 61, 62), the integrals
in (3.2) are well-defined and have cadlag modifications as functions of ¢, see, e.g.,
Barczy et al. (2015, Remark 3.2).

Moreover, if E(fg | X||ds) < co forall ¢t € Ry, and the moment condition
(2.7) holds, then conditions (D4)(b)—(d) are satisfied, and the mappings Ry x Vj x
Q3 (s,rw) = f( X (w),r) €R? and Ry x V3 xQ 3 (s,7,w) = g(Xs_ (w),7) €
R? are in the (multidimensional versions of the) smaller classes FIZj and le,,
respectively, defined in Ikeda and Watanabe (1989, page 62). Indeed, with the
notation X, = (Xs1,...,Xsa)', sE€Ry,

B( [ t /. X m)|P dsm(an) )

d t
Z]E<// / |ZI|211{|z||<1}]1{u<Xs,j}dsuj(dz)dU>
. 0 Ug JU;

1

t
E (/ Xs,j dS) / ||ZH21{IIZH<1} uj(dz) < 0
1 0 Ua

<

d

Jj=
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by (2.13), and

t
E ( / lg(X s, 7)| dsm(dr))
0 Vi
t d t
[ [ irtasstan + SSm ([ ] 1t  ds(z) )
o Juy e 0 Ju,Juy
d t
:t/ |r|1/(d7‘)+ZIE</ Xsd-ds)/ 21z =1y pj(dz) < o0
Ua = 0 Ua

by (2.10) and (2.2). Note that if (X;);er, is a CBI process with E(||Xl|) < oo

satisfying the moment condition (2.7), then E(fot [ X||ds) < oo forall teRy,
see Lemma 3.4. O

Remark 3.3. Note that if conditions (D1)—(D3) are satisfied, then W and p are
automatically independent according to Theorem 6.3 in Chapter II in Ikeda and
Watanabe (1989), since the intensity measure dsm(dr) of p is deterministic.
Moreover, if (Q,J—', (Ft)ier, , P, W, p, X) is an Ri—valued weak solution of the
SDE (3.2), then Fy, W and p are mutually independent, and hence X,, W
and p are mutually independent as well, see, e.g., Barczy et al. (2015, Remark
3.4). O

Lemma 3.4. Let (X;)ier, be a CBI process with parameters (d,c,3,B,v,p)
and with initial distribution n  satisfying [pq ||2z]|n(dz) < co. Suppose that the
+

moment condition (2.7) holds. Then
~ t -
E(Xt) = etB ]E(XO) + </ euB du) ﬁ, t e R+,
0

where B € R?f)d and B € R4 are defined in (2.8). In particular, f(f E(|| X)) ds <
oo forallt € Ry.

Proof: By the tower rule for conditional expectations, it suffices to show
- t -
E(Xt IX()) = etBXO + (/ e"B du) ,@, te R+, (33)
0

where the conditional expectation E(X | Xg) € [0,00]¢ is meant in the generalized
sense, see, e.g., Stroock (2011, Theorem 5.1.6). In order to show (3.3), it is enough
to check that for a CBI process (X;);er, with initial value X, =z € Ri, we
have

- t _
E(X,) =eBx + </ B du) B, teR,, =zecR?. (3.4)
0

Indeed, let ¢, : R‘i — R‘i, n € N, be simple functions such that ¢,(y) Ty as
n — oo forall y € RY. Then, by the (multidimensional version of the) monotone
convergence theorem for (generalized) conditional expectations, see, e.g., Stroock
(2011, Theorem 5.1.6), we obtain E(¢,(X:)|Xo) T E(X:|Xo) as n — oo P-
almost surely. For each B € B(R?), we have

. ]]-B(y) Pt(X07dy)a

+

E(1p(X:)| Xo) =P(X; € B| X)) = /R
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hence E(¢n(X¢)|Xo) = [ga ¢n(y) P:(Xo,dy). By the (multidimensional version
1
of the) monotone convergence theorem, f]Rd on(y) Pe(Xo,dy) T fRd y P(Xo,dy)
+ +
as n— oo. By (3.4), we get

. t _ -
E(X,| Xo) = / yPt<Xo,dy>=efBXo+( / e“Bdu) 3,
]Ri 0

hence we conclude (3.3).

In order to show (3.4), we are going to apply Proposition 9.11 of Li (2011) for the
immigration superprocess given in Lemma 2.11. For each f € B(E) and i € E,
the function Ry > ¢+ 7 f (i) is the unique locally bounded solution to the linear
evolution equation (2.35) in Li (2011) taking the form

mef (i) = £(i) + / A(i,mof) ds — / (i), (i) ds

t

t [ d t
=10+ [ S msG06 ) | ds— [ bomsras

t [ d -
— i)+ /O S wf ()b | ds,
j=1

where we used R;f = f for f € B(E) and t € Ry, b(i) = —Ez and
~v(,{i}) = B(i,{i}) =0 for ie{l,...,d}, and

20, {3)) = B, () + /

. pi(dz) = bj; + / 2 pi(dz) = by (3.5)
d

Uq

for 4,5 € {1,...,d} with 4 # j. The functions Ry >t +— m f(i), f € B(E),
i €{l,...,d}, can be identified with the functions Ry > ¢+ m;(t,A), X € R%,
i € {1,...,d}, which are the unique locally bounded solution to the linear evolution
equations

t
ﬂi(t,A):Ai—&—/(Bei,ﬂ(s,/\)>ds, teRy, ie{l,...,d}, AeR%L
0

Consequently, the functions Ry 3¢+ 7(t,A) := (71 (t,A), ..., 7a(t,A)), A€ R
satisfies

t T .
w(t,A) =X+ | B m(s,A\)ds, teRy, AeRY
0
and hence
BT d
w(t,A) =e'B A, tcRy, AcR%
The functional B(E) > f— I'(f) = 77(f)+fM(E)° k(f) Hi(dk) of Li (2011, formula
(9.20)) can be identified with the functional R? > x + '3 + fUd x'zv(dz) =
a:TB. Hence Proposition 9.11 of Li (2011) implies

NE(XY) = (0B A 2) + (/Ot(eséTA)T ds) 8= <,\, By + (/Ot e*B ds) E>

for t € Ry and X € R? which yields (3.4). O
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Remark 3.5. We call the attention that in the proof of the forthcoming The-
orem 3.7, which states existence of an Ri—valued weak solution of the SDE
(3.2), we will extensively use that for a CBI process (X;)icr, with parame-
ters (d,c,, B,v, n) satistying E(||Xo||) < co and the moment condition (2.7),
we have fot E(]| Xs||)ds < oo, t € R4, proved in Lemma 3.4. We point out that
in the proof of Lemma 3.4 we can not use the SDE (3.2), since at that point it has
not yet been proved that a CBI process is a solution of this SDE. This drives us
back to Definition 2.6 of CBI processes in the proof of Lemma 3.4. Having proved
that a CBI process is a solution of the SDE (3.2), one could give another proof of
Lemma 3.4 (roughly speaking by taking expectations via localization argument).
O

Definition 3.6. We say that uniqueness in the sense of probability law holds for the
SDE (3.2) among R‘_f_—valued weak solutions if whenever (Q, F(Fi)ter,, P, W, p, X)

and (?2,]?, (]T't)teRJr,fﬁ’, W,ﬁ, 3(/) are Ri—valued weak solutions of the SDE (3.2)

such that P(Xo € B) = P(X € B) for all B € B(R?), then P(X € C) = P(X € C)
for all C € D(Ry,RY).

Theorem 3.7. Let (d,c,3,B,v,u) be a set of admissible parameters in the

sense of Definition 2.2 such that the moment condition (2.7) holds. Then for any

probability measure n on (R%,BRL)) with [p. ||z||n(dz) < oo, the SDE (3.2)
+

admits an R‘i—valued weak solution with initial distribution n  which is unique

in the sense of probability law among Ri—valued weak solutions. Moreover, any
Ri—valued weak solution is a CBI process with parameters (d,c,3,B,v, ).

Proof: Suppose that (X;);cr, is a cadlag realization of a CBI process with
parameters (d,c,3, B,v, ) on a probability space (9, F,P) having initial dis-
tribution n, ie., (X¢)ier, isa time homogeneous Markov process having cadlag
trajectories and the same finite dimensional distributions as a CBI process with pa-
rameters (d, ¢, 3, B,v, pu) having initial distribution n (such a realization exists
due to Theorem 9.15 in Li (2011)). Let

ftZ:ﬂU(JT'.ﬁEUN), t€R+7
e>0

where N denotes the collection of null sets under the probability measure P, and
(FX)ter, stands for the natural filtration generated by the process (X¢)ier,,
hence the filtered probability space (€2, F, (F)ier,,P) satisfies the usual hypothe-
ses.

By the equivalence of parts (3) and (4) of Theorem 9.18 of Li (2011) applied to
the immigration superprocess given in Lemma 2.11, we conclude that the process
(X¢)ter, has no negative jumps, the (not necessarily Poisson) random measure

No(ds,dz) := Z Lix, %X, 10(uXu—x, )(ds,dz)

u€Ry ¢

on R, x Uy has predictable compensator

d
No(ds,dz) := Z X,— jdsp;(dz) + dsv(dz),

j=1
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and
t t
Xt—Xo—/(ﬁ+BXs)ds—// z Ny(ds,dz), tcRy,
0 Ug

is a continuous locally square integrable martingale starting from 0 € R? with
quadratic variation process

t
(25i,jcz‘/ Xsi dS) , teRy,
0 i,j€{1,...,d}

where Ng(ds,dz) := No(ds,dz) — J/\\fo(ds,dz). Indeed, first, note that R;f = f,
te Ry, f € B(E), yields that the strong generator of (R;)icr, is identically O,
ie., A=0, see Li (2011, (7.1)). Using b(i) = —b;; and (i, {i}) = B(i, {i}) =
for i€ {1,...,d} and ~(i,{j}) = b” for 4,5 € {1,...,d} with i # j (see,
(3.5)), the functlon B(E)> f— Af +~f —bf of Li ( 011, page 218) can be
identified with the function

U

EBz»—)Zf (i, {j}) — b(i Z“f (3.6)

Recalling that the functional B(E) 3 f — I(f) = n(f) + fM(E)O k(f) H(dk) is

identified with the functional R% > & :cTB (see, the end of the proof of Lemma
3.4), Theorem 9.18 of Li (2011) yields that for each w = (wy,...,wq)" € R, the
process (w' X;)icr, has no negative jumps, and

t t
wTXt—wTXO—/ (wTﬁerTBXS)ds—/ w' z Ny(ds,dz), teRy,
0 0 JUg

is a continuous locally square integrable martingale strating from 0 € R with
quadratic variation process

d t
T 2
w X>t:2 Cl"u}i/ Xs,idS, t€R+.
2,5 ),

Further, by polarization identity, for all w,w € R¢, the cross quadratic variation
process of ('wTXt)teR+ and (ﬁ)TXt)teRJr takes the form

W' X, @ X = ¢ (((w+ @) X)— (w - @) X))

d t
(2ZCZ w; + W;) / Xs,ids — 2201 w; @i)z/ Xs,ids)
=1 0
= 2201102{177,/ Xs,i dS, te R+.
i=1 0

We note that the integral f(f fUd z No(ds, dz) is well-defined, since z = 21|z <13+
zlgz>13, % € Uz, and the functions Ry x Ug x Q 3 (s,2,w) — 2zlgjz<1}

and Ry x Ug x Q > (s,z,w) = 2zl =13 belong to the classes F?)O and

Fxl,07 respectively, where pg denotes the point process on Uy with count-

ing measure No(ds,dz), ie., po(u) = X, — X, for u € D(pg) with
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D(po) ={veRy; : X, # X,—}. Indeed,

(/ / |12/[71 )12 )<1y No(ds, dz)>

t
S ACETREIRES o o A RCe S rae
0 Ud ‘_1 0 Ud
/ |Z||V dz +Z/ S] dS/ HZHQI{HZIKI} ,uj(dz) < o0
Ua

by Lemma 3.4 and the inequalities (2.10) and (2.13), and

t
E( I/ ||z|ﬂ{|zu>1}zvo<ds,dz>)
0 Ug

t d t
= [ ] Wi asvian + 3 [ ] g B ds (@)
0 Ud j:1 0 Ud
d t
t/ ||z||u(dz)+Z/ E(Xs,j)ds/ 121251y 11(dz) < o0
Uq =170 Uq

by Lemma 3.4 and the inequalities (2.10) and (2.2).
Using that ]P’(fot Xsids < oo) =1, i € {1,...,d} (since X has cadlag
trajectories almost surely), by choosing w =e;, j € {1,...,d}, a representation

theorem for continuous locally square integrable martingales (see, e.g., Ikeda and
Watanabe (1989, Chapter II, Theorem 7.17)) yields

X, = X0+/(ﬁ+BX ds—l—Zel/ V2¢; “dWSl—i—// z No(ds, dz)

for all t € Ry, P-almost surely on an extension (Q, F, (Fier . IP) of the filtered
probability space (€2, F, (F)icr,,P) (see Definition A.1),and (W 1,..., Wi a)ier,
is a d-dimensional (ft)teR . -Brownian motion. We note that, with a little abuse of
notation, the extended random variables on the extension (5, F, (F)ier o ITD) are
denoted in the same way as the original ones. Let

§t1=ﬂ0(.7'~}+gu./\~/‘), te Ry,

e>0

where A denotes the collection of null sets under the probability measure P. Then
the filtered probability space (?2,]-: , ((jt)teR +,I§) satisfies the usual hypotheses,
and by Lemma A4, (Wy1,...,Wia)ier, is a d-dimensional (C;t)teRJr—Brownian
motion.

The aim of the following discussion is to show, by the representation theorem of
Tkeda and Watanabe (1989, Chapter II, Theorem 7.4), that the SDE (3.2) holds on
an extension of the original probability space. The predictable compensator of the
random measure No(ds,dz) can be written in the form Ny(ds,dz) = dsq(s, dz),
where

q(s,dz) Z Xo— jpi(dz) +v(dz).

Jj=1
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Let ©:Ry xV x Q= UyU{0} =R% be defined by
Os,r,@) == h(X,_(@),7), (s,7,@) eRL xV x Q.

(Note, that A = 0 in the notation of Tkeda and Watanabe (1989, Chapter II,
Theorem 7.4).) Then condition (7.26) on page 93 in Tkeda and Watanabe (1989)

holds, since for all s € R, weQ, and B € B(U;), we have

d
m({r €V :0(s,r,@) € B}) =Y m({r € R;: O(s,r,&) € B})
1=0

I
<M&

s
Il
-

(i % E)({(z,u) €ERi:zliucx. @) € B}) + I/({T‘ €ERp:7TE€ B})

I
.M&

s
Il
-

X i(W) pi(B) +v(B) = q(s, B)(@),

where ¢ denotes the Lebesgue measure on R, and we used that 0 ¢ B. By
Theorem I1.7.4 in Tkeda and Watanabe (1989), on an extension (ﬁ, F, (ﬁt)te]R+ , ITD)

of (ﬁ,]—z7 (ét)teR+, IAE?’), there is a stationary (.ft)teR+—Poisson point process p on
V' with characteristic measure m such that

No((0,¢] x B) :/0 /V]lB(G(s,r)) N(ds,dr)
=#{s € D(p):s€(0,t], O(s,p(s)) € B} E’—a.s.

for all B € B(Ug), where N(ds,dr) denotes the counting measure of p, and
D(p) is the domain of p being a countable subset of Ry such that {s € D(p) :
s € (0,t], p(s) € B} is finite for all ¢ € Ry and compact subsets B € B(Uy).
Then, by Lemma A.3, (Wy1,..., Wi q)ier, isa d-dimensional (ft)t€R+—Brownian
motion. Let

EtZ:ﬂU(}t+EUXV[>7 t€R+,

e>0

where N denotes the collection of null sets under the probability measure P. Then

the filtered probability space (€, F, (G¢)ier e P) satisfies the usual hypotheses. By
Lemma A4, (Wy1,...,Wia)ier, isa d-dimensional (gt)teRJr—Brownian motion,

and p is a stationary (’g})teR ,-Poisson point process on V with characteristic
measure m. Consequently,

#{s € D(pg) : s € (0,1], po(s) € B} = #{s € D(p) : s € (0,t], h(Xs—,p(s)) € B}

(3.7

for all B € B(Uy). Using this representation, we will calculate fot fUd z Ny(ds, dz),
t € Ry. First observe that

t t t
/ / ZNo(d&dz) = / / Z]l{\|z||>1} No(ds,dz)+/ / Z]l{||z‘|<1} No(ds,dz).
0 Ud 0 Ud 0 Ud
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Since the function Ry x Uy x Q3 (s,2,w) = 21z =13 belongs to the class le,07
by Ikeda and Watanabe (1989, Chapter II, (3.8)), we obtain

/ / z]l{\|z||>1} No(ds dz)
t ~
:/ / zﬂ{”z”}l} No(ds,dz)f/ / ZJl{HZH>1} No(ds,dz).
0 Ud 0 Ud

Applying (3.7), we obtain

t
/O/Uz]l{uznw}f\’o(d&d@: > po(8) sz
d

s€D(po)N(0,t]

= Y X p() L. p(e) 21}
s€D(p)N(0,t]

// ) L{inx . mz1y N (ds, dr)
d_ pt
:// r]l{l\rH?l}N(d&dT')—i—Z// 212513 Lusx, ;3 N(ds,dr)
0 JRo 2 )y J,

//v Xomym) N(ds, dr) // rLjr<1y N(ds,dr).

Here we used that the function Ry x Uy x S~2 > (s, 2, 5) > 21| z|>1} belongs to the

1 : 5 = ~
class F'), , thus the function Ry xV xQ3 (s, 7,w) = h(X - (w), r)]l{Hh(Xs_@)’r)”%}

belongs to the class Fll), and function Ry x V x Q3 (s, 7 o:J) — r]l{||,,“<1}]l730( T)

also belongs to the class Ffl) (due to (2.10)), thus the function R4 x V x Q
(s,r,@) — g(X;s_(@),r) belongs to the class Fp as well. Moreover,

t
//zﬂ{uznm}f\fo(ds’dz)
0 JUq4

t d t
:/ / z]l{||zu>1}d5'/(dz)+2/ / 212113 Xs 5 ds pj(dz)
0 Ju, =170 Jua
t d t
:// Tﬂ{\|r|\>1}d8V(dT)+Z/ Xs,de/ 2Lz 51y p5(d2).
0 JUa =170 Ua

Let My denote the complete metric space of square integrable right continu-

ous d-dimensional martingales on (€, F,P) with respect to (ft)t@h starting
from 0, see, e.g., Ikeda and Watanabe (1989, Chapter II, Definition 1.3 and

Lemma 1.2). The function Ry x Uy x 3 (s,z,c:u) > 212 <1y belongs to the
class F ,» hence, by Ikeda and Watanabe (1989, Chapter II, (3.9)), the process
(fo fUd z]l{||z“<1} No(ds, dz))te]R belongs to the space Ms. Moreover, by Ikeda
and Watanabe (1989, page 63), fo Ju, #Lij=1<1} No(ds,dz) is the limit of the
sequence fot Ju, ZLiaqzi<y Ng(ds,dz), neN, in My as n — oo. For all
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n €N, the mapping Ry x Uy x Q3 (s, z,z) = 2111 z)<1y belongs to the class

F, NF’

by» hence we obtain

t
// 2Lz <jali<1y No(ds, dz)
0 JUg4
t t R
:/ / Zl{%<‘|z|‘<1}N()(dS,dZ)—/ / Zl{%<‘|z|‘<1}N0(dS,dZ).
0 Ud 0 Ud

Similarly as above,

t
// 2Lz gjafi<1y No(ds, dz)
0 JUg

t d ot
= / / rl{%<”"’“<1} N(dS,dT)‘f’Z/ / Z]]‘{%§Hz|\<1}]]'{u<X57,j}N(d‘g)dr)
0 JRo j=1 0 JR;

and

t t
/ / 2Lz gjzl<1y No(ds, dz) = / / rLizgiri<ay dsv(dr)
0 JUg 0 JUy

d t
+Z/O/ / 211 gpzy<ny Lugx, ;3 ds pj(dz) du.
j=1

Consequently,

t
// 2Lz <jali<1y No(ds, dz)
0 JUq

t
:/(; / r]l{1<||7‘“<1}N dS d’l" +Z/ / Z]l{%<|‘z‘|<1}]l{ugx,g_7_7'}N(d87dr)'

Taking the limit in My as n — oo, we conclude

t
// 21y)z1<1} No(ds,dz)
0 Uy

t d t
= / / r]l{|\”‘\|<1} N(ds,d’r’) +Z/ / z]l{l\z\|<1}]1{u<Xs,,j}N(dsadr)
0 Jro = Jo IR,

t t
:// r]l{HrH<1}N(ds,dr)+/ F(X. ) N(ds, dr).
0 Ro 0 VO
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Summarizing, we conclude

/Ot /Udz]\N/'o(ds,dz)
//V Xo—yr) N(ds, dr) // TL{jr<1y N(ds,dr)

—// ?“11{\|r|\>1}d8’/(d7")—2/ Xs,de/ zL{jz)>1y pi(d2)
0 Ju, =iJo Ug

+/t/ 7“11{|r||<1}1\7(6157617’)+/t Vof(Xs_,T)]v(ds,dr)
/Vof s—7) N(ds,dr) //V X,_,r)N(ds,dr)

_// rdsu(dT)—Z/ Xsﬁjds/ 212213 1y (dz).
o Juy = Jo Ug

This proves that the SDE (3.2) holds P-almost surely, since

/(B—i—BX ds—/ /U rdsv(dr) /ijds/U z21q|z|>1) 1y (d2z)
d

t
:ﬁt—FB/ Xsds—t/ ’I"l/(d'l“)—Z/ Xs,jds/ le{“z”;l},uj(dz)
0 Uq =iJo Ua
t d t
= (ﬁ+/ rV(dr))t—l—D/ Xsds+Z/ 212121} uj(dz)/ X,,jds
Ua 0 =i 0
t
—t/ rv(dr) — /ijds/ 212213 1y(d2z) = /(,[3+DXS)dS.
Ua Ua 0

The aim of the following discussion is to show that (§~27 .7?, (ét)t€R+ , ]IN”, W . p, X)
is an RY valued weak solutlon to the SDE (3.2). Recall that the filtered probabil-

ity space (Q ]-' (gt)teﬂh,]P’) satisfies the usual hypotheses, and by Lemma A .4,
(Wi, ..., Wea)ier, is a d-dimensional (QNt)tEM—Brownian motion, and p is a

stationary (’g})teR ,-Poisson point process on V' with characteristic measure m.
Since (X¢)ier, is R‘_f_—valued and has cadlag trajectories on the original prob-
ability space (€, F,P), by the definition of an extension of a probability space
(see Definition A.1), the extended process (which is denoted by X as well) on the
extended probability space is Ri—valued and admits cadlag trajectories as well.

By Remark A.2, the process (X;)ier, is (gt)t€R+—adapted, and clearly, the dis-
tribution of X is n. Since (X;);er, has cadlag trajectories, (D4)(b) holds.

Since the process (fot fVo F(X._,7) N(ds, dr)) belongs to the space My, we

teR
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~ 2
~ t
= Z]E </ / / Hz||2]l{\|z|\<l}]l{ngs,j} ds uj(dz) du) < 00
. 0 Uq JU;

Jj=1

have

/t f(Xo_,r)N(ds,dr)
0 Vo

by Tkeda and Watanabe (1989, Chapter II, (3.9)), which yields (D4)(c). We have
already checked that (D4)(d) and (D4)(e) are satisfied.

Now we turn to prove the uniqueness in the sense of probability law for the
SDE (3.2) among Ri-valued weak solutions. If (Q,.F, (ft)teR+,P,W,p,X) is
an R%-valued weak solution to the SDE (3.2), then for each G € CZ(R,R)
and w = (wi,...,wg)’ € RY by Itd’s formula for F(z) == G(w'z), = =
(71,...,2q) " €RY, with 0, F(x) =G (w'z)wy, 0,,0.,F(z)=G"(w"z)w,wy,
k.t e{1,...,d}, we have

6
Gw'X;)=Gw Xo)+ Y L), teRy,
=1

where

I(t) := /t Gw'X)w' (B+ DX,)ds,
0
d t
Ig(t) = Z/ ij’(wTXS)\/chXSJ- d.VVSJ‘7
—1 /0
Jd t
I5(t) == Z/ wjz-G"('wTXs)chs’j ds,
j=1"0
I(t) == /t/ [Gw X,— +w' f(X,_,7) - Glw' X,_)] N(ds, dr),
0 JVvq

0= [ [ 6w X, 0 (X ) - G X

G w X wT f(X, )] dsm(dr),
o) = [ t [ 16T X .+ wTgX, )~ Gl X )] Nds,dr).
The last integral can be written as Is(t) = I 1(t) + I 2(t), where
Toa(®):= | t [ [6T X+ wTgX, ) = Gl X )] Nds,dr).

Iso(t) :== /ot/v [Gw" X, +w g(X,, 7)) — Gw' X,)] dsm(dr),
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since

E </0 v ‘G(wTXS_ +w' g(X, 7)) — G(wTXS_)| ds m(dr))

t
- </ Gw' X, +w'r) - G(w'X,)|ds y(dr))
0 JUq
d t
JrZE(/ / |G(wTXS JF"UTZ]I{ngS,j})
i=1 0 JUg JUy

— G(’wTXS)‘Il{HzH>1} ds uj(dz) du) < 00,

ie, for all w € RY, the function Ry x V3 x Q3 (s,7,w) = Gw' X, (w) +
w'g(X, (w),r)) — G(w' X, (w)) belongs to the class le,. Indeed, by mean
value theorem and (2.10), there exists some 6y = 0p(w, X, 7) € [0,1] such that

t
E </ |Gw' X, +w'r) - Gw'X,)|ds y(dr)>
0 Juy
t
=E </ ‘GI(UJTXS + GOwTr)“wTﬂ ds V(d'r))
0 Ju,

< lelsuplG'(I)l/ [l v(dr) < oo
z€R Ug

due to that G’ is bounded. In a similar way, there exists some 6 = 0(w, X, z) €
[0,1] such that for each j € {1,...,d},

t
. </ / Glw' X +w' 2lucx, ;1) — Glw X )| 1gz>1y ds p;(dz) du>
0 JUq JUy
t
—F (/ / |Gw" X +w'2) — Gw" X)|Tucx, 3 1gzz13 ds p(dz) du)
0 JU4J Uy
t
- (/ / |G (w" X + 0w 2)|[w " 2[1ucx, ) 1(z)1y ds p(dr) du>
0 JUq JUp

t
< wll sup |G/()] / E(X,,)ds / 2l Lga o py(d2) < 00
TER 0 Uq

due to that G’ is bounded, Lemma 3.4 (which can be applied since [4 [|z|| n(dz) <
+

o0) and the moment condition (2.2).
In what follows, we identify some of these integrals with some terms in part (5)
of Theorem 9.18 of Li (2011). We have

t t
Il(t):/ G’(wTXS)wT,Bds—i—/ G'(w' X, )w'BX,ds
0 0

d d t
—ZZ/ G'(w' X wiXs,; dS/U i)z >1y #y(d2),
0 d

i=1 j=1

where, by (3.6), the first two terms on the right hand side can be identified with
[5G (Yo(f))n(f)ds and [; G'(Ys(f)Ys(Af +~f —bf)ds. The sum of the third
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term on the right hand side and I 2(t) + I5(t) can be written in the form

d t
—Z/ / G/(wTXS)wTZ]l{”zH21}]l{ugxs,].}dS,uj(dZ) du
j=17/0 JUa /U1
t
+/ / [Gw'X;+w'r)— G(w' X,)]dsv(dr)
0 JUqg

d t
+Z// / [Glw X +w' 2ljuex. ;) = Glw' X)Lz 51y ds py(dz) du
=Jo JuaJu

d t
+ Z/ / / [G(wTXS + wTZ]].{ugxsyj}) — G('LUTXS)
=/ JuaJun
7G,(wTXS)’wTZ]l{ugxsyj}]]1{||z‘|<1} dS[Lj(dZ) du
t
:/ / [Gw X, +w'r)— Gw'X,)]dsv(dr)
0 JUg
d t
+Z/ / / [Glw" X, +w 21,<x, ) — Gw' X,)
=10 JuaJus '

- G’(wTXS)szIL{ugxs,j}] ds p;(dz) du,

which can be identified with

/ / G + (1)) — GIL(f))] H(dr) ds
o JMm(E)e

[ [ v [ 1y IGO0 K1) = GO = )G )] Hr ) s

The integral I3(t) can be identified with fof G"(Ys(f))Ys(cf?)ds.

Next we show that the process (I(t) + I4(t) + Is,1(t))icr, is a continuous
local martingale. Since G’ is bounded and X has cadlag trajectories, we have
IP’(f(;5 wiG' (w' X ,)?2¢; X, ;ds < 00) =1 forall t € Ry and j € {1,...,d},
hence (/2(t))ier, is a continuous local martingale (see, e.g., Karatzas and Shreve
(1991, Definition 3.2.23)). In order to prove that (I4(t))¢cr, is a martingale, by
page 62 in Tkeda and Watanabe (1989), it is enough to check that

‘ 'LUT wT T — 'LUT 2 sSm 'S (e @]
E(/ 6w X+ (X)) = Gl X) P dsmia >>< |
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By mean value theorem, there exists some ¥y = Yo(w, X, z) € [0,1] such that
for each j € {1,...,d},

t
. (/ / |Gl X+ w2l ;1) — Gl X)Ly <y ds g (d2) d“)
o Ju,Juy
¢
=K </ / |G/(wTXs + 190sz)|2(sz)2]1{u<Xs,j}]1{Hz|\<1} ds pj(dz) dU)
o Ju,Juy

t
< | sup |G (2) / E(X,)ds / 1212 o<1y 1y (d2) < o0
TER 0 Uq

due to that G’ is bounded, Lemma 3.4 and (2.13). Hence (I4(t))ier, is a
martingale. Further, by (3.8) and page 62 in Tkeda and Watanabe (1989), we
get (Is,1(t))ter, is a martingale. Consequently, by Theorem 9.18 of Li (2011),
(X¢)ter, is a CBI process with parameters (d,c,3,B,v,u). This yields the
uniqueness in the sense of probability law for the SDE (3.2) among Ri—valued weak

solutions, and that any Ri—valued weak solution is a CBI process with parameters
(d,c,8,B,v, 1) as well. O

4. Multi-type CBI process as a strong solution of an SDE

Definition 4.1. We say that pathwise uniqueness holds for the SDE (3.2) among
]Rff_—valued weak solutions if whenever

(Qa]:7 (]:t)tGRJraPawapa X) and (97]:’ (ft)t€R+7]P7Wapa :\X/)

are R?-valued weak solutions of the SDE (3.2) such that P(X, = }0) =1, then
P(X; = X, forall te Ry) =1

Next we prove a comparison theorem for the SDE (3.2) in 3.

Lemma 4.2. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense of
Definition 2.2 such that the moment condition (2.7) holds. Suppose that B € R‘i
with B<B. Let (QJ—', (Ft)t€R+7IP’,W,p,X) and (Q,]—'7 (Ft)t€R+,P,W,p,X')
be Ri—valued weak solutions of the SDE (3.2) with B and B, respectively.
Then P(Xo < Xp) =1 implies P(X; < X} forall t € Ry)=1. Particularly,
pathwise uniqueness holds for the SDE (3.2) among R‘i -valued weak solutions.

Proof: We follow the ideas of the proof of Theorem 3.1 of Ma (2013), which is
an adaptation of that of Theorem 5.5 of Fu and Li (2010). There is a sequence
o :R—=R,, keN, of twice continuously differentiable functions such that

(i) ¢r(2) 127 as k— oo;

(ii) ¢} (2) €[0,1] for all z€R+ and keN;

(ili) ¢} (2) = ¢x(2) =0 whenever —z € Ry and k€ N;

(iv) @j(x — )(f—\f) <2/k forall z,y e Ry and ke€N.

For a construction of such functions, see, e.g., the proof of Theorem 3.1 of Ma
13). Let Y, := X, — X forall t€R,. By (3.2), and using that

//R X,_,r)N(ds,dr) //RrNdsdr //R _,7)N(ds,dr),
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we have

t t
Vio=Yos+ [ (8- s+ el DY.)dst [ Vaa(VEor - /X0 aw,
0 0

d t
+ Z/ / (Lucx, ;) = Tpusxr3)2ilqz)<1y N(ds,dr)
j_l 0 Rjyo '
d t

+Z/ / (Lrusx. 51 — Lpusxr ) zilgz)>1y N(ds, dr)

forall te Ry and i€ {1,...,d}. Foreach m €N, put

Tm 1= inf{t eR,: max max{X;,;, X;,;} > m}
i€{1,...,d} ’

By Ito’s formula (which can be used since X and X' are adapted to the same
filtration (F})ier, ), we obtain

6

Ok (Yinr,.i) = S(Yoi) + O Limope(t)

(=1

forall teRy, i€ {l,...,d} and k,m €N, where
tATm
Lomaa®)i= [ 6(¥ei) (5~ 5+ €T DY) ds,
0

Lim ke ,2(t) = /OMM %(Ys’i)@(m B \/XTZ) dWs.i,

1

tATm 9

Ii,m.k,S(t) = */ H(Y;»QQ Xs,i — Xéz ds,

' 2Jo i <\/7 \/7>

d tATm
Ii,m,k,4(t) = Z/ / |:¢k3 (st,i + (]]'{U<Xs—,j} — ]]'{USX;7 j})zi)
j=170 Rj,0 ’
- ‘MYs—,z‘)} Lyjzj<1y N (ds, dr)

d tATm

- Z/ / {d)k(y‘“’i—kzi) _¢k(YS*’i)}1{|\2H<1}]1{X;,,j<ugxs_,j}
0 R0

x Ly, >0 N(ds, dr)

d tATm
+Z/ / [‘f’k(Ys—J = 2i) = Ok (Yom o) | Lgzi<ny Lix y<u<x; )
j=170 Rj0

x Ly, <0y N(ds,dr),
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tATm
I’LmkS / / ¢k) s—i+ (IL{u<XS Gy ]]-{u<X/ j})zz)
Ud U1 ’

_ (bk( 8—71) ‘%( s—,z)(]l{u<XS Gy ]l{u<Xl })ZZ} ]l{||z‘|<1} dsuj(dz) du

=57

= jzi;/otm’“ /Ud " [¢k(Y;—,i +2i) — op (Yoo i) — ¢§€(Y;_l)zl}

X Dyz<nylix:_  <usxoo 3y, >0y ds 1;(dz) du

+]Zi; /O o /U [ =) = Vo) + o)

X Lzp<yix. <usx 31y, <oy ds pj(dz) du,

tATm
Z m,k, 6 Z/ / ¢k s—,1 + (1{u<Xg_ iy ]1{u<X’ ,j})zl)

— on(Ys- 1):| 1ijz>13 N (ds,dr),

where we used that

1 if Yo— ;>0 and X

s—,J <u< 5—,J>
Liusx, ;3 — Musxy p=9q -1 if Yoo ;<0 and X, ; <u< X[ ; (41)

0 otherwise.

Using formula (3.8) in Chapter II in Tkeda and Watanabe (1989), the last integral
can be written as I; p k.6(t) = Lim k,6,1(t) + Lim k,6,2(t), where

tATm
zmk61 Z/ / S*Z+(]1{u<Xs J}_]l{u<X’ J})Zl)
R,

— o (Ys—, z):| {213 N (ds, dr)

tATm
Iz m,k,6, 2 / / ¢k s—it (1{u<X i ]1{“<X/ B )Zz)
Ug JU,

= i sf,z)}]1{|\z\|>1}dsuj(dz)du,
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since, for each j € {1,...,d},

(1)),

Ok (Ymi + (Lusx, ;) — Luexr1)zi) — on(Yem i)

X 1{|\z\|>1} ds /Jj(dZ) du)

([,

Ar(Yo i+ 2i) — or(Ye— i)

Lgzi=y Ly <u<xo )

S—,J

X Lyy,_ >0y dsp;(dz) du)

+E< [  Jorini =20 - autvic)

X Ly, <oy dsp;(dz) du)

Lgzizny bix. o <u<x)_ 3

tATm
<E (/ / Zﬂl{|z|>1}|1<s—,j|dsuj(dZ)) < th/ zil{z)>13 pj(dz) < oo,
0 Ud Ud

where we used that, by properties (ii) and (iii) of the function ¢, we have
¢ (u) € 10,1] for all u € R, and hence, by mean value theorem,

2 < p(y—2)—r(y) KOS di(y+2)—du(y) <z,  yeR, zeRy, kel
(4.2)

One can check that the process (I m k,2(t) + Lim.ka(t) + Ii,m’k’le(t))teRJr is a
martingale. Indeed, by properties (ii) and (iii) of the function ¢, and the definition

of 7,,,

e ([ (Ve (vE - /x) as) < 2en( |

< deymit < oo,

tATm

(Xs,i+ X;yi)ds>

hence, by Tkeda and Watanabe (1989, page 55), (I; m k2(t))
Next we show

]E(/OMTM /U 5 68 (Yo i + 2:) — (Yo )|

X Lzl Lix_cusxo 3 v >0} dWﬂdZ)du) < oo,

tcr, 1S @ martingale.

and
tATm )
e([ 7] [ 1ot - i)
0 Ug JUL

X Lz by, j<usx: 3y <0y ds Nﬂdz)d") <00
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for all j € {1,...,d}, which yield that the functions

R+ X Ud X U1 x> (s,z,u,w) — (qﬁk(}/s_vi(w) + Zz) — qﬁk(Yg_’i(w)))]l{”le}

X Lyxr_ (w)<usXoo @ Ly j@)>0) s<rn )}
and

RJr xUgxUp x> (s,z,u,w) — ((ﬁk(ysfﬂ(w) — Z,) — ¢k(§/;,7i(w)))1{||z”<1}

X Tix. @) <usx)_ @ v @) <oy L {s<rm )}

belong to the class Ff,, and then (Ii,m,k#l(t))teﬂh is a martingale, again by page
62 in Tkeda and Watanabe (1989). By (2.13) and (4.2),

5( / /U [ ez = et

X Ljz<nyix;_ <usx, 3 ye ;>0 ds Mj(dz)d“)
tATm
<]E(/ / / ZLz<n ix:_ <usx. 3 v >0 dsuj(dZ)dU)
0 Uy JU, '

tATm
=E (/ / 21z <1y Yo Ly 503 ds Mj(dZ)>
0 Ug

< 2mt/ Zi2]1{\|z|\<1} 1;(dz) < oo.

d

In the same way one can get the finiteness of the other expectation. Finally, we
show

5 /0 o /U 10k 2 - auvic)

X Lgziznlix<usx, 3 Lve ;>0) dSMj(dz)du) < oo,

S—57

and
tATm
E(/ / 6 (Yors — 21) — 6u(Ye_)]
0 Uq JU;

X Lgizizy ix, - j<usx 3 lve <0y ds M(dz)dU) <00

for all j € {1,...,d}, which yield that the functions
R+ xUg xUp x 23 (S,Z,’LL,UJ) — ((;5;6(}/57’1((.&) + ZZ) — (bk(ygef,i(w)))]l{”z”;l}

X x:_(@)<usXos ;@) Ly j(@)>0) L (@)
and

Ry x Ugx Uy x Q3 (s,2,u,w) = (¢p(Yeo i(w) — 2i) — r (Y i(w))) Ljz)=13

X Lix._ jw)<usx!_ @y jw)<oy Ls<rm @)}
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belong to the class le,, and then (Ii,m’k’le(t))teRJr is a martingale, again by
Tkeda and Watanabe (1989, page 62). By (2.2) and (4.2),

]E(/OMTW /Ud /U1 |0 (Yoo i + 2i) — o (Yo 3)]

X Lgzizn lix; . <usx. 3Ly >0y ds pi(dz) dU)
tATm
<E</ / / zilgzi>1y Lx;_  <usxo 3 Ly ;>0 dsuj(dZ)dU>
0 Ug JU;

tATm
=E (/ / 2il 21211 Ys- i Ly, >0y ds ﬂj(dz))
0 Ug

< 2mt/ zilgz =1} ,uj(dz) < 00,
Uq

and the finiteness of the other expectation can be shown in the same way.
Using the assumption B3 < 3’, the property that the matrix D has non-
negative off-diagonal entries and the properties (ii) and (iii), we obtain

tATm d
Lim () = / ¢ (Ysi) <5i - B+ Z di,ij,j> ds
0

Jj=1

tATm
< / ¢ (Ys,i) (di,iYs,i + duyjj> Ig, (Ys,i)ds
0

Je{1,...d}\{i}

tATm d tATm,

</ (|d7;,i|Y;i . di,jy;j> ds=> syl [ v as
0 GE{L . dI\{i} j=1 0

By (iv),

2 2¢;t
Limk,3(t) < (MTm)czE < k: .

Now we estimate
d tATm
Limks(t) = Z/ / {%(st,i +2) — (Yoo i) — QS;Q(st,i)Zi]
=Jo Ug
X Lgjzp<1yYs—iLliv._ >0y ds p(dz)
d tATm
+ Z/ / {Qbk(}/;—,i —2i) = Pp (Yoo i) + @1 (Yoo i) 2
oo Uy

X Lqjz<1y (= Ys— i) Ly, <oy ds pj(d2).
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By (4.2) and (iii), we obtain

tATm
/0 /U {%(YS—J' —2i) — o (Vs i) + &1 (Yoo i)z

X Lyjz<1y (Yo i) gy, <0y ds p(dz) <O

for all 4,5 € {1,...,d}. By (2.12), fUd 2|z <13 1 (dz) < oo for all i,j €
{1,...,d} with i # 7, hence using (iii), we obtain

L m k5 (t) < /OMTm /U {(bk(}/s—,i + 2i) — o (Vs i) — ¢§€(Ys—,i)2i}

X Ljjz<1y Yoo s ds pi(dz)

. Z /Ot/\'rm /Ud [m(Ys—:i + 2;) — (bk(Ys—,i)}

VIS ERBR NG

X Igzf<1y Yo j ds pi(dz).

By (4.2), for i # j,

tATm
/0 /U {¢k(Ys—7i +2z;) — ¢k(Ys—,i)} ]]-{Hz‘|<1}Y;tJ ds p;(dz)
d

tATm
g/ Y:_jds/ Zi]l{”z‘|<1}/1,j(dz).
0 Ua

Applying (iv) with y = 0, we have z¢}(z) < 2/k forall € Ry and ke N.
By Taylor’s theorem, for all y € Ry, z € Ry and k € N, there exists some
¥ =19(y,z) € [0,1] such that

2 2 2 2
Oy +2) = 0u(y) = (v)z = Sy +02) 5 < s <

Hence, using (2.13), we obtain

tATm
/ / [¢k(st,i +2i) — ok (Yoo i) — ¢2(st,i)zz} ]1{Hz|\<1}y;t7i ds pi(dz)
0 Ua

tATm 22
< / v L >0 Lei<n Yol ds pi(dz)
0 Ug 5 —,2

t
< E/ 21 qz)<1y pi(dz).
Ua
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Using (4.1), one can easily check that

tATm
1mk62 Z/ /U s—z+zz) ¢k(}/s—,i)

X Lqjz)>13Ys— i Ly, ;>0p ds pj(dz)
d tATm
+ / o (Yomsi — 22) — S(Yar)
X D2z (=Y ) gy, <oy ds pj(dz).
, we obtain

t/\‘rm
/ g d)k (Yoo s — 2i) — o e—z):|]1{\|z”>1}( Yoo )y, <0y dspi(dz) <0
d

for all i,j € {1,...,d}. By (22), [, zil{z>1ypi(d2) < oo forall i,j €
{1,...,d}, thus applymg (4.2), we obtam

tATm
Li i ke6.,2( Z/ /U k(Yoo i+ 2i) — or (Yoo i) | L2213 Yol ds p;(d2)

tATm
Z/ Y+ ds/ Zi]l{HzH}l} uj(dz).

Summarizing, we have

tATm 2C
Z

d
o (Yinm ) < ox(Yos) + G Y /O Y ds +
j=1

k/‘Zhwmum@@

+ Ii,’m,k,Q(t) + Ii,’rn,k,4(t) + Ii,’rn,k,ﬁ,l(t)a te R-‘m
(4.3)

where

C; = max /Zi‘dZ-l-/ Zilg)s (dz).
jE{l,A..,d}l ’j| je{1, d}\{} ’uJ( ) U, {ll H?l}ﬂ( )

By (iii), we obtain P(¢k(YE)7i) <0 =1, i€ {1,...,d}. By (i), the non-
negativeness of ¢, and monotone convergence theorem yield E(¢x(Yinr,, i) —
]E(YJT i) as k—oo foral te€Ry, meN, and i€ {1,...,d}. We have

fMT’” Y+ ds < fo A ;ds, hence taking the expectation of (4.3) and letting

k — oo, we obtam
t
Z tATm 1t < C/O ]E }/s—r\rm,z dS,

with C := 2?21 C;. By Gronwall’s inequality, we conclude
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for all t € Ry and m e N. Hence P(Xirr, i < Xin,, ;) =1 foral teRy,
m €N and i€ {1,...,d}, and then P(Xr.,; < X},, ;forallmeN) =1
forall t € Ry and i € {1,...,d}. Since X and X' have cadlag trajec-
tories, these trajectories are bounded almost surely on [0,7] for all T € Ry,
hence 7, =2 oo as m — oo. This yields P(X, < X)) = 1 for all
t € Ry. Since the set of non-negative rational numbers Q4 is countable, we
obtain P(X,; < X, forallt€Q;) = 1. Using again that X and X' have
cadlag trajectories almost surely, we get P(X; < X for all t € R,) = 1. O

Remark 4.3. We note that Dawson and Li (2012, Theorem 2.3) provided a com-
parison theorem for SDEs with jumps in a much more general setting, but only for
1-dimensional processes. o

Consider the following objects:

(E1) a probability space (92, F,P);

(E2) a d-dimensional standard Brownian motion (W)er. ;

(E3) a stationary Poisson point process p on V with characteristic measure
m given in (3.1);

(E4) a random vector & with values in Ri, independent of W and p.

Remark 4.4. Note that if conditions (E1)-(E4) are satisfied, then & W and p
are automatically mutually independent according to Remark 3.3. O

Provided that the objects (E1)—(E4) are given, let (]:f’w’p)teR+ be the aug-
mented filtration generated by &, W and p, i.e., for each t € Ry, Ff’w’p is the
o-field generated by o(&; W, s € [0,t]; p(s),s € (0,t]) N D(p)) and by the P-null
sets from o (& W, s € Ry; p(s),s € Ry N D(p)) (which is similar to the defini-
tion in Karatzas and Shreve (1991, page 285)). One can check that (ff’W’p)teR+
satisfies the usual hypotheses, (W);er, is a standard (ff’w’p)teRJr—Brownian
motion, and p is a stationary (]—'f’w’p )ter, -Poisson point process on V' with
characteristic measure m, see, e.g., Barczy et al. (2015).

Definition 4.5. Suppose that the objects (E1)-(E4) are given. An R%-valued
strong solution of the SDE (3.2) on (£, F,P) and with respect to the standard
Brownian motion W, the stationary Poisson point process p and initial value &,
is an R%-valued (ff’W’p)teR+—adapted cadlag process (X)ier, with P(Xo =
&) =1 satisfying (D4)(b)—(e).

Clearly, (Q, F, (ff’w’p)teR+ P, W, p, X) isan Ri—valued weak solution, when-
ever (X;)ier, isan Ri—valued strong solution.

Theorem 4.6. Let (d,c,3,B,v,u) be a set of admissible parameters in the sense
of Definition 2.2 such that the moment condition (2.7) holds. Suppose that objects
(E1)-(E4) are given. If E(||€]|) < oo, then there is a pathwise unique R% -valued
strong solution to the SDE (3.2) with initial value &, and the solution is a CBI
process with parameters (d,c,3,B,v, ).

Proof: The pathwise uniqueness among Ri—valued weak solutions follows from
Lemma 4.2. Then, by Theorem 5.5 in Barczy et al. (2015) (Yamada-Watanabe
type result for SDEs with jumps) and Theorem 3.7, we conclude that the SDE
(3.2) has a pathwise unique Ri—valued strong solution. (]
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5. Special cases

In this section we specialize our results to dimension 1 and 2. Moreover, we
consider a special case of the SDE (3.2) with v =0, u; =0, i€ {l,...,d}, ie.,
without integrals with respect to (compensated) Poisson random measures, and
another special case with ¢ = 0, i.e., without integral with respect to a Wiener
process.

First we rewrite the SDE (3.2) in a form which is more comparable with the
results of Li (2011, Theorem 9.31) (one-dimensional case) and Ma (2013, Theorem
3.2) (two-dimensional case).

For each j € {0,1,...,d}, the thinning p; of p onto R; is again a
stationary (F;);er, -Poisson point process on R;, and its characteristic measure
is the restriction m|g;, of m onto R; (this can be checked calculating its
conditional Laplace transform, see Tkeda and Watanabe (1989, page 44)). Using
these Poisson point processes, we obtain the useful decomposition

t t

/ F(X o, 7) N(ds,dr) + / / o(X._7) N(ds, dr)

0 Vo 0 Vi
d t .

= Z/ / Zﬂ{uéxsf,j} Nj(ds,dr) (51)
j=1 0 Rj,(]

d ¢ t
+Z/ / zﬂ{ugxs_j}Nj(ds,dr)jL/ / r M(ds,dr),
j=170 JRia Y 0 JRo

where, for each j € {1,...,d}, Nj(ds,dr) is the counting measure of p; on
Rit X Rj, Nj;(ds,dr) := N;(ds,dr) — ds(p;(dz)du), and M(ds,dr) is the
counting measure of pg on Ry X Ry. Indeed,

t t
// F(s,r)N(ds,dr):// F(s,r)N'(ds,dr),  Fe FJ'",
0 ! 0 4

¢ t
/ G(s,7) N(ds,dr) = / G(s,r) N'(ds,dr), GeF,,
0 Jr o Jr

are valid for the thinning p’ of p onto any measurable subset R’ C R, where
N'(ds,dr) denotes the counting measure of the stationary (F;)icr, -Poisson point
process p/, and N’(ds,dr):= N’'(ds,dr) — Lirerydsm(dr).

Remark that for any R¢-valued weak solution of the SDE (3.2), the Brownian
motion W and the stationary Poisson point processes p;, j € {0,1,...,d}
are mutually independent according again to Theorem 6.3 in Chapter II of Ikeda
and Watanabe (1989). Indeed, the intensity measures of p;, j € {0,1,...,d},
are deterministic, and condition (6.11) of this theorem is satisfied, because pj,
j€{0,1,...,d}, live on disjoint subsets of R.

For d =1, applying (5.1), the SDE (3.2) takes the form

t t t
X, = Xo —|—/ (B+dX,)ds —|—/ V2eXT AW, + —|—/ / 21{ucx,_y Ni(ds,dr)
0 0 0 JR

1,0

t t
—|—/ / z]l{ugxsf}Nl(ds,dr)—&—/ / r M(ds,dr)
0 R111 0 RO
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for t e Ry, where S €R,, d= E—fooo 212>y pa(dz), b= b—l—fooo(z—1)+ p1(dz),
bER7 C€R+, RLOZ{O}X{ZER++ZZ<1}XR++, Rl’lz{O}X{Z€R++Z
221} xRyy, Ro=Ri; x{(0,0)}. We have

t _ t [eelyiles] ~
Iy ::// z]l{ugxsf}Nl(ds,dr):// / 2lzenyLiucx, y N1(ds,dz, du),
0 JRi, o Jo Jo
t t [e’eJyde'e] o
I :z// z]l{ugxsf}Nl(ds,dr):// / 21> lfucx,_y N1(ds,dz, du),
0 JRy, o Jo Jo
t t o
I ::/ / rM(ds,dr):/ / z M(ds,dz),
0 JRe o Jo

where N; and M are Poisson random measures on Ry x R%, and on
Ryy x Ryt with intensity measures dspuq(dz)du and dswv(dz), respectively,

and N (ds,dz,du) := N;(ds,dz, du)—ds p1(dz) du. Under the moment conditions
(2.2),

t oo o ~ t [e'¢)
Ip+1 = / / / z]l{ugxsi}ﬁl(ds,dz,du) —|—/ X, ds/ 2l z>1y pa(dz).
o Jo Jo 0 0

Consequently, the SDE (3.2) can be rewritten in the form
¢ ~ ¢
Xt =Xo +/ (B—H)Xs)ds—i—/ V2e X AW

// / 2lugx,_ }Nldsdzdu // M (ds,dz), teRy,

hence, taking into account the form (2.14) of the infinitesimal generator of the
process (X;)ier,, we obtain equation (9.46) of Li (2011).
In a similar way, for d =2, applying (5.1), the SDE (3.2) takes the form

Xt7X0+/(ﬁ+DX ds+Z/ V20X el AW, +// r M(ds, dr)
+Z// Z]l{uéxsf,j}ﬁj(dsvd'r)"'Z// Z]l{uéxsf,j}Nj(d&dT)
j:1 0 Rjy() j:1 0 RJ‘J

for t € Ry, where B €R%, D isgivenin (2.8), (c1,c2)" € R%,

Ro = Uz x{(0,0,0)} < {(0,0,0)},
Rio={(0,0)} x{z €Uy : |z <1} x Ry x{(0,0,0)},
Ra.0={(0,0)} x {(0,0,0)} x{z € Uz : ||z]| <1} x Ry,
Ri1={(0,0)} x {z € Us: [|lz]| = 1} x Ryy x {(0,0,0)},
Raa = {(0,0)} x {(0,0,0)} x {z € Uz : |[2]| > 1} x Ry

)
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For each j € {1,2}, we have

t
Iio:= / / Z:[]‘{ngsfyj} Nj(dS, dr)
0 ’R,]"()

t 00 ~
= / / / 2Lgs<p Lugx, - ;3 Ni(ds, dz, du),
0 JU2 JO

t
Ij’l = / / Z]l{ngS_’j}Nj(dS,d’l“)
0 Rj11

t 00
= / / / Z]l{”zH)l}]l{ngk,j}Nj(ds,dz,du),
0 JU2JO

¢ ¢
P ::/ / rM(ds,dr):/ / z M(ds,dz),
0 Ro 0 U2

where N; and M are Poisson random measures on Rjy x Uy x Ry; and on
R4+ x Uy with intensity measures dspu;(dz)du and dsv(dz), respectively, and

N;(ds,dz,du) := N;(ds,dz,du) — dsp;(dz)du. Under the moment conditions
(2,

t e’} ~
Tio+ 11 = / / / 2lugx, ;3 Nj(ds, dz, du)
0 Uz JO

t
+/ Xs,de/ 212213 1(d2).
0 Uz

Consequently, the SDE (3.2) can be rewritten in the form

t 2 t
X :X0+/(ﬁ+BXS)ds+ / \2e: X AW, e
' 0 ; 0 ’
2 t oo ~ t -
+Z// / z]l{ugxsfj}Nj(ds,dz,du)+// z M(ds, dz)
=Jo JusJo ' 0 Jus

for t € Ry. Due to (2.12), we have

t ~ o~
X1 = Xo1 +/ (/31 +b11 X501+ <b1,2 - / 21 Mz(dz)> Xs,2) ds
0 Uz

t t o] ~
+ / \/201X;'_1 dW, 1 + / / / 211 fugx._ 1) Ny (ds,dz, du)
0 ’ 0 JusJo ’

t oo t
+// / zl]l{ugxsfz}ﬁg(ds,dz,du)Jr// 2 M(ds,dz), t € Ry,
0o Ju, Jo ’ 0 JU,
nd

a,

t
X2 = Xo,2 +/ (52 + (bz,l — / Z2 Ml(dz)) Xs1+ b2,2Xs,2) ds
0 Uz

t t e’} ~
—|—/ \/ 202X dWs o +/ / / 22l fucx, o1 Na(ds,dz,du)
0 ’ o Ju,Jo ’

t [e%e] t
+/ / / z2liucx, 43 Ni(ds,dz, du) +/ / 29 M(ds,dz), t € Ry.
0o Ju, Jo ' 0 JU,
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In the special case v = 0, we obtain equations (2.1) and (2.2) of Ma (2013).
Indeed, due to (2.12), one can rewrite the infinitesimal generator (2.14) of the
process (X;)cr, in the following form

(Ax f) (= Z ciwi fily(x) + ix /U 2 (f(@+2) = f(@) = 2ifi(2)) pi(dz)
HB B f @)t [ (e - f@) )
“nafile) [ zam(@s) aafit@) [ e
- icixif ) + Z:cz/ (x+2) — f(®) — 2 fl(r)) pi(dz)
+(B+ Baf @)+ [ (a2 - @) vd)

Uz
for f e C?R%,R) and @ € R%, where
E . 51,1 51,2 - fU2 21 po(dz)
. 52,1 - fU2 z22 ul(dz) b2,2 .

This form of the infinitesimal generator Ax is readily comparable with the cor-
responding one in Ma (2013, equation (1.5)).

In what follows, we consider a special form of the SDE (3.2) without integrals
with respect to (compensated) Poisson random measures. Namely, if v =0, p; =0,
i €{1,...,d}, then the SDE (3.2) takes the form

t t
Xt:XO+/ b(XS)ds+/ o(X,)dW,
0 0

t d t
:X0+/ (ﬂ—I—BXS)dS-FZ/ \/2CiX5’i6i6;rdWS, te Ry,
0 —Jo

and consequently,

t d t
Xtﬂ' :/ <Bl+zbz,sz,j>dt+/ \/QCiXS7,L'dWS7i7 t€R+, i€ {1,7d}
0 = 0
If B is diagonal, then the process (X)icr, is known to be a multi-factor
Cox-Ingersoll-Ross process, see, e.g., Jagannathan et al. (2003).

Finally, Theorem 4.6 is valid also if the SDE (3.2) does not contain integral with
respect to a Wiener process, i.e., if ¢ = 0. We note that in the proof of Theorem
3.7 we applied Theorem 7.1’ in Chapter II of Tkeda and Watanabe (1989), which is
valid in case ¢ =0 as well.

Appendix

Appendix A. Extension of a probability space

We recall the definition of extensions of probability spaces, see, e.g., [keda and
Watanabe (1989, Chapter II, Definition 7.1).
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Definition A.1. We say that a filtered probability space (ﬁ,.ﬁ (Jf’-:t)teRJr,I@) is
an extension of a filtered probab1hty space (Q,F, (Ft)ter, IP’), if there exists an
}'/]-' measurable mapping 7 : Q0 — Q such that 7 YFR) C F, foral te Ry,
P(A) = }P’( L(A)) for all A € F, and IE(X|]—})( ) = E(X | F)(n(@)) P-
almost surely for each essentially bounded (F/ B(R4)- -measurable) random variable
X :Q > R, where we set X(@) := X(x(@)), @ € €.

Remark A.2. With the notations of Definition A.1, if (X;);er, is an R-valued

(Ft)ter, -adapted stochastic process, then (,_\X/t)teR+ is (ft)teR+—adapted. Indeed,
for each t € R; and B € B(RY), we have

——1

X, (B)={0eQ:X,®) eB}={0eQ: X(r(®) € B}
== (X, '(B)) € F,

since X;'(B) € F. O
Lemma A.3. Let (Q, F,(F;)ier,,P) be a filtered probability space, and let (Wt)tenh
be a d-dimensional (F;)icr, -Brownian motion. Let (Q F, (Ft)t€R+, ) be an
extension of (Q, F,(Fi)ier,,P) with the mapping = : Q— Q. Let Wt( ) =
Wi(n(@)) forall &€ Q and t € R.. Then (Wt)te]R+ is a d-dimensional
(Ft)ter,, -Brownian motion.

Proof: According to Tkeda and Watanabe (1989, Chapter I, Definition 7.2), we have
to check that the process (Wy)icr, has continuous trajectories, it is (F3)ier, -
adapted, and satisfies

E(exp{i(u, W, — W)} | Fs) = e (t=s)llul*/2 P-almost surely

for every u € R? and s,t € R, with s < t. Clearly, Ristm Wt( ) =
W (m(w)) is continuous for all @ € Q. By Remark A.2, (Wt)te]R+ is (.Ft)teR+-
adapted. Finally, for every w € RY and s,t € Ry with s <t,

E(exp{i(u, W, — W)} | Fo)(@) = E(exp{i(u, W, — W)} | F,)(n(@))

— o (=) ul?/2

P-almost surely, since we have &(w) = ¢ P-almost surely with £ := E(exp{i(u, W;—
WO F,) and ¢ := e =)lwl*/2  which implies &(n(@)) = ¢ P-almost surely,
because P({@ € Q: £(n(@)) = }) = P(r (¢~ ({e})) = P(¢ ' ({e}) = 1. O
Lemma A.4. Let (0, F,(Fi)ier,,P) be a filtered probability space, let (Wy)ier,
be a d-dimensional (F)ier, -Brownian motion, and let p be a stationary (Fi)icr, -

Poisson point process on V = ]Rff_ X (Rff_ x R )® with characteristic measure m,
where m s given in (3.1). Let
gtizmg(ft+eUN)7 teRy,
e>0
where N denotes the collection of null sets under the probability measure P. Then
(W,g)teR+ 1s a d-dimensional (Qt)teR+ -Brownian motion, and p s a stationary
(Gt)ter, -Poisson point process on V'  with characteristic measure m.

Proof: The proof is essentially the same as the proof of Lemma A.5 in Barczy et al.
(2015). 0
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