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Abstract. We study the large deviation behaviour of Sn =
∑n

j=1 WjZj , where

(Wj)j∈N and (Zj)j∈N are sequences of real-valued, independent and identically dis-
tributed random variables satisfying certain moment conditions, independent of
each other. More precisely, we prove a conditional strong large deviation result and
describe the fluctuations of the random rate function through a functional central
limit theorem.

1. Introduction and Results

Let (Zj)j∈N be independent, identically distributed (i.i.d.) random variables and
let (Wj)j∈N be i.i.d. random variables as well. Define the σ-fields Z ≡ σ(Zj , j ∈ N)
and W ≡ σ(Wj , j ∈ N) and let Z and W be independent. Furthermore, define

Sn ≡
n∑

j=1

ZjWj . (1.1)
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In this paper we derive strong (local) large deviation estimates on Sn conditioned on
the σ- field W. The random variables Wj can be interpreted as a random environ-
ment weighting the summands of Sn. Conditioning on W can thus be understood
as fixing the environment. Comets (1989) investigates conditional large deviation
estimates of such sums in the more general setup of i.i.d. random fields of random
variables taking values in a Polish Space. His results concern, however, only the
standard rough large deviation estimates. Local limit theorems have been obtained
in the case Sn ∈ R (see e.g. Bahadur and Ranga Rao (1960); Chaganty and Sethu-
raman (1993)) and for the case Sn ∈ Rd (see Iltis (1995)), but these have, to our
knowledge, not been applied to conditional laws of sums of the form (1.1).

Our result consists of two parts. The first part is an almost sure local limit
theorem for the conditional tail probabilities P(Sn ≥ an|W), a ∈ R. The second
part is a functional central limit theorem for the random rate function.

1.1. Strong large deviations. For a general review of large deviation theory see for
example den Hollander (2000) or Dembo and Zeitouni (2010). A large deviation
principle for a family of real-valued random variables Sn roughly says that, for
a > E

[
1
nSn

]
,

P(Sn ≥ an) = exp [−nI(a)(1 + o(1))] . (1.2)

The Gärtner-Ellis theorem asserts that the rate function, I(a), is obtained as the
limit of the Fenchel-Legendre transformation of the logarithmic moment generating
function of Sn, to wit I(a) = limn→∞ In(a), where In(a) is defined by

In(a) ≡ sup
ϑ
(aϑ−Ψn(ϑ)) = aϑn −Ψn(ϑn), (1.3)

where Ψn(ϑ) ≡ 1
n logE[exp(ϑSn)] and ϑn satisfies Ψ′

n(ϑn) = a. Furthermore, define
Φn(ϑ) ≡ E[exp(ϑSn)].

Strong large deviations estimates refine this exponential asymptotics. They
provide estimates of the form

P(Sn ≥ an) =
exp(−nIn(a))

ϑnσn

√
2πn

[1 + o(1)], (1.4)

where σ2
n ≡ Ψ′′

n(ϑn) denotes the variance of 1√
n
Sn under the tilted law P̃ that has

density

dP̃
dP

=
eϑnSn

E [eϑnSn ]
. (1.5)

The standard theorem for Sn a sum of i.i.d. random variables is due to Bahadur
and Ranga Rao (1960). The generalisation, which we summarise by Theorem 1.3,
is a result of Chaganty and Sethuraman (1993). We abusively refer to In(a) as the
rate function. The following theorem is based on 2 assumptions.

Assumption 1.1. There exist ϑ∗ ∈ (0,∞) and β < ∞ such that

|Ψn(ϑ)| < β, for all ϑ ∈ {ϑ ∈ C : |ϑ| < ϑ∗} (1.6)

for all n ∈ N large enough.

Assumption 1.2. (an)n∈N is a bounded real-valued sequence such that the equa-
tion

an = Ψ′
n(ϑ) (1.7)

has a solution ϑn ∈ (0, ϑ∗∗) with ϑ∗∗ ∈ (0, ϑ∗) for all n ∈ N large enough.
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Theorem 1.3 (Theorem 3.3 in Chaganty and Sethuraman (1993)). Let Sn be a
sequence of real-valued random variables defined on a probability space (Ω,F ,P).
Let Ψn be their logarithmic moment generating function defined above and assume
that Assumptions 1.1 and 1.2 hold for Ψn. Assume furthermore that

(i) limn→∞ ϑn
√
n = ∞,

(ii) lim infn→∞ σ2
n > 0, and

(iii) limn→∞
√
n supδ1≤|t|≤δ2ϑn

∣∣∣Φn(ϑn+it)
Φn(ϑn)

∣∣∣ = 0 ∀ 0 < δ1 < δ2 < ∞,

are satisfied. Then

P (Sn ≥ nan) =
exp(−nIn(an))

ϑnσn

√
2πn

[1 + o(1)] , n → ∞. (1.8)

This result is deduced from a local central limit theorem for Sn−nan√
nσ2

n

under the

tilted law P̃ defined in (1.5).

Remark 1.4. There are estimates for P(Sn ∈ nΓ), where Sn ∈ Rd and Γ ⊂ Rd, see
Iltis (1995). Then the leading order prefactor depends on d and the geometry of
the set Γ.

1.2. Application to the conditional scenario. Throughout the following we write
IWn (a), ϑW

n (a), ΦW
n (ϑ), ΨW

n (ϑ) and EW [·] for the random analogues of the quantities
defined in the previous section, e.g. ΦW

n (ϑ) ≡ E[exp(ϑSn)|W].

Remark 1.5. One could also condition on a different σ-field Y as in the application
to financial mathematics and an immunological model described in Section 2. In
the proofs we just need the fact that W ⊂ Y and Z is independent of Y.

Theorem 1.6. Let Sn be defined in (1.1). Assume that the random variables W1

and Z1 satisfy the following conditions:

(i) Z1 is not concentrated on one point.
(a) If Z1 is lattice valued, W1 has an absolutely continuous part and there

exists an interval [c, d] such that the density of W1 on [c, d] is bounded
from below by p > 0.

(b) If Z1 has a density, P(|W1| > 0) > 0 .
(ii) The moment generating function of Z1, M(ϑ) ≡ E[exp(ϑZ1)], is finite for all

ϑ ∈ R.
(iii) For f(ϑ) ≡ logM(ϑ), both E[f(ϑW1)] and E[W1f

′(ϑW1)] are finite for all
ϑ ∈ R.

(iv) There exists a function F : R → R such that E[F (W1)] is finite and
W 2

1 f
′′(ϑW1) ≤ F (W1) for all ϑ ∈ R.

Let ϑ∗ ∈ R+ be arbitrary but fixed. Let J ≡ (E[W1]E[Z1],E[W1f
′(ϑ∗W1)]) and

let a ∈ J . Then

P

(
∀a ∈ J : P(Sn ≥ an|W) =

exp(−nIWn (a))√
2πnϑW

n (a)σW
n (a)

(1 + o(1))

)
= 1, (1.9)

where

IWn (a) = aϑW
n (a)− 1

n

n∑
j=1

f
(
Wjϑ

W
n (a)

)
(1.10)

and ϑW
n (a) solves a = d

dϑ (
1
n

∑n
j=1 f(Wjϑ)).
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This theorem is proven in Section 3.

Remark 1.7. The precise requirements on the distribution of W1 depend on the
distribution of Z1. In particular, Condition (iii) does not in general require the
moment generating function of W1 to be finite for all ϑ ∈ R. Condition (iv) looks
technical. It is used to establish Condition (ii) of Theorem 1.3 for all a at the same
time. For most applications, it is not very restrictive, see Section 1.4 for examples.

1.3. Functional central limit theorem for the random rate function. Note that the
rate function IWn (a) is random. Even if we may expect that IWn (a) converges to a
deterministic function I(a), almost surely, due to the fact that it is multiplied by
n in the exponent in Equation (1.9), its fluctuations are relevant. To control them,
we prove a functional central limit theorem. We introduce the following notation.

g(ϑ) ≡ E[f(W1ϑ)] and Xn(ϑ) ≡
1√
n

n∑
j=1

(f(Wjϑ)− E[f(Wjϑ)]) . (1.11)

Moreover, define ϑ(a) as the solution of the equation a = g′(ϑ).
In addition to the assumptions made in Theorem 1.6, we need the following

assumption on the covariance structure of the summands appearing in the definition
of Xn(ϑ) and their derivatives.

Assumption 1.8. There exists C < ∞, such that, for all a, a′ ∈ J̄ , where J̄ is the
closure of the interval J ,

Cov (f(ϑ(a)Wj), f(ϑ(a
′)Wj)) , Cov (Wjf

′(ϑ(a)Wj),Wjf
′(ϑ(a′)Wj)) ,

Cov
(
W 2

j f
′′(ϑ(a)Wj),W

2
j f

′′(ϑ(a′)Wj)
)
, Cov (f(ϑ(a)Wj),Wjf

′(ϑ(a′)Wj)) ,

Cov
(
Wjf

′(ϑ(a)Wj),W
2
j f

′′(ϑ(a′)Wj)
)
, Cov

(
f(ϑ(a)Wj),W

2
j f

′′(ϑ(a′)Wj)
)
and

V
[
W 3

j f
′′′(ϑ(a)Wj)

]
are all smaller than C.

Theorem 1.9. If g′′(ϑ(a)) > c for some c > 0 and Assumption 1.8 is satisfied,
then the rate function satisfies

IWn (a) = I(a) + n−1/2Xn(ϑ(a)) + n−1rn(a), (1.12)

where
I(a) ≡ aϑ(a)− g(ϑ(a)), (1.13)

(Xn(ϑ(a)))a∈J̄
D→ (Xa)a∈J̄ , asn → ∞, (1.14)

where X is the Gaussian process with mean zero and covariance

Cov(Xa, Xa′) = E[f(W1ϑ(a))f(W1ϑ(a
′))]− E[f(W1ϑ(a))]E[f(W1ϑ(a

′))], (1.15)

and

rn(a) =
(X ′

n(ϑ(a)))
2

2
[
g′′(ϑ(a)) + 1√

n
X ′′

n(ϑ(a))
] + o (1) , (1.16)

uniformly in a ∈ J̄ .

To prove Theorem 1.9 we show actually more, namely that the process

(Xn(ϑ(a)), X
′
n(ϑ(a)), X

′′
n(ϑ(a)))a∈J̄

D→ (Xa, X
′

a, X
′′

a )a∈J̄ , (1.17)

(see Lemma 4.1 below). The proof of the theorem is given in Section 4.
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1.4. Examples. In the following we list some examples in which the conditions of
the preceding theorems are satisfied.

(1) Let Z1 be a Gaussian random variable with mean zero and variance σ2. In
this case,

f(ϑ) = log(E[exp(ϑZ1)]) =
1

2
σ2ϑ2, f ′(ϑ) = σ2ϑ (1.18)

f ′′(ϑ) = σ2, and f ′′′(ϑ) = 0 (1.19)

This implies that W1 must have finite fourth moments to satisfy Assump-
tion 1.8. Under this requirement Conditions (iii) and (iv) of Theorem 1.6
are met. According to Condition (ib) of Theorem 1.6, W1 may not be
concentrated at 0. Moreover,

g′′(ϑ) = σ2 > c (1.20)

independent of the distribution of W1.
(2) Let Z1 be a binomially distributed random variable, Z1 ∼ B(m, p). Thus

f(ϑ) = m log(1− p+ peϑ) (1.21)

f ′(ϑ) = m
peϑ

1− p+ peϑ
≤ m (1.22)

f ′′(ϑ) = m(p− p2)
eϑ

(1− p+ peϑ)2
≤ f ′′

(
log

(
3p− 1

p

))
(1.23)

f ′′′(ϑ) = m(p− p2)eϑ
1− 3p+ peϑ

(1− p+ peϑ)3
∈ C0. (1.24)

Then W1 has to satisfy (ia) of Theorem 1.6 and must have finite sixth mo-
ments. One can show that f ′(ϑ), f ′′(ϑ) and f ′′′(ϑ) are bounded, E[f(ϑW1)]
and the moments depending on f(ϑW1) in Assumption 1.8 are finite. Fur-
thermore, the assumption 0 < E[W 2

1 ] < ∞ implies that g(ϑ(a)) > c as
required in Theorem 1.9.

Remark 1.10. In both cases it is not necessary that the moment generating function
of W1 exists.

1.5. Related results. After posting our manuscript on arXiv, Ioannis Kontoyiannis
informed us about the papers Dembo and Kontoyiannis (1999) and Dembo and
Kontoyiannis (2002), where some similar results on conditional large deviations are
obtained. They concern sums of the form

ρn ≡ 1

n

n∑
j=1

ρ(Wj , Zj), (1.25)

where W = (Wj)j∈N and Z = (Zj)j∈N are two stationary processes with Wj and Zj

taking values in Polish spaces AW and AZ , respectively, and ρ : AW ×AZ → [0,∞)
is some measurable function. Their main motivation is to estimate the frequency
with which subsequences of length n in the process Z occur that are “close” to W .
To do this, they estimate conditional probabilities of the form

P (ρn ≤ D|W) , (1.26)
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obtaining, under suitable assumptions, refined large deviation estimates of the form

1

n
logP (ρn ≤ D|W) = Rn(D) +

1√
n
Λn(D) + o(1/

√
n), (1.27)

almost surely, where they show that Rn(D) converges a.s. while Λn(D) converges
in distribution to a Gaussian random variable.

2. Applications

2.1. Stochastic model of T-cell activation. The immune system defends the body
against dangerous intrusion, e.g. bacteria, viruses and cancer cells. The interaction
of so-called T-cells and antigen presenting cells plays an important rôle in perform-
ing this task. Van den Berg, Rand and Burroughs developed a stochastic model
of T-cell activation in van den Berg et al. (2001) which was further investigated in
Zint et al. (2008) and Mayer and Bovier (2015). Let us briefly explain this model.

The antigen presenting cells display on their surface a mixture of peptides present
in the body. During a bond between a T-cell and a presenting cell the T-cell scans
the presented mixture of peptides. The T-cell is stimulated during this process,
and if the sum of all stimuli exceeds a threshold value, the cell becomes activated
and triggers an immune response. The signal received by the T-cell is represented
by

Sn ≡
n∑

j=1

ZjWj + zfWf , (2.1)

where Wj represents the stimulation rate elicited by a peptide of type j and Zj

represents the random number of presented peptides of type j. The sum describes
the signal due to self peptides, zfWf is the signal due to one foreign peptide type.
From the biological point of view, T-cell activations are rare events and thus large
deviation theory is called for to investigate P(Sn ≥ na|Y), where Y is a σ-field such
that Wj are measurable with respect to Y and Zj are independent of Y. For two
examples of distributions discussed in Zint et al. (2008), Theorems 1.6 and 1.9 can
be applied. In both examples, the random variables Zj are binomially distributed,
and thus their moment generating function exists everywhere. Wj is defined by
Wj ≡ 1

τj
exp(− 1

τj
), where τj are exponentially distributed or logarithmic normally

distributed, i.e. Wj are bounded and the required moments exist. Furthermore,
W1 has a density and Condition (ia) of Theorem 1.6 is met. Using Theorems 1.6
and 1.9, one can prove that the probability of T-cell activation for a given type
of T-cell grows exponentially with the number of presented foreign peptides, zf ,
if the corresponding stimulation rate Wf is sufficiently large. It is then argued
that a suitable activation threshold can be set that allows significantly differentiate
between the presence or absence of foreign peptides. For more details see Mayer
and Bovier (2015).

2.2. Large portfolio losses. Dembo, Deuschel, and Duffie investigate in Dembo et al.
(2004) the probability of large financial losses on a bank portfolio or the total claims
against an insurer conditioned on a macro environment. The random variable Sn

represents the total loss on a portfolio consisting of many positions, Wj is a {0, 1}-
valued random variable and indicates if position j experiences a loss, whereas the
random variable Zj is for example exponentially distributed and represents the
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amount of loss. They consider the probability conditioned on a common macro
environment Y and assume that Z1,W1, . . . , Zn,Wn are conditionally independent.
Furthermore, they work in the slightly generalised setup of finitely many blocks of
different distributions. That is

Sn ≡
K∑

α=1

Qα∑
j=1

Zα,jWα,j , (2.2)

where Zα,j
D
= Zα and Wα,j

D
= Wα for each α ∈ {1, . . . ,K} and

∑K
α=1 Qα = n.

Moreover, the conditional probability of losses for each position is calculated and the
influence of the length of the time interval, in which the loss occurs, is investigated.
For more details see Dembo et al. (2004). This analysis was generalised later in a
paper by Spiliopoulos and Sowers (2011).

Remark 2.1. In general, the exponential distribution for Z1 causes problems because
the moment generating function does not exist everywhere. Evaluating at ϑWj thus
might yield to an infinite term depending on the range of Wj . In this application
there is no problem because Wj is {0, 1}-valued.

3. Proof of Theorem 1.6

Proof of Theorem 1.6: We prove Theorem 1.6 by showing that the conditional law
of Sn given W satisfies the assumptions of Theorem 1.3 uniformly in a ∈ J , almost
surely.

Assumption 1.1 is satisfied due to Conditions (ii) and (iii) of Theorem 1.6: For
each n ∈ N and each realisation of (Wj)j∈N ΨW

n (ϑ) is a convex function. Further-
more,

ΨW
n (ϑ) ≤ max{ΨW

n (ϑ∗),Ψ
W
n (−ϑ∗)} (3.1)

and

lim
n→∞

max{ΨW
n (ϑ∗),Ψ

W
n (−ϑ∗)} = max{E [f(W1ϑ∗)] ,E [f(−W1ϑ∗))]}, a.s. (3.2)

This implies that Assumption 1.1 is satisfied. To prove that Assumption 1.2 holds,
note that, by the law of large numbers,

lim
n→∞

d

dϑ
ΨW

n (0) = lim
n→∞

1

n
EW [Sn] = E[W1]E[Z1], a.s. (3.3)

Next, by convexity, and again the law of large numbers

lim inf
n→∞

sup
ϑ∈[0,ϑ∗]

d

dϑ
ΨW

n (ϑ) = lim inf
n→∞

d

dϑ
ΨW

n (ϑ∗) = E[W1f
′(ϑ∗W1)], a.s. (3.4)

Recall that ϑW
n (a) is defined as the solution of

a =
1

n

n∑
j=1

d

dϑ
logM(Wjϑ) =

1

n

n∑
j=1

Wjf
′(ϑWj). (3.5)

For n large enough, the solution ϑW
n (a) exists for a ∈ J and is unique since the loga-

rithmic moment generating function ΨW
n is strictly convex. Again by monotonicity

of d
dϑΨ

W
n (ϑ) in ϑ, and because of (3.3) and (3.4), for a ∈ J , ϑW

n (a) ∈ (0, ϑ∗), almost
surely, for n large enough. Thus Assumption 1.2 is satisfied.

In order to establish Condition (i) of Theorem 1.3 we prove the following

Lemma 3.1. P
(
∀a ∈ J : limn→∞ ϑW

n (a) = ϑ(a)
)
= 1.
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Proof : First, using that g′(ϑ) is continuous and monotone increasing

P
(
∀a ∈ J : lim

n→∞
|ϑW

n (a)− ϑ(a)| = 0
)

= P

(
∀a ∈ J : lim

n→∞

∣∣∣g′(ϑW
n (a))− 1

n

n∑
j=1

Wjf
′(ϑW

n (a)Wj)

−g′(ϑ(a)) +
1

n

n∑
j=1

Wjf
′(ϑW

n (a)Wj)
∣∣∣ = 0

)

= P

∀a ∈ J : lim
n→∞

∣∣∣g′(ϑW
n (a))− 1

n

n∑
j=1

Wjf
′(ϑW

n (a)Wj)
∣∣∣ = 0

 , (3.6)

where we used that, by definition of ϑ(a) and ϑn(a),

1

n

n∑
j=1

Wjf
′(ϑW

n (a)Wj) = g′(ϑ(a)) = a. (3.7)

Since we have seen that for a ∈ J , ϑ(a) ∈ [0, ϑ∗] and, for n large enough, ϑW
n (a) ∈

[0, ϑ∗], the last line in (3.6) is bounded from below by

P

 sup
ϑ∈[0,ϑ∗]

lim
n→∞

∣∣∣∣∣∣ 1n
n∑

j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣ = 0

 . (3.8)

Denote the open ball of radius δ around ϑ by Bδ(ϑ) ≡ {ϑ̄ ∈ R : |ϑ− ϑ̄| < δ}. The
following facts are true:

(1) By Condition (iii) of Theorem 1.6 W1f
′(ϑW1) is integrable, for each ϑ ∈

[0, ϑ∗].
(2) W1(ω)f

′(ϑW1(ω)) is a continuous function of ϑ, ∀ω ∈ Ω.
(3) W1f

′(ϑW1) is monotone increasing in ϑ since d
dϑ (W1f

′(ϑW1)) > 0.
(4) (1), (2), and (3) imply, by dominated convergence, that, for all ϑ ∈ [0, ϑ∗],

lim
δ↓0

E

[
sup

ϑ̄∈Bδ(ϑ)

W1f
′(ϑ̄W1)− inf

ϑ̄∈Bδ(ϑ)
W1f

′(ϑ̄W1)

]
= 0. (3.9)

Note that (4) implies that, for all ϑ ∈ [0, ϑ∗] and for all ε > 0, there exists a
δ = δ(ε, ϑ), such that

∣∣∣∣∣E
[

sup
ϑ̄∈Bδ(ε,ϑ)(ϑ)

W1f
′(ϑ̄W1)− inf

ϑ̄∈Bδ(ε,ϑ)(ϑ)
W1f

′(ϑ̄W1)

]∣∣∣∣∣ < ε. (3.10)
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The collection {Bδ(ε,ϑ)(ϑ)}ϑ∈[0,ϑ∗] is an open cover of [0, ϑ∗], and since [0, ϑ∗] is
compact we can choose a finite subcover, {Bδ(ε,ϑk)(ϑk)}1≤k≤K . Therefore

sup
ϑ∈[0,ϑ∗]


∣∣∣∣∣∣ 1n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣
 (3.11)

= max
1≤k≤K

sup
ϑ∈Bδ(ε,ϑk)(ϑk)


∣∣∣∣∣∣ 1n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣


= max
1≤k≤K

max


∣∣∣∣∣∣ sup
ϑ∈Bδ(ε,ϑk)(ϑk)

 1

n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣ ,∣∣∣∣∣∣ inf
ϑ∈Bδ(ε,ϑk)(ϑk)

 1

n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣
 .

It suffices to show that for all 1 ≤ k ≤ K and n large enough almost surely

− ε < inf
ϑ∈Bδ(ε,ϑk)(ϑk)

 1

n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]


≤ sup

ϑ∈Bδ(ε,ϑk)(ϑk)

 1

n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

 < ε. (3.12)

Note that

sup
ϑ∈Bδ(ε,ϑk)(ϑk)

 1

n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

 (3.13)

≤ 1

n

n∑
j=1

sup
ϑ∈Bδ(ε,ϑk)(ϑk)

Wjf
′(ϑWj)− inf

ϑ∈Bδ(ε,ϑk)(ϑk)
E[W1f

′(ϑW1)]

Since by convexity of f

Wjf
′(−ϑ∗Wj) ≤ sup

ϑ∈Bδ(ε,ϑk)(ϑk)

Wjf
′(ϑWj) ≤ Wjf

′(ϑ∗Wj) (3.14)

and since these bounds are integrable by Condition (iii) of Theorem 1.6 also the
supremum itself is integrable. Thus, the strong law of large numbers applies and
(3.13) converges almost surely to

E

[
sup

ϑ∈Bδ(ε,ϑk)(ϑk)

W1f
′(ϑW1)

]
− inf

ϑ∈Bδ(ε,ϑk)(ϑk)
E[W1f

′(ϑW1)], (3.15)

which in turn, due to (3.10), is bounded from above by

E

[
sup

ϑ∈Bδ(ε,ϑk)(ϑk)

W1f
′(ϑW1)− inf

ϑ∈Bδ(ε,ϑk)(ϑk)
W1f

′(ϑW1)

]
< ε. (3.16)
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With a similar argument it can be shown that for all 1 ≤ k ≤ K and n large enough
almost surely

inf
ϑ∈Bδ(ε,ϑk)(ϑk)

 1

n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

 > −ε. (3.17)

Thus, ϑW
n (a) converges almost surely to ϑ(a). �

But for a ∈ J , we know that ϑ(a) > 0, and since ϑW
n (a) converges to ϑ(a), a.s.,

a fortiori, Condition (i) of Theorem 1.3 is satisfied, a.s.
Next we show that Condition (ii) of Theorem 1.3 is also satisfied, almost surely.

To see this, write(
d2

dϑ2
ΨW

n (ϑ)

)∣∣∣∣
ϑ=ϑW

n (a)

=
1

n

n∑
j=1

E[W 2
j Z

2
j e

ϑW
n (a)WjZj |W]E[eϑ

W
n (a)WjZj |W]−

(
E[WjZje

ϑW
n (a)WjZj |W]

)2

(E[eϑ
W
n (a)WjZj |W])2

=
1

n

n∑
j=1

VϑW
n (a)[WjZ1|W]. (3.18)

The conditional variance VϑW
n (a)[WjZj |W] is clearly positive with positive prob-

ability, since we assumed the distribution of Z1 to be non-degenerate and Wj is
non-zero with positive probability. We need to show that also the infimum over
n ∈ N is strictly positive. Note that

Ψ′′(ϑ(a)) = E[Vϑ(a)[W1Z1|W]] > 0. (3.19)

We need the following lemma.

Lemma 3.2. P
(
∀a ∈ J : limn→∞ Ψ′′

n(ϑ
W
n (a)) = Ψ′′(ϑ(a))

)
= 1.

Proof : Since trivially

|Ψ′′
n(ϑ

W
n (a))−Ψ′′(ϑ(a))|

≤ |Ψ′′
n(ϑ

W
n (a))−Ψ′′(ϑW

n (a))|+ |Ψ′′(ϑW
n (a))−Ψ′′(ϑ(a))|, (3.20)

Lemma 3.2 follows if both

P
(
∀a ∈ J : lim

n→∞
|Ψ′′

n(ϑ
W
n (a))−Ψ′′(ϑW

n (a))| = 0
)
= 1 (3.21)

and

P
(
∀a ∈ J : lim

n→∞
|Ψ′′(ϑW

n (a))−Ψ′′(ϑ(a))| = 0
)
= 1. (3.22)

Now, Ψ′′(ϑ) is a continuous function of ϑ and uniformly continuous on the compact
interval [0, ϑ∗]. This implies that

∀ε > 0∃δ = δ(ε) : ∀ϑ, ϑ′ : |ϑ− ϑ′| < δ |Ψ′′(ϑ)−Ψ′′(ϑ′)| < ε. (3.23)

From the uniform almost sure convergence of ϑW
n (a) to ϑ(a), it follows that

∀δ > 0∃N = N(ω, δ) : |ϑW
n (a)− ϑ(a)| < δ, (3.24)

which in turn implies that

∀n ≥ N : |Ψ′′(ϑW
n (a))−Ψ′′(ϑ(a))| < ε. (3.25)
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Therefore, Equation (3.22) holds. The proof of (3.21) is very similar to that of
Lemma 3.1. The difference is that we cannot use monotonicity to obtain a majorant
for W 2

1 f
′′(ϑW1), but instead use Condition (iv) of Theorem 1.6. Again, as in (3.8),

P
(
∀a ∈ J : lim

n→∞
|Ψ′′

n(ϑ
W
n (a))−Ψ′′(ϑW

n (a))| = 0
)

≥ P

(
sup

ϑ∈[0,ϑ∗]

lim
n→∞

|Ψ′′
n(ϑ)−Ψ′′(ϑ)| = 0

)
. (3.26)

Moreover, the following facts are true:

(1) By Condition (iv) of Theorem 1.6 and the convexity of f ,
0 ≤ W 2

1 f
′′(ϑW1) ≤ F (W1) and E[F (W1)] < ∞.

(2) W 2
1 (ω)f

′′(ϑW1(ω)) is a continuous function of ϑ ∀ω ∈ Ω.
(3) From (1) and (2) it follows by dominated convergence that for all ϑ ∈ [0, ϑ∗]

that

lim
δ↓0

E

[
sup

ϑ̄∈Bδ(ϑ)

W 2
1 f

′′(ϑ̄W1)− inf
ϑ̄∈Bδ(ϑ)

W 2
1 f

′′(ϑ̄W1)

]
= 0. (3.27)

The proof of Lemma 3.2 proceeds from here exactly as the proof of Lemma 3.1,
just replacing f ′ by f ′′ and W1 by W 2

1 . �

Condition (ii) of Theorem 1.3 now follows immediately.
Next we show that Condition (iii) is satisfied. We want to show that ∀0 < δ1 <

δ2 < ∞

P

(
∀a ∈ J : lim

n→∞

√
n sup

δ1≤|t|≤δ2ϑW
n (a)

∣∣∣∣∣ΦW
n (ϑW

n (a) + it)

ΦW
n (ϑW

n (a))

∣∣∣∣∣ = 0

)
= 1. (3.28)

As above we bound the probability in (3.28) from below by

P

(
lim

n→∞

√
n sup

ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

∣∣∣∣ΦW
n (ϑ+ it)

ΦW
n (ϑ)

∣∣∣∣ = 0

)
. (3.29)

Therefore, (3.28) follows from the first Borel-Cantelli lemma if, for each δ > 0,

∞∑
n=1

P

(
√
n sup

ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

∣∣∣∣ΦW
n (ϑ+ it)

ΦW
n (ϑ)

∣∣∣∣ > δ

)
< ∞. (3.30)

Note that ∣∣∣∣ΦW
n (ϑ+ it)

ΦW
n (ϑ)

∣∣∣∣ = n∏
j=1

∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣ (3.31)

is a product of functions with absolute value less or equal to 1. Each factor is the
characteristic function of a tilted Zj . According to a result of Feller (1971) there
are 3 classes of characteristic functions.

Lemma 3.3 (Lemma 4 in Chapter XV in Feller (1971)). Let φ be the characteristic
function of a probability distribution function F . Then one of the following must
hold:

(1) |φ(ζ)| < 1 for all ζ 6= 0.
(2) |φ(λ)| = 1 and |φ(ζ)| < 1 for 0 < ζ < λ. In this case φ has period λ

and there exists a real number b such that F (x+ b) is arithmetic with span
h = 2π/λ.
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(3) |φ(ζ)| = 1 for all ζ. In this case φ(ζ) = eibζ and F is concentrated at the
point b.

Case (3) is excluded by assumption. Under Condition (ia) of Theorem 1.6 we are
in Case (1). In this case it is rather easy to verify Equation (3.28). Namely, observe
that there exists 0 < ρ < 1, such that for all ϑ ∈ [0, ϑ∗], for all δ1 ≤ t ≤ δ2ϑ∗,
whenever K−1 ≤ |Wj | ≤ K, for some 0 < K < ∞,∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣ < 1− ρ. (3.32)

This implies that, for ϑ as specified,∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣ ≤ (1− ρ)
1{ 1

K
≤|Wj |≤K} . (3.33)

Therefore,

P

√
n sup

ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

n∏
j=1

∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣ > δ


≤ P

(√
n(1− ρ)

∑n
j=1 1{ 1

K
≤|Wj |≤K} > δ

)
, (3.34)

where K is chosen such that P
(

1
K ≤ |Wj | ≤ K

)
> 0. With cn ≡ log δ− 1

2 logn

log(1−ρ) , the

probability in the second line of (3.34) is equal to

P

 n∑
j=1

1{ 1
K ≤|Wj |≤K} < cn


≤

dcne∑
k=1

(
n

k

)
P
(

1

K
≤ |Wj | ≤ K

)k [
1− P

(
1

K
≤ |Wj | ≤ K

)]n−k

≤ dcne
(

n

dcne

)[
1− P

(
1

K
≤ |Wj | ≤ K

)]n−bcnc

. (3.35)

Since
(

n
dcne
)
∼ nC logn for a constant C, this is summable in n and (3.30) holds.

Case (2) of lattice-valued random variables Zj , which corresponds to Condition
(ib) of Theorem 1.6, is more subtle. Each of the factors in the product in (3.31)
is a periodic function, which is equal to 1 if and only if Wjt ∈ {kλ, k ∈ Z}, where
λ is the period of this function. This implies that each factor is smaller than 1 if
Wj /∈ {kλ/t, k ∈ Z}. The points of this set do not depend on ϑ and have the smallest
distance to each other if t is maximal, i.e. t = δ2ϑ∗. Each factor is strictly smaller
than 1 if tWj does not lie in a finite interval around one of these points. We choose
these intervals as follows. Let

δ̃ ≡ min

{
λ

8δ2ϑ∗
,
d− c

4

}
(3.36)

and define the intervals

I(k, t, δ̃) ≡
[
kλ

t
− δ̃,

kλ

t
+ δ̃

]
. (3.37)
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These disjoint and consecutive intervals are separated by a distance at least 6δ̃ from
each other. Then, for all ϑ ∈ [0, ϑ∗] there exists 0 < ρ(ϑ) < 1 , independent of t,
such that ∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣ ≤ (1− ρ(ϑ))
1{|Wj |/∈∪k∈ZI(k,t,δ̃)} . (3.38)

Furthermore,
∣∣∣M(θ+it)

M(θ)

∣∣∣ is continuous in θ, and thus its supremum over compact

intervals is attained. Thus, for any C > 0 there exists ρ̄ = ρ̄(C, ϑ∗) > 0 such that,
for all ϑ ∈ [0, ϑ∗],∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣ ≤ (1− ρ̄)
1{Wj∈[−C,C]\∪k∈ZI(k,t,δ̃)} . (3.39)

We choose C such that the interval [c, d] from Hypothesis (ia) is contained in
[−C,C]. Then we get with Equations (3.38) and (3.39) that

P

(
√
n sup

ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

n∏
j=1

∣∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣∣ > δ

)

≤ P

(
√
n sup

ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ∗

n∏
j=1

(1− ρ̄)
1{Wj∈[−C,C]\∪k∈ZI(k,t,δ̃)} > δ

)

= P
(√

n (1− ρ̄)
infδ1≤|t|≤δ2ϑ∗

∑n
j=1 1{Wj∈[−C,C]\∪k∈ZI(k,t,δ̃)} > δ

)
. (3.40)

With cn ≡ log δ− 1
2 logn

log(1−ρ̄) Equation (3.40) can be rewritten as

P
(

inf
δ1≤|t|≤δ2ϑ∗

n∑
j=1

1{Wj∈[−C,C]\∪k∈ZI(k,t,δ̃)} < cn

)
≤ P

(
inf

δ1≤|t|≤δ2ϑ∗

n∑
j=1

1{Wj∈([−C,C]∩[c,d])\∪k∈ZI(k,t,δ̃)} < cn

)
. (3.41)

(3.41) is summable over n since the number of Wj contained in the “good” sets is

of order n, i.e. #{j : Wj ∈ [c, d]\ ∪k∈Z I(k, t, δ̃)} = O(n). Define

K(t) = #{k : I(k, t, δ̃) ∩ [c, d] 6= ∅}, (3.42)

and let k1, . . . kK(t) enumerate the intervals contained in [c, d]. Let m1(t), . . . ,

mK(t)(t) be chosen such that Wmi(t) ∈ I(ki, t, δ̃). Note that mi(t) are random.
The probability in the last line of (3.41) is bounded from above by

P

 inf
δ1≤|t|≤δ2ϑ∗

n∑
j=1

1{Wj∈[c,d],|Wj−Wm1(t)|>2δ̃,...,|Wj−WmK(t)(t)
|>2δ̃} ≤ cn

 . (3.43)

Since there are only finitely many intervals of length 2δ̃ with distance 6δ̃ to each
other in [c, d], there exists K < ∞ such that supt∈[δ1,δ2ϑ∗] K(t) < K. Thus, the
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probability in (3.43) is not larger than

P

(
∃m1,...,mK∈{1,...,n} :

n∑
j=1

1{Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK
|>2δ̃} ≤ cn

)

≤
n∑

m1,...,mK=1

P

(
n∑

j=1

1{Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK
|>2δ̃} ≤ cn

)

≤ nKP

(
n∑

j=1

1{Wj∈[c,d],|Wj−Wm1
|>2δ̃,...,|Wj−WmK

|>2δ̃} ≤ cn

)
. (3.44)

The indicator function vanishes whenever j = mi with i ∈ {1, . . . ,K}. Thus,

P

(
n∑

j=1

1{Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK
|>2δ̃} ≤ cn

)

= P

(
n∑

j 6∈{m1,...,mK}

1{Wj∈[c,d],|Wj−Wm1
|>2δ̃,...,|Wj−WmK

|>2δ̃} ≤ cn

)

= P

(
n∑

j=K

1{Wj∈[c,d],|Wj−W1|>2δ̃,...,|Wj−WK |>2δ̃} ≤ cn

)
(3.45)

due to the i.i.d. assumption. (3.45) is equal to

dcne∑
l=0

(
n−K

l

)
P(A)l (1− P(A))n−K−l ≤ dcne

(
n−K

dcne

)
(1−P(A))n−K−dcne. (3.46)

Here A is the event

A =
{
W ∈ [c, d], |W −W1| > 2δ̃, . . . , |W −WK | > 2δ̃

}
, (3.47)

where W is an independent copy of W1. We show that P(A) is strictly positive.

P(A) =

∫
[c,d]

P
(
|W −W1| > 2δ̃, . . . , |W −WK | > 2δ̃

∣∣∣W) dPW (3.48)

≥
∫
[c,d]

P
(
Wi ∈ [W − 2δ̃,W + 2δ̃]c ∩ [c, d],∀i ∈ {1, . . . ,K}

)
dPW ,

where PW denotes the distribution of W . Since the random variables W1, . . . ,
WK ,W are independent of each other, this is equal to∫

[c,d]

P
(
W1 ∈ [W − 2δ̃,W + 2δ̃]c ∩ [c, d]|W

)K
dPW , (3.49)

and due to the lower bound on the density of PW postulated in Hypothesis (ia),
this in turn is bounded from below by

(p(d− c− 4δ̃))K
∫
[c,d]

dPW ≥ (d− c)pK+1(d− c− 4δ̃)K ≡ p̃ ∈ (0, 1]. (3.50)

Combining Equations (3.46) and (3.50) we obtain

(3.44) ≤ nK dcne
(

n

dcne

)
p̃n−K−dcne (3.51)
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which is summable over n, as desired. Thus all hypotheses of Theorem 1.3 are
satisfied with probability one, uniformly in a ∈ J , and so the conclusion of Theorem
1.6 follows. �

4. Proof of Theorem 1.9

In order to prove Theorem 1.9 we need the joint weak convergence of the process
Xn, defined in (1.11) and its derivatives, as stated in Lemma 4.1. Define on the
closure, J̄ of the interval J (recall the definition of J in Theorem 1.6), the processes

(X̂n
a )a∈J̄ , n ∈ N, via

X̂n
a ≡ (Xn(ϑ(a)), X

′
n(ϑ(a)), X

′′
n(ϑ(a))). (4.1)

Lemma 4.1. The family of processes (X̂n
a )a∈J̄ defined on

(
C(J̄ ,R3),B(C(J̄ ,R3)

)
,

converges weakly, as n → ∞, to a process (X̂a)a∈J̄ on the same space, if there exists
c > 0, such that, for all a ∈ J̄ , g′′(ϑ(a)) > c, and if Assumption 1.8 is satisfied.

Proof : As usual, we prove convergence of the finite dimensional distributions and
tightness.

More precisely, we have to check that:

(1) (X̂n
a )a∈J̄ converges in finite dimensional distribution.

(2) The family of initial distributions, i.e. the distributions of X̂n
b , where b ≡

E[Z1W1], is tight.
(3) There exists C > 0 independent of a and n such that

E
[
‖X̂n

a+h − X̂n
a ‖2
]
≤ C|h|2, (4.2)

which is a Kolmogorov-Chentsov criterion for tightness, see Kallenberg
(2002, Corollary 14.9).

First, we consider the finite dimensional distributions. Let

Ya,j ≡ f(ϑ(a)Wj)− E [f(ϑ(a)Wj)]

Y ′
a,j ≡ Wjf

′(ϑ(a)Wj)− E[Wjf
′(ϑ(a)Wj)] and

Y ′′
a,j ≡ W 2

j f
′′(ϑ(a)Wj)− E[W 2

j f
′′(ϑ(a)Wj)]. (4.3)

Moreover, let ` ∈ N, a1 < a2 < · · · < a` ∈ J̄ and

χj ≡
(
Ya1,j , Y

′
a1,j , Y

′′
a1,j , . . . , Ya`,j , Y

′
a`,j

, Y ′′
a`,j

)
∈ R3`. (4.4)

These vectors are independent for different j and the components (χj)k, 1 ≤ k ≤ 3`,
have covariances Cov((χj)k, (χj)m) = Ckm < C for all k,m ∈ {1, . . . , 3`}, accord-
ing to Assumption 1.8. Therefore, 1√

n

∑n
j=1 χj converges, as n → ∞, to the 3`-

dimensional Gaussian vector with mean zero and covariance matrix C by the central
limit theorem. This proves convergence of the finite dimensional distributions of

(X̂n
a )a∈J̄ .
The family of initial distributions is given by the random variables evaluated at

ϑ(b). This family is seen to be tight using Chebychev’s inequality

P (‖Xn
b ‖2 > C) ≤

V
[√

Xn(ϑ(b))2 + (X ′
n(ϑ(b)))

2 + (X ′′
n(ϑ(b)))

2
]

C2

≤
E
[
Xn(ϑ(b))

2 + (X ′
n(ϑ(b)))

2 + (X ′′
n(ϑ(b)))

2
]

C2
. (4.5)
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which is finite by Assumption 1.8. For each ε we can choose C large enough such
that (4.5) < ε. It remains to check Condition (3). Since

E
[
‖X̂n

a+h − X̂n
a ‖2
]

= E
[
(Xn(ϑ(a+ h))−Xn(ϑ(a)))

2
]

+E
[
[X ′

n(ϑ(a+ h))−X ′
n(ϑ(a)))

2
]

+E
[
(X ′′

n(ϑ(a+ h))−X ′′
n(ϑ(a)))

2
]
, (4.6)

we need to show that each of the three terms on the right-hand side is of order h2.
Note that E

[
[Xn(ϑ(a+ h))−Xn(ϑ(a))]

2
]
≤ C|h|2 if

E
[(

d
daXn(ϑ(a))

)2] ≤ C. (4.7)

Since Xn(ϑ(a)) =
1√
n

∑n
j=1 Ya,j ,

E
[(

d
daXn(ϑ(a))

)2]
=

1

n

n∑
j=1

E
[(

d
daYa,j

)2]
. (4.8)

Each summand can be controlled by

E
[(

d
daYa,j

)2]
= E

[(
d
daf(ϑ(a)Wj)

)2]− (E [ d
daf(ϑ(a)Wj)

])2
=
(

d
daϑ(a)

)2 (E [W 2
j f

′(ϑ(a)Wj)
2
]
− (E [Wjf

′(ϑ(a)Wj)])
2
)

=
(

d
daϑ(a)

)2 V [Wjf
′(ϑ(a)Wj)] . (4.9)

By the implicit function theorem,

d

da
ϑ(a) = (g′′(ϑ(a)))

−1
. (4.10)

Thus, Equation (4.7) holds since g′′(ϑ(a)) > c by assumption and V [Wjf
′(ϑ(a)Wj)]

is bounded by Assumption 1.8. The bounds for the remaining terms follow in the
same way by controlling the derivatives of X ′

n(ϑ(a)) and X ′′
n(ϑ(a)). We obtain

E
[(

d
daY

′
a,j

)2]
= E

[(
d
daWjf

′(ϑ(a)Wj)
)]

−
(
E
[

d
daWjf

′(ϑ(a)Wj)
])2

=
(

d
daϑ(a)

)2 V [W 2
j f

′′(ϑ(a)Wj)
]

(4.11)

and

E
[(

d
daY

′′
a,j

)2]
= E

[(
d
daW

2
j f

′′(ϑ(a)Wj)
)]

−
(
E
[

d
daW

2
j f

′′(ϑ(a)Wj)
])2

=
(

d
daϑ(a)

)2 V [W 3
j f

′′′(ϑ(a)Wj)
]
. (4.12)

In both formulae the right hand sides are bounded due to Assumption 1.8. This
proves the lemma. �

Proof of Theorem 1.9: Recall that ϑW
n (a) is determined as the solution of the equa-

tion

a = g′(ϑ) +
1√
n
X ′

n(ϑ). (4.13)

Write ϑW
n (a) ≡ ϑ(a) + δn(a), where ϑ(a) is defined as the solution of

a = g′(ϑ). (4.14)
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Note that ϑ(a) is deterministic while δn(a) is random and W-measurable . The
rate function can be rewritten as

IWn (a) = a(ϑ(a) + δn(a))− g(ϑ(a) + δn(a))− 1√
n
Xn(ϑ(a) + δn(a)). (4.15)

A second order Taylor expansion and reordering of the terms yields

IWn (a) = aϑ(a)− g(ϑ(a))︸ ︷︷ ︸
≡I(a)

− 1√
n
Xn(ϑ(a))

+ (a− g′(ϑ(a)))︸ ︷︷ ︸
=0

δn(a)− 1√
n
δn(a)X ′

n(ϑ(a))

−1

2
(δn(a))2

(
g′′(ϑ(a)) +

1√
n
X ′′

n(ϑ(a))

)
+ o((δn(a))2). (4.16)

Note that the leading terms on the right-hand side involve the three components of

the processes X̂n whose convergence we have just proven. We obtain the following
equation for δn(a) using a first order Taylor expansion.

a = g′(ϑ(a) + δn(a)) +
1√
n
X ′

n(ϑ(a) + δn(a)) (4.17)

= g′(ϑ(a)) +
1√
n
X ′

n(ϑ(a)) + δn(a)

(
g′′(ϑ(a)) +

1√
n
X ′′

n(ϑ(a))

)
+ o(δn(a)),

which implies

δn(a) =
− 1√

n
X ′

n(ϑ(a))

g′′(ϑ(a)) + 1√
n
X ′′

n(ϑ(a))
+ o(δn(a)). (4.18)

Lemma 4.1 combined with g′′(ϑ(a)) = O(1) yields δn(a) = O(1/
√
n). We insert

the expression for δn(a) into Equation (4.16) to obtain

IWn (a)

= I(a)− 1√
n
Xn(ϑ(a))−

1

2

(
g′′(ϑ(a)) +

1√
n
X ′′

n(ϑ(a))

)

×

 1
n (X

′
n(ϑ(a)))

2(
g′′(ϑ(a)) + 1√

n
X ′′

n(ϑ(a))
)2 −

1√
n
X ′

n(ϑ(a))o(δ
n)(

g′′(ϑ(a)) + 1√
n
X ′′

n(ϑ(a))
) + o((δn)2)


+

1
n (X

′
n(ϑ(a)))

2

g′′(ϑ(a)) + 1√
n
X ′′

n(ϑ(a))
+

1√
n
X ′

n(ϑ(a))o(δ
n) + o((δn)2). (4.19)

Combining this with the bound (4.18), it follows that

IWn (a) = I(a)− 1√
n
Xn(ϑ(a)) +

1

n
rn(a), (4.20)

where

rn(a) ≡
1
2 (X

′
n(ϑ(a)))

2

g′′(ϑ(a)) + 1√
n
X ′′

n(ϑ(a))
+ o(1). (4.21)

rn(a) converges weakly due to the continuous mapping theorem and the joint weak
convergence of X ′

n(ϑ(a)) and X ′′
n(ϑ(a)). This completes the proof of the theorem.

�
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