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Abstract. We consider excited random walks (ERWs) on integers in i.i.d. environ-
ments with a bounded number of excitations per site. The emphasis is primarily
on the critical case for the transition between recurrence and transience which oc-
curs when the total expected drift δ at each site of the environment is equal to 1
in absolute value. Several crucial estimates for ERWs fail in the critical case and
require a separate treatment. The main results discuss the depth and duration of
excursions from the origin for |δ| = 1 as well as occupation times of negative and
positive semi-axes and scaling limits of ERW indexed by these occupation times.
We also point out that the limiting proportions of the time spent by a non-critical
recurrent ERW (i.e. when |δ| < 1) above or below zero converge to beta random
variables with explicit parameters given in terms of δ. The last observation can be
interpreted as an ERW analog of the arcsine law for the simple symmetric random
walk.

1. Introduction and main results

1.1. Model description. We consider an exited random walk (ERW) on Z with
nearest neighbor jumps which evolves in a random “cookie environment”. Each
site of the lattice contains a stack of “cookies” ωx := (ωx(1), ωx(2), . . . . ). A cookie
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ωx(i) ∈ [0, 1], x ∈ Z, i ∈ N, encodes the probability that the walk jumps to the
right upon the i-th visit to x. We assume that the cookie stacks ωx, x ∈ Z, are
spatially i.i.d. and that there is a non-random M ≥ 0, the number of excitations
per site, such that ωx(i) = 1/2 for all i > M and x ∈ Z, i.e. starting from the
(M + 1)-th visit to a site the walk makes only unbiased jumps from this site.

More formally, we suppose that an environment ω ∈ Ω = [0, 1]Z×N is chosen
according to a probability measure P which satisfies the following three assumptions.

(IID) (Independence) The cookie stacks ωx(·), x ∈ Z, are i.i.d. under P.
(WEL) (Weak ellipticity) For all x ∈ Z

P(ωx(i) > 0 ∀i ∈ N) > 0 and P(ωx(i) < 1 ∀i ∈ N) > 0.

(BDM) (At most M excitations per site) P(ωx(i) = 1/2 ∀x ∈ Z, i > M) = 1.

Given an environment ω ∈ Ω, we shall use the usual coin-toss construction of a
random walk, albeit we should keep a record of the number of visits of the walk
to each site and use appropriately biased coins for the first M visits to each site.
Namely, let (ηx(i))x∈Z,i∈N be independent (under some probability measure Pω)
Bernoulli random variables such that Pω(ηx(i) = 1) = 1 − Pω(ηx(i) = 0) = ωx(i)
for all x ∈ Z, i ∈ N. Set X0 = x, x ∈ Z, and define recursively

Xn+1 = Xn + 2ηXn(#{k ∈ {0, 1, . . . , n} : Xk = Xn})− 1, n ∈ {0} ∪ N.
The probability measure Pω,x induced on the space of random walk paths which
start from x is called the quenchedmeasure. The probability measure on the product
space of environments and random walk paths originating at x defined by

Px(·) = E [Pω,x(·)] =
∫
Ω

Pω,x(·) dP(ω)

is called the averaged measure. Observe that ERW is not a Markov process with
respect to either of these measures.

Below we shall only quote the facts needed to put our results into the context of
previous work. For an overview of various ERW models, methods, and results the
reader is referred to Kosygina and Zerner (2013).

1.2. Excursions from the origin. Let Tk := inf{n ≥ 0 : Xn = k}, k ∈ Z, be the
time of the first visit to k and T r

0 := inf{n ≥ 1 : Xn = 0} be the first strictly
positive time at which the random walk visits the origin.

Under our assumptions, several phase transitions are known to be characterized
by the expected total drift stored in a single cookie stack

δ := E

[
M∑
i=1

(2ω0(i)− 1)

]
. (1.1)

The excited random walk (Xn)n≥0

(i) is transient, i.e. |Xn| → ∞ P0-a.s., iff |δ| > 1 (see Kosygina and Zerner (2013,
Theorem 3.10) and the references therein or a combination of Kosygina and
Zerner (2014, Corollary 7.10) and Remark A.6 below)1;

(ii) is ballistic, i.e. there is a constant v 6= 0 such that P0-a.s. lim
n→∞

Xn/n = v,

iff |δ| > 2 (see Kosygina and Zerner (2013, Theorem 5.2) and the references
therein);

1for |δ| ≤ 1 X is recurrent, i.e. returns to the origin infinitely often P0-a.s..
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(iii) is strongly transient, i.e. E0 [T r
0 |T r

0 <∞] <∞, iff |δ| > 3 (see Kosygina and
Zerner (2014, Corollary 1.2));

(iv) after diffusive scaling converges under P0 to a Brownian motion iff |δ| > 4 or
δ = 0 (see Kosygina and Zerner (2013, Theorems 6.1, 6.3, 6.5, 6.7) and the
references therein).

Remark 1.1. The velocity v in (ii) as well as all constants b, c, ci, i ≥ 1, which
appear below depend on the distribution of a single cookie stack ω0 under P. They
are not, in general, functions of δ (see Kosygina and Zerner (2013, Remark 5.8) for
a discussion about v).

The phase transition in (iii) emerged in the study of the depth and duration of
excursions of ERW. Since our first result is about excursions in the critical case
|δ| = 1 we shall first quote the original relevant theorem.

Theorem 1.2 (Kosygina and Zerner (2014), Theorem 1.1). Let δ ∈ R \ {1}. Then
there are constants c1, c2 ∈ (0,∞) such that

lim
n→∞

n|δ−1|P1(Tn < T0 <∞) = c1, (1.2)

lim
n→∞

n|δ−1|/2P1(n < T0 <∞) = c2. (1.3)

Moreover, if δ = 1 then every ε > 0,

lim
n→∞

nεP1(Tn < T0) = lim
n→∞

nεP1(T0 > n) =∞. (1.4)

If |δ| 6= 12 then there is a constant c3 ∈ (0,∞) such that

lim
n→∞

n||δ|−1|/2P0(n < T r
0 <∞) = c3. (1.5)

Moreover, if |δ| = 1 then for every ε > 0,

lim
n→∞

nεP0(T
r
0 > n) =∞. (1.6)

This theorem immediately implies (iii) but provides very little information about
the tail of the return time in the critical case. Our first result fills in this gap.

Theorem 1.3. If δ = 1 then there is a constant c4 ∈ (0,∞) such that

lim
n→∞

(lnn)P1(Tn < T0) = c4; (1.7)

lim
n→∞

(lnn)P1(T0 > n) = 2c4. (1.8)

Moreover, if |δ| = 1 then

lim
n→∞

(lnn)P0(T
r
0 > n) = c5 :=

{
2c4E[ω0(1)], if δ = 1;

2c4E[1− ω0(1)], if δ = −1.
(1.9)

The key statements of Theorem 1.3 are (1.7) and (1.8). The last conclusion fol-
lows easily from (1.8), (1.3) with δ = −1, and the following remark by conditioning
on the first step (see Kosygina and Zerner (2014, (6.2))).

2In (1.5) of Kosygina and Zerner (2014) both δ = 1 and δ = −1 should have been excluded.
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Remark 1.4. There is a useful symmetry in our model. If the environment (ωx)x∈Z
is replaced with (ω̃x)x∈Z where ω̃x(i) = 1− ωx(i), for all i ∈ N, x ∈ Z, then X̃, the
ERW corresponding to the new environment, satisfies

X̃
d
= −X, (1.10)

where
d
= denotes the equality in distribution. Thus, it is sufficient to consider only

excursions to the right (for all δ). The corresponding results for excursions to the
left will follow by symmetry. Thus from now on we shall assume without loss of
generality that δ ≥ 0.

1.3. Occupation times and scaling limits. Unless stated otherwise we shall assume
that all processes start at the origin at time 0. Let B = (B(t)), t ≥ 0, denote a
standard Brownian motion and Wα,β = (Wα,β(t)), t ≥ 0, be an (α, β)-perturbed
Brownian motion, i.e. the solution of the equation

Wα,β(t) = B(t) + α sup
s≤t

Wα,β(s) + β inf
s≤t

Wα,β(s). (1.11)

Reflected α-perturbed Brownian motion, Wα = (Wα(t)), t ≥ 0, is the solution of

Wα(t) = B(t) + α sup
s≤t

Wα(s) +
1

2
LWα(t), (1.12)

where LWα(t) is the local time of Wα at zero. Equation (1.11) has a path-wise
unique solution if (α, β) ∈ (−∞, 1) × (−∞, 1), and (1.12) has a path-wise unique
solution when α < 1 (Davis (1996); Perman and Werner (1997); Chaumont and
Doney (1999)). In both cases the solution is adapted to the filtration of B. If β = 0
then the solution of (1.11) can be written explicitly:

Wα,0(t) = B(t) +
α

1− α
sup
s≤t

B(s). (1.13)

Throughout the paper we use ⇒ to denote the weak convergence of random

variables and
J1⇒ for the weak convergence of stochastic processes with respect to

the standard Skorokhod topology J1 on D([0,∞)), the space of càdlàg functions on
[0,∞).3

The following two theorems describe scaling limits of recurrent ERWs.

Theorem 1.5 (Dolgopyat and Kosygina (2012), Theorem 1.1). Let δ ∈ [0, 1). Then
under P0

X[n·]√
n

J1⇒Wδ,−δ(·) as n→∞.

Theorem 1.6 (Dolgopyat and Kosygina (2012), Theorem 1.2). Let δ = 1 and
B∗(t) := maxs≤tB(s). Then there exists a constant b ∈ (0,∞) such that under P0

X[n·]

b
√
n log n

J1⇒ B∗(·) as n→∞.

3Since all limiting processes below have continuous paths, we can also claim the convergence
with respect to the uniform topology on D([0, T ]) for each T > 0 (see Billingsley (1999, Section

15)).
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At the first glance it appears counter-intuitive that for δ = 1 the limiting process
is transient while the original process is recurrent. However, the running maximum
of Brownian motion is a natural limit ofWα,β((1−α)2 ·) as α ↑ 1 (see the discussion
right after Theorem 1.7).

Theorem 1.5 suggests that the rescaled occupation times of positive and negative
semi-axes of non-critical recurrent ERW should converge to those of the reflected
perturbed Brownian motion. The latter was studied in detail, and the next theorem
quotes results from the literature. Let

A+(t) :=

∫ t

0

1{Wα,β(u)≥0} du, A−(t) :=

∫ t

0

1{Wα,β(u)<0} du, t ≥ 0,

and T±(t) := inf{s : A±(s) > t}, t ≥ 0, be the right continuous inverses of A±(·).
Denote by Z(a, b) a Beta-distributed random variable with parameters a and b.

Theorem 1.7. For all α, β < 1 the following holds:

(a) Carmona et al. (1998, equation (8))

A+(t)

t

d
= Z

(
1− β
2

,
1− α
2

)
and

A−(t)

t

d
= Z

(
1− α
2

,
1− β
2

)
.

(b) Chaumont and Doney (2000, Theorem 1)

Wα,β(T
+(·)) d

=Wα(·) and −Wα,β(T
−(·)) d

=Wβ(·).

Theorem 1.7 implies that Wα,β((1− α)2 ·)⇒ B∗(·) as α ↑ 1. Indeed, the Brow-
nian scaling of Wα,β (Carmona et al. (1998, Proposition 2.3)) allows to rewrite the
above convergence as

(1− α)Wα,β(·)⇒ B∗(·) as α ↑ 1. (1.14)

By Theorem 1.7(a) α ↑ 1 the process Wα,β stays most of the time in [0,∞) (recall
that E [A+(t)/t] = (1− β)/(2− α− β)). By Theorem 1.7(b) we conclude that the
limit in (1.14) should be independent of β. On the other hand, if β = 0 then (1.13)
tells us that (1− α)Wα,0(·) has the same law as (1− α)B(·) + α sups≤·B(s). This
implies (1.14).

The next corollary follows from Theorems 1.5 and 1.7 by the continuous mapping
theorem (see Section 4 for details).

Corollary 1.8. Suppose that δ ∈ [0, 1). Let

A+
n :=

n∑
i=0

1{Xi≥0} and A−
n :=

n∑
i=0

1{Xi<0}, n ≥ 0,

and T±
m := inf{n ≥ 0 : A±

n > m}, m ≥ 0. Then

(a)
A+

n

n
⇒ Z

(
1 + δ

2
,
1− δ
2

)
and

A−
n

n
⇒ Z

(
1− δ
2

,
1 + δ

2

)
as n→∞;

(b)
XT+

bm·c√
m

J1⇒Wδ(·) and −
XT−

bm·c√
m

J1⇒W−δ(·) as m→∞.

Consider now the critical case δ = 1. It is clear from Theorem 1.6 that the
proportion of time spent in (−∞, 0) by an ERW with δ = 1 should converge to 0
(see Lemma 4.1 below). Since the critical ERW is recurrent and satisfies (BDM),
A−

n → ∞ as n → ∞. But how fast does A−
n increase? Our last theorem answers
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this question on a logarithmic scale and also provides scaling limits of XT±
bm·c

when

δ = 1.

Theorem 1.9. Let δ = 1 and A±
n , T

±
n , n ≥ 0, be as in Corollary 1.8. Then under

P0

(a)
logA−

n

log n
⇒ U as n→∞, where U is uniform on [0, 1] random variable;

(b) −
XT−

bm·c√
m

J1⇒W−1(·) as m→∞;

(c) there is a constant b ∈ (0,∞) such that
XT+

bm·c

b
√
m logm

J1⇒ B∗(·) as m→∞.

Part (a) of the above theorem informally says that A−
n � nU where U is a

standard uniform random variable. See Section 4.2 for a heuristic derivation of this
asymptotics. Part (b) is just a simple extension of the last claim of Corollary 1.8
to δ = 1. This reflects the fact that if we consider an ERW with δ = 1 only at
the times when it visits the negative half-line then such process is not critical and
can be treated essentially in the same way as the case δ ∈ [0, 1). The situation is
different if we look at an ERW with δ = 1 only when it visits the positive half-
line, since neither Wα,β nor Wα exists for α = 1. But in view of Theorem 1.6 the
statement of part (c) is not surprising.

1.4. Organization of the paper. In Section 2 we explain the connection between
ERWs and some branching processes. The main theorem of Section 2, Theorem 2.1,
is an important tool for the proofs of our main results. We illustrate this by deriving
Theorem 1.3 as a simple corollary of Theorem 2.1. The proof of Theorem 2.1 is
given in Section 3. In Section 4 we prove Corollary 1.8 and Theorem 1.9. Proofs
of some technical results are collected in Appendices A and B.

2. Connection with branching processes

In this section we construct the relevant branching process (BP) and restate
(1.7) and (1.8) in terms of the tails of the extinction time and the total progeny of
these BPs.

We shall use the same environment ω ∈ Ω and Bernoulli random variables
(ηx(i))x∈Z,i∈N as in the construction of the ERW. This will provide us with a nat-
ural coupling between the ERW and the BP. We define here only the BP V which
corresponds to right excursions of the walk.4 For x ∈ {0} ∪ N let

Sx(0) = 0, Sx(m) := inf

{
k ≥ 1 :

k∑
i=1

(1− ηx(i)) = m

}
−m, m ∈ N.

Thus, Sx(m) is the number of “successes” before the m-th “failure” in the sequence
ηx(i), i ∈ N. Define the process V = (Vn)n≥0 which starts with y particles in
generation 0 by

V0 = y, Vn = Sn(Vn−1), n ∈ N. (2.1)

4The BP corresponding to left excursions, V −, is constructed in a symmetric way and will be

introduced in Section 4.2.
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If there were no biased coins, V would be a Galton-Watson process with mean 1
geometric offspring distribution. Our process uses up to M possibly biased coins in
each generation, therefore, strictly speaking, it is not a “true” branching process.
We could recast it as a branching process with migration (see Kosygina and Zerner
(2008, Section 3)) but, since we do not use any results from branching processes
literature, we shall not need this step.

For y ∈ [0,∞) we shall denote by PV
y the (averaged) probability measure cor-

responding to the process V which starts with byc particles in generation 0. For
x ∈ [0,∞) define τVx := inf{n ∈ N : Vn ≥ x} and σV

x := inf{n ∈ N : Vn ≤ x}.
When there is no danger of confusion we shall drop the superscript V .

Theorem 2.1. Let δ = 1 and V = (Vn)n≥0 be defined by (2.1). Then for each
y ∈ N there is a constant c6(y) ∈ (0,∞) such that

lim
n→∞

(lnn)PV
y (σV

0 > n) = c6(y), (2.2)

lim
n→∞

(lnn)PV
y

σV
0 −1∑
i=0

Vi > n

 = 2c6(y). (2.3)

Assume for the moment Theorem 2.1 and derive Theorem 1.3.

Proof of Theorem 1.3: The proof is essentially the same as that of Theorem 1.1 in
Kosygina and Zerner (2014). Let the ERW start with x = 1 and the corresponding
BP start with y = 1. Observe that, since ERW and BP are constructed from the
same (ηx(i))x∈Z,i∈N, we have

σV
0 = max{Xn : n < T0} and T01{T0<∞} =

(
2

σV
0 −1∑
n=0

Vn − 1

)
1{σV

0 <∞}.

Therefore, (1.7) and (1.8) with c4 = c6(1) follow from (2.2) and (2.3). To show (1.9)
we start ERW with x = 0 and condition on the first step. Since Pω,±1(T0 ≥ n) do
not depend on ω0(·),

P0(T
r
0 > n) = E[Pω,0(T

r
0 > n)]

= E[ω0(1)Pω,1(T0 ≥ n)] + E[(1− ω0(1))Pω,−1(T0 ≥ n)]
= E[ω0(1)]P1(T0 ≥ n) + E[(1− ω0(1))]P−1(T0 ≥ n).

By (WEL), E[ω0(1)] > 0 and E[(1− ω0(1))] > 0. If δ = 1 then (lnn)P1(T0 ≥ n)→
2c4 as n → ∞ by (1.8). By Remark 1.4 and (1.3) with δ = −1, nP−1(T0 ≥ n)
converges to a constant. We conclude that

lim
n→∞

(lnn)P0(T
r
0 > n) = 2c4E[ω0(1)]. (2.4)

The result for δ = −1 follows by symmetry. �

3. Proof of Theorem 2.1

The proof of Theorem 2.1 depends on a number of additional facts which we
state below and prove in Appendix A.

Lemma 3.1. Let δ = 1 and y ∈ N. Then there is a constant c6(y) ∈ (0,∞) such
that

lim
n→∞

(lnn)Py(τn < σ0) = c6(y).
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Lemma 3.2. Let δ = 1. For every y ∈ N and α > 1

lim
n→∞

(lnn)Py

(
σ0−1∑
i=0

1{Vi≤n} > nα

)
= 0.

Lemma 3.3. Let δ = 1. For every h > 0

lim
n→∞

Pn(σ0 > hn) = 1; (3.1)

lim
n→∞

Pn

(
σ0−1∑
i=0

Vi > hn2

)
= 1. (3.2)

The following results, which will be referred to as (DA), Diffusion Approximation,
and (OS), “Overshoot”, respectively, are borrowed from previous works.

Lemma 3.4 (Diffusion approximation). Let δ = 1. Fix an arbitrary ε > 0 and

y > ε. Let Y ε,n(0) = [ny] and Y ε,n(t) =
V[nt]∧σεn

n
, t ≥ 0. Then, under the averaged

measure, Y ε,n J1⇒ Y , where Y is the solution of

dY (t) = dt+
√
2Y (t) dB(t), Y (0) = y, (3.3)

stopped when Y reaches level ε.

Lemma 3.4 is an immediate consequence of Proposition 3.2 and Lemma 3.3 in
Kosygina and Zerner (2014).

Lemma 3.5 (“Overshoot”, Lemma 5.1 in Kosygina and Mountford (2011)). There
are constants c7, c8 > 0 and N ∈ N such that for all x ≥ N and y ≥ 0

max
0≤z<x

Pz(Vτx > x+ y | τx < σ0) ≤ c7
(
e−c8y

2/x + e−c8y
)

and

max
x<z<4x

Pz(Vσx∧τ4x < x− y) ≤ c7e−c8y
2/x.

Proof of Theorem 2.1: We start with the proof of (2.2).
Lower bound for (2.2). For every y ∈ N we have by the strong Markov property

and monotonicity in the starting point that

Py(σ0 > n) ≥ Py(σ0 > n, τn < σ0)

= Py(σ0 > n | τn < σ0)Py(τn < σ0) ≥ Pn(σ0 > n)Py(τn < σ0).

Using Lemma 3.1 and (3.1) we get

lim inf
n→∞

(lnn)Py(σ0 > n) ≥ c6(y).

Upper bound for (2.2). Fix an arbitrary α > 1 and notice that for all m > y

(lnm)Py(σ0 > mα) ≤ (lnm)Py(σ0 > mα, τm ≤ mα) + (lnm)Py(τm ∧ σ0 > mα)

≤ (lnm)Py(σ0 > τm) + (lnm)Py

(
σ0−1∑
i=1

1{Vi≤m} > mα

)
.

As m→∞, the first term in the right hand side converges to c6(y) by Lemma 3.1
and the second term vanishes due to Lemma 3.2.
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Define m = m(α, n) by the condition mα ≤ n < (m+ 1)α. Then we get

lim sup
n→∞

(lnn)Py(σ0 > n) ≤ lim
α↓1

lim
m→∞

α(ln(m+ 1))Py(σ0 > mα) = c6(y),

which matches the lower bound.
We turn now to the proof of (2.3). It is enough to show that

lim
n→∞

(lnn)Py

[
σ0−1∑
i=0

Vi > n2

]
= c6(y). (3.4)

Lower bound for (3.4). By Lemma 3.1 and (3.2) ,

lim inf
n→∞

(lnn)Py

[
σ0−1∑
i=0

Vi > n2

]
≥ lim inf

n→∞
(lnn)Py

[
σ0−1∑
i=0

Vi > n2, τn < σ0

]

≥ lim
n→∞

(lnn)Py[τn < σ0] lim
n→∞

Pn

[
σ0−1∑
i=0

Vi > n2

]
= c6(y).

Upper bound for (3.4). The reasoning is very similar to the one we gave for (2.2).
Fix α > 1. Using the sequence m = m(α, n) such that mα ≤ n < (m+ 1)α we get

lim sup
n→∞

(lnn)Py

[
σ0−1∑
i=0

Vi > n2

]
≤ α lim sup

m→∞
ln(m+ 1)Py

[
σ0−1∑
i=0

Vi > m2α

]
.

Therefore, if we show that for every α > 1

lim sup
m→∞

(lnm)Py

[
σ0−1∑
i=0

Vi > m2α

]
≤ c6(y), (3.5)

then letting α→ 1 and using the lower bound we shall obtain (3.4). Notice that

(lnm)Py

[
σ0−1∑
i=0

Vi > m2α, τm < σ0

]
≤ (lnm)Py(τm < σ0),

which by Lemma 3.1 converges to c6(y) as m→∞. Finally,

Py

[
σ0−1∑
i=0

Vi > m2α, τm > σ0

]
≤ Py(σ0 > m2α−1, τm > σ0)

≤ Py

[
σ0−1∑
i=0

1{Vi≤m} > m2α−1

]
.

By Lemma 3.2 the last expression is o(1/ lnm) as m→∞, and we get (3.5). �

4. Proofs of Corollary 1.8 and Theorem 1.9

4.1. Proof of Corollary 1.8. Part (a) of Corollary 1.8 follows from the following
lemma. Observe that this lemma also covers the case δ = 1. This will be needed
later in the section.

Lemma 4.1. Let δ ∈ [0, 1]. Then as n→∞
A+

n

n
⇒ Z

(
1 + δ

2
,
1− δ
2

)
,

where we set Z(1, 0) ≡ 1.
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Proof : This lemma is an easy consequence of Theorems 1.5 and 1.7 (for δ ∈ [0, 1)),
Theorem 1.6 (for δ = 1), and the continuous mapping theorem. To unify the
notation let

Xδ,n(·) :=


X[n·]√
n
, if δ ∈ [0, 1);

X[n·]

b
√
n log n

, if δ = 1;

W1,−1 := B∗.

Define ϕ : D([0, 1])→ R by

ϕ(ω) =

∫ 1

0

1[0,∞)(ω(t)) dt. (4.1)

Note that the Lebesgue measure of the set Z := {t ∈ [0, 1] : Wδ,−δ(t) = 0} is 0
P -a.s.. Indeed,

E

∫ 1

0

1Z(t) dt =

∫ 1

0

P (Wδ,−δ(t) = 0) dt = 0.

where the last equality follows from the fact thatW−δ,δ has a density (see Carmona
et al. (1998, Proposition 2.3 and Section 3.3)). Then, if P is the measure corre-
sponding to Wδ,−δ then by Proposition B.1 the map ϕ is continuous P -a.s. (as P
is supported on continuous functions) and

ϕ(Xδ,n) =
1

n

n∑
k=0

1[0,∞)(Xk) =
A+

n

n
⇒ ϕ(Wδ,−δ)

d
= Z

(
1 + δ

2
,
1− δ
2

)
.

The last equality follows from Theorem 1.7(a) for δ ∈ [0, 1) and is trivial for δ =
1. �

It is enough to show the second part of Corollary 1.8(b). The proof of the first
part is similar. For every R > 0 consider the map ψ : D([0,∞))→ D([0, R]) defined
by

ψ(ω(s), 0 ≤ s <∞) = (−ω(T−(s)), 0 ≤ T−(s) ≤ R), (4.2)

where T−(s) := inf
{
t ≥ 0 :

∫ t

0
1(−∞,0)(ω(r)) dr > s

}
. By Proposition B.2, ψ is

continuous P -a.s. (P is the measure which corresponds to Wδ,−δ). The desired
statement now follows from Theorem 1.5 and Theorem 1.7(b) by the continuous
mapping theorem.

4.2. Heuristics and the proof of Theorem 1.9(a). We start by introducing some
additional notation which will be used throughout the rest of Section 4. Denote by
dn the number of down-crossings of X from 0 to −1 up to time n inclusively and by
un the number of up-crossings of X from 0 to 1 up to time n inclusively. Rename
V to V + (for this section only) and introduce the process V − which corresponds
to left excursions of the walk. Namely, for x ≤ 0 let

Fx(0) = 0, Fx(m) := inf

{
k ≥ 1 :

k∑
i=1

ηx(i) = m

}
−m, m ∈ N.

Thus, Fx(m) is the number of “failures” before the m-th “success” in the sequence
ηx(i), i ∈ N. Define the process V − = (V −

n )n≥0 which starts with y particles in
generation 0 by

V −
0 = y, V −

n = F−n(V
−
n−1), n ∈ N. (4.3)
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If V ±
0 = k then denote by Σ±

k :=
∑σ0−1

j=0 V ±
j the total progeny of the BP V ± over

its lifetime and observe that

2Σ+
un−1 ≤ A+

n ≤ 2Σ+
un

+ dn + 1 and 2Σ−
dn−1 − dn ≤ A

−
n ≤ 2Σ−

dn
. (4.4)

To see why the first set of the above inequalities holds, note that A+
n falls in between

the total duration (including visits to 0) of the first un−1 and the first un excursions
to the right. Since the number of up-crossings from one level to the next in each
excursion is equal to the number of down-crossings, by coupling with the BP we
obtain the estimates in terms of the total progeny of the BP which starts with
un−1 and un particles respectively. Since A+

n includes the number of visits to zero,
we have to add to the upper bound the number of visits to 0 after which the walker
stepped to the left, i.e. dn. An additional 1 in the upper bound for A+

n accounts
for the possibility that Xn = 0, in which case we have to count the up- or down-
crossing in the next step from that point. The second set of inequalities is obtained
similarly. The only difference is that by our definition A−

n does not include the time
spent at 0.

Informal discussion. We shall explain where the uniform distribution in Theo-
rem 1.9(a) comes from. Recall that Y is a diffusion process satisfying (3.3). It is
a half of a squared Bessel process of dimension 2. Let τx = inf{t ≥ 0 : Y (t) = x},
x > 0. The uniform distribution appears naturally in the following lemma.

Lemma 4.2. Let Y ∗(t) = maxs≤t Y (s) and Y (0) = y > 1. Then

ln y

lnY ∗(τ1)

d
= U.

Proof : It is easy to check that lnY (t), t ≥ 0, is a local martingale and so for all
R > y

Py(τR < τ1) =
ln y

lnR
. (4.5)

For x ∈ (0, 1) we have

Py

(
ln y

lnY ∗(τ1)
≤ x

)
= Pz(Y

∗(τ1) ≥ y1/x) = Py(τy1/x ≤ τ1)
(4.5)
= x. �

The next step is to observe that for a large starting point y the area under the
path of Y up to τ1 is roughly the square of Y ∗(τ1).

Lemma 4.3. Let Y (0) = y > 1. Then

ln
∫ τ1
0
Y (s) ds

lnY ∗(τ1)
⇒ 2 as y →∞. (4.6)

The proof of Lemma 4.3 is omitted as we use it only for this informal discussion.
It can be proven in the same way as Lemma 4.8. The next statement immediately
follows from Lemmas 4.2 and 4.3.

Corollary 4.4. Let Y (0) = y > 1. Then

2 ln y

ln
∫ τ1
0
Y (s) ds

⇒ U as y →∞. (4.7)
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The key part of the proof of Theorem 1.9(a) is the following analog of (4.7): let
V +
0 = n, then

2 lnn

lnΣ+
n
⇒ U as n→∞. (4.8)

Notice that (4.8) could not be obtained from (4.7) simply by the diffusion approx-
imation, since we consider V + all the way down to the extinction time and Y does
not hit zero with probability 1. In the next subsection we prove BP versions of
Lemmas 4.2 and 4.3 (see Lemmas 4.7 and 4.8) and obtain (4.8).

Once we know (4.8), it is relatively simple to arrive at the conclusion of Theo-
rem 1.9(a). We want to show that lnA−

n / lnn ⇒ U . Consider the following chain
of substitutions as n→∞:

lnA−
n

lnn

(4.4)←→
lnΣ−

dn

lnn

L. 4.5←→ 2 ln dn
lnn

(4.10)←→ 2 lnun
lnn

L. 4.1←→ 2 lnun

lnA+
n

(4.4)←→ 2 lnun

lnΣ+
un

(4.10)←→ 2 lnn

lnΣ+
n
,

where the last ratio converges to U by (4.8). The actual proof combines the last
three steps into a single argument. Below we state Lemmas 4.5 and 4.6 mentioned
above, and use them together with (4.8) to derive Theorem 1.9(a). The proofs of
Lemmas 4.5 and 4.6 are postponed until Section 4.4.

Lemma 4.5. For every ν > 0, x ∈ [0, 1], and all sufficiently large n

P0

(
2 ln dn
lnn

≤ x− ν
)
− ν ≤ P0

(
lnΣ−

dn

lnn
≤ x

)
≤ P0

(
2 ln dn
lnn

≤ x+ ν

)
+ ν.

Lemma 4.6. The following statements hold with probability 1 as n→∞:

un →∞; dn →∞; (4.9)

dn
un
→ 1. (4.10)

Proof of Theorem 1.9(a): By (4.4), Lemma 4.5, and Lemma 4.6 it is enough to
show that 2(lnun)/(lnn)⇒ U as n→∞.

Let x ∈ (0, 1). Fix an arbitrary ν > 0 and ε ∈ (0, 1/2). Then

P

(
2 lnun
lnn

≤ x
)

≤ P
(
2Σ+

bnx/2c ≥ (1− 2ε)n
)
+ P

(
2 lnun
lnn

≤ x, 2Σ+
bnx/2c < (1− 2ε)n

)
= P

(
2Σ+

bnx/2c ≥ (1− 2ε)n
)
+ P

(
un ≤ bnx/2c, 2Σ+

bnx/2c < (1− 2ε)n
)
.

Note that by Lemma 4.1 with probability at least 1 − ν/2 for all large n we have
that

(1− ε)n+ 1 ≤ A+
n

(4.4)

≤ 2Σ+
un

+ dn + 1. (4.11)

Moreover, on the set {un ≤ bnx/2c} we have by coupling that

Σ+
un
≤ Σ+

bnx/2c. (4.12)
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Inequalities (4.11) and (4.12) imply that

2Σ+
bnx/2c ≥ (1− ε)n− dn ≥ n

(
1− ε− dn

n

)
.

By Lemma 4.1, dn/n ≤ A−
n /n→ 0 in probability. Therefore, for all large n

P
(
un ≤ bnx/2c, 2Σ+

bnx/2c < (1− 2ε)n
)
≤ ν.

We conclude that for all sufficiently large n

P

(
2 lnun
lnn

≤ x
)
≤ P

(
2Σ+

bnx/2c ≥ (1− 2ε)n
)
+ ν

≤ P

(
2 lnbnx/2c
lnΣ+

bnx/2c
≤ x+ ν

)
+ ν

(4.8)

≤ x+ 3ν.

Towards a lower bound, observe that by coupling {2Σ+
z > n} ⊂ {un ≤ z} for all

z ∈ N. Using this fact, Lemma 4.6, and (4.8) we get for all sufficiently large n that

P

(
2 lnun
lnn

≤ x
)
≥ P

(
un ≤ bnx/2c, 2Σ+

bnx/2c > n
)

= P
(
2Σ+

bnx/2c > n
)
≥ P

(
2 lnbnx/2c
lnΣ+

bnx/2c
≤ x− ν

)
≥ x− 3ν. �

4.3. The lifetime maximum and progeny of a critical BP. In this subsection we
prove (4.8). It is an immediate consequence of the following two lemmas.

Lemma 4.7. Let V +
0 = n > 1. Then

lnn

lnmaxj<σ0 V
+
j

⇒ U as n→∞.

Lemma 4.8. Let V +
0 = n > 1. Then

ln
∑σ0−1

j=0 V +
j

lnmaxj<σ0 V
+
j

⇒ 2 as n→∞.

Proof of Lemma 4.7: For every x ∈ (0, 1)

Pn(max
j<σ0

V +
j ≥ n

1/x) = Pn(τn1/x < σ0).

The proof will be complete if we can show that the last probability converges to x
as n→∞. Fix a large enough y ∈ N to satisfy the conditions of Lemma A.1. Then

Pn(τn1/x < σ0) = Pn(τn1/x < σy) + Pn(τn1/x < σ0 | τn1/x > σy)Pn(τn1/x > σy)

≤ Pn(τn1/x < σy) + Py(τn1/x < σ0).

By Lemma A.1 the first term in the right-hand side of the above inequality is
bounded above by dlog2 ne/bx−1 log2 nc which converges to x as n → ∞. By
Corollary A.4

Py(τn1/x < σ0) ≤
c10(y)

bx−1 lnnc
→ 0 as n→∞.

The lower bound is even easier. By Lemma A.1 and Remark A.2

lim inf
n→∞

Pn(τn1/x < σ0) ≥ lim inf
n→∞

Pn(τn1/x < σy) ≥ x. �
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Proof of Lemma 4.8: Fix ε ∈ (0, 1), let k0 = blog2 nc.
Lower “tail”. To get a bound on the probability that the ratio in Lemma 4.8

is not less than 2 − ε, we split the path space of the process V + according to its
lifetime maximum. On each event τ2k < σ0 < τ2k+1 , k ≥ k0, we shall take into
account only the values of V + from the time τ2k up until the time σ′

2k−1 := inf{i >
τ2k : V +

i ≤ 2k−1}. On the time interval {i ∈ N : τ2k ≤ i < σ′
2k−1} the process V +

stays above 2k−1 and below 2k+1. Thus,

Pn

(
σ0−1∑
i=0

V +
i ≤

(
max
i<σ0

V +
i

)2−ε
)

≤
∞∑

k=k0

Pn

σ′
2k−1−1∑
i=τ

2k

V +
i ≤ 2(k+1)(2−ε), τ2k < σ0 < τ2k+1


≤

∞∑
k=k0

Pn

(
2k−1(σ′

2k−1 − τ2k) ≤ 2(k+1)(2−ε), τ2k < σ0 < τ2k+1

)
≤

∞∑
k=k0

En

(
1{τ

2k
<σ0}Pn

(
σ′
2k−1 − τ2k ≤ 2k(1−ε)+3, σ0 < τ2k+1

∣∣∣Fτ
2k

))
≤

∞∑
k=k0

Pn(τ2k < σ0)P2k

(
σ′
2k−1 ≤ 2k(1−ε)+3, σ0 < τ2k+1

)
=

∞∑
k=k0

An,kBk,

where An,k = Pn(τ2k < σ0) and Bk = P2k
(
σ′
2k−1 ≤ 2k(1−ε)+3, σ0 < τ2k+1

)
, which

we estimate separately.
Let `0 < k0 be fixed as in Lemma A.1, k0 be sufficiently large, and k ≥ k0 + 2

(for k = k0, k0 + 1 we shall use the trivial bound An,k ≤ 1). Then

An,k = Pn(τ2k < σ2`0 ) + Pn(τ2k < σ0 |σ2`0 < τ2k)Pn(σ2`0 < τ2k)

≤ P2k0+1(τ2k < σ2`0 ) + P2`0 (τ2k < σ0)
L.A.1, L. 3.1

≤ k0 + 1

k
+
C(`0)

k
.

Fix an arbitrary ν > 0. If k0 is large enough then for all k ≥ k0

Bk ≤ P2k(σ2k−1 ≤ 2k(1−ε)+3, σ0 < τ2k+1 , V +
σ
2k−1

≥ 2k−2)

+ P2k(σ2k−1 < τ2k+1 , V +
σ
2k−1

< 2k−2)

(OS)

≤ E2k

[
1{σ

2k−1≤2k(1−ε)+3}P2k(σ0 < τ2k+1 , V +
σ
2k−1

≥ 2k−2| F2k−1)
]

+ c7 exp(−c92k)

≤ P2k(σ2k−1 ≤ 2k(1−ε)+3)P2k−2(σ2`0 < τ2k+1) + c7 exp(−c92k)
(DA), L. A.1

≤ ν

k − `0
+ c7 exp(−c92k).

Substituting the estimates for An,k and Bk we get that for all sufficiently large n

Pn

(
σ0−1∑
i=0

V +
i ≤

(
max
i<σ0

V +
i

)2−ε
)
≤ 3ν+ν(k0+1+C(`0))

∞∑
k=k0

1

k(k − `0)
< C1(`0)ν.
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Upper “tail”. To get a bound on the probability that the ratio in Lemma 4.8 is
at least 2 + ε we let

Oj :=
1

2j

σ0−1∑
i=0

1{2j≤V +
i <2j+1}, k∗ := blog2 max

i<σ0

V +
i c, mk = b2εk−2c,

and use a crude “union bound”:

Pn

(
σ0−1∑
i=0

V +
i ≥

(
max
i<σ0

V +
i

)2+ε
)
≤ Pn

 k∗∑
j=0

22j+1Oj ≥ 2k
∗(2+ε)


≤ Pn

(
max

0≤j≤k∗
Oj ≥ mk∗

)
≤

∞∑
k=k0

k∑
j=0

Pn(Oj ≥ mk). (4.13)

To estimate the (rescaled) time Oj which the process V + spends in the interval
[2j , 2j+1), j ≥ 0, we define

ρ
(j)
0 := inf{i ≥ 0 : V +

i ∈ [2j , 2j+1)}, ρ(j)m := inf{i ≥ ρ(j)m−1 + 2j : V +
i ∈ [2j , 2j+1)}

for m ∈ N. Then by the strong Markov property

Pn(Oj ≥ mk) ≤ Pn(ρ
(j)
mk

< σ0) ≤ Pn(ρ
(j)
mk

< σ0 | ρ(j)mk−1 < σ0)Pn(ρ
(j)
mk−1 < σ0)

≤
(

max
2j≤x<2j+1

Px(ρ
(j)
1 < σ0)

)mk

Pn(ρ
(j)
0 < σ0).

We notice that by (DA) there is a c > 0 such that P2j+1(σ2j−1 < 2j−1) > c for all
j ≥ 2, and choosing `0 as in Lemma A.1 we get that if (`0 + 1) ∧ c10(2`0) < j ≤ k
where c10 is from Corollary A.4 then

max
2j≤x<2j+1

Px(ρ
(j)
1 < σ0) ≤ 1− min

2j≤x<2j+1
Px(ρ

(j)
1 > σ0, σ2j−1 < 2j−1)

≤ 1− min
2j≤x<2j+1

Px(ρ
(j)
1 > σ0 |σ2j−1 < 2j−1)P2j+1(σ2j−1 < 2j−1)

≤ 1− cP2j−1(σ0 < τ2j ) ≤ 1− cP2j−1(σ0 < τ2j , σ2`0 < τ2j )

≤ 1− cP2`0 (σ0 < τ2j )P2j−1(σ2`0 < τ2j )
Cor.A.4
≤

Rem.A.2
1− c

(
1− c10(`0)

j

)
1

j
≤ 1− c′

k
.

Choosing k0 large enough we can also ensure that for all k ≥ k0

max
0≤j≤(`0+1)∧c10(`0)

max
2j≤x<2j+1

Px(ρ
(j)
1 < σ0) ≤ 1− c′/k.

Substituting these estimates in (4.13) we conclude that

Pn

(
σ0−1∑
i=0

V +
i ≥

(
max
i<σ0

V +
i

)2+ε
)
≤

∞∑
k=k0

(k + 1)

(
1− c′

k

)mk

→ 0 as n→∞. �

4.4. Proofs of Lemmas 4.5 and 4.6. We shall need the following result.

Lemma 4.9 ((4.4) from Theorem 4.1 of Kosygina and Zerner (2014)). Let (Y −(t)),
t ≥ 0, be the solution of

dY −(t) = −dt+
√

2Y −(t) dB(t), Y −(0) = 1, t ∈ [0, τ0].
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Then for every h > 0

lim
n→∞

PV − (
Σ−

n > hn2
)
= PY −

1

(∫ τ0

0

Y −(s) ds > h

)
. (4.14)

Proof of Lemma 4.5: Upper bound:

P0(Σ
−
dn
≤ nx) ≤ P0(dn ≤ nx/2 lnn) + P0(Σ

−
dn
≤ nx, dn > nx/2 lnn)

≤ P0(dn ≤ nx/2 lnn) + Pbnx/2 lnnc(Σ
−
bnx/2 lnnc ≤ n

x)

(4.14)

≤ P0(dn ≤ nx/2 lnn) + ν.

Lower bound:

P0(Σ
−
dn
≤ nx) ≥ P0(dn ≤ nx/2/ lnn)− P0(Σ

−
dn
> nx, dn ≤ nx/2/ lnn)

≥ P0(dn ≤ nx/2/ lnn)− Pbnx/2/ lnnc(2Σ
−
dnx/2 lnne > nx)

≥ P0(dn ≤ nx/2/ lnn)− ν. �

Proof of Lemma 4.6: Let Ln be the number of visits of X to 0 up to time n inclu-
sively. Since 0 ≤ Ln− (un+dn) ≤ 1 and the ERW with δ = 1 is recurrent, we have
that Ln − un − 1 ≤ dn ≤ Ln − un, Ln → ∞ a.s., and both (4.9) and (4.10) would
follow if we show that

un
Ln
→ 1

2
as n→∞ a.s.. (4.15)

Notice that ∑Ln

i=M+1 η0(i)

Ln
≤ un
Ln
≤
M +

∑Ln

i=M+1 η0(i)

Ln
. (4.16)

As Ln →∞ a.s. as n→∞, the rightmost and leftmost ratios in (4.16) a.s. converge
to 1/2 by the strong law of large numbers for Bernoulli trials. �

4.5. Proof of Theorem 1.9(b),(c).

Proof of Theorem 1.9(b): Let X0
n denote the excited random walk in the cookie

environment obtained by removing all cookies from the positive semi-axis. The
same proof as for Dolgopyat and Kosygina (2012, Theorem 1.1) shows that

X0
bn ·c√
n

J1⇒W0,−1. (4.17)

Namely, we write X0
n = B0

n + C0
n, where B

0
0 = C0

0 = 0 and

B0
n+1 −B0

n = X0
n+1 −X0

n, C0
n+1 − C0

n = 0

if X0 visited X0
n at least M times before time n and

B0
n+1 −B0

n = 0, C0
n+1 − C0

n = X0
n+1 −X0

n

otherwise. Then we can show that(
B0

bn ·c√
n
,
C0

bn ·c√
n

)
J1⇒
(
B(·),−min

s≤·
B(s)

)
,

and obtain (4.17). We refer to Dolgopyat and Kosygina (2012) for full details. Since
there is an obvious coupling such that X0

T−
k

= XT−
k
, k ≥ 0, the result follows from

Theorem 1.7(b) and the continuity of the map ψ defined in (4.2). �
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Proof of Theorem 1.9(c): This result admits the same proof as the one for Corol-
lary 1.8(b) but, since A+

n /n→ 1 for δ = 1, we can give a simpler derivation.
Without loss of generality we show the convergence on D([0, 1]). Write

XT+
m
= Xm + (XT+

m
−Xm).

By Lemma 4.1 for each ε, ν > 0 and all large n

P

(
max
m≤n

(T+
m −m) ≥ εn

)
≤ ν.

On the other hand, given arbitrary positive ε and ν we can choose λ > 0 so that

P

(
sup

0≤s≤t≤s+λ≤1+λ
(B∗(t)−B∗(s)) > ε

)
≤ ν.

The above inequalities and Theorem 1.6 imply that for any fixed ε, ν > 0 and all
sufficiently large n

P

(
max
m≤n

|XT+
m
−Xm| > ε

√
n lnn

)
< ν.

Theorem 1.6 and the “convergence together” theorem Billingsley (1999, Theorem
3.1) imply the desired result. �

Appendix A. Proofs of Lemmas 3.1 - 3.3

Throughout this section we assume that δ = 1 unless stated otherwise. The
following lemma plays an important role in proofs of Lemmas 3.1 and 3.2.

Lemma A.1 (Main lemma). Let

h±(n) := n± 1

n
for all n ∈ N.

Then there is `0 ∈ N such that if `,m, u, x ∈ N satisfy `0 ≤ ` < m < u and
|x− 2m| ≤ 22m/3 then

h−(u)− h−(m)

h−(u)− h−(`)
≤ Px[σ2` < τ2u ] ≤

h+(u)− h+(m)

h+(u)− h+(`)
. (A.1)

Remark A.2. A little algebra shows that the lower bound is at least 1−m/u.

The proof of Lemma A.1 is the same as that of Lemma 5.3 in Kosygina and
Mountford (2011) where we take a = 2, h±a (n) = n ± 1/n, and use the following
result instead of Kosygina and Mountford (2011, Lemma 5.2).

Lemma A.3. Consider the process V with |V0 − 2n| ≤ 22n/3 and let T := inf{k ≥
0 : Vk 6∈ (2n−1, 2n+1)}. Then for all sufficiently large n

P (dist(VT , (2
n−1, 2n+1)) ≥ 22(n−1)/3) ≤ exp(−2n/4); (A.2)∣∣∣∣P (VT ≤ 2n−1)− 1

2

∣∣∣∣ ≤ 2−n/4. (A.3)

The proof of the above lemma repeats the one of Kosygina and Mountford (2011,
Lemma 5.2) where we use our process V , set a = 2, and s(x) = lnx on (3−1, 3).

Corollary A.4. For every y ∈ N there is a constant c10(y) such that for every
n ∈ N

(lnn)Py(σ0 > τn) ≤ c10(y).



444 Dmitry Dolgopyat and Elena Kosygina

The proof of this corollary is the same as that of (5.4) in Kosygina and Mountford
(2011) and uses Lemma A.1 instead of Lemma 5.3 of Kosygina and Mountford
(2011).

Corollary A.5. PV
y (σV

0 <∞) = 1 for every y ∈ N.

Proof : By Corollary A.4 and the fact that Py(σ0 =∞, τn =∞) = 0 for n > y,

Py(σ0 =∞) = Py(σ0 =∞, τn <∞) ≤ Py(σ0 > τn) ≤
c10(y)

lnn
→ 0 as n→∞. �

Remark A.6. Corollary A.5, the first statement of Kosygina and Zerner (2014,
Corollary 7.9), and symmetry imply that ERW with |δ| = 1 is recurrent without
using any results from the literature on branching processes. A direct proof of
recurrence and transience results for |δ| 6= 1 was obtained in Kosygina and Zerner
(2014, Corollary 7.10).

Proof of Lemma 3.1: For every n > 2 there is an m ∈ N such that 2m ≤ n < 2m+1

and for this m

(ln 2m)Py(σ0 > τ2m+1) ≤ (lnn)Py(σ0 > τn) ≤ (ln 2m+1)Py(σ0 > τ2m).

If we can show the existence of

g(y) := lim
m→∞

mPy(σ0 > τ2m) ∈ (0,∞), (A.4)

then we get

lim sup
n→∞

(lnn)Py(σ0 > τn) ≤ ln 2 lim
m→∞

(m+ 1)Py(σ0 > τ2m) = (ln 2)g(y)

= ln 2 lim
m→∞

mPy(σ0 > τ2m+1) ≤ lim inf
n→∞

(lnn)Py(σ0 > τn),

and the desired statement follows. Therefore, we shall show (A.4). Let ` =
(blog2 yc+ 1) ∨ `0, where `0 is the same as in Lemma A.1. Then

mPy(σ0 > τ2m) = m

 m∏
j=`+1

Py(σ0 > τ2j |σ0 > τ2j−1)

Py(σ0 > τ2`)

= `Py(σ0 > τ2`)

 m∏
j=`+1

j

j − 1
Py(σ0 > τ2j |σ0 > τ2j−1)

 .
We need to prove that the last product converges. For this it is sufficient to show
that

∞∑
j=`+1

∣∣∣∣ j

j − 1
Py(σ0 > τ2j |σ0 > τ2j−1)− 1

∣∣∣∣ <∞.
Lemma A.1 and Corollary A.4 allow us to obtain the necessary estimates.

j

j − 1
Py(σ0 > τ2j |σ0 > τ2j−1)− 1 ≥ j

j − 1
P2j−1(σ0 > τ2j )− 1

≥ j

j − 1
P2j−1(σ2` > τ2j )− 1

(A.1)

≥ j

j − 1

j − 1 + 1
j−1 − `−

1
`

j + 1
j − `−

1
`

− 1

=

2j−1
j2(j−1)2 −

`
j(j−1) −

1
`j(j−1)

1 + 1
j2 −

`
j −

1
`j

≥ 2

j2(j − 1)
− `

j(j − 1)
− 1

`j(j − 1)
.
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The right hand side of the above expression is a term of an absolutely convergent
series.

Set x := 2j−1 + 22(j−1)/3. Then

j

j − 1
Py(σ0 > τ2j |σ0 > τ2j−1) ≤ j

j − 1
(Px(σ0 > τ2j )

+ Py(Vτ2j−1 > x |σ0 > τ2j−1)).

By (OS) the last term decays exponentially fast in j, and we shall concentrate on
the first term in the right hand side of the above inequality. For all sufficiently
large j

j

j − 1
Px(σ0 > τ2j )− 1

≤ j

j − 1
Px(σ2` > τ2j )− 1 +

j

j − 1
Px(σ0 > τ2j |σ2` < τ2j )Px(σ2` < τ2j )

(A.1)

≤ j

j − 1

j − 1

j
− 1 +

j

j − 1
P2`(σ0 > τ2j )

j + 1
j − (j − 1)− 1

j−1

j + 1
j − `−

1
`

≤ j

(j − 1)(j − `− 1)
P2`(σ0 > τ2j )

Cor.A.4
≤ C(`)

(j − 1)(j − `− 1)
.

Again the last expression is a term of a convergent series, and we are done. �
The proof of Lemma 3.2 depends on an estimate of the time the branching

process V spends in an interval [x, 2x) before extinction.

Lemma A.7. For every α > 1 there is a constant c11(α) ∈ (0, 1) such that for all
k, x, y ∈ N

Py

σ0−1∑
j=0

1[x,2x)(Vj) > 2kxα

 ≤ Py(ρ0 < σ0)(1− c11(α))k,

where ρ0 := inf{j ≥ 0 : Vj ∈ [x, 2x)};

Proof : The proof is very similar to the one of Proposition 6.1 in Kosygina and
Mountford (2011). There are two differences. First, everywhere in the proof of
Proposition 6.1 the statement (ii) should be replaced with the following: there is a
constant c = c(α) > 0 such that for all x ∈ N

Px/2(σ0 < τxα) > c. (A.5)

Second, the stopping times ρj , j ∈ N, should be defined as follows: ρ0 was defined
above,

ρj = inf{r ≥ ρj−1 + 2xα : Vr ∈ [x, 2x)}, j ≥ 1.

Below we show (A.5). The rest of the proof is the same as that of Kosygina and
Mountford (2011, Proposition 6.1).

To prove (A.5) we fix a large y ∈ N and observe that by Corollary A.4 and
Remark A.2 for all x > 2y + 1

Px/2(σ0 < τxα) = Px/2(σ0 < τxα |σy < τxα)Px/2(σy < τxα)

≥ Py(σ0 < τxα)Px/2(σy< τxα)=(1− Py(σ0 > τxα))Px/2(σy < τxα)

≥
(
1− c10(y)

α lnx

)(
1− ln(x/2)

α lnx

)
≥
(
1− c10(y)

α lnx

)
α− 1

α
> c > 0.
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Adjusting the constant c if necessary we obtain (A.5) for all x ∈ N. �

Proof of Lemma 3.2: For every n ∈ N let k ∈ N be such that 2k−1 ≤ n < 2k. We
can always write α as α′ + λ where α′ > 1 and λ > 0. Then

Py

σ0−1∑
j=0

1{Vj≤n} > nα

 ≤ Py

σ0−1∑
j=0

1{Vj<2k} > 2α(k−1)


≤ Py

σ0−1∑
j=0

k∑
i=1

1[2i−1,2i)(Vj) > 2λ(k−1)(1− 2−α′
)

k∑
i=1

2α
′(i−1)


≤

k∑
i=1

Py

σ0−1∑
j=0

1[2i−1,2i)(Vj) > 2λ(k−1)(1− 2−α′
)2α

′(i−1)


Lem. A.7
≤ k(1− c11(α′))b2

λ(k−1)−1(1−2−α′
)c.

Multiplying by lnn which is less than k ln 2 we get that as n→∞

(lnn)Py

σ0−1∑
j=0

1{Vj≤n} > nα

 ≤ (ln 2)k2(1− c11(α′))b2
λ(k−1)−1(1−2−α′

)c → 0. �

Before we turn to the proof of Lemma 3.3 we present its continuous space-time
version.

Lemma A.8. Let Y be the diffusion defined by (3.3) which starts at 1 and τε :=
inf{t ≥ 0 : Y (t) = ε}. Then for every h > 0

lim
ε→0

PY
1 (τε > h) = 1; (A.6)

lim
ε→0

PY
1

(∫ τε

0

Y (t) dt > h

)
= 1. (A.7)

Lemma A.8 follows from the fact that 0 is an inaccessible point for the two-
dimensional squared Bessel process. The details are left to the reader.

Proof of Lemma 3.3: We prove only (3.2), since the proof of (3.1) is the same (it
uses (A.6) instead of (A.7)). Notice that

lim
n→∞

Pn

(
σ0−1∑
i=0

Vi > hn2

)
≥ lim

ε→0
lim
n→∞

Pn

(
σεn−1∑
i=0

Vi > hn2

)
.

By the diffusion approximation, for every ε ∈ (0, 1)

lim
n→∞

Pn

(
σεn−1∑
i=0

Vi > hn2

)
= PY

1

(∫ τε

0

Y (t) dt > h

)
,

and by (A.7),

lim
ε→0

PY
1

(∫ τε

0

Y (t) dt > h

)
= 1. �
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Appendix B. Continuity of maps ϕ and ψ

Denote by measA the Lebesgue measure of set A.

Proposition B.1. Let P be a probability measure supported on C([0, 1]) such that
P -a.s.

meas{t ∈ [0, 1] : ω(t) = 0} = 0. (B.1)

Then the map ϕ defined by (4.1) is P -a.s. continuous.

Proof : It is sufficient to show continuity at every ω ∈ C([0, 1]) which satisfies (B.1).
Let $ ∈ D([0, 1]) and sup

t∈[0,1]

|$(t)− ω(t)| ≤ ν.5 Then

∫ 1

0

1[ν,∞)(ω(t)) dt ≤ ϕ($) ≤
∫ 1

0

1[−ν,∞)(ω(t)) dt and

|ϕ(ω)− ϕ($)| ≤
∫ 1

0

1[−ν,ν](ω(t)) dt = meas{t ∈ [0, 1] : −ν ≤ ω(t) ≤ ν}. (B.2)

Since {t ∈ [0, 1] : −ν ≤ ω(t) ≤ ν} ↘ {t ∈ [0, 1] : ω(t) = 0} and meas{t ∈ [0, 1] :
ω(t) = 0} = 0, given ε > 0 we can choose ν > 0 such that the right-hand side of
(B.2) is less than ε. �

Proposition B.2. Let P be a probability measure supported on C([0,∞)) such that
P -a.s.

meas{t ≥ 0 : ω(t) = 0} = 0 and meas{t ≥ 0 : ω(t) < 0} =∞. (B.3)

Then the map ψ defined by (4.2) is P -a.s. continuous.

Proof : It is sufficient to show continuity at every ω ∈ C([0,∞)) which satisfies
(B.3). Fix such an ω and let ε > 0. Recall that T−

ω (s) := inf{t ≥ 0 : meas{r ∈
[0, t] : ω(r) < 0} > s}. Given R > 0 let M be chosen so that T−

ω (M) = R + 1. We
need to find ν such that if $ ∈ D([0,∞)) satisfies

sup
t∈[0,M ]

|$(t)− ω(t)| < ν (B.4)

then

sup
t∈[0,R]

|ω(T−
ω (t))−$(T−

$ (t))| < ε. (B.5)

We denote lims↑t$(s) by $(t−). Note that due to (B.4) for t ∈ (0,M ] we have

|$(t− 0)− ω(t)| < ν. (B.6)

Choose h such that

sup
t′,t′′∈[0,M ]:|t′−t′′|<3h

|ω(t′)− ω(t′′)| < ε/8. (B.7)

Next choose ν < ε/8 such that

meas{t ∈ [0,M ] : |ω(t)| ≤ ν} < h. (B.8)

5Recall that for ω ∈ C([0, 1]) the Skorokhod convergence to ω implies the uniform convergence
(see Billingsley (1999, the last paragraph on p. 128)). Thus, it is sufficient to work with the sup

norm.
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Let $ satisfy (B.4). Then for t ∈ [0, R] we have

|ω(T−
ω (t))−$(T−

$ (t))| ≤ |ω(T−
ω (t))− ω(T−

$ (t))|+ |ω(T−
$ (t))−$(T−

$ (t))|
≤ |ω(T−

ω (t))− ω(T−
$ (t))|+ ν. (B.9)

For f ∈ D([0,∞)) let A−
f (t) := meas{s ∈ [0, t] : f(s) < 0} =

∫ t

0
1(−∞,0)(f(s)) ds.

The definition implies that A−
f ∈ C([0,∞)) and A−

f (T
−
f (t)) ≡ t. Note that due to

(B.4) we have

A−
ω+ν(s) ≤ A−

$(s) ≤ A−
ω−ν(s)

and due to (B.8) we have

A−
ω−ν(s)− h ≤ A−

ω (s) ≤ A−
ω+ν(s) + h.

Therefore,

t− h = A−
ω (T

−
ω (t))− h ≤ A−

ω+ν(T
−
ω (t)) ≤ A−

$(T−
ω (t)) ≤ A−

ω−ν(T
−
ω (t))

≤ A−
ω (T

−
ω (t)) + h = t+ h.

We now consider 4 cases.

(I) t − h ≤ A−
$(T−

ω (t)) ≤ t (which implies that T−
ω (t) ≤ T−

$ (t)) and ω(u) < 0
for u ∈ [T−

ω (t), T−
$ (t)].

Then, since A−
$(s) − A−

$(r) ≥ s − r − meas{u ∈ [r, s] : $(u) ≥ 0} for s ≥ r and

$(u) ≥ 0
(B.4)⇒ ω(u) ≥ −ν for all u ∈ [T−

ω (t), T−
$ (t)], we have by (B.8) that

h ≥ A−
$(T−

$ (t))−A−
$(T−

ω (t)) ≥ T−
$ (t)− T−

ω (t)− h.

Hence, T−
$ (t)− T−

ω (t) ≤ 2h and so by (B.7) |ω(T−
$ (t))− ω(T−

ω (t))| ≤ ε/8.
(II) t− h ≤ A−

$(T−
ω (t)) ≤ t and ω(·) has zeroes on [T−

ω (t), T−
$ (t)].

Let a be the first zero and b be the last zero of ω(·) on [T−
ω (t), T−

$ (t)]. Notice that
ω(T−

ω (t)) ≤ 0. Thus, ω(s) ≤ 0 for s ∈ [T−
ω (t), a] and the same argument as in case

(I) shows that

|ω(T−
ω (t))| = |ω(T−

ω (t))− ω(a)| ≤ ε/8.
Moreover if ω(T−

$ (t)) ≤ 0 then by the same argument we also have

|ω(T−
$ (t))| = |ω(T−

$ (t))− ω(b)| ≤ ε/8.

On the other hand, if ω(T−
$ (t)) > 0 then, since ω is continuous and$(T−

$ (t)−)) ≤ 0,
we get

|ω(T−
$ (t))| = ω(T−

$ (t)) ≤ ω(T−
$ (t))−$(T−

$ (t)−) < ν < ε/8.

In either case we obtain

|ω(T−
$ (t))− ω(T−

ω (t))| ≤ ε/4.

(III) t < A−
$(T−

ω (t)) ≤ t+ h and $(u) < 0 for u ∈ [T−
$ (t), T−

ω (t)].

Then h ≥ A−
$(T−

ω (t))−A−
$(T−

$ (t)) = T−
ω (t)− T−

$ (t), and so by (B.7)

|ω(T−
ω (t))− ω(T−

$ (t))| ≤ ε/8.

(IV) t < A−
$(T−

ω (t)) ≤ t + h and $(·) takes non-negative values somewhere on
[T−

$ (t), T−
ω (t)].
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Let

a = inf{u ∈ [T−
$ (t), T−

ω (t)] : $(u) ≥ 0} and

b = inf{u ∈ [T−
$ (t), T−

ω (t)] : $(u)$(s) > 0 ∀s ∈ [u, T−
ω (t))}.

Observe that by (B.4) and continuity of ω(·) it holds that |ω(a)| < ν and |ω(b)| <
ν. Next, the same argument as in case (III) shows that |ω(a) − ω(T−

$ (t))| ≤ ε/8.
Moreover, if $(T−

ω (t)−) < 0 then we also have that |ω(T−
ω (t)) − ω(b)| ≤ ε/8,

whereas if $(T−
ω (t)−) ≥ 0 then, since ω(T−

ω (t)) ≤ 0, we conclude that

|ω(T−
ω (t))| ≤ |ω(T−

ω (t))−$(T−
ω (t)−)| < ν < ε/8.

Putting everything together we see that in case (IV)

|ω(T−
ω (t))−ω(T−

$ (t))| ≤ |ω(T−
ω (t))−ω(b)|+ |ω(b)−ω(a)|+ |ω(a)−ω(T−

$ (t))| < ε/2.

Combining (B.9) with the above estimates for cases (I)–(IV) we obtain that for
all t ∈ [0, R]

|ω(T−
ω (t))−$(T−

$ (t))| < 5ε/8.

This implies (B.5) and concludes the proof of the proposition. �
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