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Abstract. We study the exponential functional
∫∞
0
e−ξs− dηs of two one-dimensio-

nal independent Lévy processes ξ and η, where η is a subordinator. In particular,
we derive an integro-differential equation for the density of the exponential func-
tional whenever it exists. Further, we consider the mapping Φξ for a fixed Lévy
process ξ, which maps the law of η1 to the law of the corresponding exponential
functional

∫∞
0
e−ξs− dηs, and study the behaviour of the range of Φξ for varying

characteristics of ξ. Moreover, we derive conditions for selfdecomposable distribu-
tions and generalized Gamma convolutions to be in the range. On the way we also
obtain new characterizations of these classes of distributions.

1. Introduction

Given two independent Lévy processes (ξt)t≥0, (ηt)t≥0 the corresponding expo-
nential functional is defined as

V :=

∫
(0,∞)

e−ξt−dηt, (1.1)

provided that the integral converges a.s. Necessary and sufficient conditions for this
convergence in terms of the Lévy characteristics of (ξt)t≥0 and (ηt)t≥0 have been
given by Erickson and Maller (2005).
Exponential functionals of Lévy processes describe the stationary distributions of
generalized Ornstein-Uhlenbeck (GOU) processes. More detailed, if ξt tends to +∞
as t→ ∞ almost surely, then the law of V defined in (1.1) is the unique stationary
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distribution of the GOU process

Vt = e−ξt
(∫ t

0

eξs−dηs + V0

)
, t ≥ 0, (1.2)

where V0 is a starting random variable, independent of (ξ, η), on the same proba-
bility space (cf. Lindner and Maller (2005, Thm. 2.1)).

Due to their importance in applications and their complexity, exponential func-
tionals have gained a lot of attention from various researchers over the last 25
years. See e.g. the survey Bertoin and Yor (2005) or the more recent research
papers Pardo et al. (2012, 2013) for results on exponential functionals of the form
V =

∫∞
0
e−ξs− ds. Exponential functionals where η is a Brownian motion plus drift

have been treated for example in Kuznetsov et al. (2012). The case of general Lévy
processes ξ and η has been studied e.g. in our previous papers Behme and Lindner
(2013+) and Behme et al. (2014+). Nevertheless, for several of the more concrete
results in Behme et al. (2014+), the setting was narrowed down to the case where
ξ is a Brownian motion plus drift and η a subordinator.

Still, in general the distribution of exponential functionals is unknown. E.g.

Dufresne (cf. Bertoin and Yor (2005, Equation (16))) showed that V
d
= 2

σ2G
−1
2a/σ2

where Gk is a Gamma(k, 1) random variable, whenever ξ is a Brownian motion
with variance σ2 and drift a > 0, and ηt = t is deterministic. Here and in the

following
d
= denotes equality in distribution. A few more concrete distributions of

specific exponential functionals have been obtained in Gjessing and Paulsen (1997).
Further it has been investigated whether exponential functionals belong to certain
classes of distributions. So, as shown in Bertoin et al. (2008), V is selfdecomposable
whenever ξ is spectrally negative, i.e. has no positive jumps. In Behme et al. (2012)
conditions are derived under which the exponential functional (1.1) is a generalized
gamma convolution, where one of the processes is a compound Poisson process.

In this article we focus on the case of exponential functionals as in (1.1) when
ξ is a general Lévy process such that limt→∞ ξt = ∞ and η is a subordinator,
independent of ξ. By Behme et al. (2014+, Cor. 1) this means that V ≥ 0 a.s. and
we have the following relationship between the characteristic triplet (γξ, σ

2
ξ , νξ) of

ξ and the Laplace exponents ψη and ψµ of η1 and the distribution µ of V , resp.,

ψη(u) =(γξ −
σ2
ξ

2
)uψ′

µ(u) +
σ2
ξ

2
u2
(
(ψ′
µ(u))

2 − ψ′′
µ(u)

)
(1.3)

+

∫
R

(
eψµ(u)−ψµ(ue

−y) − 1− uψ′
µ(u)y1|y|≤1

)
νξ(dy), u > 0.

Starting from this, we will consider several aspects of exponential functionals. In
particular, in Section 2, we derive an integro-differential equation for the density
of the exponential functional (given its existence) which extends a previous result
from Carmona et al. (1997) where η was assumed to be deterministic.
Since selfdecomposable distributions and generalized Gamma convolutions play an
important role in the remainder of the paper, we review them and their connection
to exponential functionals in Section 3, which also includes some new results on
these classes of distributions. Further, Section 4 is concerned with the behaviour of
the class of distributions of exponential functionals for varying characteristics of ξ.
In Sections 5 and 6 we derive general conditions for selfdecomposable distributions
to be given by an exponential functional with predetermined process ξ and also
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apply these on generalized Gamma convolutions. Finally, Section 7 contains the
proof of Proposition 3.7.

Notation. We write µ = L(X) if µ is the distribution of the random variable X.
The set of all probability distributions on R (R+) is denoted by P (P+).
For a real-valued Lévy process (ξt)t≥0, the characteristic exponent is given by its
Lévy-Khintchine formula (e.g. Sato (1999, Thm. 8.1))

log φξ(u) := logE
[
eiuξ1

]
(1.4)

= iγξu− 1

2
σ2
ξu

2 +

∫
R
(eiux − 1− iux1|x|≤1)νξ(dx), u ∈ R,

where (γξ, σ
2
ξ , νξ) is the characteristic triplet of the Lévy process ξ. We refer to

Sato (1999) for further information on Lévy processes.
In the special case of a subordinator (ηt)t≥0, i.e. of a nondecreasing Lévy process,
we will also use its Laplace transform which we denote as Lη(u) := Lη1(u) =

E[e−uη1 ] = e−ψη(u), u ≥ 0, where the Laplace exponent ψη is a Bernstein function
(BF), i.e.

ψη(u) = aηu+

∫
(0,∞)

(1− e−ut)νη(dt), u > 0, (1.5)

with a ≥ 0 called the drift of η and a Lévy measure νη. A thorough introduction
to BFs can be found in the monograph Schilling et al. (2012). Remark that general
BFs as defined in Schilling et al. (2012) may have an additional constant term,
while in this article we restrict on BFs which are Laplace exponents of a probability
measure, that is which are zero in zero and hence are of the form (1.5).
Similarly, the Laplace transform of a random variable X on R+ with µ = L(X) is
written as LX(u) = Lµ(u) = E[e−uX ] = e−ψX(u) = e−ψµ(u). Please notice, that
this notation of Laplace exponents is different from the previous papers Behme and
Lindner (2013+); Behme et al. (2014+) but coincides with the notation used in
Schilling et al. (2012).

As in Behme and Lindner (2013+); Behme et al. (2014+), given a one-dimensional
Lévy process (ξt)t≥0 drifting to +∞, we will consider the mapping

Φ+
ξ : D+

ξ → P+,

L(η1) 7→ L
(∫ ∞

0

e−ξs− dηs

)
,

defined on

D+
ξ := {L(η1) : η = (ηt)t≥0 one-dimensional subordinator independent of ξ

such that

∫ ∞

0

e−ξs− dηs converges a.s.},

and we denote the range of Φ+
ξ by

R+
ξ := Φ+

ξ (D
+
ξ ).
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2. On the density of the exponential functional

As already observed in previous articles, it follows directly from Alsmeyer et al.
(2009, Thm. 1.3) that the exponential functional V has a pure-type law, i.e. its
distribution is either absolutely continuous, continuous singular or a Dirac measure,
where the latter can only be obtained if both processes, ξ and η, are deterministic
(c.f. Behme and Lindner (2013+, Prop. 6.1)).
Absolute continuity of exponential functionals has been studied in detail in Bertoin
et al. (2008). For the setting of this paper, Bertoin et al. (2008, Thm 3.9) shows in
particular, that the exponential functional V as in (1.1) is absolutely continuous,
whenever the subordinator η has a strictly positive drift. Further, in Kuznetsov
et al. (2012, Cor. 2.5), it is shown that the exponential functional V as in (1.1) is
absolutely continuous with continuous density if σξ > 0.
Nevertheless, if η and ξ both are compound Poisson processes, examples can be
constructed in which V is not absolutely continuous (see Lindner and Sato (2009)
and Remark 2.2 below).
The following theorem provides an integro-differential equation fulfilled by the den-
sity of V whenever it exists. Notice that for the special case of a deterministic
process ηt = t this result has been obtained in Carmona et al. (1997) using a dif-
ferent technique. In particular, case (2) below is a special case of the results in
Carmona et al. (1997) or similarly of Pardo et al. (2013, Thm. 2.3) and is just kept
here for completeness.

Theorem 2.1. Assume that ξ = (ξt)t≥0 is a Lévy process such that limt→∞ ξt = ∞
and with characteristic triplet (γξ, σ

2
ξ , νξ) such that

∫
[−1,1]

|x|νξ(dx) < ∞ and set

γ0 := γξ −
∫
[−1,1]

xνξ(dx). Let η = (ηt)t≥0 be a subordinator with drift aη and jump

measure νη, independent of ξ and such that at least one of the processes ξ and η is
non-deterministic.

(1) If σξ = 0, γ0 > 0 and νξ((0,∞)) = 0, then a density f(t), t ≥ 0, of
µ = Φξ(L(η1)) exists, which is continuous on R+ \ {aηγ0 }, and fulfills

f(t) = 0, t <
aη
γ0
, (2.1)

(aη − γ0t)f(t) =−
∫ t

aη
γ0

(
νξ((−∞, log

s

t
)) + νη((t− s,∞))

)
f(s)ds, t ≥ aη

γ0
.

(2) If σξ = 0, γ0 > 0, νξ((0,∞)) > 0, νξ((−∞, 0)) = 0 and νη ≡ 0, then
a density f(t), t ≥ 0, of µ = Φξ(L(η1)) exists, which is continuous on
R+ \ {aηγ0 }, and fulfills

f(t) = 0, t >
aη
γ0
, (2.2)

(aη − γ0t)f(t) =

∫ aη
γ0

t

νξ((log
s

t
,∞))f(s)ds, t ≤ aη

γ0
.

(3) Otherwise, assume that µ = Φξ(L(η1)) is absolutely continuous (with dif-
ferentiable density f(t), t ≥ 0, such that limt→0 t

2f(t) = 0 if σξ > 0), then
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f fulfills λ-a.e. (with λ the Lebesgue measure)

aηf(t)−

(
γ0 +

σ2
ξ

2

)
tf(t)−

σ2
ξ

2
t2f ′(t) (2.3)

=

∫ ∞

t

νξ((log
s

t
,∞))f(s)ds

−
∫ t

0

(
νξ((−∞, log

s

t
)) + νη((t− s,∞))

)
f(s)ds, t ≥ 0.

Conversely, if f(t), t ≥ 0, is a probability density which fulfills (2.1), (2.2) or (2.3)
λ-a.e. for some Lévy characteristics γ0, σ

2
ξ , νξ, aη and νη, then it is a density of the

corresponding exponential functional (1.1).

Proof : Starting from (1.3), multiplying on both sides with Lµ(u) = e−ψµ(u) and
dividing once by u we obtain for u > 0

ψη(u)

u
Lµ(u) =− (γ0 −

σ2
ξ

2
)L′
µ(u) +

σ2
ξ

2
uL′′

µ(u) +

∫
R

(
Lµ(ue−y)

u
− Lµ(u)

u

)
νξ(dy).

(2.4)

Now assume that µ has a density, such that Lµ(u) =
∫∞
0
e−utf(t)dt. Denote the

inverse Laplace transform by
L−1

−→, then obviously we have Lµ(u)
L−1

−→ f(t) λ-a.e.
while (assuming limt→0 t

2f(t) = 0 and that f is differentiable) λ-a.e. we get

L′
µ(u)

L−1

−→ −tf(t),

uL′′
µ(u)

L−1

−→ d

dt
(t2f(t)) = 2tf(t) + t2f ′(t),∫

R

(
Lµ(ue−y)

u
− Lµ(u)

u

)
νξ(dy)

L−1

−→
∫ ∞

t

νξ((log
s

t
,∞))f(s)ds

−
∫ t

0

νξ((−∞, log
s

t
))f(s)ds,

where the last line follows from∫
R

(
Lµ(ue−y)

u
− Lµ(u)

u

)
νξ(dy)

=

∫
R

(∫ ∞

0

e−ut

(∫ tey

0

f(s)ds−
∫ t

0

f(s)ds

)
dt

)
νξ(dy)

=

∫ ∞

0

e−ut
∫ ∞

t

f(s)

∫ ∞

log s
t

νξ(dy) ds dt−
∫ ∞

0

e−ut
∫ t

0

f(s)

∫ log s
t

−∞
νξ(dy) ds dt.

Further for the left hand side of (2.4) with ψη(u) = aηu +
∫
(0,∞)

(1 − e−ut)νη(dt)

we will use that∫
(0,∞)

(1− e−ut)νη(dt)

u
Lµ(u)

=

∫ ∞

0

e−usνη((s,∞))dsLµ(u)
L−1

−→
∫ t

0

νη((t− s,∞))f(s)ds

which is due to the fact that convolutions become multiplications under the Laplace
transform. Now, putting all terms together we easily derive (2.3).
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Observe that in the setting of case (1), it follows from Behme et al. (2014+, Lemma
1 and Thm. 1) that the measure µ has support [

aη
γ0
,∞). Further recall that in this

case ξ is a spectrally negative process ξ and hence µ is selfdecomposable and has a
continuous density on (

aη
γ0
,∞) (cf. Steutel and van Harn (2004, Thm. V.2.16)).

By Behme et al. (2014+, Lemma 1 and Thm. 1) in the setting of case (2) µ has
support [0,

aη
γ0
] and otherwise µ has full support on [0,∞). Hence we derive the

corresponding formulas from (2.3). Existence of a density in case (2) follows from
Bertoin et al. (2008, Thm. 3.9), continuity has been proven in Carmona et al.
(1997).
For the converse assume that f is a density which fulfills (2.3), then reverting the
above we see that its Laplace transform fulfills (1.3) which yields the claim by
Behme et al. (2014+, Thm. 3). �

Remark 2.2. In Lindner and Sato (2009) the exponential functional V as in (1.1)
has been studied in the case where (ηt)t≥0 is a Poisson process with jump intensity
v > 0, and ξt = (log c)Nt for c > 1 and another (independent) Poisson process
(Nt)t≥0 with jump intensity u > 0.
From Theorem 2.1 above, we observe that in this setting, if a density of V exists,
then it fulfills λ-a.e.

v

∫ t

(t−1)∨0

f(s)ds = u

∫ ct

t

f(s)ds, t ≥ 0

or in terms of the cumulative distribution function F (t) =
∫ t
0
f(s)ds and the pa-

rameter q = v
u+v ∈ (0, 1)

F (t) = (1− q)F (ct) + qF (t− 1), t > 0, where F (t) = 0, t ≤ 0. (2.5)

Actually, (2.5) can be shown to hold even if µ = L(V ) is not absolutely continuous,
by a similar proof as for Theorem 2.1. Further, from (2.5) we deduce the self-
similarity relation

µ = (1− q)µ ◦ T−1
0 + q µ ◦ T−1

1

for µ with weights {1− q, q} and

T0 : x 7→ x

c
, T1 : x 7→ x+ 1.

Remark that T1 is not a contraction and hence µ is not a self-similar measure in
the classical and well-studied sense of Hutchinson (1981).
Nevertheless, in Lindner and Sato (2009), the authors proved that µ shares some
properties with self-similar measures. In particular, µ is continuous singular if c
is a Pisot-Vijayaraghavan number, but for Lebesgue a.a. c > 1 there exists q̄ < 1
such that µ is absolutely continuous for all q ∈ (q̄, 1).

From the theorem above, we can derive characterizations of densities of self-
decomposable distributions on R+ as well as of generalized Gamma convolutions.
This will be done in Corollaries 3.4 and 3.6 below. For the moment, we end this
section with an example of application for Theorem 2.1.

Example 2.3. Assume L = (Lt)t≥0 is a Lévy process with characteristic triplet
(γL, σ

2
L, νL) and set

St := [L,L]dt =
∑

0<s≤t

(∆Ls)
2, t ≥ 0.
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Then the COGARCH volatility process with parameters β, η, ϕ > 0 driven by L or
S is defined as

Vt = e−ξt

(
V0 + β

∫
(0,t]

eξs ds

)
, t ≥ 0,

where V0 is a nonnegative random variable, independent of (Lt)t≥0, and

ξt = ηt−
∑

0<s≤t

log(1 + ϕ∆Ss), t ≥ 0.

As originally shown in Klüppelberg et al. (2004, Thm. 3.1), the process defined in
(2.3) has a strictly stationary distribution if and only if∫

R+

log(1 + ϕy) νS(dy) =

∫
R
log(1 + ϕy2) νL(dy) < η

and in this case, the stationary distribution is given by the distribution of the
exponential functional

V = β

∫
R+

e−ξs ds.

Since ξ is spectrally negative by construction, we can apply Theorem 2.1(1) (or
Carmona et al. (1997, Prop. 2.1)) to obtain that V has a density f(t), t ≥ 0, with

f(t) = 0 for t < β
η , while f is continuous on (βη ,∞) fulfilling

(β − ηt)f(t) +

∫ t

β
η

νS

((
t− s

sϕ
,∞
))

f(s)ds = 0, t ≥ β

η
. (2.6)

Now, if for example (St)t≥0 is chosen to be a Poisson process with intensity c > 0,
we obtain from (2.6) the following difference-differential equation for the cumulative
distribution function F (t) of V

ηt− β

c
F ′(t) = F (t)− F (

β

η
), t ≥ β

η
,

with F (t) = 0 for t < β
η . Similarly, for the common choice of L having standard

normally distributed jumps, one derives the recursive formula

f(t) =
2

β − ηt

∫ t

β
η

(
1− φ

(√
t− s

sϕ

))
f(s)ds, t >

β

η
,

where φ is the cumulative distribution function of the normal distribution.

3. (Semi-)Selfdecomposability and Generalized Gamma Convolutions

We will use the following notations for the classes of infinitely divisible distribu-
tions:

ID, ID+ infinitely divisible distributions on R,R+ (respectively)

IDlog, ID
+
log infinitely divisible distributions on R,R+ with finite log-moment
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Further the following classes of distributions will be introduced in the next subsec-
tions:

L,L+ selfdecomposable distributions on R,R+

L(c),L(c)+ c-decomposable, semi-selfdecomposable distributions on R,R+

BO Goldie-Steutel-Bondesson class/ Bondesson’s class (on R+)

T Thorin’s class/ generalized gamma convolutions (on R+)

3.1. Selfdecomposability. A random variable X (or equivalently a probability mea-
sure µ) is called selfdecomposable, if for all c ∈ (0, 1), there exists a random variable
Yc, independent of X, such that

X
d
= cX ′ + Yc, (3.1)

where X ′ is an independent copy of X. In this case we write µ = L(X) ∈ L.
Obviously, for distributions on the positive real line, (3.1) is equivalent to

Lµ(u) = Lµ(cu)Lµc(u), u ≥ 0, c ∈ (0, 1),

or

ψµ(u)− ψµ(cu) = ψµc(u), u ≥ 0, c ∈ (0, 1), (3.2)

where µc = L(Yc). In particular it is known (cf. Schilling et al. (2012, Prop. 5.17)),
that every µ ∈ L+ has a Laplace exponent of the form

ψµ(u) = au+

∫ ∞

0

(1− e−ut)
k(t)

t
dt, u ≥ 0, (3.3)

with a ≥ 0 called the drift of µ and k : [0,∞) → [0,∞) non-increasing.

The following proposition collects characterizations of selfdecomposable distri-
butions in P+ which we intend to use in this paper. Most of them are well known.
We couldn’t find characterization (iv) in this form in the literature, so we give a
short instructive proof. Alternatively (iv) is easily seen to be equivalent to the char-
acterization of selfdecomposability in Steutel and van Harn (2004, Thm. V.2.9).
Further characterizations of selfdecomposable distributions can also be found in
Maejima (2015+); Sato (2010); Steutel and van Harn (2004) and for a.s. positive
random variables in the recent article Mai et al. (2014+) as well as in Corollary 3.4
below.

Proposition 3.1. Let µ ∈ P+ be a probability measure with Laplace exponent
ψµ(u), u ≥ 0. Then the following statements are equivalent.

(i) µ ∈ L+.
(ii) ψµc(u) := ψµ(u)− ψµ(cu) is a Bernstein function for all c ∈ (0, 1).
(iii) −ψµc(u) = ψµ(cu)− ψµ(u) is a BF for all c > 1.
(iv) u · ψ′

µ(u) is a BF.

(v) µ = L(
∫
(0,∞)

e−tdXt) for some subordinator (Xt)t≥0 with E[log+(X1)] <
∞.

Proof : Equivalence of (i) and (ii) is well known and follows immediately from the
definition of selfdecomposability and the fact that µc as in (3.1) is infinitely divisible
(see e.g. Sato (1999, Prop. 15.5)). Further by Schilling et al. (2012, Cor. 3.8(iii))
(ii) implies that also ψµc(c

−1u) = ψµ(c
−1u) − ψµ(u), c ∈ (0, 1) is a BF, i.e. (iii).
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The converse can be seen similarly.
We continue proving that (ii) implies (iv). Assume (ii), then for all c ∈ (0, 1)

ψµ(u)− ψµ(u− (1− c)u)

(1− c)

is a BF in u. Thus

uψ′
µ(u) = lim

c→1

ψµ(u)− ψµ(u− (1− c)u)

(1− c)

is a BF, too (Schilling et al. (2012, Cor. 3.8(ii))), which shows (iv).
Now assume (iv) and set

ψX(u) := uψ′
µ(u), u ≥ 0, (3.4)

then ψX is a BF with ψX(0) = 0 and hence there exists a subordinator (Xt)t≥0

with Laplace exponent ψX . Now by Behme et al. (2014+, Thm. 5.1 (ii)) (setting
σ = 0) this implies that

µ = L

(∫
(0,∞)

e−tdXt

)
. (3.5)

Since µ exists by assumption and therefore the integral has to converge, we obtain
E[log+(X1)] <∞ and hence (v).
Finally,

∫
(0,∞)

e−tdXt is well known and easily seen to be selfdecomposable (see

e.g. Bertoin et al. (2008)) which concludes the proof. �
Remark 3.2. As already observed in Behme et al. (2014+), Equation (3.4) implies
in particular, that µ and L(X) have the same drift and that the Lévy density of µ
and the Lévy measure of X are related by

k(t) = νX((t,∞)) (3.6)

(see also Barndorff-Nielsen and Shephard (2001, Eq. 4.17)).

Definition 3.3. Differences of BFs as in (ii) and (iii) of the above proposition will
appear frequently in the remaining sections of this article. Hence in the following,
we refer to the distributions with Laplace exponent ψµc (c ∈ (0, 1)) or −ψµc (c > 1)
as c-factor distributions of the distribution µ ∈ L. Recall that these are always in
ID and that they are uniquely determined since µ ∈ ID.
In terms of random variables we refer to Yc as the c-factor (c ∈ (0, 1)) of X if

X
d
= cX ′ + Yc and we say that Yc is the c-factor (c > 1) for X, if cX

d
= X ′ + Yc.

Further, from Theorem 2.1 above we obtain the following characterization of
densities of distributions in L+. The fact that densities of selfdecomposable dis-
tributions fulfill an equality like (3.7) can also be found in Steutel and van Harn
(2004, Thm. V.2.16). Here we see that actually all solutions to (3.7) correspond to
distributions in L+.

Corollary 3.4. Let f(t) be a probability density with support [a,∞), a ≥ 0, which
is continuous on (a,∞). Then f corresponds to a selfdecomposable distribution, if
and only if f fulfills

(a− t)f(t) +

∫ t

a

ν((t− s,∞))f(s)ds = 0, t ≥ a, (3.7)

for some Lévy measure ν such that
∫∞
0

log+(x)ν(dx) <∞.
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Proof : Every distribution µ ∈ L+ which is non-degenerate is absolutely continuous
and can be represented as µ = Φξ(L(L1)) for ξt = t and some subordinator L

with E[log+(L1)] < ∞. Further supp (µ) = [a,∞), a ≥ 0, implies by Behme et al.
(2014+, Thm. 1(ii)) that L has drift a. Hence by Theorem 2.1(1) the density of µ
fulfills (3.7).
Conversely, if f(t) is a density with support [a,∞), a ≥ 0, which is continuous
on (a,∞) and which fulfills (3.7), then by Theorem 2.1 it is the density of the
exponential functional

∫
(0,∞)

e−tdLt for some subordinator L with Lévy measure ν

and drift a ≥ 0. Thus we conclude that µ ∈ L+. �

3.2. Semi-selfdecomposability. We say a random variable X (or its probability mea-
sure µ) is c-decomposable, c ∈ (0, 1), or semi-selfdecomposable if (3.1) holds for a
c ∈ (0, 1) and a random variable Yc such that L(Yc) ∈ ID. We write L(c),L+(c)
for the class of c-decomposable distributions on R and R+, respectively. As in the
case of selfdecomposable distributions, we refer to the random variable Yc in (3.1)
as the c-factor of X.

By Sato (1999, Prop. 15.5) it holds L(c) ⊂ ID.
For probability distributions on R+ one can characterize c-decomposability in

terms of the Laplace exponents. In particular, µ ∈ L+(c) if and only if ψµc(u) =
ψµ(u)−ψµ(cu), u > 0, is a BF. The fact that BFs build a convex cone then implies
directly L+(c) ⊆ L+

cn for all n ∈ N. More detailed

ψµcn
(u) =

n−1∑
i=0

ψµc(c
iu) (3.8)

is the Laplace exponent of the cn-factor of µ ∈ L+(c). Using this one further obtains
for any µ ∈ L+(c)

ψµ(u) = lim
n→∞

ψµcn
(u) = lim

n→∞

n−1∑
i=0

ψµc(c
iu)

such that

L+(c) = {µ ∈ P+, s.t. ψµ(u) =

∞∑
i=0

f(ciu) for some BF f}.

3.3. Generalized Gamma Convolutions. The class of generalized Gamma convolu-
tions T is a subclass of the selfdecomposable distributions in P+. In particular,
every µ ∈ T has a Laplace exponent of the form

ψµ(u) = au+

∫
(0,∞)

(1− e−ut)
k(t)

t
dt, u ≥ 0, (3.9)

for some a ≥ 0 and a completely monotone (CM) function k : (0,∞) → [0,∞).
The class of probability distributions whose Laplace transform is of the form (3.9)

for some a ≥ 0 with k(t)
t CM is called Goldie-Steutel-Bondesson class or simply

Bondesson’s class (BO). Its Laplace exponents are referred to as complete Bernstein
functions (CBF) and they can always be represented as

ψµ(u) = au+

∫
(0,∞)

u

u+ x
dρ(x), u ≥ 0, (3.10)



Exponential Functionals of Lévy Processes with Jumps 385

with a ≥ 0 and a so-called Stieltjes measure ρ, that is a measure ρ on (0,∞) for
which

∫
(0,∞)

(1+x)−1ρ(dx) <∞. For further details and an overview of the existing

literature we refer to Schilling et al. (2012) and Maejima (2015+).
Recall that BO is the smallest class of distributions which contains all mixtures of
exponential distributions and is closed under convolutions and weak limits, while
T is the smallest class that contains all gamma distributions and is closed under
convolutions and weak limits. Also recall that T ⊂ BO ⊂ ID+ and T ⊂ L+ ⊂ ID+,
but L+ 6⊂ BO and BO 6⊂ L+.

Generalized Gamma convolutions and distributions in BO are connected via
exponential functionals as shown in the following proposition, which has originally
been proven in Barndorff-Nielsen et al. (2006, Thm. C(iii)). Nevertheless, we can
now give a completely different and shorter proof as we shall do.

Proposition 3.5. Let ξt = t. Then

Φξ(BO ∩ IDlog) = T

In particular, the distributions in BO∩IDlog with finite Stieltjes measure are mapped
surjectively on the generalized Gamma convolutions with k(0+) <∞.

Proof : Assume µ ∈ T ⊂ L+, then there exists a Lévy processX with L(X1) ∈ ID+
log

such that Φξ(X1) = µ, i.e. X and µ are related via (3.4) or (3.5). Hence from (3.4)
and (3.9)

ψX(u) = au+ u

∫
(0,∞)

e−utk(t)dt = au+ u

∫
(0,∞)

e−ut
∫
[0,∞)

e−txdρ(x)dt

for some unique measure ρ with ρ({0}) = limt→∞ k(t) = 0. Using Tonelli we can
proceed

ψX(u) = au+

∫
(0,∞)

u

∫
(0,∞)

e−ute−txdt dρ(x) = au+

∫
(0,∞)

u

u+ x
dρ(x).

Hence ψX(u) is a CBF (see e.g. Schilling et al. (2012, Remark 6.4)) such that
L(X1) ∈ BO by Schilling et al. (2012, Def. 9.1).
Conversely, assume that X is a Lévy process such that L(X1) ∈ BO ∩ IDlog. Then
Φξ(L(X1)) exists and the same computation backwards proves that Φξ(L(X1)) ∈ T.
The remaining assertion follows directly from an inspection of the above proof. �

From this, we obtain an analogue result to Corollary 3.4 characterizing the den-
sities of distributions in T.

Corollary 3.6. Let f(t) be a probability density with support [a,∞), a ≥ 0, which
is continuous on (a,∞). Then f is the density of a generalized gamma convolution,
if and only if f fulfills

(a− t)f(t) +

∫ t

a

f(s)

∫ ∞

t−s
m(x)dx ds = 0, t ≥ a,

for some m(x) : (0,∞) → [0,∞) which is CM and such that
∫∞
0

log+(x)m(x)dx <
∞.

Proof : The statement follows similarly to Corollary 3.4 with the help of Proposition
3.5. �
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As mentioned, the c-factors of selfdecomposable distributions play an important
role for our studies. In the following proposition, which is of interest by its own, we
will see, that the GGCs are exactly those distributions in L+ whose c-factors are
all in Bondesson’s class. Its proof is postponed to the closing section of this article.

Proposition 3.7. Let µ ∈ T, then µc ∈ BO for all c > 0, c 6= 1. Conversely, if
µ ∈ L+ with either µc ∈ BO for all c ∈ (0, 1), or µc ∈ BO for all c > 1, then µ ∈ T.

Summarizing, we can state the characterizations of the class T similarly to that
of L+ in Proposition 3.1.

Corollary 3.8. Let µ ∈ L+ be a probability measure with Laplace exponent ψµ(u),
u > 0. Then the following statements are equivalent.

(i) µ ∈ T.
(ii) ψµc

(u) := ψµ(u)− ψµ(cu) is a CBF for all c ∈ (0, 1).
(iii) −ψµc(u) = ψµ(cu)− ψµ(u) is a CBF for all c > 1.
(iv) u · ψ′

µ(u) is a CBF.

(v) µ = L(
∫
(0,∞)

e−tdXt) for some subordinator (Xt)t≥0 with E[log+(X1)] <∞
and L(X1) ∈ BO.

4. Nested ranges

In this section, we will consider what happens with the range R+
ξ when we

modify the characteristics of ξ. This result has a counterpart in the case when ξ is
a Brownian motion (see Behme et al. (2014+, Thm. 5)), although here for some
statements we have to restrict on L ∩ R+

ξ . That this restriction is truly necessary
will subsequently be shown in Proposition 4.2.

Theorem 4.1. Let (ξt)t≥0 be a Lévy process with characteristic triplet (γ, σ2, ν)
and write R+(γ, σ2, ν) := R+

ξ .

Then if σ2 6= 0
R+(γ, σ2, ν) = R+(γ/σ2, 1, ν/σ2).

Further for γ′ ≥ γ it holds

L ∩R+(γ, σ2, ν) ⊆ L ∩R+(γ′, σ2, ν), (4.1)

while assuming that ν((0,∞)) = 0 and
∫
[−1,0)

|x|ν(dx) <∞ we obtain

R+(γ, σ2, ν) ⊆ R+(γ′, σ2, λν) (4.2)

for all λ ∈ (0, 1] and γ′ such that γ′ − γ ≥ −(1− λ)
∫
[−1,0)

xν(dx).

Proof : By the Lévy-Itô-decomposition we have ξt = σBt + ξ̃t, where σ =
√
σ2 and

(Bt)t≥0 is a standard Brownian motion and independent of ξ̃t. Hence (σBt)t≥0
d
=

(Bσ2t)t≥0 and thus (σBt + ξ̃t)t≥0
d
= (Bσ2t +

˜̃
ξσ2t)t≥0 where

˜̃
ξ has characteristic

triplet (γ/σ2, 0, ν/σ2).
This implies that for any subordinator (ηt)t≥0, independent of ξ and with L(η1) ∈
D+
ξ ∫

(0,∞)

e−ξtdηt =

∫
(0,∞)

e−(σBt+ξ̃t)dηt
d
=

∫
(0,∞)

e−(Bσ2t+
˜̃
ξσ2t)dηt

=

∫
(0,∞)

e−(Bt+
˜̃
ξt)dηt/σ2 .
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Thus L(η1/σ2) ∈ D+

B+
˜̃
ξ
and Φ+

ξ (L(η1)) = Φ+

B+
˜̃
ξ
(L(η1/σ2)) from which we conclude

the first assertion.
Now assume µ ∈ R+(γ, σ2, ν) ∩ L, then by Behme et al. (2014+, Thm. 3)

fγ(u) =(γ − σ2

2
)uψ′

µ(u) +
σ2

2
u2
(
(ψ′
µ(u))

2 − ψ′′
µ(u)

)
+

∫
R

(
eψµ(u)−ψµ(ue

−y) − 1− uψ′
µ(u)y1|y|≤1

)
ν(dy), u ≥ 0,

is the Laplace exponent of some subordinator, i.e. a BF. Observe that for γ′ ≥ γ

fγ′(u) =fγ(u) + (γ′ − γ)uψ′
µ(u).

Since the set of BFs is a convex cone (cf. Schilling et al. (2012, Cor. 3.8(i))) and
since by assumption µ ∈ L+ such that uψ′

µ(u) is a BF, fγ′(u) is again a BF. Hence

µ ∈ R+(γ′, σ2, ν) by Behme et al. (2014+, Thm. 3).
Finally, assume µ ∈ R+(γ, σ2, ν) where ν((0,∞)) = 0 and

∫
[−1,0)

|x|ν(dx) < ∞
and set for λ ∈ (0, 1]

gλ(u) =(γλ −
σ2

2
)uψ′

µ(u) +
σ2

2
u2
(
(ψ′
µ(u))

2 − ψ′′
µ(u)

)
+

∫
R−

(
eψµ(u)−ψµ(ue

−y) − 1
)
λν(dy), u ≥ 0,

where γλ := γ − λ
∫
[−1,0)

xν(dx), then g1(u) is a BF by assumption. For any λ < 1

we observe that for u > 0

gλ(u) =g1(u)

+ (1− λ)

∫
[−1,0)

xν(dx)uψ′
µ(u) + (1− λ)

∫
R−

(
1− eψµ(u)−ψµ(ue

−y)
)
ν(dy).

Since ξ is spectrally negative, µ is selfdecomposable and thus ψµ(ue
−y) − ψµ(u)

is a BF for any negative y by Proposition 3.1 (it is the Laplace exponent of the

e−y-factor of µ). Hence eψµ(u)−ψµ(ue
−y) is CM and we can write

eψµ(u)−ψµ(ue
−y) =

∫
(0,∞)

e−utµe−y (dt).

Thus for u > 0

gλ(u) = g1(u) + (1− λ)

∫
[−1,0)

xν(dx)uψ′
µ(u)

+ (1− λ)

∫
R−

∫
(0,∞)

µe−y (dt)ν(dy)
(
1− e−ut

)
.

Since uψ′
µ(u) is a BF by Proposition 3.1 and since all appearing integrals exist, we

conclude that gλ(u)+(γ′−γ)uψ′
µ(u) is again a BF. Hence µ ∈ R+(γ′, σ2, λν) which

proves (4.2). �
Proposition 4.2. Let (ξt)t≥0 be a subordinator with drift a > 0 and jump measure
ν and set R+(a, ν) := R+

ξ . Then for a′ > a we have

L ∩R+(a, ν) ⊆ L ∩R+(a′, ν),

but
R+(a, ν) \R+(a′, ν) 6= ∅.
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Proof : The first statement has been shown in Theorem 4.1.

Let µ := Φξ(a)(δ1) be the law of
∫
(0,∞)

e−ξ
(a)
t dt, then µ ∈ R+(a, ν) with suppµ =

[0, 1a ] in case of a non-deterministic ξ and suppµ = { 1
a} if ξ is deterministic (cf.

Behme et al. (2014+, Lemma 2.1)).
On the other hand by Behme et al. (2014+, Lemma 2.1 and Thm. 2.2) all distri-
butions in R+(a′, ν) have support [0,∞), [0, 1

a′ ] (ξ non-deterministic) or { 1
a′ } (ξ

deterministic). Hence µ 6∈ R+(a′, ν). �
In case of varying jump heights, nested ranges cannot be expected. To illustrate

this, we consider the case of Poisson processes with varying jump height in which
we can fully describe the range as we shall do in the following proposition, which
also improves the previous result Behme and Lindner (2013+, Prop. 6.3).

Proposition 4.3. Assume that ξt = cNt for a Poisson process N = (Nt)t≥0 with
intensity λ and some c > 0. Then

R+
ξ = {µ ∈ Le−c with compound exponentially distributed e−c-factor} (4.3)

= {µ ∈ P+, s.t. ψµ(u) = lim
n→∞

log

(∏n−1
k=0(f(e

−kcu) + λ)

λn

)
for some BF f}.

Proof : In the present case (1.3) reduces to

ψη(u) = λeψµ(u)−ψµ(ue
−c) − λ, u > 0. (4.4)

Set c̃ = e−c, then this is equivalent to

ψµc̃(u) = ψµ(u)− ψµ(uc̃) = log

(
ψη(u) + λ

λ

)
,

i.e. ψµc̃(u) is the Laplace exponent of a compound exponential distribution - the
distribution of ηT for some exponential random variable T , independent of η - and
hence it is the Laplace exponent of an infinitely divisible distribution (cf. Steutel
and van Harn (2004, Chapter 3, Thm. 3.6)), i.e. a BF. This proves the first equality
in (4.3).
By iterating and taking limits we further obtain

ψµ(u) = lim
n→∞

ψµc̃n
(u)

= lim
n→∞

n−1∑
k=0

log

(
ψη(c̃

ku) + λ

λ

)
= lim
n→∞

log

(∏n−1
k=0(ψη(c̃

ku) + λ)

λn

)
which proves the second equality in (4.3). �
Remark 4.4. (1) Although for n ∈ N we have L+(e−c) ⊆ L+(e−nc), the ranges

R+
ξ(n) for ξ

(n)
t = ncNt with (Nt)t∈N being a Poisson process are in general

not nested. In fact, assume that µ ∈ R+
ξ(1)

⊂ L+(e−c) ⊆ L+(e−nc) is given.

Then it can be seen from (3.8) that the e−nc-factor of µ has the same
distribution as an independent sum of (scaled) compound exponentially
distributed random variables. Such sums are in general not compound
exponentially distributed. A counterexample can be constructed using the
Gamma(k, θ) distribution with Laplace transform L(u) = ( θ

θ+u )
k, which is

a compound exponential distribution if and only if k ≤ 1 (cf. Steutel and
van Harn (2004, Chapter III, Ex. 5.4)). The convolution of a Gamma(k, θ)
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distribution and a scaled Gamma(k, θ) distribution with Laplace transform
L(e−cu) = ( θ

θ+e−cu )
k is no compound exponential distribution. This can

be seen by applying Steutel and van Harn (2004, Chapter III, Thm. 5.1)
and using simple algebra to observe that d

du (L(u)L(e
−cu))−1 is not CM.

(2) Since BFs grow at most linearly (cf. Schilling et al. (2012, Cor. 3.8 (viii))),
the above proposition implies that in the given setting ψµ(u) = o(uα) for
any α > 0. Hence ψµ has zero drift and also no polynomial part (in
particular µ can not be stable).

5. Selfdecomposable distributions in the range

In this section, we derive a general criterion for a probability distribution to be
in R+

ξ for a spectrally negative Lévy process ξ. Recall that in this case R+
ξ ⊆ L+.

Theorem 5.1. Let µ ∈ L+. Assume that ξ = (ξt)t≥0 is a Lévy process with
characteristic triplet (γξ, σ

2
ξ , νξ) such that νξ((0,∞)) = 0,

∫
[−1,0)

|x|νξ(dx) < ∞
and limt→∞ ξt = ∞.
Set γ0 := γξ −

∫
[−1,0)

xνξ(dx) > 0, let νX be the Lévy measure of the Lévy process

X which is related to µ via (3.5) and let µc, c > 1, be the c-factor distribution of µ
as defined in Definition 3.3.

(1) If σ2
ξ = 0, then µ ∈ R+

ξ if and only if

G1 : (0,∞) → [0,∞) (5.1)

t 7→ γ0νX((0, t))−
∫
R−

µe−x((0, t))νξ(dx)

is non-decreasing. In this case µ = L(
∫∞
0
e−ξt−dηt), where η is a sub-

ordinator, independent of ξ, with Lévy measure νη(dt) = dG(t) and drift
aη = γ0a ≥ 0 where a ≥ 0 denotes the drift of µ.

(2) If σ2
ξ > 0, assume that νξ(R−) < ∞ and νX(R+) < ∞. Then µ ∈ R+

ξ if

and only if µ has zero drift and νX has a density g(t), t > 0, such that

lim
t→∞

tg(t) = lim
t→0

tg(t) = 0, (5.2)

and such that

G2 : (0,∞) → [0,∞) (5.3)

t 7→ (γ0 + σ2
ξνX(R+))

∫ t

0

g(u)du+
σ2
ξ

2
tg(t)

−
σ2
ξ

2

∫ t

0

(g ∗ g)(u)du−
∫
R−

µe−y ((0, t))νξ(dy)

is non-decreasing. In this case µ = L(
∫∞
0
e−ξt−dηt), where η is a sub-

ordinator, independent of ξ, with Lévy measure νη(dt) = dG(t) and zero
drift.

Proof : Observe that γ0 > 0, since E[ξ1] > 0 where

E[ξ1] = γξ +

∫
(−∞,−1)

xνξ(dx) = γ0 +

∫
R−

xνξ(dx) = γ0 −
∫
R−

|x|νξ(dx).
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By Behme et al. (2014+, Thm. 3) a probability distribution µ ∈ P+ is in R+
ξ for

the given ξ if and only if

f(u) :=

(
γξ −

σ2
ξ

2

)
uψ′

µ(u) +
σ2
ξ

2
u2
(
(ψ′
µ(u))

2 − ψ′′
µ(u)

)
+

∫
R−

(
e−(ψµ(ue

−y)−ψµ(u)) − 1− uψ′
µ(u)y1|y|≤1

)
νξ(dy)

defines a BF. Since µ ∈ L+, the functions ψX(u) = uψ′
µ(u) and −ψµc(u) = ψµ(cu)−

ψµ(u), c > 1, are again BFs by Proposition 3.1 and

f(u) = γ0ψX(u) +
σ2
ξ

2

(
(ψX(u))2 − uψ′

X(u)
)
+

∫
R−

(
exp(ψµe−y (u))− 1

)
νξ(dy).

As µc is the c-factor of µ we have eψµc (u) =
∫
[0,∞)

e−utµc(dt), and therefore

f(u) = γ0ψX(u) +
σ2
ξ

2

(
(ψX(u))2 − uψ′

X(u)
)
+

∫
(0,∞)

(e−ut − 1)

∫
R−

µe−y (dt)νξ(dy).

(5.4)

Now assume that σ2
ξ = 0 and let a ≥ 0 denote the drift of µ, then it follows via

Behme et al. (2014+, Lemma 1 and Thm. 1) that X has drift a such that

ψX(u) = au+

∫
(0,∞)

(
1− e−uy

)
νX(dy),

and inserting this in (5.4) we obtain

f(u) = γ0au+

∫
(0,∞)

(1− e−ut)[γ0νX(dt)−
∫
R−

µe−y (dt)νξ(dy)].

For f to be a BF it is now necessary and sufficient that νη defined via

νη(dt) := γ0νX(dt)−
∫
R−

µe−y (dt)νξ(dy)

is a Lévy measure, which holds if and only if G1 is non-decreasing.
In the case that σ2

ξ > 0 first observe that from Behme et al. (2014+, Lemma 1 and

Thm. 1) we know that suppµ = [0,∞) which implies that µ has drift 0 and so does
X. Further under the assumption that νX(R+) < ∞ we obtain as in the proof of
Behme et al. (2014+, Thm. 7) that

(ψX(u))2 =

∫
(0,∞)

(1− e−ut)[2νX(R+)νX − νX ∗ νX ](dt). (5.5)

Now suppose µ ∈ R+
ξ , then f is a BF, i.e. f(u) = bu +

∫
(0,∞)

(1 − e−ut)ν(dt), and

we obtain from (5.4)

σ2
ξ

2
uψ′

X(u) = −bu+

∫
(0,∞)

(1− e−ut)ρ1(dt)−
∫
(0,∞)

(1− e−ut)ρ2(dt)
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where

ρ1(dt) := (γ0 + σ2
ξνX(R+))νX(dt) +

∫
R−

µe−y (dt)νξ(dy)

ρ2(dt) := ν(dt) +
σ2
ξ

2
νX ∗ νX(dt)

Proceeding as in the proof of Behme et al. (2014+, Thm. 7(i)) this shows b = 0
and that νX has the density

g(t) =
2

σ2
ξ t
(ρ1(t,∞)− ρ2(t,∞)), t > 0.

Since νξ(R−) < ∞ and νX(R+) < ∞, similarly to the argumentation in Behme
et al. (2014+, Thm. 7(i)), it follows that (5.2) holds and finally that

ν(dt) = (γ0 + σ2
ξνX(R+))g(t)dt+

σ2
ξ

2
d(tg(t))−

σ2
ξ

2
(g ∗ g)(t)dt−

∫
R−

µe−y (dt)νξ(dy).

Thus, if µ ∈ R+
ξ , then ν(dt) has to be a Lévy measure, which proves that G2 is

non-decreasing. Conversely, if G2 is non-decreasing, define a subordinator η with
Lévy measure ν(dt) = dG(t) and zero drift, then reverting the above, it follows
from Behme et al. (2014+, Thm. 3) that µ ∈ R+

ξ . �

Example 5.2. Consider the COGARCH volatility process as introduced in Example
2.3. In this case the process ξ has no gaussian part, Lévy measure νξ = T (νS) for
the transformation T : s 7→ − log(1 + ϕs) and γ0 = η > 0.
Since the integrating process in the case of the COGARCH is deterministic t 7→ βt,
its Lévy measure is zero and we conclude from Theorem 5.1(i) above that the
measure µ ∈ L+, which is the stationary distribution of the COGARCH volatility,
has to have drift a = β

η and that it has to fulfill

ηνX(dt) =

∫
R−

µe−x(dt)νξ(dx) =

∫
R+

µ1+ϕs(dt)νS(ds), (5.6)

where X is connected to µ via (3.4).
Observe that it follows directly from this, that

k(0+) = νX(R+) = η−1νS(R+),

where k(t), t > 0, is the factor of the Lévy density of µ as in (3.3).
Assuming e.g. that (St)t≥0 is a Poisson process with intensity c > 0 , we further
obtain from (5.6) that

ηνX(dt) = cµ1+ϕ(dt),

where µ1+ϕ has the Laplace exponent ψµ((1 + ϕ)u) − ψµ(u). Hence in this case,
with (3.3) and (3.4) one can deduce the following equation for the Lévy density
m(t) = k(t)/t, t > 0, of µ,

η

c

∫
(0,∞)

e−uttdm(t) +
η

c

∫
(0,∞)

e−utm(t)dt

= − exp

(
−β
η
ϕu−

∫
(0,∞)

(1− e−ϕut)e−utm(t)dt

)
.
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Example 5.3. Assume µ is positive strictly stable with index α ∈ (0, 1), i.e. ψµ(u) =
cuα, for some c > 0 and let (ξt)t≥0 be a Lévy process without gaussian part and
which fulfills the assumptions of Theorem 5.1. Then µ ∈ R+

ξ if and only if

ν(dt) = γ0
cα2

Γ(1− α)
t−(1+α)dt−

∫
(0,∞)

µe−x(dt)νξ(dx)

defines a Lévy measure. In particular observe that µe−x has Laplace exponent
cuα(e−αx − 1) and hence νY (dt) :=

∫
(0,∞)

µe−x(dt)νξ(dx) can be interpreted as

the Lévy measure of (Yt)t≥0 where Yt = Sξ̃t , with S = (St)t≥0 a strictly α-stable

subordinator with ψS(u) = uα and ξ̃ a pure-jump subordinator with Lévy measure
νξ̃ = T (νξ) for the transformation T : x 7→ c(e−αx − 1) (see e.g. Sato (1999, Thm.

30.1)).

6. GGCs in the range

There exist several examples of exponential functionals whose distributions are
generalized Gamma convolutions. Just recall Proposition 3.5 or the example men-
tioned in the introduction, which states that

∫
(0,∞)

e−(σBt+at)dt has an inverse

Gamma distribution which is a GGC, where (Bt)t≥0 is a Brownian motion and
σ, a > 0. Further explicit examples of exponential functionals whose distributions
are generalized Gamma convolutions can also be found in Behme et al. (2012) and
Behme and Bondesson (2015+).
As generalized Gamma convolutions are selfdecomposable, one can also directly
transfer the results from the last section to obtain conditions on GGCs to be in
the range Rξ for a given process ξ. Together with the results in Section 3 this then
yields the following example.

Example 6.1. Let µ ∈ T have the Laplace exponent (3.9) with a ≥ 0 and k(0+) <
∞, k′(0+) > −∞ and k(t) 6≡ 0. Then by Corollary 3.8 the Lévy measure νX(dt) of
the Lévy process X which is related to µ via (3.5) has a density m(t), t ≥ 0, which
is CM, that is νX((0, t)) =

∫
(0,t)

m(s)ds.

Assume that ξ = (ξt)t≥0 is a Lévy process with characteristic triplet (γξ, 0, νξ) such
that νξ((0,∞)) = 0,

∫
[−1,0)

|x|νξ(dx) <∞, νξ 6≡ 0 and limt→∞ ξt = ∞.

Set γ0 := γξ −
∫
[−1,0)

xνξ(dx) > 0 and let µc, c > 1, be the c-factor distribution of

µ as defined in Definition 3.3, then by Theorem 5.1 we have µ ∈ R+
ξ if and only if

G1 : (0,∞) → [0,∞)

t 7→ γ0

∫
(0,t)

m(s)ds−
∫
R−

µe−x((0, t))νξ(dx)

is non-decreasing.
By Proposition 3.7 the c-factor distributions of µ are in BO. Further, for c > 1,
they have drift ac := a(c− 1) and their CM Lévy densities are given by

gc(t) =
k(c−1t)− k(t)

t
= t−1νX((c−1t, t]) = t−1

∫
(c−1t,t]

m(s)ds, t > 0,

(compare the proof of Proposition 3.7) where the second equality follows from
(3.6). Further, by l’Hospital’s rule gc(0+) < ∞, since k(0+) < ∞ and |k′(0+)| <
∞. Therefore the Lévy densities gc are integrable, which implies that the µc are
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compound Poisson distributed, as it would have followed similarly from Bondesson

(1981, Thm. 6.1). Hence µc = L(ac +
∑N
i=1 Y

c
i ), where N ∼ Poisson(λc) and

where the random variables Y ci are i.i.d. with densities λ−1
c gc(t), t > 0, with

λ−1
c :=

∫
(0,∞)

gc(t)dt.

Therefore µc has the density

e−λc

∞∑
n=1

λnc
n!

(λ−1
c gc(t− ac))

∗n = e−λc

∞∑
n=1

(gc(t− ac))
∗n

n!
, t > ac,

and an atom of mass e−λc in ac. This yields that a = 0 is necessary for µ to be in
the range, because otherwise G1 has negative jumps.
Now for a = 0 the term

∫
R−

µe−x((0, t))νξ(dx) is differentiable and the function

G1(t), t > 0, as above, is non-decreasing if and only if for all t > 0

dG1(t)

dt
= γ0m(t)−

∫
R−

exp(−λe−x)
∞∑
n=1

(ge−x(t))∗n

n!
νξ(dx) ≥ 0.

For example, assume that µ is a Gamma(k, θ) distribution. Then it has zero drift
and its Lévy density is given by kt−1e−θt (cf. Sato (1999, Ex. 8.10)) such that it
fulfills the above assumptions. Further we deduce m(t) = kθe−θt,

gc(t) = k · e
−c−1θt − e−θt

t
, and λc = k log c.

Thus

dG1(t)

dt
= γ0m(t)−

∫
R−

ekx
∞∑
n=1

(ge−x(t))∗n

n!
νξ(dx)

≤ γ0kθe
−θt −

∫
R−

ekxge−x(t)νξ(dx)

= ke−θt

(
γ0θ −

∫
R−

ekx · e
θt(1−ex) − 1

t
νξ(dx)

)
,

which becomes negative for large t, since νξ 6≡ 0. Therefore in this case we have
shown Gamma(k, θ) 6∈ R+

ξ .

Even in the case that ξ has no jumps but a gaussian part, many GGCs can not
be in the range as shown in the following.

Proposition 6.2. Let ξt = σBt + at, a, σ > 0, and let µ ∈ T have the Laplace
exponent (3.9) with k(0+) <∞ and k(t) 6≡ 0. Then µ /∈ R+

ξ .

Proof : Let µ ∈ T with k(0+) < ∞ be given and define the subordinator X via
(3.4) or (3.5). Then from Proposition 3.5 we know that L(X) ∈ BO with finite
Stieltjes measure and as such it has a Laplace exponent of the form

ψX(u) = bu+

∫ ∞

0

(1− e−ut)m(t)dt

where m(t) is CM and integrable. From Behme et al. (2014+, Thm. 7) we know
that if µ ∈ R+

ξ , then necessarily b = 0. Further from Behme et al. (2014+, Remark

7(ii)) it follows that if µ ∈ R+
ξ , then(

a+ σ2

∫ ∞

0

m(t)dt+
σ2

2

)
m(t) +

σ2

2
tm′(t)− σ2

2
(m ∗m)(t) ≥ 0, ∀t > 0.
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Since m(t) is CM, it holds

m(t) =

∫
[0,∞)

e−λtdρ(λ)

for some measure ρ with ρ({0}) = limt→∞m(t) = 0. Hence

m′(t) = −
∫
(0,∞)

λe−λtdρ(λ),

∫
(0,∞)

m(t)dt =

∫
(0,∞)

λ−1dρ(λ) <∞,

and

(m ∗m)(t) =

∫ t

0

m(t− s)m(s)ds =

∫
(0,∞)

∫
(0,∞)

e−ζt − e−λt

λ− ζ
dρ(ζ)dρ(λ).

So for µ ∈ R+
ξ it is necessary that for all t > 0(

a+ σ2

∫
(0,∞)

λ−1dρ(λ) +
σ2

2

)∫
(0,∞)

e−λtdρ(λ)− σ2

2
t

∫
(0,∞)

λe−λtdρ(λ)

− σ2

2

∫
(0,∞)

∫
(0,∞)

e−ζt − e−λt

λ− ζ
dρ(ζ)dρ(λ) ≥ 0,

or equivalently for all t > 0

1

t

∫
(0,∞)

(
a+ σ2

∫
(0,∞)

u−1dρ(u) +
σ2

2

)
e−λtdρ(λ)−

∫
(0,∞)

σ2

2
λe−λtdρ(λ) (6.1)

≥ 1

t

∫
(0,∞)

∫
(0,∞)

σ2

2

e−ζt − e−λt

λ− ζ
dρ(ζ)dρ(λ).

The term on the RHS of (6.1) is non-negative, for the left hand side we observe
that by dominated convergence

lim
t→∞

∫
(0,∞)

a+ σ2
∫
(0,∞)

u−1dρ(u) + σ2

2

t
− σ2

2
λ

 e−λtdρ(λ)

=

∫
(0,∞)

lim
t→∞

a+ σ2
∫
(0,∞)

u−1dρ(u) + σ2

2

t
− σ2

2
λ

 e−λtdρ(λ)

< 0

in contradiction to (6.1). This proves the proposition. �

7. Proof of Proposition 3.7

For the proof of Proposition 3.7 we need the following two simple lemmata.

Lemma 7.1. Let λ > 0 be constant, then

f(x) =
1− e−λx

x
, x > 0,

is completely monotone.
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Proof : Obviously f is infinitely often continuously differentiable and it holds f(x) >
0, x > 0. Further it can be shown by an elementary induction, that the n-th
derivative of f is given by

f (n)(x) = (−1)nn!e−λxx−(n+1)

(
eλx −

n∑
k=0

(λx)k

k!

)
. (7.1)

It follows from the series representation of the exponential function, that the term
in the brackets in (7.1) is positive. Hence (−1)nf (n)(x) ≥ 0, x > 0, for all n as we
had to show. �

Lemma 7.2. Let k(x), x > 0, be completely monotone and let c > 1 be some
constant. Then

f(x) =
k(x)− k(cx)

x

is completely monotone.

Proof : Assume first that k(x) = e−λx for some λ > 0. Then

f(x) =
e−λx − e−λxc

x
= e−λx

1− e−λx(c−1)

x

is CM since e−λx and x−1(1−e−λx(c−1)) are CM by Lemma 7.1 and since products
of CM functions are again CM (cf. Schilling et al. (2012, Cor. 1.6)).
Now let k be an arbitrary CM function, i.e.

k(x) =

∫
[0,∞)

e−λxρ(dλ).

Then

f(x) =
k(x)− k(cx)

x
=

∫
[0,∞)

e−λx − e−λcx

x
ρ(dλ) =

∫
(0,∞)

e−λx − e−λcx

x
ρ(dλ)

is an integral mixture of CM functions and hence CM. �

Now we can state the proof of Proposition 3.7.

Proof of Proposition 3.7: Assume µ ∈ T, then its Laplace exponent is given by

ψµ(u) = au+

∫ ∞

0

(1− e−ut)
k(t)

t
dt, u ≥ 0,

for some a ≥ 0 and a CM function k. Hence the Laplace exponent of its c-factor
µc, c ∈ (0, 1), is by (3.2)

ψµc(u) = ψµ(u)− ψµ(cu) = a(1− c)u+

∫ ∞

0

(1− e−ut)
k(t)− k(c−1t)

t
dt

and µc is in Bondesson’s class if and only if

f(t) =
k(t)− k(c−1t)

t

is CM. This holds by Lemma 7.2.
Analogous calculations show that also µc, c > 1, is in Bondesson’s class.
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For the converse assume µ ∈ L+ with µc ∈ BO for all c ∈ (0, 1), i.e. ψµc(u) =
ψµ(u)− ψµ(cu) is a CBF for all c ∈ (0, 1). This implies that

ψX(u) := uψ′
µ(u) = u lim

c→1

ψµ(u)− ψµ(u− (1− c)u)

u(1− c)

= lim
c→1

ψµ(u)− ψµ(u− (1− c)u)

(1− c)

is the limit of CBFs and hence a CBF (Schilling et al. (2012, Cor. 7.6)). Similarly,
if µc ∈ BO for all c > 1 one obtains ψX(u) as limit of CBFs for c↘ 1.
Now let (Xt)t≥0 be the subordinator with Laplace exponent ψX , then by Behme
et al. (2014+, Thm. 4 (ii)) (setting σ = 0) this is equivalent to µ = Φξ(L(X1)) for
ξt = t. Hence by Proposition 3.5 µ is in T. �
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Probab. (2013+). To appear, DOI: doi:10.1007/s10959-013-0507-y.

A. Behme, A. Lindner and M. Maejima. Ranges of exponential functionals of Lévy
processes. Séminaire de Probabilités (2014+). To appear.

A. Behme, M. Maejima, M. Matsui and N. Sakuma. Distributions of exponen-
tial integrals of independent increment processes related to generalized gamma
convolutions. Bernoulli 18 (4), 1172–1187 (2012). MR2995791.

J. Bertoin, A. Lindner and R. A. Maller. On continuity properties of the law of inte-
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