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Abstract. Representation of coalescent processes using pruning of trees has been
used by Goldschmidt and Martin for the Bolthausen-Sznitman coalescent and by
Abraham and Delmas for the β(3/2, 1/2)-coalescent. By considering a pruning pro-
cedure on stable Galton-Watson tree with n labeled leaves, we give a representation
of the discrete β(1+α, 1−α)-coalescent, with α ∈ [1/2, 1) starting from the trivial
partition of the n first integers. The construction can also be made directly on the
stable continuum Lévy tree, with parameter 1/α, simultaneously for all n. This
representation allows to use results on the asymptotic number of coalescence events
to get the asymptotic number of cuts in stable Galton-Watson tree (with infinite
variance for the offspring distribution) needed to isolate the root. Using conver-
gence of the stable Galton-Watson tree conditioned to have infinitely many leaves,
one can get the asymptotic distribution of blocks in the last coalescence event in
the β(1 + α, 1− α)-coalescent.

1. Introduction

1.1. Framework. The idea of constructing coalescent processes by pruning discrete
trees arises first in Goldschmidt and Martin (2005) where the Bolthausen-Sznitman
coalescent is constructed by a uniform pruning of the branches of a random recur-
sive tree, see also Schweinsberg (2012) and Freund and Siri-Jégousse (2014) for
applications of such a representation. The same kind of ideas has been used in
Abraham and Delmas (2013a) to construct a β(3/1, 1/2)-coalescent process using
the pruning at node of a uniform random binary tree. This construction is also
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closely related to Aldous’s continuum random tree. The goal of this paper is to
extend this result by applying a pruning at nodes (introduced in Abraham and
Delmas (2008) in a continuous setting and in Abraham et al. (2012) in a discrete
setting) to a stable Lévy tree, obtaining a β(1 + α, 1− α)-coalescent process, with
1/2 ≤ α < 1.

Let Λ be a finite measure on [0, 1]. A Λ-coalescent (Π(t), t ≥ 0) is a Markov
process which takes values in the set of partitions of N∗ = {1, 2, . . .} introduced
in Pitman (1999) for coalescent processes with possible multiple collisions. It is
defined via the transition rates of its restriction Π[n] = (Π[n](t), t ≥ 0) to the n first
integers: if Π[n](t) is composed of b blocks, then k (2 ≤ k ≤ b) fixed blocks coalesce
at rate:

λb,k =

∫ 1

0

uk−2(1− u)b−kΛ(du). (1.1)

In particular a coalescence event happens at rate:

λb =

b
∑

k=2

(

b

k

)

λb,k. (1.2)

We take the convention λ1 = 0. We also define the discrete process Π
[n]
dis =

(Π
[n]
dis(k), k ∈ N) as the different successive states of the process Π[n] until it reaches

the absorbing state (which is the trivial partition consisting in one block) and af-
terward the discrete process remains constant.

As examples of Λ-coalescents, let us mention:

• the Kingman’s coalescent with Λ(dx) = δ0(dx), see Kingman (1982),
• the Bolthausen-Sznitman coalescent with Λ(dx) = 1(0,1)(x)dx, see
Bolthausen and Sznitman (1998),

• the β-coalescents where Λ(dx) is (up to a multiplicative constant) the
β(a, b) distribution. In the case of the β(1 + α, 1 − α)-coalescent, that is
Λ(dx) = (x/(1− x))α dx, see Birkner et al. (2005); Berestycki et al. (2007)
for −1 < α < 0. The case α = 0 corresponds to the Bolthausen-Sznitman
coalescent, while the limit case α = −1 formally corresponds to the King-
man’s coalescent. For the β(1 + α,−α)-coalescent, with −1 < α < 0 see
Foucart and Hénard (2013).

We refer to the survey Berestycki (2009) for further results on coalescent processes.
Let α ∈ [1/2, 1). We consider a critical Galton-Watson (GW) tree T with off-

spring distribution characterized by its generating function for r ∈ [0, 1]:

g(r) = r + α(1− r)1/α. (1.3)

This GW tree arises as the shape of the sub-tree of a stable Lévy tree with index
γ = 1/α generated by leaves chosen in a Poissonian manner, see Duquesne and
Le Gall (2002), Theorem 3.2.1. We shall call these random trees the stable GW
trees with parameter γ. We denote by P the distribution of T . If x is a node of T
we denote by kx(T ) the number of offsprings of x. If kx(T ) = 0 (resp. kx(T ) > 0),
then x is called a leaf (resp. an internal node) of T . We denote by L(T ) the number
of leaves of the tree T . Since g′(0) = 0, we get that a.s. kx(T ) 6= 1 for all x ∈ T .
We denote by Pn the law of T conditioned to have exactly n leaves. Under Pn,
we label the leaves of T from 1 to n uniformly at random, independently of T , and
then we consider the following pruning procedure which is derived from Abraham
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et al. (2015), see Section 2.2. Choose an internal node x1 (which has at least 2
children) at random with probability:

kx1
(T )− 1

L(T )− 1
·

This internal node separates the tree into two subtrees: the fringe sub-tree Tx1

rooted at x1 that consists of all nodes of T that have x1 on their lineage to the root
(including x1), and the set T \Tx1

which is still a tree. We set T(1) = (T \Tx1
)∪{x1}

which is the new tree we work with. All the leaves of T(1) except x1 are leaves of
T and they keep their label. Notice that x1 is a new leaf of T(1) and we label it
by the block (i.e. the sequence) of labels of the leaves of Tx1

. We then iterate the
procedure on the tree T(1) and so on until the root is chosen (see Figure 1.1).

This pruning procedure defines a discrete time process Π
[n]
GW = (Π

[n]
GW(k), k ∈ N)

taking values in the set of partitions of the n first integers, Π
[n]
GW(k) being the set

of labels of the leaves of the tree T(k) obtained after the k-th cut.

1.2. Main result. The process Π
[n]
GW is then a coalescent process starting from the

trivial partition consisting of singletons and blocks merge together as time goes by.
Its law is given in the next theorem.

Theorem 1.1. We set α = 1
γ ∈ [1/2, 1). The process Π

[n]
GW is distributed under

Pn as Π
[n]
dis for the β(1 + α, 1− α)-coalescent with coalescent measure:

Λ(dx) =

(

x

1− x

)α

dx. (1.4)

Remark 1.2. Notice that the process Π
[n]
dis is discrete in time and thus characterizes

the coalescent measure up to a multiplicative constant. It is possible to construct
the continuous-time coalescent process Π[n] associated with the measure Λ given

by Equation (1.4) from the process Π
[n]
GW by adding exponential times between

the successive states of this process. More precisely, recall the definitions of the
transitions rates λb,k of Equation (1.1) and of the jump rates λb of Equation (1.2).
Let (τk)k∈N be a sequence of independent random variables such that, conditionally

given the process Π
[n]
GW, the random variable τk is exponentially distributed with

parameter λℓk where ℓk is the number of blocks of the partition Π
[n]
GW(k), with the

convention that τk = +∞ if ℓk = 1. Then we set

Π̃[n](t) = Π
[n]
GW(k) if

k−1
∑

i=0

τi ≤ t <

k
∑

i=0

τi.

As a direct consequence of Theorem 1.1 and the definition of a Λ-coalescent, we get
that the processes Π[n] and Π̃[n] have the same distribution.

One major drawback of this construction is that we define the process for fixed n
and not simultaneously for all n. However, as in Abraham and Delmas (2013a), we
can construct directly the process (Π(θ), θ ≥ 0) taking values in the set of partitions
of the integers using the pruning of a Lévy continuum random tree. More precisely,
we consider the weighted stable Lévy tree (T , d,mT ) associated with the branching
mechanism ψ(λ) = λγ for γ ∈ (1, 2) (the case γ = 2 is studied in Abraham and
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Figure 1.1. The pruning at node of a given tree. The bold inter-
nal node corresponds to the next chosen node.

Delmas (2013a) and requires a different pruning). We recall that T is a real tree and
that mT corresponds to a uniform measure on the leaves of T , see Duquesne and
Le Gall (2002, 2005) and also Abraham et al. (2014) more specifically for the space of
weighted real trees. We work under the so-called normalized excursion measure N(1)

under which mT is a probability measure. We consider given T the pruning defined
in Abraham and Delmas (2008): to each branching point x of T we can associate
a “mass” ∆x of this node, which intuitively represents the size of its progeny, and
a random variable Ex which is exponentially distributed with parameter ∆x. This
random variable represents the time at which the node x is cut. When we cut such
a node, we remove the sub-tree above it. Let Tθ denote the continuum random
sub-tree obtained at time θ ≥ 0. We define a partition-valued process using the
usual paintbox procedure. Let (Ui, i ∈ N

∗) be independent random variables with
distribution mT under N

(1). We define a partition of N∗ at time θ, ΠLévy(θ) by
saying that two integers i and j belong to the same block of ΠLévy(θ) if and only if
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the random variables Ui and Uj have a leaf of Tθ as a common ancestor. Intuitively
this means that Ui and Uj belong to the same sub-tree attached above Tθ. This
defines a coalescent process ΠLévy = (ΠLévy(θ), θ ≥ 0). We are now interested in its

discrete (in time) restriction to the n first integers. Let Π
[n]
Lévy = (Π

[n]
Lévy(k), k ∈ N)

be the discrete process associated with ΠLévy restricted to the n first integers until
it reaches the absorbing state (which is the trivial partition consisting in one block)
and which afterward remains constant.

By construction, and thanks to Theorem 3.2.1 in Duquesne and Le Gall (2002),

we can deduce that under N(1), the discrete coalescent process Π
[n]
Lévy is distributed

as Π
[n]
GW under Pn. In fact, we have the following stronger result.

Theorem 1.3. We set α = 1
γ ∈ (1/2, 1). Under N(1), the processes (Π

[n]
Lévy, n ∈ N

∗)

associated with the Lévy tree with branching mechanism ψ(λ) = λγ are distributed

as (Π
[n]
dis, n ∈ N

∗) associated with the Lévy measure Λ(dx) = (x/1− x)α dx.

Remark 1.4. Although the process ΠLévy is a continuous-time process like ΠGW, it

is not a coalescent process under N(1) as for instance the time of the first coalescence

event in Π
[n]
Lévy is not exponentially distributed, see Corollary 4.5.

We conjecture that there exists a random time-change (R(t), t ≥ 0) such that
the process (ΠLévy(R(t)), t ≥ 0) is indeed under N(1) a β(1 + α, 1 − α)-coalescent,
but we have no guess on what this time change could be.

Remark 1.5. Let us remark that the β(1 + α, 1 − α)-coalescent we obtain is also
a β(2 − a, a)-coalescent (with a = 1 − α) as in Berestycki et al. (2007) but with
a different range for a. The difference between the two cases is that in Berestycki
et al. (2007) α ∈ (−1, 0) and the coalescent process comes down from infinity (i.e.
for every positive time θ, the partition Π(θ) contains only a finite number of blocks)
whereas in our case α ∈ (1/2, 1) the process always contains an infinite number of
singletons (also called “dust”).

Remark 1.6. Let us remark that the pruning procedure described above is the
same as in Miermont (2005) used to construct Miermont’s self-similar fragmenta-
tion process (see also Abraham and Delmas (2008)). However, the time reversal
of the process ΠLévy is not Miermont’s fragmentation as once a sub-tree is cut
and discarded, it is no more considered in our construction whereas it undergoes
some other fragmentations in Miermont’s construction. There are still some strong
connections. For instance, the tree Tθ is linked with a tagged fragment in the
fragmentation, see Abraham and Delmas (2008) Theorem 1.5 and Proposition 1.7
for the distribution of the tree Tθ and for the distribution of a tagged fragment in
Miermont’s fragmentation.

1.3. Number of cuts needed to isolate the root in a stable GW tree. Using the above
link between Galton-Watson trees and β-coalescents, known results in one field
translate immediately in the other field giving sometimes new results. In that
direction, we first focus on how known asymptotics on the number of coalescence
events yield new results on the number of cuts needed to isolate the root in a stable
GW tree with n leaves.

The original problem of cutting randomly a rooted tree arises first in Meir and
Moon Meir and Moon (1970). Given a rooted tree Tn with n edges, select an edge
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uniformly at random (notice that this is not exactly our pruning procedure) and
delete the subtree not containing the root attached to this edge. On the remaining
tree, iterate this procedure until only the edge attached to the root is left. We
denote by Z̃n the number of edge-removals needed to isolate the root. The problem
is then to study asymptotics of this random number Z̃n, depending on the law of
the initial tree Tn.

In the original paper Meir and Moon (1970), Meir and Moon considered Cayley
trees and obtained asymptotics for the first two moments of Xn. Limits in dis-
tribution were then obtained, see for instance Panholzer (2006) for some simply
generated trees, Drmota et al. (2009) for random recursive trees, Holmgren (2010)
for binary search trees, Bertoin (2012) for Cayley trees. In Janson (2006), Jan-
son focuses on conditioned Galton-Watson trees associated with critical offspring
distributions with finite variance and proves that

Z̃n/
√
n

(d)−−−−−→
n→+∞

Z̃,

where the random variable Z̃ has Rayleigh distribution with density x e−x
2/2 1{x>0},

and can be explicitly constructed using a pruning procedure on the Brownian con-
tinuum random tree (which corresponds to the cases γ = 2 in our setting), see

Abraham and Delmas (2013c). In particular Z̃ is distributed as the height of a
random leaf of the Brownian continuum random tree. See also Addario-Berry et al.
(2014); Bertoin and Miermont (2013) for further work on cutting randomly rooted
trees.

Notice that the reproduction law for stable GW trees has an infinite variance
for α ∈ (1/2, 1), and the uniform pruning does not seem to be adapted to isolate
the root. For this reason, we consider the pruning procedure developed in Section
1.1 to tackle the infinite variance case. So, let Zn be the number of cuts, using this
procedure, needed to isolate the root of a stable GW tree:

Zn = inf{k; Π[n]
GW(k) = {{1, . . . , n}}}.

Notice that for r-ary trees, since all the internal nodes have the same degree, the
cutting procedure given in Section 1.1 corresponds to choose an internal node uni-
formly.

We immediately deduce from asymptotics of the number of coalescence events
in β-coalescents (see Corollary 1 Haas and Miermont (2011), see also Gnedin et al.
(2014), Table 1 for a summary of all the results concerning β-coalescents), the
following result which extends part of the result in Janson (2006) to GW tree with
infinite variance of the reproduction law.

Corollary 1.7. Let α = 1/γ ∈ [1/2, 1). We have the following convergence in
distribution:

nα−1Zn
(d)−−−−−→

n→+∞
Z,

with the distribution of Z characterized by, for n ∈ N
∗:

E [Zn] = αn
Γ(n+ 1)Γ(1− α)

Γ((n+ 1)(1− α))
·

Let us insist on the fact that this corollary does not need any proof as this is
just a translation of known results on β-coalescents using our links with GW trees,
only the moment computation needs some explanations and is done in Section 5,
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The distribution of Z corresponds to the expected limit distribution in the Con-
jecture that is stated at the end of the introduction in Abraham and Delmas (2013b)
for the number of cuts needed to isolate the root in general GW trees. (Notice that
in the conjecture, one choose an internal node x ∈ T with probability proportional
to kx(T ) whereas in Section 1.1 one choose an internal node x ∈ T with probability
proportional to kx(T )−1.) In particular, Z is distributed as the height of a random
leaf of the normalized Lévy tree with branching mechanism ψ(λ) = λγ .

1.4. Number of blocks in the last coalescence event. On the other hand, we can use
results on GW trees conditioned to have an infinite number of leaves (which is very
close to Kesten’s result on GW tree conditionally on the non extinction, see Curien
and Kortchemski (2014) Theorem 3.1 or Abraham and Delmas (2014) Proposition
4.6) to get asymptotics on the number Bn of blocks involved in the last coalescence
event of Π[n].

The proof of the following Proposition is given in Section 6.

Proposition 1.8. Let α = 1/γ ∈ [1/2, 1). We have the following convergence in
distribution:

Bn
(d)−−−−−→

n→+∞
B,

with the distribution of B given by its generating function ϕα(r) = E
[

rB
]

, with for
r ∈ [0, 1]:

ϕα(r) = (1− α)r

∫ 1

0

dx

1− (1− x)α

(

1

(1− rx)α
−1

)

. (1.5)

See also Abraham and Delmas (2013a) for more results in this direction when
α = 1/2 including the number of singletons involved in the last coalescence event
as well as a closed form for ϕ1/2.

Remark 1.9. After we first posted this paper on arXiv, Hénard proved in Henard
(2015) Theorem 3.5 that Equation (1.5) remains valid for all β(1 + α, 1 − α)-
coalescents with α ∈ (−1, 1) (taking the limit when α = 0).

For α = 0, the β(1+α, 1−α)-coalescent corresponds to the Bolthausen-Sznitman
coalescent, and thus ϕ0 is the generating function of the asymptotic number of
blocks of the last coalescence event in the Bolthausen-Sznitman coalescent whose
distribution is given in Theorem 3.1 and Proposition 3.2 of Goldschmidt and Martin
(2005).

As α goes down to −1, we recover the Kingman’s coalescent as a limit. We
also get ϕ−1(r) = r2 and notice that ϕ−1 is trivially the generating function of
the number of blocks of the last (in fact all) coalescence event in the Kingman’s
coalescent, as all the coalescence events are binary.

1.5. Organization of the paper. Section 2 gives a representation of the pruning at
node procedure for GW tree in continuous time motivated by Abraham et al. (2015).
This procedure corresponds in fact to the one presented in Introduction, Section
1.1. Section 3 is devoted to the proof of Theorem 1.1. Section 4 devoted to the proof
of Theorem 1.3 is more technical as it relies on continuum random Lévy trees and
the pruning of such trees as developed in Abraham and Delmas (2008). Eventually
Sections 5 and 6 are devoted to the proofs of Propositions 1.7 and 1.8.
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2. Pruning at node of discrete GW trees

2.1. Discrete trees. Let us recall here the formalism for ordered discrete trees. We
set

U =
⋃

n≥0

(N∗)n

the set of finite sequences of positive integers with the convention (N∗)0 = {∅}. For
u ∈ U let |u| be the length or generation of u defined as the integer n such that
u ∈ (N∗)n. If u and v are two sequences of U , we denote by uv the concatenation
of the two sequences, with the convention that uv = u if v = ∅ and uv = v if u = ∅.
The set of ancestors of u is the set:

Au = {v ∈ U ; there exists w ∈ U such that u = vw}. (2.1)

A discrete tree t is a subset of U that satisfies:

• ∅ ∈ t,
• If u ∈ t, then Au ⊂ t.
• For every u ∈ t, there exists a non-negative integer ku(t) such that, for all
positive integers i, ui ∈ t iff 1 ≤ i ≤ ku(t).

The integer ku(t) represents the number of offsprings of the node u in the tree
t. We define L(t) the set of leaves of t and N (t) the set of internal nodes of t by:

L(t) = {u ∈ t, ku(t) = 0} and N (t) = t \ L(t).
Let L(t) = Card (L(t)) be the number of leaves of the tree t, and notice that:

L(t)− 1 =
∑

u∈N (t)

(ku(t)− 1). (2.2)

We denote by T the set of discrete trees and by Tn = {t ∈ T;L(t) = n} the set
of discrete trees with n leaves.

2.2. A discrete tree-valued process. We consider the pruning procedure developed
in Abraham et al. (2012). Let t ∈ T. Under some probability measure Pt, we
consider a family of marks (ξu, u ∈ U) of independent non-negative real random
variables (possibly infinite) such that:

• Pt-a.s. ξu = +∞ if u 6∈ t or if u ∈ t and ku(t) ∈ {0, 1},
• Pt(ξu ≥ θ) = (1 + θ)1−ku(t) if u ∈ t and ku(t) ≥ 2.

At time θ, we define the pruned tree Pθ(t) as the sub-tree given by:

Pθ(t) = {u ∈ t; ξv > θ for all v ∈ Au, v 6= u}.
In particular, we always have ∅ ∈ Pθ(t).

For u ∈ N (t), let Du be the event that u is marked first, that is:

Du = {ξu = min
v∈N (t)

ξv}.

Lemma 2.1. We suppose that L(t) 6= 1. Let u ∈ N (t). We have:

Pt(Du) =
ku(t)− 1

L(t)− 1
·

This lemma implies that the cutting procedure given in Section 1.1, corresponds
to the successive states of the process (Pθ(t), θ ≥ 0).
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Proof : We have, using (2.2) for the last equality:

Pt(Du) = Pt(ξu ≤ ξv ∀v 6= u, v ∈ N (T ))

= Et

[

(1 + ξu)
−

∑
v 6=u,v∈N(t)(kv(t)−1)

]

= (ku(t)− 1)

∫

[0,+∞)

(1 + θ)−
∑

v∈N(t)(kv(t)−1)−1 dθ

=
ku(t)− 1

∑

v∈N (t)(kv(t)− 1)

=
ku(t)− 1

L(t)− 1
·

�

2.3. Construction of the partition-valued process Π
[n]
GW. Let α ∈ [1/2, 1). Recall

that the function g defined by (1.3) is the generating function of a probability
measure νg on N. We denote by Gg(dT ) the distribution on T of the critical GW
tree with offspring distribution νg. We will denote by P the probability measure
on T× [0,+∞]U :

P(dT, dξ) = Gg(dT )P
T (dξ).

Under P, the random tree T is a GW tree whose offspring distribution νg has
generating function g given by (1.3). According to Propositions 2.1 and 3.2 in
Abraham et al. (2015), (Pθ(T ), θ ≥ 0) is a Markov process and Pθ(T ) is a GW tree
whose reproduction law has generating function gθ, with:

gθ(r) = 1 + (1 + θ)

[

g

(

r

1 + θ

)

− g

(

1

1 + θ

)]

.

Notice that:

gθ(r) = r + α
(1− r + θ)γ − θγ

(1 + θ)(γ)−1
(2.3)

with γ = 1/α.
For every positive integer n, we set:

Pn(•) = P(•
∣

∣ L(T ) = n).

Under Pn, the distribution of the tree T is given by the following formula (see
Duquesne and Le Gall (2002), Theorem 3.3.3, or Marchal (2008)), for t ∈ Tn:

Pn(T = t) = n!





∏

v∈N (t)

pkv(t)

kv(t)!





αn−1Γ(1− α)

Γ(n− α)
(2.4)

where p1 = 0 and, for k ≥ 2, pk = |(1− γ)(2− γ) · · · (k − γ)|.
Let n ∈ N

∗. Let T be a random tree distributed according to Pn. Conditionally
on T , we define a uniform random labeling U1, . . . , Un of the leaves of T , indepen-
dently of the variables (ξu, u ∈ T ). Recall the set of ancestors defined in (2.1) and
the pruning procedure Pθ introduced in Section 2.2. We define the equivalence re-

lation R[n]
θ on {1, 2, . . . , n} by: iR[n]

θ j if AUi

⋂

AUj

⋂L(Pθ(T )) is non empty, that
is Ui and Uj have a leaf of Pθ(T ) as common ancestor. Then, for every θ ≥ 0, let

Π̂
[n]
GW(θ) be the equivalence classes of the equivalence relation R[n]

θ of the n first

integers. Let Π
[n]
GW = (Π

[n]
GW(k), k ∈ N) be the discrete process associated with
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Π̂
[n]
GW = (Π̂

[n]
GW(θ), θ ≥ 0) until it reaches the absorbing state (which is the triv-

ial partition consisting in one block) and afterward the discrete process remains
constant.

We end this section with an elementary lemma which will be used in the proof
of Theorem 1.1.

Lemma 2.2. We have for n ≥ 2:

En [k∅(T )− 1] =
1− α

α

Γ (1− α)

Γ (α)

Γ (n− 1 + α)

Γ (n− α)
· (2.5)

Proof : We consider the generating function of (k∅(T ), L(T )) under P, that is
H(s, t) = E

[

sk∅(T )tL(T )
]

. Using the branching property of GW trees, we have:

H(s, t) = E
[

sk∅(T )E[tL(T )]k∅(T )1{k∅(T ) 6=0}

]

+ tP(k∅(T ) = 0). (2.6)

Notice that g(s) = E
[

sk∅(T )
]

= H(s, 1). We set h(t) = H(1, t) = E
[

tL(T )
]

the
generating function of L(T ). So that (2.6) becomes:

H(s, t) = g(s h(t))− g(0)(1− t). (2.7)

Taking s = 1 in (2.7), we get:

g(h(t))− h(t) = g(0)(1− t). (2.8)

Using expression (1.3), we get:

h(t) = 1− (1− t)α and H(s, t) = s h(t) + α(1− s h(t))1/α − α(1− t).

We deduce that:

E
[

k∅(T )t
L(T )

]

=
∂H

∂s
(1, t) = h(t)− h(t)(1− h(t))(1/α)−1

= E
[

tL(T )
]

− [1− (1− t)α] (1− t)1−α

= E
[

tL(T )
]

− (1− t)1−α + 1− t.

This gives:

E
[

(k∅(T )− 1)tL(T )
]

= −(1− t)1−α + 1− t.

For n ≥ 2, we get:

E
[

(k∅(T )− 1)1{L(T )=n}

]

=
1

n!

(

dn

dtn
E
[

(k∅(T )− 1)tL(T )
]

)

|t=0

=
1

n!
(1− α)

n−2
∏

k=0

(α+ k)

=
1

n!
(1− α)

Γ (n− 1 + α)

Γ (α)
·

We also get for n ≥ 2:

P(L(T ) = n) =
1

n!
h(n)(0) =

1

n!
α
n−1
∏

k=1

(k − α) =
1

n!
α
Γ (n− α)

Γ (1− α)
·

We deduce that:

En [k∅(T )− 1] =
E
[

(k∅(T )− 1)1{L(T )=n}

]

P(L(T ) = n)
=

1− α

α

Γ(1− α)

Γ(α)

Γ(n− 1 + α)

Γ(n− α)
·
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�

3. Proof of Theorem 1.1

Let α ∈ [1/2, 1) and Λ given by (1.4). Notice that the probability that the first

coalescence event for Π
[n]
dis corresponds to the collision of k given blocks is λn,k/λn,

with λn,k and λn given respectively by (1.1) and (1.2).
Theorem 1.1 is a direct consequence of Lemma 3.3 which states that the proba-

bility that the first coalescence event for Π
[n]
GW corresponds to the collision of k given

blocks is λn,k/λn, and of Lemma 3.4, which states that after the first coalescence
event, the law of the pruned tree under Pn conditionally given that it has k leaves
is exactly Pk.

The proof of Lemma3.3 (resp. 3.4) is given in Section 3.1 (resp. 3.2).

3.1. Computation of the coalescence rates. We first give an intermediate lemma.
For α ∈ (0, 1) and λ > α− 1, we set:

φ1+α,1−α(λ) =

∫ 1

0

(

1− (1− x)λ
)

xα−2(1− x)−α dx. (3.1)

Lemma 3.1. For α ∈ (0, 1) and λ > α− 1, we have:

φ1+α,1−α(λ) = λ
Γ(α)Γ(λ+ 1− α)

(1− α)Γ(λ+ 1)
· (3.2)

Notice that for λ > 0, (3.2) reduces to:

φ1+α,1−α(λ) =
Γ(α)Γ(λ+ 1− α)

(1− α)Γ(λ)
· (3.3)

Proof : We set:

I =

∫ 1

0

(

(1− u)−α − 1
)

uα−2 du.

Notice that I is finite and φ1+α,1−α(α) = I. For λ > α, using an integration by
part, we have:

φ1+α,1−α(λ) =

∫ 1

0

(

1− (1− x)λ
)

xα−2(1− x)−α dx

=

∫ 1

0

(

(1− x)−α − 1
)

xα−2 dx+

∫ 1

0

(

1− (1− x)λ−α
)

xα−2dx

= I − 1

1− α
+
λ− α

1− α

∫ 1

0

(1− x)λ−α−1xα−1 dx

= I − 1

1− α
+
Γ(α)Γ(λ+ 1− α)

(1− α)Γ(λ)
·

We now compute I. Remark first that, by (3.3) for λ = 1, we have:

φ1+α,1−α(1) = Γ(α)Γ(1− α).

We deduce that:

I − 1

1− α
+
Γ(α)Γ(2− α)

(1− α)Γ(1)
= φ1+α,1−α(1) = Γ(α)Γ(1− α).
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This readily implies that I = 1/(1− α) and thus (3.2) holds for λ ≥ α. Then uses
that the right-hand sides of (3.1) and (3.2) are analytic for λ > α − 1 to get that
(3.2) also holds for λ > α− 1. �

Recall that λn,k and λn are given respectively by (1.1) and (1.2), for Λ given by
(1.4).

Lemma 3.2. Let α ∈ [1/2, 1). We have for 2 ≤ k ≤ n:

λn,k
λn

=
1− α

Γ(α+ 1)

Γ(k + α− 1)Γ(n− k − α+ 1)

Γ(n− α)

1

n− 1
· (3.4)

Proof : We have

λn,k =

∫ 1

0

uk−2(1− u)n−kΛ(du)

=

∫ 1

0

uk−2+α(1− u)n−k−αdu

= β(k + α− 1, n− k − α+ 1)

=
Γ(k + α− 1)Γ(n− k − α+ 1)

Γ(n)
,

and

λn =
n
∑

k=2

(

n
k

)

λn,k =

∫ 1

0

(1− (1− u)n − nu(1− u)n−1)u−2Λ(du).

Then using notations (3.1) and (3.3), we deduce that:

λn = φ1+α,1−α(n)− n

∫ 1

0

uα−1(1− u)n−1−α du

=
Γ(α)Γ(n+ 1− α)

(1− α)Γ(n)
− n

Γ(α)Γ(n− α)

Γ(n)

=

(

n− α

1− α
− n

)

Γ(α)Γ(n− α)

Γ(n)

= (n− 1)
α

1− α

Γ(α)Γ(n− α)

Γ(n)
·

The expression obtained for λn,k then gives the result. �

If t1 and t2 are two discrete trees and u ∈ L(t1) is a leaf of t1, we shall denote
by t1 ⊛u t2 the tree obtained by grafting the tree t2 on the leaf u of t1, that is:

t1 ⊛u t2 = t1 ∪ {uv, v ∈ t2}. (3.5)

Lemma 3.3. Let α ∈ [1/2, 1). The probability under Pn that the first coalescence

event in Π
[n]
GW is the coalescence of k given integers into one block is λn,k/λn.

Proof : Let Ak be the event that the first coalescence event corresponds to the k
first integers merging together. By exchangeability, the lemma is proved as soon as
we check that Pn(Ak) = λn,k/λn.

The event Ak is realized, if and only if:

• The initial tree T is of the form t1⊛u t2 for some t2 ∈ Tk and t1 ∈ Tn−k+1

and u ∈ L(t1).
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• The leaves of t2 are labeled from 1 to k (and therefore, the leaves of t1
except u are labeled from k+1 to n). This occurs with probability k!(n−k)!

n! .
• The first chosen node of t1 ⊛u t2 is u. This occurs according to Lemma 2.1

with probability k∅(t2)−1
n−1 .

Thus, using (2.4) for the probability of having a given tree, we have:

Pn(Ak) =
∑

t1∈Tn−k+1
t2∈Tk

u∈L(t1)

Pn(T = t1 ⊛u t2)
k!(n− k)!

n!

k∅(t2)− 1

n− 1

=
∑

t1∈Tn−k+1
t2∈Tk

u∈L(t1)

n!





∏

v∈N (t1⊛ut2)

pkv(t1⊛ut2)

kv(t1 ⊛u t2)!





× αn−1Γ(1− α)

Γ(n− α)

k!(n− k)!

n!

k∅(t2)− 1

n− 1

= (n− k + 1)
∑

t1∈Tn−k+1

t2∈Tk

n!

k!(n− k + 1)!
Pn−k+1(T = t1)Pk(T = t2)

× αn−1Γ(1− α)

Γ(n− α)

Γ(n− k − α+ 1)

αn−kΓ(1− α)

Γ(k − α)

αk−1Γ(1− α)

k!(n− k)!

n!

k∅(t2)− 1

n− 1

=
Γ(n− k − α+ 1)Γ(k − α)

Γ(n− α)Γ(1− α)

1

n− 1
Ek [k∅(T )− 1] .

We then use Lemma 2.2 and Lemma 3.2 to conclude. �

3.2. Law of the tree after the first coalescence event. Let S be the time of the
first coalescence event and recall that PS(T ) denote the pruned tree at the first
coalescence event.

Lemma 3.4. Let t ∈ Tk. We have:

Pn(PS(T ) = t
∣

∣ L(PS(T )) = k) = Pk(T = t). (3.6)

Proof : Let t ∈ Tk. We obtain t just after the first coalescence event if T is of the
form t⊛u s for some s ∈ Tn−k+1, u ∈ L(t) and u is the first chosen internal node.
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This gives:

Pn(PS(T ) = t) =
∑

u∈L(t)

s∈Tn−k+1

Pn(T = t⊛u s)
k∅(s)− 1

n− 1

= k
∑

s∈Tn−k+1

n!





∏

v∈N (t)

pkv(t)

kv(t)!

∏

v∈N (s)

pkv(s)

kv(s)!





× αn−1Γ(1− α)

Γ(n− α)

k∅(s)− 1

n− 1

= k
∑

s∈Tn−k+1

n!

k!(n− k + 1)!
Pk(T = t)Pn−k+1(T = s)

× αn−1Γ(1− α)

Γ(n− α)

Γ(k − α)

αk−1Γ(1− α)

Γ(n− k + 1− α)

αn−kΓ(1− α)

k∅(s)− 1

n− 1

=
n!

(k − 1)!(n− k + 1)!

Γ(n− k + 1− α)Γ(k − α)

Γ(n− α)Γ(1− α)

1

n− 1
En−k+1[k∅(T )− 1]Pk(T = t).

As the term in front of Pk(T = t) does not depend on t, it has to be equal to
Pn(L(PS(T )) = k) and therefore (3.6) holds. �

4. Pruning of rooted real trees and proof of Theorem 1.3

The aim of this section is to use the pruning procedure for Lévy trees developed
in Abraham and Delmas (2008) to give a consistent representation of the family of

coalescent processes (Π̂
[n]
GW, n ∈ N

∗), see Corollary 4.4 and thus deduce Theorem
1.3.

4.1. The CRT framework.

4.1.1. Real trees. Real trees have been introduced first in the field of geometric
group theory (see for instance Dress et al. (1996)) and then used later for defining
continuum random trees (the framework first appeared in Evans et al. (2006)). A
real tree is a metric space (T , d) satisfying the following two properties for every
x, y ∈ T :

• (unique geodesic) There is a unique isometric map fx,y from [0, d(x, y)] into
T such that fx,y(0) = x and fx,y(d(x, y)) = y.

• (no loop) If ϕ is a continuous injective map from [0, 1] into T such that
ϕ(0) = x and ϕ(1) = y, then

ϕ([0, 1]) = fx,y([0, d(x, y)]).

A rooted real tree is a real tree with a distinguished vertex denoted ∅ and called
the root.

For every x, y ∈ T , we denote by [[x, y]] the range of the map fx,y (i.e. the only
path in the tree that links x to y) and we set [[x, y[[= [[x, y]] \ {y}.

If T is a rooted real tree, for x ∈ T , we define the degree of x, denoted by
nx, as the number of connected components of T \ {x}. The set of leaves of T is
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L(T ) = {x ∈ T \ {∅}; nx = 1}. If nx ≥ 3, we say that x is a branching point
of T . We denote by Bbr(T ) the set of branching points of T . The height of T
is Hmax(T ) = sup{d(∅, x); x ∈ T }. Let (xi, i ∈ I) be a family of elements of T ,
we define their most recent common ancestor denoted by MRCA(xi, i ∈ I) as the
element x of T such that [[∅, x]] = ⋂i∈I [[∅, xi]].

A weighted rooted real tree (T , d,m) is a rooted real tree (T , d) endowed with
a σ-finite measure m called the mass measure.

4.1.2. Stable Lévy tree. We now always let ψ(λ) = λγ with γ ∈ (1, 2). We refer
to Duquesne and Le Gall (2005) and Abraham et al. (2014) for the existence of a
measure N[dT ] on the set of weighted locally compact rooted real trees such that
T is under N[dT ] a Lévy tree associated with the branching mechanism ψ. For the
Lévy tree (T , d,m), N[dT ] -a.e., the mass measure has support L(T ) and has no
atom. Furthermore, N[dT ]-a.e., all the branching points of the tree are of infinite
degree. Following Duquesne and Le Gall (2005), there exists a local time process
(ℓa, a ≥ 0) with values on finite measures on T , which is cdlg for the weak topology
on finite measures on T and such that N[dT ]-a.e.:

m(dx) =

∫ ∞

0

ℓa(dx) da,

ℓ0 = 0, inf{a > 0; ℓa = 0} = sup{a ≥ 0; ℓa 6= 0} = Hmax(T ) and for every fixed
a ≥ 0, N[dT ]-a.e. the measure ℓa is supported on {x ∈ T ; d(∅, x) = a} and the real
valued process (〈ℓa, 1〉, a ≥ 0) is distributed as a continuous state branching process
(CSBP) with branching mechanism ψ under its canonical measure. In particular,
as the total size of a critical CSBP is finite, we get that N-a.e. σ = m(T ) is finite.

The set {d(∅, x); x ∈ Bbr(T )} coincides N-a.e. with the set of discontinuity times
of the mapping a 7→ ℓa. Moreover, N-a.e., for every such discontinuity time b, there
is a unique x ∈ Bbr(T ) such that d(∅, x) = b and ∆x > 0, such that:

ℓb = ℓb− +∆xδx,

where ∆x > 0 is called the mass of the node x. Intuitively ∆x represents the size
of the progeny of x.

The scaling property of the stable Lévy tree implies that there exists a well
defined probability measure N(1) defined as the measure N conditioned on {σ = 1}.
The probability measure is also referred to as the normalized excursion measure for
Lévy trees.

4.2. The partition-valued process.

4.2.1. Pruning of the stable Lévy tree. We consider the pruning procedure intro-
duced in Abraham and Delmas (2008) (this procedure is defined when there is no
Brownian part in the Lévy process with index given by the branching mechanism
ψ). Under N or N(1), conditionally given T , we consider a family (Ex, x ∈ Bbr(T ))
of independent real random variables such that the random variable Ex is exponen-
tially distributed with parameter ∆x. This random variable represents the time at
which the branching point x is marked. For every θ > 0, we set

Tθ = {x ∈ T , ∀y ∈ [[∅, x[[, Ey ≥ θ}.
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The set Tθ is still a real tree which represents the tree T pruned at time θ: we cut T
at the points that are marked before time θ and keep the connected component of
the tree that contains the root. We set T0 = T . By Abraham and Delmas (2008),
Theorem 1.5, the tree Tθ is distributed under N as a Lévy tree with branching
mechanism ψθ defined by:

ψθ(λ) = ψ(λ+ θ)− ψ(θ).

Moreover, by Abraham and Delmas (2012), the process (Tθ, θ ≥ 0) is under N a
Markov process.

4.2.2. Definition of the partition-valued process. Under N or N(1), conditionally on
T , let (Fi, i ∈ N

∗) be independent random variables on T distributed according
to the probability mass measure m/m(T ), and independent of the marks (Ex, x ∈
Bbr(T )). Notice that N-a.e. or N(1)-a.s. (Fi, i ∈ N

∗) are leaves of T . For θ ≥ 0, we

define the equivalence relation RLévy
θ on N

∗ by: iRLévy
θ j if [[∅, Fi]]

⋂

[[∅, Fj ]]
⋂L(Tθ)

is non empty, that is Fi and Fj have a leaf of Tθ as common ancestor. This is very

close to the definition of the equivalence relation R[n]
θ defined in Section 2.3. We

denote by ΠLévy(θ) the partition of N∗ formed by the equivalence classes of RLévy
θ

and set ΠLévy = (ΠLévy(θ), θ ≥ 0).

4.3. Lévy sub-trees.

4.3.1. Skeleton of a finite real tree. Let t̂ be a real tree with finite height and a finite
number of leaves, such that the leaves (fi, i ∈ I(t̂)) are indexed by a totally ordered
set I(t̂). We define the skeleton t̃ of the tree t̂ as the discrete tree (belonging to T)
where we forget the edge lengths. As the trees in T are ordered, we must be a bit
more rigorous for the definition of t̃.

The skeleton t̃ of the real tree with ordered leaves
(

t̂, (fi, i ∈ I(t̂))
)

is defined

recursively as follows. We define k∅(t̃) as the degree of MRCA(fi, i ∈ I(t̂)) the
ancestor of all the leaves of t̂. If k∅(t̃) = 0, then t̃ is reduced to ∅. In this case
t̂ has one leaf, let f be its label, and the discrete tree t̃ has thus one leaf to
which we give the label f . If k∅(t̃) > 0, then we consider the k∅(t̃) connected
components of t̂ \ {MRCA(fi, i ∈ I(t̂))} that do not contain the root and label
them from 1 to k∅(t̃) according to the lowest label of the leaves of t̂ which belongs
to them. This gives an ordered family (t̂k, k ∈ {1, . . . , k∅(t̃)}) of real trees, and let
MRCA(fi, i ∈ I(t̂)) be the root of each one. For k ∈ {1, . . . , k∅(t̃)}, let I(t̂k) =
{i ∈ I(t̂); fi ∈ t̂k} be the labels of the leaves of t̂k and the discrete tree t̃k is the
skeleton of

(

t̂k, (fi, i ∈ I(t̂k))
)

.
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Figure 4.2. A real tree t̂ with labeled leaves and the associated
skeleton t̃ (with the same labels)

Notice that t̃ is finite, ku(t̃) 6= 1 for all u ∈ t̃, and t̂ and t̃ have the same number
of leaves. In the previous construction to a leaf fi of t̂ with label i corresponds a
unique leaf ei of t̃ with label i. For u ∈ t̃, we define t̃u the sub-tree of t̃ attached
to the node u, i.e.

t̃u = {w ∈ U ; uw ∈ t̃}, (4.1)

and let Iu = {i; ei ∈ t̃u}. Define t̂u as su = t̂\⋃i6∈Iu [[∅, fi]] to which we add the root

∅u = su\su, and I(t̂u) = {i; ei ∈ t̃u}. Notice that by construction t̃u is the skeleton
of
(

t̂u, (fi; i ∈ I(t̂u))
)

. We say that u ∈ t̃ are the individuals of t̂, and define their

lifetime as the length hu of the geodesic B(u) = [[∅u,MRCA(fi, i ∈ I(t̂u))]]. We say
the corresponding node in t̂ of u ∈ t̃ is C(u) = MRCA(fi, i ∈ I(t̂u)).

Notice it is easy to reconstruct t̂ from t̃ and the family of lifetimes (hu, u ∈ t̃).

4.3.2. Coalescence of Lévy tree and GW tree. Let (Fi, i ∈ N
∗) be defined as in

Section 4.2.2. Let M be, under N or N
(1) conditionally on T , a Poisson random

variable with finite mean σ = m(T ), independant of the Fi’s. We shall work on

{M ≥ 1}. On {M ≥ 1}, let T̂0 be the real sub-tree of T generated by the root and
(Fi, 1 ≤ i ≤M):

T̂0 =
⋃

1≤i≤M

[[∅, Fi]].

Since m has support L(T ) and has no atom, we deduce that (Fi, 1 ≤ i ≤ M) are

distinct and are the leaves of T̂0.
We denote by T̃0 the skeleton of T̂0 with the labeled leaves (Fi, 1 ≤ i ≤ M).

According to Duquesne and Le Gall (2002), Theorem 3.2.1, the tree T̂0 is distributed
under N[ ·

∣

∣ M ≥ 1] as a continuous GW tree (i.e. a GW tree with edge-lengths)
such that

• The discrete tree T̃0 is a GW tree with offspring distribution characterized
by its generating function g defined by (1.3) with α = 1/γ.

• Lifetimes of individuals (hu, u ∈ T̃0) are independent random variables with
exponential distribution with parameter γ.

We must first prove the following lemma which will be a key point in the sequel.
Its proof relies on the scaling property of the Lévy tree.
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Lemma 4.1. The distributions of T̃0 under N[ ·
∣

∣M = n] and under N
(1)[ ·

∣

∣M =
n] are the same.

Proof : For a tree T and points x1, . . . , xn of T , let us denote by T (T , x1, . . . , xn)
the tree spanned by the points (xi) and the root of the tree and T̃ (T , x1, . . . , xn)
the associated discrete tree so that under N[ ·

∣

∣ M = n] or N
(1)[ ·

∣

∣ M = n], we
have

T̃0 = T̃ (T , F1, . . . , Fn).

Then, for every bounded measurable function φ, we have

N

[

φ
(

T̃ (T , F1, . . . , Fn)
)

1{M=n}

]

= N

[

φ
(

T̃ (T , F1, . . . , Fn)
)σn

n!
e−σ

]

.

Let ν be the distribution of σ under N i.e. the only measure ν such that for
every λ > 0,

∫ +∞

0

(1− e−λu)ν(du) = λα.

Then we have

N

[

φ
(

T̃ (T , F1, . . . , Fn)
)

1{M=n}

]

=

∫ +∞

0

N
(u)
[

φ
(

T̃ (T , F1, . . . , Fn)
)

] un

n!
e−u ν(du).

Using the scaling property of the stable Lévy tree (see Duquesne and Le Gall (2002)
Section 3.3), we have that the law of the tree T under N(u) is the same as the law
of u1−αT under N(1) where the notation λT means that we multiply the distance
that defines T by the factor λ (i.e. we scale all the edge lengths by λ). Moreover,

as we only look at discrete trees, this factor does not modify the tree T̃0. Therefore,
we get:

N

[

φ
(

T̃ (T , F1, . . . , Fn)
)

1{M=n}

]

=

∫ +∞

0

N
(1)
[

φ
(

T̃ (T , F1, . . . , Fn)
)

] un

n!
e−u ν(du)

= N
(1)
[

φ
(

T̃ (T , F1, . . . , Fn)
)

]

N[M = n].

We deduce:

N[φ(T̃0)
∣

∣M = n] = N

[

φ
(

T̃ (T , F1, . . . , Fn)
) ∣

∣M = n
]

= N
(1)
[

φ
(

T̃ (T , F1, . . . , Fn)
)

]

= N
(1)[φ(T̃0)

∣

∣M = n]

since T and M are independent under N(1). �

We now consider the marks that define the pruned tree Tθ and we define on the
event {M ≥ 1} the tree T̂θ as the tree T̂0 pruned on the same marks, in other
words, we set

T̂θ = T̂0 ∩ Tθ.
Let Π̂

[n]
Lévy be the restriction of ΠLévy to the n first integers. By construction, if Cθ

is an element of Π̂
[n]
Lévy(θ), then there exists a leaf x of T̂θ such that x belongs to

the sub-tree
⋃

i∈Cθ
[[∅, Fi]], and x is the only leaf of T̂θ with this property. We set

Cθ for the label of x, and we consider the order of the elements of Π̃
[n]
Lévy given by

the order of their smallest integer. We set Iθ = I(T̂θ) for the labels of the leaves of

T̂θ and (F θi , i ∈ Iθ) for the leaves of T̂θ.
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We denote by T̃θ the skeleton of T̂θ with the labeled leaves (F θi , i ∈ Iθ). According

to Abraham et al. (2015), Proposition 4.1, the tree T̂θ is distributed under N[ ·
∣

∣

M ≥ 1] as a continuous GW tree such that

• T̃θ is a GW tree with offspring distribution characterized by its generating
function gθ given in (2.3) with α = 1/γ.

• The lifetimes of individuals (hu, u ∈ T̂θ) are independent random variable
with exponential distribution with parameter ψ′

θ(1) = γ(1 + θ)γ−1.

The following lemma is a consequence of Theorem 6.1 of Abraham et al. (2015).

Lemma 4.2. The process (T̃θ, θ ≥ 0) is distributed under N[ ·
∣

∣ M ≥ 1] as the
process (Pθ(T ), θ ≥ 0) under P.

Proof : Let θ > 0. Theorem 6.1 of Abraham et al. (2015) describes how T̂θ is

obtained from T̂0:

• A branching point x of T̂0 with kx = kx(T̂0) children is marked at time τx
with distribution given by:

N[τx ≥ θ
∣

∣ T̂0] = −
∫ +∞

θ

ψ(kx+1)(1 + z)

ψ(kx)(1)
dz =

ψ(kx)(1 + θ)

ψ(kx)(1)
=

(

1

1 + θ

)kx−γ

.

• A branch B of length h is marked at time τB with distribution given by:

N[τB ≥ θ
∣

∣ T̂0] = exp

(

−h
∫ θ

0

ψ′′(1 + z)dz

)

= e−
(

ψ′(1+θ)−ψ′(1)
)

h .

Then the tree T̂0 is cut according to the marks present at time θ and the tree T̂θ is
the connected component that contains the root. Therefore, the tree T̃θ is obtained
from the tree T̃0 by a pruning at node. A node u ∈ T̃0 is marked if the corresponding
node C(u) ∈ T̂0 is marked at time θ in the previous procedure OR the branch B(u)

with length hu is marked. So the node u of T̃0 is marked at time ζu = τC(u) ∧ τB(u)

and using that the edge lengths of T̂0 are independent and exponentially distributed
with parameter γ = ψ′(1), we have with ku = ku(T̂0):

N[ζu ≥ θ
∣

∣ T̃0] = N[τC(u) ≥ θ
∣

∣ T̃0] N[τB(u) ≥ θ
∣

∣ T̃0]

=

(

1

1 + θ

)ku−γ ∫ +∞

0

dh γ e−γh e−
(

ψ′(1+θ)−γ
)

h

=

(

1

1 + θ

)ku−γ ( 1

1 + θ

)γ−1

=

(

1

1 + θ

)ku−1

·

Since the cutting time τC(u) and τB(u) are independent for all internal nodes u, we
recover the discrete pruning procedure that defines the process (Pθ(T ), θ ≥ 0) under

P. To conclude notice that T̃0 and T are GW trees with offspring distributions
characterized by their generating function g. �

4.4. Proof of Theorem 1.3. The next corollary states that the pruning procedure
for stable GW trees developed in Abraham et al. (2012) and the pruning procedure
for Lévy trees developed in Abraham and Delmas (2008) and applied in Abraham
et al. (2015) to sub-trees with finite number of leaves coincide.
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Corollary 4.3. Let n ∈ N. The process (T̃θ, θ ≥ 0) is distributed under N[ ·
∣

∣M =
n] as the process (Pθ(T ), θ ≥ 0) under Pn.

Proof : This is a direct consequence of Lemma 4.2 and the fact thatM = L(T̃0). �

Theorem 1.3 follows directly from Theorem 1.1 and from the following corollary,

which is a direct consequence of Corollary 4.3. Recall that Π̂
[n]
Lévy is the restriction

of ΠLévy defined in Section 4.2.2 to the n first integers.

Corollary 4.4. The process Π̂
[n]
Lévy is under N

(1) distributed as Π̂
[n]
GW under Pn.

Using Lemma 4.2, we also have the following corollary which shows that the first

coalescent event in Π̂
[n]
Lévy is not exponentially distributed.

Corollary 4.5. Let τ
(n)
1 be the first coalescent event in Π̂

[n]
Lévy. Then we have for

θ ≥ 0:

N
(1)[τ

(n)
1 ≥ θ] =

(

1

1 + θ

)n−1

.

Proof : We keep the notations of the proof of Lemma 4.2. We have:

N
(1)[τ

(n)
1 ≥ θ] = N

[

N

[

inf
u∈N (T̃0)

ζu ≥ θ
∣

∣ T̃0

]

∣

∣

∣
M = n

]

= N





∏

u∈N (T̃0)

(

1

1 + θ

)ku(T̃0)−1
∣

∣

∣M = n





= N

[

(

1

1 + θ

)M−1
∣

∣

∣M = n

]

=

(

1

1 + θ

)n−1

,

using (2.2) for the third equality. �

5. Proof of Corollary 1.7

We recall results from Haas and Miermont (2011), Corollary 1. Let Xn be the
number of coalescence events for a β(a, b)-coalescent. For 1 < a < 2 and b > 0, we
have that:

2− a

Γ(a)
na−2Xn

converges in distribution towards

Wa,b =

∫ ∞

0

dt e−(2−a)Sa,b(t),

where Sa,b is a subordinator with Laplace exponent φa,b given by:

φa,b(λ) =

∫ 1

0

(

1− (1− x)λ
)

xa−3(1− x)b−1 dx.
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Notice that this notation is consistent with (3.1). Since Zn is distributed as Xn

with a = 1 + α and b = 1− α, we deduce that:

nα−1Zn
(d)−−−−−→

n→+∞
Z,

with Z distributed as Γ(1+α)
1−α W1+α,1−α.

Using Lemma 3.1, we compute the moments of Z:

E
[

Wn
1+α,1−α

]

= n!

∫

0≤t1≤···≤tn

E

[

e−(1−α)
∑n

k=1 S1−α,1+α(tk)
]

dt1 · · · dtn

= n!

∫

0≤r1,··· ,0≤rn

n
∏

k=1

E

[

e−(1−α)kS1−α,1+α(rk)
]

dr1 · · · drn

=
n!

∏n
k=1 φ1+α,1−α(k(1− α))

=

(

1− α

Γ(α)

)n
Γ(n+ 1)Γ(1− α)

Γ((n+ 1)(1− α))
·

We deduce that:

E [Zn] = αn
Γ(n+ 1)Γ(1− α)

Γ((n+ 1)(1− α))
·

6. Number of blocks in the last coalescence event

We consider the number of blocks Bn involved in the last coalescence event of

Π
[n]
dis. In order to stress the dependence in n, we shall denote by Tn the GW tree

T under Pn. We also write ξu(Tn) for ξu to stress the dependence of the marks
introduced in Section 2.2 as a function of the underlying tree Tn. Notice that the
time ξ∅(Tn) at which the root of Tn is marked corresponds to the last coalescence
event associated with Tn. Thanks to Theorem 1.1, Bn is distributed as the number
of leaves of the pruned tree obtained from Tn just before the last coalescence event,
that is:

Bn
(d)
= L(Pξ∅(Tn)−(Tn)). (6.1)

6.1. Local limit. The method used in Abraham and Delmas (2013a) when α = 1/2
relies on Aldous’s CRT, which is the (global) limit of Tn when the length of the
branches of Tn are rescaled by 1/

√
n, see Duquesne (2003). Since Lévy’s trees

are more difficult to handle, we choose here to use the local limit of Tn, which
is Kesten’s tree T ∗, according to Curien and Kortchemski (2014) Theorem 3.1 or
Abraham and Delmas (2014) Proposition 4.6.

Recall that νg is the distribution with generating function g given in (1.3) and
that νg is critical as g′(1) = 1. We recall the distribution of Kesten’s tree T ∗

associated with the critical reproduction law νg, see Kesten (1986). Let ν∗g be the
corresponding size-biased distribution: ν∗g (k) = kνg(k) for all k ∈ N. For h ∈ N, we
consider the truncation operator rh on T defined as:

rht = {u ∈ t; |u| ≤ h}.
The distribution of T ∗ is as follows. Almost surely, T ∗ contains a unique infinite
path i.e. a unique infinite sequence (Vk, k ∈ N

∗) of positive integers such that, for
every h ∈ N, V1 · · ·Vh ∈ T ∗, with the convention that V1 · · ·Vh = ∅ if h = 0. The
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joint distribution of (Vk, k ∈ N
∗) and T ∗ is determined recursively as follows: for

each h ∈ N, conditionally given (V1, . . . , Vh) and rhT
∗, we have:

• The numbers of children (kv(T
∗), v ∈ T ∗, |v| = h) are independent and

distributed according to νg if v 6= V1 · · ·Vh and according to ν∗g if v =
V1 · · ·Vh.

• Given also the numbers of children (kv(T
∗), v ∈ T ∗, |v| = h), the vertex

Vh+1 is uniformly distributed on the set of integers






1, . . . ,
∑

v∈T∗, |v|=h

kv(T
∗)







.

We denote by P the distribution of T ∗.
Recall that the height of a discrete tree t ∈ T is Hmax(t) = sup{|u|, u ∈ t}.

The local limit convergence of critical GW trees, see Abraham and Delmas (2014),
implies that, for all h ∈ N

∗, t ∈ T with height h:

lim
n→+∞

Pn(rhTn = t) = P(rhT
∗ = t).

Notice that Pθ(T ∗) is a.s. finite for any θ > 0. By construction of the marks, we
easily get that the local limit of (Pθ(Tn), θ ≥ 0) is given by (Pθ(T ∗), θ ≥ 0). Since
k∅(Tn) converges in distribution to k∅(T

∗) (with distribution ν∗g ), we deduce the
convergence in distribution of the mark ξ∅(Tn) to ξ

∗
∅ distributed under P as:

P(ξ∗∅ ≥ θ|T ∗) = (1 + θ)1−k∅(T
∗).

We deduce that the local limit in distribution of Pξ∅(Tn)−(Tn) is given by Pξ∗
∅
−(T

∗).
This and the definition of T ∗ gives the following lemma. For t ∈ T, and u ∈ t,

recall the notation tu for the sub-tree attached at u, see (4.1).

Lemma 6.1. We have, for all t ∈ T:

lim
n→+∞

Pn(Pξ∅(Tn)−(Tn) = t) = P(T̄ = t),

where T̄ is such that:

• k∅(T̄ ) has distribution ν∗g .

• Conditionally on k∅(T̄ ), ξ is a random variable such that P(ξ ≥ θ) = (1 +

θ)1−k∅(T̄ ) for all θ ≥ 0.
• Conditionally on k∅(T̄ ) and ξ, V1 is a uniform random variable on
{1, . . . , k∅(T̄ )}.

• Conditionally on k∅(T̄ ), ξ and V1, (T̄u, u ∈ {1, . . . , k∅(T̄ )}) are independent
random trees distributed such that for u 6= V1, Tu is distributed as Pξ(T )
with T a GW tree with offspring distribution νg, and TV1

is distributed as
Pξ(T ∗), with T ∗ distributed as Kesten’s tree associated with the reproduction
law νg.

Notice that by construction, T̄ is finite.

6.2. Proof of Proposition 1.8. We deduce from (6.1), Lemma 6.1 and the fact that
T̄ is a.s. finite, that Bn converge in distribution to B = L(T̄ ). From Lemma 6.1,
we have that B is distributed as

L(Pξ(T ∗)) +

k∅−1
∑

k=1

L(Pξ(Tk)),
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where k∅ has distribution ν∗g , ξ has density (k∅ − 1)(1 + θ)−k∅1{θ≥0}, T
∗ is inde-

pendent and distributed as Kesten’s tree associated with νg, and (Tk, k ∈ N
∗) are

independent and distributed as a Galton-Watson tree T with offspring distribution
νg. We deduce that:

E
[

rB
]

= E

[

N(N − 1)

∫ +∞

0

(1 + θ)−NdθE
[

rLθ
]N−1

E

[

rL
∗
θ

]

]

,

where N has distribution νg, Lθ is the number of leaves of Pθ(T ) and L∗
θ is the

number of leaves of Pθ(T ∗).
Let hθ be the generating function of Lθ and h

∗
θ be the generating function of L∗

θ.
We have:

E
[

rB
]

=

∫ +∞

0

dθ

(1 + θ)2
g′′
(

hθ(r)

1 + θ

)

hθ(r)h
∗
θ(r).

Recall that Pθ(T ) is a GW tree whose reproduction law has generating function
gθ given by (2.3). Similar arguments as in the proof of (2.8), yield that:

gθ(hθ(r))− hθ(r) = gθ(0)(1− r). (6.2)

We deduce from (2.3) that:

g′′θ (r) = g′′
(

r

1 + θ

)

1

1 + θ
·

We deduce from (6.2) that:

(1− g′θ(hθ(r))) =
gθ(0)

h′θ(r)
and g′′θ (hθ(r)) = (1− g′θ(hθ(r)))

h′′θ (r)

(h′θ(r))
2
· (6.3)

We obtain:

g′′
(

hθ(r)

1 + θ

)

1

1 + θ
= gθ(0)

h′′θ (r)

(h′θ(r))
3
·

We now compute h∗θ. According to Remark 3.7 in Abraham et al. (2015), we
have for t ∈ T:

P(Pθ(T ∗) = t) = L(t)
1− g′θ(1)

g′θ(0)
P(Pθ(T ) = t).

We deduce that:

h∗θ(r) = E
[

rL
∗
θ

]

=
∑

t∈T

rL(t)P(Pθ(T ∗) = t)

=
1− g′θ(1)

gθ(0)

∑

t∈T

L(t)rL(t)P(Pθ(T ) = t)

= r
h′θ(r)

h′θ(1)
,

where we used the first equality in (6.3) with r = 1 and hθ(1) = 1. We get:

E
[

rB
]

= r

∫ +∞

0

dθ

1 + θ

gθ(0)

h′θ(1)

h′′θ (r)

(h′θ(r))
2
hθ(r). (6.4)

We have from (2.3) that:

gθ(0) = α(1 + θ)

[

1−
(

θ

1 + θ

)1/α
]

.
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We deduce from (6.2) that:

hθ(r) = (1 + θ)

[

1−
{

1− r

[

1−
(

θ

1 + θ

)1/α
]}α]

.

Then, the change of variable x = 1− (θ/(1+ θ))1/α in (6.4) gives that ϕα, given
in (1.5), is the generating function of B.
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