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Abstract. In this paper we are concerned with contact processes with random
vertex weights on oriented lattices. In our model, we assume that each vertex x
of Zd takes i. i. d. positive random value ρ(x). Vertex y infects vertex x at
rate proportional to ρ(x)ρ(y) when and only when there is an oriented edge from
y to x. We give the definition of the critical value λc of infection rate under the
annealed measure and show that λc = [1 + o(1)]/(dEρ2) as d grows to infinity.
Classic contact processes on oriented lattices and contact processes on clusters of
oriented site percolation are two special cases of our model.

1. Introduction

In this paper we are concerned with contact processes with random vertex
weights on oriented lattices. For d-dimensional oriented lattice Zd, there is an
oriented edge from x to x+ ei for each x ∈ Zd and 1 ≤ i ≤ d, where

ei = (0, . . . , 0, 1
ith

, 0, . . . , 0).

For x, y ∈ Zd, we write x → y when y − x ∈ {ei}1≤i≤d. We denote by O the origin
of Zd.

Let ρ be a positive random variable such that P (ρ > 0) > 0 and P (ρ ≤ M) = 1
for some M ∈ (0,+∞). Let {ρ(x)}x∈Zd be i. i. d. random variables such that ρ(O)
and ρ have the same distribution. When {ρ(x)}x∈Zd is given, the contact process
with random vertex weights on oriented lattice Zd is a spin system with state space
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{0, 1}Zd

and flip rates function given by

c(x, η) =

1 if η(x) = 1,

λ
∑

y:y→x
ρ(x)ρ(y)η(y) if η(x) = 0 (1.1)

for each (x, η) ∈ Zd × {0, 1}Zd

, where λ > 0 is a positive parameter called the
infection rate. More details on the definition of spin systems can be found in
Chapter 3 of Liggett (1985).

Intuitively, this contact process describes the spread of an infection disease. Ver-
tices in state 0 are healthy and vertices in state 1 are infected. An infected vertex
waits for an exponential time with rate one to become healthy. An healthy vertex
x may be infected by an infected vertex y when and only when there is an oriented
edge from y to x. The infection between y and x occurs at rate proportional to
ρ(x)ρ(y).

Please note that the assumption P (ρ < M) = 1 for some M < +∞ ensures the
existence of our process according to the basic theory constructed in Harris (1972)
and Liggett (1972).

The contact processes with random vertex weights is introduced by Peterson in
Peterson (2011) on finite complete graphs. He proves that the infection rate λ has
a critical value λc = 1

Eρ2 such that the disease survives for a long time with high

probability when λ > λc or dies out quickly with high probability when λ < λc.
Recently, contact processes in random environments or random graphs is a pop-

ular topic. In Chatterjee and Durrett (2009), Chatterjee and Durrett show that
contact processes on random graphs with power law degree distributions have crit-
ical value 0. This result disproves the guess in Pastor-Satorras and Vespignani
(2001a,b) that the critical value is strictly positive according to a non-rigorous
mean-field analysis. In Peterson (2011), Peterson shows that contact processes
with random vertex weights on complete graphs have critical value 1

Eρ2 , which is

consistent with the estimation given by the mean-field calculation. In Chen and
Yao (2009) and Yao and Chen (2012), Yao and Chen show that complete conver-
gence theorem holds for contact processes in a random environment on Zd × Z+.
The random environment they set includes the bond percolation model as a special
case.

In our model, if ρ satisfies P (ρ = 1) = 1− P (ρ = 0) = p, then our model can be
regarded as contact processes on clusters of oriented site percolation on Zd, which
is similar with the model in Bertacchi et al. (2011) with N = 1. In Bertacchi et al.
(2011), Bertacchi, Lanchier and Zucca study contact processes on C∞×KN , where
C∞ is the unique infinite open cluster of site percolation and KN is the complete
graph with N vertices. They give detailed criteria to judge whether the disease will
survive. In Kesten (1990), Kesten shows that site percolation on Zd has critical
probability [1 + o(1)]/2d. We are inspired a lot by this result.

2. Main result

Before giving our main results, we introduce some notations. We assume that
the random variables {ρ(x)}x∈Zd are defined on a probability space

(
Ω,F , P

)
. We

denote by E the expectation operator with respect to P .
For any ω ∈ Ω, we denote by Pω

λ the probability measure of our contact process
on oriented lattice Zd with infection rate λ and vertex weights {ρ(x, ω)}x∈Zd . The
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probability measure Pω
λ is called the quenched measure. We denote by Eω

λ the
expectation operator with respect to Pω

λ . We define

Pλ,d(·) = E
[
Pω
λ (·)

]
,

which is called the annealed measure. We denote by Eλ,d the expectation operator
with respect to Pλ,d.

For any t ≥ 0, we denote by ηt the configuration of our process at the moment
t. In this paper, we mainly deal with the case where all the vertices are infected at
t = 0. In later sections, if we need deal with the case where

A = {x : η0(x) = 1} 6= Zd,

then we will point out the initial infected set A and write ηt as ηAt . When ηt is
with no upper script, we refer to the case where

{x : η0(x) = 1} = Zd.

According to basic coupling of spin systems, it is easy to see that

Pλ1,d(ηt(O) = 1) ≤ Pλ2,d(ηs(O) = 1)

for all t ≥ s and λ1 ≤ λ2. As a result, it is reasonable to define the following critical
value of the infection rate.

λc(d) = sup
{
λ : lim

t→+∞
Pλ,d(ηt(O) = 1) = 0

}
. (2.1)

Please note that our process is symmetric under the annealed measure Pλ,d. So,
Pλ,d(ηt(x) = 1) does not depend on the choice of x. As a result, when λ < λc(d),

lim
t→+∞

Pλ,d(ηt(x) = 1 for some x ∈ A) = 0

for any finite A ⊆ Zd and hence ηt converges weakly to the configuration where all
the vertices are healthy as t grows to infinity.

Our main result is the following limit theorem for λc(d).

Theorem 2.1. Assume that P (ρ > 0) > 0 and P (ρ < M) = 1 for some M ∈
(0,+∞), then

lim
d→+∞

dλc(d) =
1

Eρ2
. (2.2)

Theorem 2.1 shows that the critical value λc(d) is approximately inversely pro-
portional to the dimension d, the ratio of which is the reciprocal of the second
moment of ρ.

When ρ ≡ 1, our process is the classic contact process on oriented lattice. In
this case, we write λc(d) as λd. When ρ satisfies

P (ρ = 1) = 1− P (ρ = 0) = p

for some p ∈ (0, 1), our process is the contact process on clusters of oriented site
percolation on Zd. In this case, we write λc(d) as λc(d, site, p). There are two direct
corollaries of Theorem 2.1.

Corollary 2.2.

lim
d→+∞

dλd = 1. (2.3)
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We say y is x’s neighbor when y → x, then Corollary 2.2 shows that λd is
approximately the reciprocal of the number of neighbors. In Griffeath (1983), Holley
and Liggett (1981), Pemantle (1992), Holley, Liggett, Griffeath and Pemantle show
that this conclusion holds for contact processes on non-oriented lattices and regular
trees. In Xue (2014a), Xue shows that the same conclusion holds for threshold one
contact processes on lattices and regular trees.

Corollary 2.3. For p ∈ (0, 1),

lim
d→+∞

dpλc(d, site, p) = 1. (2.4)

Corollary 2.3 shows that λc = [1 + o(1)]/(dp) as d grows to infinity for contact
processes on clusters of oriented site percolation. In Xue (2014b), Xue claims
that the same conclusion holds for contact process on clusters of oriented bond
percolation on Zd.

Please note that the critical value λc(d) we define is under the annealed measure
Pλ,d. We can also define critical value λc(ω, d) under the quenched measure such
that

λc(ω, d) = sup
{
λ : ∀ x ∈ Zd, lim

t→+∞
Pω
λ (ηt(x) = 1) = 0

}
for any ω ∈ Ω. λc(ω, d) is a random variable. However, according to the ergodic
theorem for i. i. d. random variables, it is easy to see that

P (ω : λc(ω, d) = λc(d)) = 1.

So we only need to deal with the critical value under the annealed measure.
The proof of Theorem 2.1 is divide into two sections. In Section 3, we will prove

that

lim inf
d→+∞

dλc(d) ≥
1

Eρ2
.

The fact that ρ(O) and ρ(y)ηt(y) are independent for y ∈ {z : z → O} is crucial
for the proof. Hille-Yosida Theorem and Grönwall inequality are two main tools of
the proof.

In Section 4, we will prove that

lim sup
d→+∞

dλc(d) ≤
1

Eρ2
.

In the proof, we will introduce another process ζt to control ηt from below and
define the set L of infected paths. The upper bound of λc will be given by the

Hölder inequality P (|L| > 0) ≥ (E|L|)2
E|L|2 .

3. Lower bound

In this section we give a lower bound for λc(d).

Lemma 3.1. For each d ≥ 1,

λc(d) ≥
1

dEρ2

and hence

lim inf
d→+∞

dλc(d) ≥
1

Eρ2
.
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Proof : We use ft to denote

ft := Eλ,d

[
ρ(O)ηt(O)

]
= E

[
ρ(O,ω)Pω

λ (ηt(O) = 1)
]
.

According to the flip rates function of ηt given by (1.1), ρ(O,ω) and Pω
λ (ηt(O) = 1)

are positive correlated. Therefore,

ft ≥ Eρ(O,ω)E[Pω
λ (ηt(O) = 1)] = EρPλ,d(ηt(O) = 1).

Hence,

Pλ,d(ηt(O) = 1) ≤ ft
Eρ

. (3.1)

Please note that the assumption P (ρ > 0) > 0 ensures that Eρ > 0.
According to Hille-Yosida Theorem and (1.1),

d

dt
Pω
λ (ηt(O) = 1) =− Pω

λ (ηt(O) = 1)

+ λ
∑

y:y→O

ρ(O)ρ(y)Pω
λ (ηt(O) = 0, ηt(y) = 1)

≤− Pω
λ (ηt(O) = 1) + λ

∑
y:y→O

ρ(O)ρ(y)Pω
λ (ηt(y) = 1). (3.2)

Multiply (3.2) by ρ(O,ω), then

d

dt
ft ≤ −ft + λ

∑
y:y→O

E
[
ρ2(O)ρ(y)Pω

λ (ηt(y) = 1)
]
. (3.3)

For each y such that y → O, ηt(y) is only influenced by the vertices from which
there are oriented paths to y. Therefore, ρ(O) is independent of ρ(y)Pω

λ (ηt(y) = 1)
and hence

E
[
ρ2(O)ρ(y)Pω

λ (ηt(y) = 1)
]
= Eρ2(O)E[ρ(y)Pω

λ (ηt(y) = 1)] = Eρ2ft. (3.4)

Please note that in (3.4), we utilize the fact that

E[ρ(y)Pω
λ (ηt(y) = 1)] = E[ρ(O)Pω

λ (ηt(O) = 1)] = ft

since the process ηt is symmetric for Zd under the annealed measure.
By (3.3) and (3.4),

d

dt
ft ≤ (dλEρ2 − 1)ft. (3.5)

According to Grönwall inequality and (3.5),

ft ≤ f0 exp{(dλEρ2 − 1)t}

and hence

lim
t→+∞

ft = 0 (3.6)

when λ < 1
dEρ2 .

Lemma 3.1 follows from (3.1) and (3.6).
�
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4. Upper bound

In this section we will prove that lim inf
d→+∞

dλc(d) ≥ 1
Eρ2 .

First we define the contact process η̂t where disease spreads through the opposite
direction of the oriented edges. For any ω ∈ Ω, The flip rates of η̂t with random
vertex weights {ρ(x, ω)}x∈Zd is given by

ĉ(x, η) =

1 if η(x) = 1,

λ
∑

y:x→y
ρ(x)ρ(y)η(y) if η(x) = 0. (4.1)

Hence, for η̂t, y may infect x when and only when there is an edge from x to y.
According to the graphical representation of contact processes introduced by

Harris in Harris (1978), we have the duality relationship

Pω
λ

(
ηt(O) = 1

)
= Pω

λ

(
η̂Ot 6= ∅

)
, (4.2)

where η̂Ot is η̂t with that {x ∈ Zd : η̂0(x) = 1} = {O}.
Please note that in (4.2) we utilize the identification of η̂Ot with{

x ∈ Zd : η̂Ot (x) = 1
}
.

We put the rigorous proof of (4.2) in the appendix. We find (4.2) according to
the approach of graphical method, but to avoid too much details, in the proof we
resort to the tool of generator.

Since {ρ(x)}x∈Zd are i. i. d., the events {ηOt 6= ∅} and {η̂tO 6= ∅} have the same
distribution under the annealed measure Pλ,d. Therefore, according to (4.2),

Pλ,d

(
ηt(O) = 1

)
= Pλ,d

(
ηOt 6= ∅

)
. (4.3)

To control the size of ηOt from below, we introduce a Markov process ζt with state

space {−1, 0, 1}Zd

. For given {ρ(x)}x∈Zd , ζt evolves as follows. For each x ∈ Zd, if
ζ(x) = −1, then x is frozen in the state −1 forever. If ζ(x) = 1, then the value of
x waits for an exponential time with rate one to become −1. If ζ(x) = 0, then the
value of x flips to 1 at rate

λ
∑

y:y→x

ρ(x)ρ(y)1{ζ(y)=1}.

So for ζt, when an infected vertex becomes healthy, then it is removed and will
never be infected again.

We use ζOt to denote ζt with {x ∈ Zd : ζ0(x) = 1} = {O} and {x ∈ Zd : ζ0(x) =
−1} = ∅. According to the basic coupling of Markov processes, there is a coupling
of ηt and ζt under quenched measure Pω

λ such that

ηOt ⊇ {x ∈ Zd : ζOt (x) = 1} (4.4)

for any t > 0.
We use Ct to denote {x ∈ Zd : ζOt (x) = 1}. Then, by (4.3) and (4.4),

lim
t→+∞

Pλ,d

(
ηt(O) = 1

)
≥ Pλ,d

(
∀ t, Ct 6= ∅

)
. (4.5)

We give another description of {∀ t, Ct 6= ∅}. When the random environment ω
is given, we let {Tx}x∈Zd be i. i. d. exponential times with rate 1 and let Uxy be
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exponential time with rate λρ(x, ω)ρ(y, ω) for any x → y. We assume that all these
exponential times are independent under the quenched measure Pω. For

O = x0 → x1 → x2 → . . . → xn = x,

if Uxjxj+1 ≤ Txj for each 0 ≤ j ≤ n− 1, then we say that there is an infected path
with length n from O to x, which is denoted by O ⇒n x.

If x becomes infected at some moment t, then it waits for Tx to be removed and
waits for Uxy to infect neighbor y. If Uxy > Tx, then the infection between x and
y will not occur. Else if y has been infected by other vertices before t+ Uxy, then
the infection between x and y has no effect. As a result, for each x ∈ Zd, x has
ever been infected when and only when there is an oriented path O = x0 → x1 →
x2 → . . . → xn = x such that Uxjxj+1 ≤ Txj for each 0 ≤ j ≤ n− 1. Therefore, in
the sense of coupling,

{O ⇒n x} = {∃ t, x ∈ Ct}.
Let In = {x : O ⇒n x} and Ln be the set of infected paths with length n from O.
{∀ t, Ct 6= ∅} is the event that that there are infinite many vertices which have ever
been infected. Therefore,

{∀ t, Ct 6= ∅} = {∀ n, In 6= ∅}.

Since {In 6= ∅} ⊇ {Im 6= ∅} for any n ≤ m and {∀ n, In 6= ∅} =
+∞∩
n=1

{In 6= ∅}, by

Monotone Convergence Theorem and Hölder inequality,

Pλ,d

(
∀ t, Ct 6= ∅

)
= lim

n→+∞
Pλ,d

(
In 6= ∅

)
= lim

n→+∞
Pλ,d

(
|Ln| > 0

)
≥ lim sup

n→+∞

(
Eλ,d|Ln|

)2
Eλ,d|Ln|2

. (4.6)

To calculate Eλ,d|Ln| and Eλ,d|Ln|2, we utilize the simple random walk Sn on
oriented lattice Zd with S0 = O and

P (Sn+1 − Sn = ei) =
1

d

for 1 ≤ i ≤ d. Let {Ŝn}+∞
n=0 be an independent copy of {Sn}+∞

n=0. We assume that

{Sn}+∞
n=0 and {Ŝn}+∞

n=0 are defined on probability space (Ω̃,G, P̃ ) and are indepen-

dent of {ρ(x)}x∈Zd , {Tx}x∈Zd and {Uxy}x→y. We denote by Ẽ the expectation

operator with respect to P̃ .
For a given path O → x1 → x2 → . . . → xn,

Pω
λ (Uxjxj+1 < Txj , ∀0 ≤ j ≤ n− 1) =

n−1∏
j=0

[ λρ(xj , ω)ρ(xj+1, ω)

1 + λρ(xj , ω)ρ(xj+1, ω)

]
(4.7)

and hence

Pλ,d(Uxjxj+1 < Txj , ∀0 ≤ j ≤ n− 1) = E
n−1∏
j=0

[ λρ(xj)ρ(xj+1)

1 + λρ(xj)ρ(xj+1)

]
. (4.8)

Please note that Uxj ,xj+1 and Uxj+1,xj+2 are not independent under the annealed
measure Pλ,d but are independent under the quenched measure Pω, since {ρ(x)}x∈Zd
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are not random when ω is given. As a result, we can get a product under Pω in
(4.7) and then utilize the fact that

Pλ,d(·) = EPω(·)

to obtain (4.8). We will use this technic several times.
It is obviously that the right-hand side of (4.8) does not depend on the choice

of the oriented path x1, x2, . . . , xn.
As a result,

Eλ,d|Ln| = dnE
n−1∏
j=0

[ λρ(Sj)ρ(Sj+1)

1 + λρ(Sj)ρ(Sj+1)

]
(4.9)

for any given first n steps (S0, S1, . . . , Sn) of the simple random walk {Sn}+∞
n=0.

Please note that we write E not Ẽ×E in the right hand side of (4.9). We mean
that the right hand side of (4.9) is a random variable with respect to G and is a
constant with probability one.

To calculate Eλ,d|Ln|2, we introduce the following notations.

τ1 = inf{n ≥ 0 : Sn = Ŝn, Sn+1 = Ŝn+1},

σ1 = inf{n > τ1 : Sn = Ŝn, Sn+1 6= Ŝn+1},
D1 = σ1 − τ1 + 1,

τ2 = inf{n > σ1 : Sn = Ŝn, Sn+1 = Ŝn+1},

σ2 = inf{n > τ2 : Sn = Ŝn, Sn+1 6= Ŝn+1},
D2 = σ2 − τ2 + 1,

. . . . . .

τk = inf{n > σk−1 : Sn = Ŝn, Sn+1 = Ŝn+1},

σk = inf{n > τk : Sn = Ŝn, Sn+1 6= Ŝn+1},
Dk = σk − τk + 1,

. . . . . .

T = sup{k : τk < +∞}.

Please note that P (T < +∞) = 1 for d ≥ 4 according to the conclusion proven

in Cox and Durrett (1983) that P (∃ n > 0, Sn = Ŝn) < 1 for d ≥ 4. Therefore,
τk, σk, Dk are finite for k ≤ T .

Furthermore, we define

A0 = {0 ≤ n < τ1 : Sn = Ŝn, Sn+1 6= Ŝn+1},

A1 = {σ1 < n < τ2 : Sn = Ŝn, Sn+1 6= Ŝn+1},
. . . . . .

AT−1 = {σT−1 < n < τT : Sn = Ŝn, Sn+1 6= Ŝn+1},

AT = {n > σT : Sn = Ŝn, Sn+1 6= Ŝn+1}.

For 0 ≤ i ≤ T , we use Ki to denote |Ai|.
Please note that there are no n ∈ (σk, τk+1) which satisfy Sn = Ŝn, Sn+1 = Ŝn+1

for k ≤ T according to the definition of σk and τk.
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After all this prepare work, we give a lemma which is crucial for us to give an
upper bound for λc(d). We let

Vλ :=
2
T+

T∑
j=0

Kj

M
6T+4

T∑
j=0

Kj(
1 + λM2

)2 T∑
j=1

Dj+2
T∑

j=0

Kj

λ

T∑
j=1

Dj−T (
Eρ2

) T∑
j=1

Dj+2T+2
T∑

j=0
Kj

. (4.10)

Lemma 4.1. Assume that P (ρ > 0) > 0 and P (ρ < M) = 1. If λ satisfies

ẼVλ < +∞, (4.11)

then

λc(d) ≤ λ,

where Vλ is given by (4.10).

Proof : For each x → z1 and y → z2, we define F (x, y; z1, z2) as

Pω
λ

(
Uxz1 ≤ Tx, Uyz2 ≤ Ty

)
.

By direct calculation,

F (x, y; z1, z2)


= λ2ρ(x)ρ(y)ρ(z1)ρ(z2)

[1+λρ(x)ρ(z1)][1+λρ(y)ρ(z2)]
if x 6= y and z1 6= z2,

= λ2ρ(x)ρ(y)ρ2(z1)
[1+λρ(x)ρ(z1)][1+λρ(y)ρ(z1)]

if x 6= y and z1 = z2,

= λρ(x)ρ(z1)
1+λρ(x)ρ(z1)

if x = y and z1 = z2,

≤ 2λ2ρ2(x)ρ(z1)ρ(z2)
[1+λρ(x)ρ(z1)][1+λρ(x)ρ(z2)]

if x = y and z1 6= z2.

(4.12)

Please note that in (4.12) we utilize the fact that Uxz1 and Uyz2 are independent
under the quenched measure Pω when (x, z1) 6= (y, z2).

We denote by Pn the set of all the oriented paths from O with length n, then

Eλ,d|Ln|2 =
∑
x∈Pn

∑
y∈Pn

Pλ,d

(
∀ 0 ≤ i ≤ n− 1, Uxixi+1 ≤ Txi , Uyiyi+1 ≤ Tyi

)
=

∑
x∈Pn

∑
y∈Pn

EPω
λ

(
∀ 0 ≤ i ≤ n− 1, Uxixi+1 ≤ Txi , Uyiyi+1 ≤ Tyi

)
=

∑
x∈Pn

∑
y∈Pn

E
[ n−1∏
i=0

F (xi, yi;xi+1, yi+1)
]

(4.13)

= d2n
∑
x∈Pn

∑
y∈Pn

1

d2n
E
[ n−1∏
i=0

F (xi, yi;xi+1, yi+1)
]

= d2n(Ẽ × E)[
n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1)],

where x and y are the oriented paths

O = x0 → x1 → x2 → . . . → xn and O = y0 → y1 → y2 → . . . → yn.

Please note that in the oriented paths x and y, ‖xi‖ = ‖yi‖ = i for 0 ≤ i ≤ n,
where ‖ · ‖ is the l1 norm on Zd. Therefore, xi 6= xj , yj for i 6= j. As a result,

(Uxixi+1 , Uyiyi+1 , Txi , Tyi)
n−1
i=0 are independent random vectors under the quenched

measure Pω. That is why we can get a product in the third line of (4.13).
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Therefore, by (4.9),

(Eλ,d|Ln|)2

Eλ,d|Ln|2
=

{
Ẽ

[E n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1)(
E

n−1∏
i=0

λρ(Si)ρ(Si+1)
1+λρ(Si)ρ(Si+1)

)2

]}−1

. (4.14)

Then by (4.5) and (4.6), λ ≥ λc(d) when

lim sup
n→+∞

Ẽ

[E n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1)(
E

n−1∏
i=0

λρ(Si)ρ(Si+1)
1+λρ(Si)ρ(Si+1)

)2

]
< +∞.

Now we control

Ẽ

[E n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1)(
E

n−1∏
i=0

λρ(Si)ρ(Si+1)
1+λρ(Si)ρ(Si+1)

)2

]

from above.

For the denominator
(
E

n−1∏
i=0

λρ(Si)ρ(Si+1)
1+λρ(Si)ρ(Si+1)

)2

, if Si = Ŝi or Si+1 = Ŝi+1, then

1 + λρ(Si)ρ(Si+1) ≤ 1 + λM2,

where P (ρ < M) = 1 as we assumed.

For the numerator E
n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1), if Si = Ŝi or Si+1 = Ŝi+1, then

1 + λρ(Si)ρ(Si+1) ≥ 1.

If i ∈ Ak for some k, then by (4.12),

2λ2ρ2(Si)ρ(Si+1)ρ(Ŝi+1) ≤ 2λ2M2ρ(Si+1)ρ(Ŝi+1)

and

λ2ρ(Si−1)ρ(Ŝi−1)ρ
2(Si) ≤ λ2ρ(Si−1)ρ(Ŝi−1)M

2.

If i = τk for some k, then

λ2ρ(Si−1)ρ(Ŝi−1)ρ
2(Si) ≤ λ2ρ(Si−1)ρ(Ŝi−1)M

2

and

λρ(Si)ρ(Si+1) ≤ λMρ(Si+1).

If i = σk for some k, then

λρ(Si−1)ρ(Si) ≤ λρ(Si−1)M

and

2λ2ρ2(Si)ρ(Si+1)ρ(Ŝi+1) ≤ 2λ2M2ρ(Si+1)ρ(Ŝi+1).

After all these operations, we can cancel many common factors in the numerator
and denominator. For example, if i, j ∈ Ak and l 6∈ Ak for each i < l < j, then we
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can abstract

[
E

j−i−1∏
l=1

ρ2l

j−i−2∏
l=1

(
1 + λρlρl+1

)]2

from both numerator and denominator and cancel this common factor, where
{ρl}i−j−1

l=1 are i. i. d. and have the same distribution as that of ρ.
Therefore, after all the above operations, it is easy to see that

lim sup
n→+∞

E
n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1)(
E

n−1∏
i=0

λρ(Si)ρ(Si+1)
1+λρ(Si)ρ(Si+1)

)2
≤ Vλ

and

lim sup
n→+∞

Ẽ

[E n−1∏
i=0

F (Si, Ŝi;Si+1, Ŝi+1)(
E

n−1∏
i=0

λρ(Si)ρ(Si+1)
1+λρ(Si)ρ(Si+1)

)2

]
≤ ẼVλ. (4.15)

Lemma 4.1 follows (4.5), (4.6), (4.14) and (4.15).
�

Finally, we give the proof of lim supn→+∞ dλc(d) ≤ 1
Eρ2 .

Proof of lim supn→+∞ dλc(d) ≤ 1
Eρ2 : Let

τ = inf{n > 0 : Sn = Ŝn}.

Then according to (2.9) of Cox and Durrett (1983),

P (2 ≤ τ < +∞) ≤ C1

d2
,

where C1 does not depend on d. Therefore, according to strong Markov property,

P (T = m,Ki = ki for 0 ≤ i ≤ m,Di = li for 1 ≤ i ≤ m)

≤
(C1

d2
) m∑
i=0

ki+m−1(1
d

) m∑
i=1

li−m
(4.16)

for all possible m, ki, li. Please note that k0 may take 0 but li ≥ 1 and ki ≥ 1 for
1 ≤ i ≤ m.

Let

λ =
γ

dEρ2
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for some fixed γ > 1. Then by (4.16),

ẼVλ ≤
+∞∑
m=0

+∞∑
k0=0

+∞∑
k1=1

· · ·
+∞∑
km=1

+∞∑
l1=1

· · ·
+∞∑
lm=1

(C1

d2
) m∑
i=0

ki+m−1(1
d

) m∑
i=1

li−m

×
2
m+

m∑
j=0

kj

M
6m+4

m∑
j=0

kj(
1 + λM2

)2 m∑
j=1

lj+2
m∑

j=0

kj

λ

m∑
j=1

lj−m(
Eρ2

) m∑
j=1

lj+2m+2
m∑

j=0
kj

.

=

+∞∑
m=0

+∞∑
k0=0

(2C1M
6λ

d(Eρ2)2

)m[2C1M
4(1 + λM2)2

d2(Eρ2)2

]k0

(4.17)

×
[ +∞∑

l=1

(2C1M
4(1 + λM2)2

d2(Eρ2)2
)l]m[ +∞∑

l=1

( (1 + λM2)2

dλEρ2
)l]m d2

C1
.

Since λ = γ
dEρ2 for some γ > 1,

2C1M
6λ

d(Eρ2)2
≤ C2

d2

and
2C1M

4(1 + λM2)2

d2(Eρ2)2
≤ C3

d2

for sufficiently large d, where C2 and C3 do not depend on d (but may depend on
γ and ρ).

We choose γ̂ such that 1 < γ̂ < γ, then for sufficiently large d,

(1 + λM2)2

dλEρ2
=

(
1 + γM2

dEρ2

)2
γ

<
1

γ̂
.

Then, by (4.17),

ẼVλ ≤ d2

C1

+∞∑
m=0

+∞∑
k0=0

(C2

d2
)m(C3

d2
)k0

[+∞∑
l=1

(
C3

d2
)l
]m[+∞∑

l=1

(
1

γ̂
)l
]m

for sufficiently large d.
For sufficiently large d,

+∞∑
k0=0

(C3

d2
)k0

=
d2

d2 − C3
≤ 2

and
+∞∑
l=1

(C3

d2
)l

=
C3

d2 − C3
≤ C4

d2
,

where C4 does not depend on d.
Therefore,

ẼVλ ≤ 2d2

C1

+∞∑
m=0

(C2

d2
)m(C4

d2
)m[ 1

γ̂ − 1

]m
=

2d2

C1

+∞∑
m=0

[ C2C4

d4(γ̂ − 1)

]m
. (4.18)

For sufficiently large d, C2C4

d4(γ̂−1) < 1 and therefore

ẼVλ < +∞ (4.19)
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when λ = γ
dEρ2 for some fixed γ > 1.

Then according to Lemma 4.1,

λc(d) ≤
γ

dEρ2

for sufficiently large d and hence

lim sup
d→+∞

dλc(d) ≤
γ

Eρ2

for any γ > 1.
Let γ decrease to 1, then we accomplish the proof.

�

Since we have shown that lim infd→+∞ dλc(d) ≥ 1
Eρ2 in Section 3, the whole

proof of Theorem 2.1 is completed.

Appendix A. Appendix

Proof of (4.2): We identify η̂t as the set

{x : η̂t(x) = 1}.

Then, η̂t is a Markov process with state space 2Z
d

= {A : A ⊆ Zd}. According to

(4.1), the generator Ω̂ of η̂t is given by

Ω̂f(A) =
∑
x∈A

[f(A \ x)− f(A)] + λ
∑
x∈A

∑
y:y→x

ρ(x)ρ(y)[f(A ∪ y)− f(A)] (A.1)

for any f ∈ C(2Z
d

) and A ⊆ Zd.

For any η ∈ {0, 1}Zd

and A ⊆ Zd, we define

H(η,A) =

{
1 if {x : η(x) = 1} ∩A = ∅,
0 else if.

We write H(η,A) as H(·, A)(η) when we consider H as a function of η with fixed
A and write H(η,A) as H(η, ·)(A) when we consider H as a function of A with

fixed η. Then, H(·, A) ∈ C({0, 1}Zd

) for each A ⊆ Zd and H(η, ·) ∈ C(2Z
d

) for each

η ∈ {0, 1}Zd

.
We denote by Ω the generator of ηt, then

Ωf(η) =
∑
x∈Zd

c(x, η)[f(ηx)− f(η)] (A.2)

for any f ∈ C({0, 1}Zd

) and η ∈ {0, 1}Zd

, where c(x, η) is given by (1.1) and

ηx(y) =

{
1− η(x) if y = x,

η(y) if y 6= x.

For any A,B ⊆ Zd and x ∈ A, it is easy to see that

H(η,A ∪B) = H(η,A)H(η,B) and

H(ηx, A) = H(η,A \ x)−H(η,A). (A.3)
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Then, by (A.2), (A.3) and direct calculation,

ΩH(·, A)(η)

=
∑
x∈A

c(x, η)[H(ηx, A)−H(η,A)]

=
∑
x∈A

c(x, η)H(ηx, A)−
∑
x∈A

c(x, η)H(η,A)

=
∑
x∈A

c(x, η)H(η,A \ x)1{η(x)=1} −
∑
x∈A

c(x, η)H(η,A \ x)1{η(x)=0}

=
∑
x∈A

H(η,A \ x)1{η(x)=1} −
∑
x∈A

∑
y:y→x

λρ(x)ρ(y)1{η(y)=1}H(η,A \ x)1{η(x)=0}

=
∑
x∈A

H(ηx, A)−
∑
x∈A

∑
y:y→x

λρ(x)ρ(y)[1−H(η, y)]H(η,A)

=
∑
x∈A

[H(η,A \ x)−H(η,A)]−
∑
x∈A

∑
y:y→x

λρ(x)ρ(y)[H(η,A)−H(η,A ∪ y)]

=
∑
x∈A

[H(η,A \ x)−H(η,A)] + λ
∑
x∈A

∑
y:y→x

ρ(x)ρ(y)[H(η,A ∪ y)−H(η,A)]

= Ω̂H(η, ·)(A)

for any η ∈ {0, 1}Zd

and A ⊆ Zd.
Then, according to Theorem 3.39 of Liggett (2010),

EηH(ηt, A) = EAH(η, η̂t) (A.4)

for any η ∈ {0, 1}Zd

and A ⊆ Zd.
We denote by δ1 the configuration where all the vertices are in state 1. In (A.4),

let η = δ1 and A = {O}, then we have

P
(
ηt(O) = 0

)
= P

(
{x : δ1(x) = 1} ∩ η̂Ot = ∅

)
. (A.5)

Since δ1(x) = 1 for each x ∈ Zd,{
{x : δ1(x) = 1} ∩ η̂Ot = ∅

}
= {η̂Ot = ∅}. (A.6)

(4.2) follows from (A.5) and (A.6).
�
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